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Abstract

In this paper, we introduce the USCILab3D dataset, a large-scale, annotated out-1

door dataset designed for versatile applications across multiple domains, including2

computer vision, robotics, and machine learning. The dataset was acquired using a3

mobile robot equipped with 5 cameras and a 32-beam, 360◦ scanning LIDAR. The4

robot was teleoperated, over the course of a year and under a variety of weather5

and lighting conditions, through a rich variety of paths within the USC campus6

(229 acres = ∼ 92.7 hectares). The raw data was annotated using state-of-the-7

art large foundation models, and processed to provide multi-view imagery, 3D8

reconstructions, semantically-annotated images and point clouds (267 semantic9

categories), and text descriptions of images and objects within. The dataset also10

offers a diverse array of complex analyses using pose-stamping and trajectory11

data. In sum, the dataset offers 1.4M point clouds and 10M images (∼ 6TB of12

data). Despite covering a narrower geographical scope compared to a whole-city13

dataset, our dataset prioritizes intricate intersections along with denser multi-view14

scene images and semantic point clouds, enabling more precise 3D labelling and15

facilitating a broader spectrum of 3D vision tasks. For data, code and more details,16

please visit our website.17

1 Introduction18

With the recent advancements in 3D vision techniques, the integration of three-dimensional perception19

has become integral to many interdisciplinary domains. Unlike the abundant resources available20

for 2D vision, the lack of comprehensive datasets for 3D vision poses a significant challenge to21

researchers. The progress in this field can be significantly propelled by leveraging large-scale datasets,22

which offer adaptability across a spectrum of downstream tasks.23

In this paper, we present USCILab3D — a large-scale, long-term, semantically annotated outdoor24

dataset. USCILab3D comprises over 10 million images and 1.4 million semantic point clouds,25

rendering it suitable for a wide range of vision tasks.26

Differing from smaller-scale semantic datasets or larger-scale undetailed ones, our dataset not only27

encompasses a wide array of outdoor multi-view scene images but also provides detailed semantic28

annotations, facilitating enhanced understanding and utilization of 3D perception techniques. Given29

the massive scale of our new dataset, as detailed below, we have thus far focused on leveraging30
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the latest foundation models to compute detailed annotations. Our workflow using these models is31

detailed below.32

Figure 1: Images with the respective 3D pointclouds Our adjacent five cameras provide comprehen-
sive coverage with overlap at the same timeframe, ensuring the captured information’s redundancy.
We also show the corresponding point cloud view for every image.

2 Related datasets33

Several large-scale scene datasets have been developed in recent years for indoor settings [17; 24; 19].34

Additionally, several datasets have focused on outdoor city navigation[16]. Furthermore, some35

datasets are generated using simulators [7; 22]. These attempt to solve the above problems, although36

presenting their challenges: While they offer controlled environments, there exists a noticeable gap in37

scene quality compared to real-world scenes.38

2.1 Multi-view Scene dataset39

Multi-view scene datasets are typically used for novel view synthesis tasks with generative models40

such as Neural Radiance Fields (NeRF) [15] and 3D Gaussian Splatting [12]. The LLFF dataset41

[14] is an early multi-view scene dataset that includes both indoor and outdoor scenes, with fewer42

than 1,000 low-resolution images. The DTU [11] and ScanNet [6] datasets contain between 30K and43

2,500K images, but they are limited to indoor scenes. The ETH3D dataset [21] provides high-quality44

outdoor scenes but has sparse scans and fewer than 1,000 images. Tanks and Temples [13] addresses45

these limitations by offering 147,000 high-quality outdoor images, which are commonly used in46

novel view synthesis benchmarks.47

2.2 Semantic Scene dataset48

Indoor datasets Datasets like [17; 24] represent large-scale 3D reconstruction datasets tailored for49

research in indoor robotic navigation and scene understanding. Matterport [4] is a large-scale RGB-D50

indoor dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale51

scenes. However, this dataset is limited to indoor environments and offers only 20 labels for scene52

annotation. In contrast, our dataset encompasses approximately 10 million images and over 400053

labels, providing extensive coverage of outdoor scenes. Moreover, the inclusion of ground-truth point54

clouds in our dataset enhances the accuracy of alignment between 2D images and 3D annotations,55

surpassing the alignment capabilities of other datasets.56

Outdoor datasets SemanticKITTI [3] is a widely used dataset for semantic segmentation and scene57

understanding in outdoor environments. It consists of dense point cloud sequences collected by a58

mobile LiDAR scanner which is similar to us. However, SemanticKITTI’s semantic annotations are59

confined to only 25 categories. In contrast, leveraging multimodal model outputs, our dataset enables60
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the labeling of almost every element within the scene, providing a comprehensive understanding of61

outdoor environments.62

Our dataset addresses the limitations of the above datasets by providing large-scale outdoor scenes63

with diverse weather and lighting conditions, along with ground-truth semantic point clouds (Table64

1). Leveraging multimodal foundational models, we accurately label 2D images and align them in 3D65

space, resulting in precise 3D annotations.66

Figure 2: The pipeline of our semantic annotations method We use GPT4 and Grounded-SAM to
create pixel-wise semantic labels and align the 2D and 3D points.

Dataset Frames Indoor Outdoor LiDAR Point Cloud Semantic
LLFF[14] < 1K images ✓ ✓ ✗ ✗
DTU[11] 30K images ✓ ✗ ✗ ✗

ScanNet[6] 2,500K images ✓ ✗ ✗ ✗
Tanks and Temples[13] 147K images ✓ ✓ ✗ ✗

ETH3D[21] <1K images ✓ ✗ ✗ ✗
Matterport3D[4] 195K images ✓ ✗ ✗ ✓

Habitat[17] - ✓ ✗ ✗ ✓
iGibson[24] - ✓ ✗ ✓ ✓

SemanticKITTI[3] 23K scans ✗ ✓ ✓ ✓
USCILab3d (ours) 10M images ✗ ✓ ✓ ✓

1.4M scans

Table 1: Comparison of the existing datasets with our USCILab3D dataset.

3 Dataset collection67

This section outlines our robot platform and data collection approach. Our robot, Beobot-v3, utilizes68

multiple cameras and a LiDAR sensor for simultaneous data capture. We collect data across the USC69

University Park campus and synchronize streams for analysis.70

3.1 Robot platform71

We build our robot Beobot-v3 to collect the dataset, as shown in Figure 3. We use five Intel Realsense72

D455 cameras and Velodyne HDL-32E LiDAR. The RGB images, featuring a field of view (FOV) of73

90 × 65° and a resolution of 1280 × 720 pixels, are captured at a rate of 15 frames per second (FPS).74

Utilizing a 1 MP RGB sensor, these images ensure high-quality visual data acquisition. Furthermore,75

the LiDAR scans the environment at a rate of 10 Hz, capturing precise point clouds that complement76

the visual data. These point clouds offer comprehensive 3D spatial information essential for scene77

understanding and navigation tasks. Because of microcomputer’s limit, camera 1 and LiDAR are78
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controlled by one microcomputer, and other cameras are controlled by their own microcomputer. All79

microcomputers are all controlled by a central computer, our data collection system orchestrates the80

simultaneous scanning and recording process. As the LiDAR initiates scanning, capturing a 360°81

view of the environment, the data is saved directly into the system and five cameras capture images in82

tandem, storing them in separate ROS bag files.83

3.2 Dataset collected over the entire USC campus84

Our dataset is meticulously collected across the entirety of the USC University Park campus. Spanning85

an expansive area of 229 acres (0.93 km²), the campus makes our dataset diverse. From the varied86

architecture of its buildings to the network of roads, stairs, trails, paths, gardens, and sidewalks,87

each corner offers a unique scene. By dynamically selecting its route, the robot explores the full88

extent of the campus’ diverse terrain, from thoroughfares to hidden nooks, creating a rich variety of89

surroundings.90

Figure 3: Overview of the data collection robot and its hardware. Beobot-v3 is a differential-drive,
non-holonomic mobile robot, equipped with five Intel Realsense D455 cameras and one Velodyne
HDL-32E LiDAR sensor used to collect the dataset.

The data collection occurred in many daytime sessions, with a preference for sunrise or sunset periods91

to avoid crowds and mitigate harsh sunlight that could degrade image quality. However, a small92

portion of the captured images may still exhibit the effects of powerful sunshine. The sample images93

are shown in Figure 4.94

Our data collection efforts span from March 11, 2023, to March 16, 2024, encompassing 12 months.95

Over this time frame, the environment undergoes dynamic changes, including variations in weather,96

seasons, and alterations to the campus landscape, such as ongoing construction projects. This97

deliberate scheduling ensures that our dataset encapsulates a diverse range of environmental scenarios,98

enriching the dataset with a wide array of conditions for robust training and evaluation of algorithms.99

3.3 Synchronization of cameras and LiDAR100

To address the synchronization issue between the LiDAR and cameras due to the control of different101

microprocessors, we implement a synchronization process. Given that the LiDAR operates on the102

same system clock as camera 1, we only need to synchronize the remaining cameras with camera103

1. To achieve this, we employ a method based on feature detection and optical flow tracking. At104

the onset of each session, the scene remains static. Leveraging ShiTomasi corner detection [25],105

we identify key features in the camera images. Subsequently, using the Lucas-Kanade optical flow106

algorithm, we track the movement of these features over consecutive frames. If the displacement107

of these features exceeds a predefined threshold, indicative of the robot initiating movement, we108

designate this time as the session’s start time.109
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Once the start time is determined for camera 1, we synchronize the start times of the remaining110

cameras by aligning them with the start time of camera 1. This ensures temporal coherence across111

all camera feeds, enabling accurate alignment of the visual and LiDAR data streams. Through112

this synchronization process, we establish temporal consistency across all data sources, facilitating113

coherent analysis and interpretation of the collected data.114

Figure 4: Sample snapshots from our dataset of various days. These are images obtained from
randomly sampling across the entire dataset.

3.4 Sensor calibration115

By aligning the coordinate systems of the Velodyne LiDAR and the camera, we ensure that the116

geometric transformation from 3D to 2D space is accurate. With this calibrated setup, we can117

assign semantic labels to the 3D points based on the information extracted from the images. The118

accurate alignment between the Velodyne-frame and camera-frame ensures that the projected points119

correspond to the correct regions in the images, enabling us to leverage the semantic information120

obtained from the images to label the 3D points accurately.121

4 Dataset annotation122

In this section, we describe methods used as part of the pipeline for our semantic annotations of 3D123

point clouds. A high-level overview is shown in Figure 2.124

4.1 GPT4-based candidate labels and clustering125

We use GPT-4 [1] to detect the semantic labels in an image. Since images are obtained at 15Hz and126

the robot moves at a velocity close to 1 m/s, it is redundant and expensive to query the semantic127

labels for all images through GPT-4 model. Given that the image frequency is 15Hz, for about every128

225 images from one camera, we extract the the images of five cameras at that time. Given that the129

camera records at 15Hz, a 15-second interval of movement (typically less than 12 meters) ensures a130

small scene variation.131

We then pass 5 images, each from every camera to GPT-4, and prompt it to estimate the semantic132

labels of the images using the following prompt "List every possible semantic class that exists in the133

scene. List only the names and nothing else." After standardizing and filtering the output, we obtain a134

total of 4162 labels. But most labels are meaningless or have similar meaning. We then again use135

GPT-4 to perform clustering and categorization on the estimated semantic labels.136

After removing the meaningless labels and merging semantically equivalent labels, we obtained 257137

unique labels. Then, for all images we asked GPT-4 to extract objects from the image again, now138

with prompt is "I will give you a list of semantic class, list every possible semantic class that exists in139

the scene. List only the names and nothing else, split by comma." This yields the final label list for140

each image.141

4.2 Grounded-SAM masks on pixel space142

After we obtain the candidate labels, for equally spaced subset of images, we use those labels as143

an input to the Grounded-SAM model [18] to detect and segment the image by pixel. Since we are144
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Category Elements
Vehicle vehicle, bicycle, van, truck, motorcycle, golf cart, bus, car, skateboard
Nature sky, grass, tree, shrub, shrubbery, hedge, trunk, tree trunk, green area, birds, bush, yard, plant

sun, palm, rock, soil, leaf, leaves, water, flower, branch, bushes, vegetation, bird, ivy
Human person, hand
Ground pavement, curb, gravel, rail, sidewalk, street, walkway, floor, road, pedestrian walkway, crosswalk

ramp, garden, ground, pathway, paving stone, golf course, parking lot, drainage grate, mulch
Structure monument, structure, courtyard, fountain, public space, construction, emergency station

ceiling, fence, gate, wall, balcony, container, stadium, lattice, shed, house, construction
pipe, roof, building, sports field, campus, toilet, baseball field, architecture
site, parking structure, garage, scaffolding, archway, call station

Street Furniture bench, pole, feeding station, patio, handicap, barrier, hydrant, construction cone, construction barrier
lamp post, lamp, trash can, recept, sign, parking meter, public art, statue, sculpture
bollard, bus stop, park bench

Architectural Elements drain cover, manhole cover, vent, air vent, arch, sill, doorway, baluster, security camera, electric box
corridor, stair, ventilation grill, door handle, entrance, post, air unit, pillar, balustrade, handrail
window, door, elevator, gutter, bleachers, tank, generator, utility meter

General Objects umbrella, table, chair, stroller, furniture, board, bottle, canopy, outdoor gear, advertisement, station
pot, rack, flag, locker, ladder, garbage, bulletin board, pallet, planter, equipment, tent, base, hat
curtain, blinds, cardboard, box, tire, wheels, bag, bed, frame, bucket, painting, poster , machine

Signs and Symbols shadow, reflection, traffic cone, parking space line, space line, road marking
parking symbol, stop sign, street sign, road sign, symbol, plaque, banner, graffiti, waste container
signboard, security camera, camera, warning sign, fire safety sign, transportation sign
handicap sign, closed sign, exit sign, parking sign, reservation sign, rec sign

Materials concrete, brick, construction materials, stone, wood, plastic, metal, glass, iron, materials
Lighting outdoor lighting, light, street light, indoor light, lantern, sunlight, shade
Miscellaneous cover, trash, outdoor, chain, unit, security, exterior, fire, electric, meter, lettering, phone, debris, railway

text, potted, space, portable, cone, stlight, cross, marker, grate, blea, stoller, units, picnic, electrical
cable, basin, pavilion, ster, bal, field, curve, bod, bay, pal, firent, box, exit, baseball, image, rec, sports
public, piping, grill, guttering, utility, call, case, recacle, gut, hydra, air
line, tile, cardboard, patch, reservoir, valve

Table 2: Clustering of the semantic labels. We use GPT-4 to cluster 267 labels into 12 categories
using the prompt "Could you help me classify by following category: Vehicle, Nature, Human,
Ground, Structure, Street Furniture, Architectural Elements."

using a differential-drive robot and it could potentially rotate left or right, images may look very145

different quite rapidly, so we merge the five image labels from GPT-4 and pass to next step. After146

conducting our experiments, we found that the presence of unrelated labels (not visually represented147

in the images) does not significantly influence the results of Grounded-SAM. This observation is148

reflected in Figure 5 through the percentage of incorrect pixel labels in the masks of 2 images. We149

show the top 50 frequent objects and their pixel percentage in images of our dataset in Figure 6.150

Additional prompts Incorrect pixel labels

1 0.23%
2 0.63%
3 0.63%

10 0.92%

Figure 5: (a) Robustness of Grounded SAM to prompts (left). Comparison of the semantic
masks obtained using different prompts for the same image by Grounded-SAM model, showing the
robustness of the model. (b) Percentage of incorrect pixel labels (right). Quantitative measures
to show robustness through the change in the percentage of incorrect pixel labels with additional
prompts.

4.3 Post-processing after Grounded-SAM151

Grounded-SAM’s output is not always using the same vocabulary as our input labels, e.g., one may152

prompt it for ’vehicle’ but obtain a segmented ’car’. It may also generate meaningless words or153

words having similar meaning. To address this, we perform clustering and categorization as in section154

4.1 again to merge all similar labels. Additionally, we manually merge and remove some words.155

Ultimately, we obtain 267 labels and 12 categories (Table 2).156
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Figure 6: Histogram of the semantic labels frequency in point cloud scans and points. Top 50
frequently estimated semantic classes in points(orange), and correspoing point cloud scan frequency

4.4 Projecting 2D semantic masks to 3D pointcloud157

From the LIDAR data, we reconstruct 3D trajectories of the robot throughout the dataset. Essentially,158

we compute a pose transformation for each LiDAR scan in the dataset. We then interpolate the LiDAR159

poses to the camera images using the extrinsic parameters corresponding to the transformation of160

each camera with respect to the LiDAR sensor. This results in a pose estimate for every camera image161

in the dataset.162

By utilizing the semantic map of every image obtained from Grounded SAM, we use ground truth163

camera intrinsics and extrinsics to accurately project 3D point clouds onto 2D images, following164

equation. Here, (X,Y, Z) represents the world coordinates of a point, while (x, y) denotes the165

coordinates of the point projected onto the image plane, measured in pixels. r and t are rotation166

and translation. cx, cy represents the principal point, and fx, fy are the focal lengths in pixels.167

Subsequently, we align the 2D and 3D points to assign labels to the 3D points.168

(
x
y
1

)
∼

(
fx 0 cx
0 fy cy
0 0 1

)(
r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

)X
Y
Z
1

 (1)

Considering the presence of moving objects and calibration errors, there may be some offset for each169

projection. To reduce erroneous labels, we run DBSCAN clustering [8] on each label projection to170

check whether the 3D points projected belong to a single cluster. If they do not, we only label the171

cluster with the most points.172

4.5 Released data173

We release the raw ROS Bagfiles, and extracted images, point cloud files, COLMAP [20] poses and174

sparse reconstructions. The raw data consists of a set of sequences, each of which is collected during175

a specific data recording session. To make the data more manageable, we divide each session into176

different subsequences or "sectors", with each sector consisting of 1250 images and roughly 167177

point cloud scans. In addition, we conducted face detection and applied blurring techniques to ensure178

privacy protection on campus.179
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Multi-view images Each image is named according to the convention cam[id]-[timestamp].jpg.180

We estimate synchronized timestamps for all images within a sector, using the method mentioned181

in section 3.3. The wide field of view (FoV) of 90 degrees for each of the five cameras results in182

significant overlap between their respective images, as depicted in Figure 1. This substantial overlap183

ensures more robust Structure from Motion (SfM) reconstruction. By having multiple views of the184

same scene, the SfM algorithm can triangulate feature points more accurately, leading to a more185

precise reconstruction of the 3D environment. This overlap also aids in improving the accuracy of186

semantic labelling. By leveraging overlapping information from multiple viewpoints, inconsistencies187

or errors in semantic annotations of 3D points from 2D-pixel maps can be identified and rectified188

through cross-validation. This double-checking mechanism helps to enhance the reliability of189

semantic labels assigned to objects in the scene.190

Semantic instances and masks of images In addition to the raw image data, we also provide191

semantic labels and label masks generated by Grounded-SAM for each image in the dataset. These192

labels offer valuable insights into the semantic understanding of the scene, allowing researchers to193

perform tasks such as semantic segmentation and object detection.194

Semantic annotated point cloud scans As mentioned before, the pointcloud streams are captured at195

10Hz. Similar to KITTI Semantic [3], we extract each of the pointclouds scans and annotate the 3D196

points by assigning semantic labels to individual points based on the closest image’s label, using the197

method outlined in section 4.3. The color and corresponding label for each point are saved in a JSON198

file named labels.json, ensuring easy access and interpretation of the semantic annotations.199

Semantic annotated session point clouds In addition to the individual semantic annotated point200

cloud scans, we have processed each session’s point cloud data using LeGO-LOAM [23] to generate201

merged point cloud of a sector. We mention the statistics of the distribution of points in each of202

the point cloud scans and the merged point clouds in the supplemental material. Unlike the point203

cloud scans, sector-based point clouds have more points and offer a comprehensive overview of the204

semantic annotated scene. Through these semantic point clouds, researchers can gain deeper insights205

into the semantic structure and composition of the environment.206

Pose annotations for images. We release interpolated poses from LeGO-LOAM, and COLMAP207

Structure from Motion (SfM) [20]. The COLMAP SfM results can serve as inputs for some generative208

model like NeRF or 3D Gaussian Splatting. Further, by utilizing the poses computed by COLMAP,209

we aim to improve the precision of our annotations given the different sampling rates of the LiDAR210

(10Hz) and cameras (15Hz). This alignment is crucial for accurately projecting semantic labels onto211

the 3D points based on the information extracted from the images. We are currently investigating212

how to best merge the LiDAR and COLMAP poses, likely resulting in a unified set of poses indexed213

non-uniformly in time, for each image and for each point cloud. We expect that these unified poses214

will be released with the next version our dataset.215

Robotic dataset for visual navigation. Our dataset comprises diverse sequences captured within216

a university environment, reflecting a range of real-world scenarios. Leveraging the compact form217

factor of our robot, we collected data across a variety of settings including roads, outdoor lobbies,218

ramps, and other typical campus landscapes. This dataset is particularly valuable for applications in219

visual navigation and is integrated into the comprehensive Open X-Embodiment dataset [5].220

5 Benchmarks221

5.1 Evaluation on Novel View Synthesis222

We examine the current state-of-the-art (SOTA) Novel View Synthesis methods on several datasets:223

USCILab3D, ETH3D[21], Mip-NeRF360[2], Tanks&Temples[13], Deep Blending[9], and Deep224

Blending[9]. For each dataset, we run 3D Gaussian Splatting and evaluate the generated image225

quality using PSNR, SSIM, and L-PIPS metrics. For each scene, we use 7/8 of the data as the training226

set and 1/8 as the test set, then calculate the average result for each scene. Considering the large size227

of our dataset, we randomly extract one sector from each session to compute the average result.228
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Our dataset achieves superior PSNR, SSIM, and the best L-PIPS performance compared to other229

datasets (Table 3). Among these datasets, ours is the only one that provides large-scale scenes,230

making it suitable for a wider range of applications, such as simulators [10].231

PSNR ↑ SSIM ↑ LPIPS ↓ Resolution ↓ interation
USCILab3D (ours) 26.02 0.86 0.20 1280 × 720 7000
ETH3D[21] 21.25 0.83 0.27 6048 × 4032 7000
Tanks&Temples [13] 21.20 0.77 0.28 980 x 540 7000
Mip-NeRF360[2] 25.19 0.75 0.25 1256 x 828 7000
Deep Blending[9] 27.01 0.87 0.32 1332 x 876 7000

Table 3: Performance comparison of 3D Gaussian splatting on different datasets. Our dataset
achieves superior performance compared to other datasets. Although Deep Blending demonstrates a
higher PSNR, it only contains 2.6K images.

5.2 Evaluation on Semantic Segmentation and Completion232

We also evaluate our dataset using key tasks: semantic segmentation, panoptic segmentation, and233

semantic scene completion. Semantic segmentation is crucial for understanding and labeling every234

point in a 3D point cloud with a specific class, providing detailed insights into the composition of the235

scene. Panoptic segmentation extends this by not only classifying each point but also distinguishing236

between different instances of the same class. This is particularly valuable for environments with237

multiple similar objects, enhancing the dataset’s utility in more complex and dynamic scenarios.238

Lastly, semantic scene completion involves predicting the complete geometry and semantics of a239

scene, including occluded and unobserved regions. This task is vital for creating comprehensive240

and accurate representations of environments, which is indispensable for advanced applications in241

augmented reality and spatial analysis. Due to page limitations, we have included the results in the242

supplemental material.243

6 Caveats244

Thus far, our annotations have been machine-generated using the latest foundation models. Although245

this may pose a few risks, nevertheless, to the best of our knowledge, our method is the first of its246

kind to annotate 3D point clouds using image and text based foundational models without any manual247

intervention. Casual inspection by authors suggests that the annotations are indeed of high quality.248

However, we plan to validate them by hiring a group of human annotators to inspect and possibly249

correct a fraction of the machine-generated annotations. We expects that this will be completed by250

the time of publication.251

7 Discussion and Conclusion252

In this paper, we introduced the USCILab3D dataset, a comprehensive outdoor 3D dataset designed253

to address the limitations of existing datasets in the domain of 3D scene understanding and navigation.254

Our dataset offers a diverse array of complex intersections and outdoor scenes meticulously collected255

across the USC University Park campus. With approximately 10 million images and 1.5 million256

dense point cloud scans, our dataset prioritizes intricate areas, enabling more precise 3D labelling257

and facilitating a broader spectrum of 3D vision tasks.258

Moving forward, we believe that the USCILab3D dataset will serve as a valuable resource for re-259

searchers and practitioners across various domains, including computer vision, robotics, and machine260

learning. We anticipate that the dataset will stimulate further advancements in 3D vision-based261

models and foster the development of robust algorithms capable of tackling real-world challenges in262

outdoor environments.263
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