
SYNTHFIX: A Hybrid Neural-Compiler Framework for Code Vulnerability
Repair

Anonymous ACL submission

Abstract
Addressing code vulnerabilities is crucial for001
software security and reliability. We present002
SYNTHFIX, an innovative framework for au-003
tomated code repair that combines Supervised004
Fine-Tuning (SFT) with Proximal Policy Opti-005
mization (PPO) in an iterative training regime.006
Inspired by optimization strategies from statis-007
tical algorithms, SYNTHFIX balances the rapid008
pattern recognition of SFT with the adaptive009
learning of PPO. By incorporating compiler in-010
sights, such as Abstract Syntax Trees (AST),011
Control Flow Graphs (CFG), and ESLint, SYN-012
THFIX enhances training dynamics, improv-013
ing scalability and adaptability. Evaluation014
on the FixJS dataset with over 30k JavaScript015
code pairs, demonstrates that SYNTHFIX out-016
performs existing methods, achieving up to017
7.78% improvement in CodeBLEU over SFT018
and 7.33% over PPO on the CodeT5 and Code-019
Gen models. SYNTHFIX further shows substan-020
tial gains in Exact Match, achieving up to 2.16x021
improvement. This innovative training architec-022
ture outperforms traditional models and shows023
potential for advancing other software engineer-024
ing tasks through feedback adjustments. The025
code for SYNTHFIX has been anonymized and026
can be found at https://github.com/027
iiiiiiii979/SynthFix028

1 Introduction029

In Software Engineering (SE), the automated re-030

pair of code vulnerabilities is essential for reducing031

extensive manual debugging efforts and enhancing032

system security and reliability. Traditional vulner-033

ability repair, often rule-based and manual, lacks034

scalability, leading to the adoption of AI methods.035

Yet, these AI approaches, relying heavily on neural036

networks and natural language processing (NLP),037

primarily capture superficial code patterns, often038

missing deeper structural and semantic complexi-039

ties crucial for effective repair (Mesbah et al., 2019;040

Jiang et al., 2018; An et al., 2018; Klieber et al.,041

2021).042

Supervised Fine-Tuning (SFT) is quick to learn 043

syntactic patterns but often fails to grasp the com- 044

plexities of code, limiting its ability to address in- 045

tricate vulnerabilities (Berabi et al., 2021; Huang 046

et al., 2023). On the other hand, Proximal Policy 047

Optimization (PPO) adopts a reinforcement learn- 048

ing strategy, enabling deeper analysis through itera- 049

tive feedback-driven refinements. However, PPO’s 050

effectiveness is constrained by its resource intensity 051

and slow convergence (Schulman et al., 2017). To 052

address these limitations, enhancing PPO with an 053

actor-critic architecture, which uses separate neural 054

network models to distinctly assess the current pol- 055

icy (actor) and optimize the value function (critic), 056

provides a more robust solution. 057

Inspired by iterative statistical models that refine 058

parameter estimates to optimize performance (Wu, 059

1983; Gupta et al., 2011), SYNTHFIX effectively 060

merges SFT with PPO in a hybrid framework 061

specifically designed for software repair challenges. 062

SFT sets the initial learning conditions, akin to an 063

"expectation" step, quickly assimilating common 064

coding patterns and addressing basic errors. PPO, 065

enhanced by our specialized actor-critic architec- 066

ture, acts as a "maximization" step, refining these 067

foundational insights into deeper, more complex 068

structural and logical aspects of code crucial for 069

intricate software vulnerabilities. 070

This blend not only overcomes the limitations 071

of each method when used alone—slow learning 072

curves of PPO and superficiality of SFT—but also 073

leverages their strengths to efficiently tackle so- 074

phisticated software engineering tasks. By inte- 075

grating compiler constructs like Abstract Syntax 076

Trees (AST), Control Flow Graphs (CFG), along- 077

side ESLint1, SYNTHFIX enhances the adaptability 078

and scalability of our PPO’s actor-critic architec- 079

ture, key for software repair where adaptability to 080

1ESLint is a widely used linting tool that helps in identify-
ing and reporting on patterns found in ECMAScript/JavaScript
code, thus aiding in maintaining code quality and consistency.
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various coding issues is essential.081

Moreover, SYNTHFIX demonstrates substantial082

improvements, achieving up to a 7.78% increase in083

CodeBLEU over SFT and 7.33% over PPO. SYN-084

THFIX further shows notable gains in Exact Match,085

achieving up to 2.16x improvement, highlighting086

its precision and reliability in generating correct087

patches. These results underscore the potential088

of the proposed integrated approach of SFT and089

PPO for advancing automated code repair. Modi-090

fying the feedback in our PPO’s critic model can091

inspire new methodologies, potentially setting new092

benchmarks in the field. Our contributions can be093

summarized as follows:094

• We introduce SYNTHFIX, a novel hybrid095

framework that integrates SFT with PPO for096

automated code vulnerability repair, leverag-097

ing the strengths of both techniques to achieve098

superior results.099

• We incorporate compiler constructs such as100

AST, CFG, and ESLint into the training pro-101

cess, improving the model’s ability to ad-102

dress complex structural and semantic issues103

in code.104

• Our evaluation on the FixJS dataset shows105

that SYNTHFIX outperforms existing meth-106

ods, with up to a 7.78% improvement in Code-107

BLEU and a 2.16x gain in Exact Match over108

traditional SFT and PPO approaches.109

• SYNTHFIX sets new standards in the field110

by achieving more accurate and reliable code111

patches, showcasing its potential to advance112

other software engineering tasks through adap-113

tive feedback adjustments.114

2 Approach115

In this section, we introduce SYNTHFIX, a hybrid116

training method that combines SFT with PPO. By117

integrating compiler insights like AST, CFG, and118

ESLint scores, SYNTHFIX aims to improve code re-119

pair accuracy and adaptability. The following sub-120

sections outline the framework, actor-critic mecha-121

nism, and hybrid training strategy.122

2.1 SYNTHFIX Framework123

In this section, we outline SYNTHFIX, a framework124

that advances beyond traditional training methods.125

Train by Feedbacks
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Figure 1: Overview of SYNTHFIX. This diagram shows
the online and offline training processes in SYNTHFIX,
highlighting how dynamic and static code repairs are
informed by compiler insights and feedback loops to
enhance model adaptability and effectiveness.

As depicted in Figure 1, our training process be- 126

gins with static repair using SFT, as shown in Fig- 127

ure 2(b). This phase establishes basic code recog- 128

nition and repair abilities. 129

The process then progresses to dynamic repair 130

with PPO, detailed in Figure 2(a), which enhances 131

these abilities into deeper repair skills using an 132

actor-critic architecture. This dual-phase approach 133

ensures thorough learning and effective vulnerabil- 134

ity repair. 135

These two repairs cycle in a certain ratio, typi- 136

cally setting the one of smaller proportion as one 137

epoch in a cycle. For example, in a 5:5 ratio, one 138

SFT is followed by one PPO in a cycle; for a 7:3 ra- 139

tio, two SFTs are followed by one PPO to complete 140

one cycle, repeating three times with an additional 141

SFT to adjust accordingly. 142

Figure 1 also highlights the critic component 143

of our model, depicted in Figure 2(c), where the 144

critic model pre-trained offline optimizes the re- 145

ward model based on compiler feedback from AST, 146

CFG, and ESLint scores. This comprehensive train- 147

ing strategy not only refines the repairs but also 148

ensures high adaptability and precision, setting a 149

new standard in automated code repair, further dis- 150

cussed in Subsection 2.4. 151

2.2 Actor-Critic Mechanism 152

Central to our approach is the actor-critic mech- 153

anism (Bahdanau et al., 2016; Grondman et al., 154

2012), depicted in Figure 2(c), which is crucial 155

during the PPO training phase. The actor model 156

proposes repair actions at, while the critic model 157

evaluates these actions based on AST, CFG, and 158

ESLint scores, generating a reward signal rt. 159

The interaction is governed by the following 160

equations: 161
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(a) PPO Training(Dynamic Repair)

(b) SFT Training(Static Repair)

Actor Model(Fixer)

             Critic Model

Training Data
(Buggy Code)

Training Data
(Fixed Code)

Generated Code

Compute Loss

CFG

CFGAST AST

AST Reward
(Semantic Match)

CFG Reward
(Syntactic Match)

Reference Model

ESLint Score
(External System)

KL Penalty Reward

Compiler Feedback

ValuePPO Loss

(c) Critic Model(Offline Training)

Backpropagation Forwardpropagation

Training Data
(Buggy Code)

Figure 2: Detailed Workflow of SYNTHFIX. This diagram delineates the interactive processes among the dynamic
and static repair training phases and the offline critic model training within SYNTHFIX. (a) PPO Training (Dynamic
Repair) uses a reference model to guide the actor model through reward feedback enhanced by compiler metrics
(AST and CFG rewards) and ESLint scores, facilitating syntactic and semantic improvements in generated code. (b)
SFT Training (Static Repair) focuses on optimizing code fixes using static data to reduce bugs effectively. (c) The
Critic Model (Offline Training) pre-trained on fixed and buggy code evaluates the actor’s output using compiler
insights, ensuring that the learning is grounded in both code quality metrics and practical functionality.

ϕ(t+1) = argmax
ϕ

Et

[
min

(
rt(ϕ)Ât, clip(rt(ϕ),

1− ϵ, 1 + ϵ)Ât

)]
(1)162

where rt(ϕ) =
πϕ(at|st)

πϕold (at|st)
is the probability ratio,163

and ϵ is the clipping parameter.164

The value network is updated as:165

V (t+1) = argmin
V

Et

[
(V (st)−Rt)

2
]

(2)166

Here, Rt is the cumulative reward. The actor167

uses rt to refine its policy, improving code repair168

effectiveness over time.169

2.3 Hybrid Training Methodology170

The training protocol of SYNTHFIX combines su-171

pervised learning from static datasets with dynamic,172

interactive learning via PPO, as depicted in Fig-173

ure 2(a) and Figure 2(b). Initially, SFT trains the174

model on common code repair patterns, serving175

as an “expectation” step where the model learns176

to recognize and respond to prevalent issues. This177

foundational phase sets up a robust base of cod-178

ing knowledge, akin to preparing the model with179

a comprehensive understanding of typical coding180

errors and their solutions.181

Transitioning to PPO, the “maximization” step182

of the Expectation-Maximization (EM) algorithm,183

the model refines this knowledge through real-184

time interactions and feedback, focusing on com-185

plex, less common problems that require deeper186

insight. This phase dynamically enhances the 187

model’s decision-making processes and deepens 188

its understanding of intricate code structures and 189

semantics, enabling a sophisticated response to di- 190

verse and challenging coding scenarios. 191

PPO is a policy gradient method for reinforce- 192

ment learning that alternates between sampling 193

data through interaction with the environment and 194

optimizing a surrogate objective function using 195

stochastic gradient descent. The key advantage 196

of PPO over other policy gradient methods is its 197

ability to keep updates within a specified range, 198

preventing large, destabilizing updates. This is 199

achieved by using a clipping function in the objec- 200

tive, defined as: 201

LPPO(ϕ) = Et

[
min

(
rt(ϕ)Ât, clip(rt(ϕ),

1− ϵ, 1 + ϵ)Ât

)]
(3) 202

where rt(ϕ) =
πϕ(at|st)

πϕold (at|st)
is the probability ratio 203

between the new policy πϕ and the old policy πϕold , 204

Ât is the advantage function, and ϵ is a hyperparam- 205

eter for clipping. This clipping mechanism ensures 206

that policy updates remain stable by limiting the 207

extent of each update. 208

To complement this, the value network, which 209

estimates the expected return for a given state, is 210

updated by minimizing the following loss function: 211

Lvalue(V ) = Et

[
(V (st)−Rt)

2
]

(4) 212
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In this equation, V (st) represents the estimated213

value of the state st, and Rt denotes the cumulative214

reward. By minimizing this loss, the critic model215

provides a more accurate evaluation of the actions216

suggested by the actor model, thereby guiding the217

policy refinement in the PPO phase.218

The EM-like algorithm alternates between the219

SFT and PPO phases, iteratively refining the220

model’s parameters θ, ϕ, and V to enhance both221

semantic and structural understanding. The process222

can be summarized in the following steps:223

1. Initialize the model parameters θ, policy pa-224

rameters ϕ, and value parameters V .225

2. Expectation Step (SFT):226

θ(t+1) = argmax
θ

N∑
i=1

log p(xi|θ) (5)227

In this step, the model is trained on a static228

dataset to predict fixed code from buggy code,229

with the parameters θ updated to maximize230

the likelihood of correct predictions.231

3. Critic Evaluation and Feedback:232

V (t+1) = argmin
V

Et

[
(V (ŷSFT

i )−Rt)
2
]
(6)233

Here, the critic model evaluates the output234

ŷSFT
i from the SFT phase based on its struc-235

tural and semantic accuracy, providing a feed-236

back signal Rt to guide further training.237

4. Maximization Step (PPO):238

ϕ(t+1) = argmax
ϕ

Et

[
min

(
rt(ϕ)Ât,239

clip(rt(ϕ), 1− ϵ, 1 + ϵ)Ât

)]
(7)240

The actor model then uses this feedback to241

adjust its policy ϕ, aiming to generate more242

effective code repairs.243

5. Repeat steps 2 to 4 until convergence is244

achieved, ensuring a thorough refinement of245

the model parameters.246

In practice, for each data point xi, the process247

begins with the SFT phase, establishing a baseline248

repair. The output from this phase, ŷSFT
i , is then249

evaluated by the critic model, which generates a250

feedback signal Rt. The PPO phase follows, where251

the actor model proposes a new repair ai based on252

this feedback, and the critic model reassesses the 253

repair. Through this iterative process, the model 254

gradually improves its ability to perform robust and 255

effective code repairs, leveraging the strengths of 256

both static and dynamic learning methodologies. 257

2.4 Training the Critic Model 258

The critic model (D’Oro and Jaśkowski, 2020) in 259

SYNTHFIX, illustrated in Figure 2(c), harnesses 260

ASTs and CFGs to enhance code repair by ensuring 261

both structural and behavioral correctness. ASTs 262

capture the code’s syntax and structure, ensuring 263

alignment with language specifications and high- 264

lighting syntactic inaccuracies. CFGs complement 265

this by capturing the execution paths within the 266

code, validating the logical sequence of operations 267

to maintain functional integrity. 268

The integration of ASTs and CFGs allows for 269

a nuanced assessment that encompasses both the 270

static aspects of code, such as its structure and 271

syntax, and its dynamic behavior, including exe- 272

cution flow. This thorough evaluation ensures that 273

repairs are not only syntactically correct but also 274

functionally sound, leading to reliable and effective 275

solutions. 276

Moreover, the model uses ESLint to enforce cod- 277

ing standards, where rule violations adjust the train- 278

ing rewards, thus promoting code that is not only 279

correct but also clean and maintainable. 280

Compiler-informed rewards are specifically cal- 281

culated based on: - AST Reward: Based on how 282

closely the repaired code’s AST aligns with that of 283

the original, assessing structural and syntactic cor- 284

rectness. - CFG Reward: Focused on the integrity 285

of control flows, ensuring that functional behaviors 286

are preserved in the repaired code. 287

This integration of AST, CFG, and ESLint into 288

the critic model’s framework ensures a comprehen- 289

sive evaluation of repairs, advancing the precision 290

and efficacy of automated code repair processes. 291

The training algorithm, as outlined in Al- 292

gorithm 1, exemplifies the structured approach 293

adopted by SYNTHFIX to achieve this precision. 294

By iteratively alternating between SFT and PPO, 295

the model effectively balances the learning of static 296

and dynamic code repair tasks. The Critic Evalua- 297

tion phase serves as the linchpin, providing contin- 298

uous feedback informed by syntactic and semantic 299

metrics. This hybrid training process, characterized 300

by its systematic refinement of model parameters, 301

culminates in a robust framework capable of ad- 302

dressing complex code vulnerabilities with high 303
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Algorithm 1 SYNTHFIX Hybrid Training
Require: Model parameters θ, policy parameters ϕ, value

parameters V
Ensure: Convergence of model parameters
1: while not converged do
2: SFT Phase:
3: Train model on static dataset to predict fixed code from

buggy code
4: Update θ to maximize the likelihood of predicted code

5: Obtain baseline repair ŷSFT
i

6: Critic Evaluation:
7: Evaluate ŷSFT

i using AST, CFG, and ESLint metrics
8: Generate feedback signal Rt

9: PPO Phase:
10: Actor model proposes repair ai based on ŷSFT

i and
feedback Rt

11: Critic model evaluates the proposed repair
12: Update ϕ using PPO objective function to refine policy
13: Iteration of Hybrid Training:
14: Alternate between SFT and PPO phases according to

the predefined ratio (e.g., 5:5 or 7:3)
15: Repeat the cycle to further refine model parameters θ

and ϕ
16: end while

accuracy.304

3 Experimental Design305

In this section, we outline the experimental setup306

used to evaluate SYNTHFIX’s performance on307

automated code repair. We utilized the FixJS308

dataset, which includes over 30k JavaScript func-309

tion pairs, and conducted experiments on two mod-310

els, CodeGen-NL 350M and CodeT5, to demon-311

strate the framework’s robustness across different312

architectures. The following subsections detail our313

evaluation criteria and research questions that guide314

the experimental analysis.315

3.1 Experimental Setup316

We use the FixJS dataset (Csuvik and Vidács,317

2022), containing over 30,000 JavaScript function318

pairs from two million bug-fix commits, which319

is ideal for studying Automated Program Repair320

(APR) in JavaScript. The dataset is divided into321

training, validation, and testing in an 8:1:1 ratio.322

Our experiments were conducted on a workstation323

with dual NVIDIA A6000 GPUs.324

We evaluated our framework using two mod-325

els: the CodeGen-NL 350M model (Nijkamp et al.,326

2022), known for its proficiency with programming327

languages and diverse coding datasets, and the328

CodeT5 model (Wang et al., 2021), which serves as329

a strong benchmark in code generation and repair330

tasks. By comparing results across both models, we331

aim to demonstrate the robustness and adaptability332

ofSYNTHFIX across different architectures.333

3.2 Evaluation Criteria 334

CodeBLEU (Ren et al., 2020), used to assess 335

our framework, combines traditional N-gram as- 336

sessments with syntactic and dataflow evaluations. 337

The overall CodeBLEU score is computed as a 338

weighted average of the following metrics, align- 339

ing with standard practices: 340

• N-gram Match Score: Measures lexical sim- 341

ilarity to the original code in the dataset. 342

• Weighted N-gram Match Score: Adjusts the 343

importance of specific code elements based 344

on their criticality. 345

• Syntax Match Score: Evaluates structural 346

integrity through AST comparisons. 347

• Dataflow Match Score: Assesses logical in- 348

tegrity and functional correctness. 349

In addition to CodeBLEU, we also use Exact 350

Match as a key evaluation metric. Exact Match 351

measures the percentage of generated patches that 352

are identical to the ground truth patches, serving 353

as a robust indicator of the model’s precision in 354

code repair. This metric is crucial for assessing the 355

effectiveness of SYNTHFIX in generating correct 356

and reliable patches. 357

These metrics are calculated to compare the code 358

generated by our model against the ground truth 359

provided in the FixJS dataset, ensuring a rigorous 360

and comparable evaluation with established bench- 361

marks in automated code repair. 362

3.3 Research Questions 363

The uniformity of training duration and resource 364

allocation is critical for a balanced experimental 365

design. SFT sessions last approximately 1 hour 366

and 22 minutes, while PPO sessions are about 1 367

hour and 41 minutes. This consistency allows us 368

to implement equivalent epoch settings across both 369

training methods, ensuring a fair comparison. 370

With a consistent experimental setup, we orga- 371

nized our experiments to systematically answer the 372

following research questions: 373

• RQ1: How does the hybrid training approach, 374

integrating SFT and PPO, compare against 375

using SFT or PPO exclusively in terms of effi- 376

cacy in code vulnerability repair? 377

• RQ2: What is the optimal balance between 378

SFT and PPO epochs that maximizes repair 379

performance? 380
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• RQ3: How does the SYNTHFIX frame-381

work perform in a real-world application sce-382

nario for code repair, specifically focusing on383

JavaScript vulnerabilities?384

• RQ4: What are the contributions of different385

components (AST, CFG, ESLint) in the re-386

ward model to the overall effectiveness of the387

PPO training?388

4 Results389

In this section, we present the outcomes of our ex-390

periments to evaluate the effectiveness of SYNTH-391

FIX in repairing code vulnerabilities. We compare392

various training paradigms, optimize the balance393

between SFT and PPO epochs, and analyze the per-394

formance through case studies and ablation tests.395

These results highlight the strengths of our hybrid396

approach in achieving superior code repair accu-397

racy and robustness.398

4.1 RQ1: Analysis of Training Paradigms399

Table 1 presents a detailed performance com-400

parison of different training paradigms used for401

JavaScript code repair, evaluated on both CodeT5402

and CodeGen-NL 350M models. Each method is403

analyzed based on improvements over the SFT (Su-404

pervised Fine-Tuning) approach, which serves as405

a baseline for measuring the efficacy of more ad-406

vanced training configurations.407

The SFT-only approach demonstrates significant408

gains across most metrics, particularly in the N-409

gram and CodeBLEU scores, showcasing its effi-410

ciency in rapidly acquiring syntactic patterns. How-411

ever, the PPO-only model, while slightly lagging412

in terms of quick pattern recognition, shows better413

performance in Syntax and Dataflow Match scores,414

emphasizing its ability to improve the deeper struc-415

tural integrity of the code.416

The hybrid SFT-PPO model, SYNTHFIX, which417

strategically intersperses three epochs of PPO with418

seven epochs of SFT, achieves the highest overall419

performance. For instance, on the CodeGen-NL420

350M model, SYNTHFIX improves the CodeBLEU421

score by 2.97% over the SFT approach and by422

2.56% over the PPO approach. On the CodeT5423

model, SYNTHFIX yields even more significant424

improvements, with an increase of 7.78% in Code-425

BLEU over SFT and 7.33% over PPO. This indi-426

cates that the combined approach effectively lever-427

ages the strengths of both SFT’s quick learning and428

PPO’s deep structural analysis, resulting in superior429

code repair outcomes.430

4.2 RQ2: Optimizing the SFT-PPO Epoch 431
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Figure 3: CodeBLEU similarity scores for CodeGen
and CodeT5 across different SFT-PPO ratios. The 7:3
ratio shows optimal performance.
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Figure 4: Trends in Syntax and Dataflow match scores
for CodeGen and CodeT5 across different SFT-PPO
ratios.

Figure 3 compares the impact of various SFT- 433

PPO training ratios on CodeGen and CodeT5 mod- 434

els. The 7:3 ratio achieves the highest Code- 435

BLEU scores, 69.61% for CodeGen and 47.28% 436

for CodeT5, effectively combining SFT for strong 437

initial learning with PPO for targeted optimiza- 438

tion. This balance is crucial for establishing a solid 439

foundation while allowing for refinement through 440

feedback-driven adjustments. 441

Figure 4 highlights trends in Syntax and 442

Dataflow match scores across different SFT-PPO 443

ratios. The 7:3 ratio also maintains the highest 444

dataflow match scores, 77.95% for CodeGen and 445

34.67% for CodeT5, indicating well-preserved log- 446

6



Table 1: Performance Comparison of Different Training Paradigms. The training configuration for SYNTHFIX
strategically distributed the epochs to ensure a balanced approach, interspersing three epochs of PPO evenly with
seven epochs of SFT across the total training sessions.

Training Method CodeBLEU (%) N-gram (%) Weighted N-gram (%) Syntax (%) Dataflow (%) Exact Match (%)

CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5

Baseline 50.26 30.84 49.26 33.74 50.69 26.17 54.95 39.86 46.14 23.58 7.03 3.85
SFT (10 epochs) 67.60 43.87 67.43 59.19 67.98 44.62 60.04 40.73 74.97 30.94 29.12 18.24
PPO (10 epochs) 67.87 44.05 67.03 57.51 67.55 42.73 60.97 42.39 75.92 33.56 18.36 11.02

SYNTHFIX (10 epochs) 69.61 47.28 68.96 60.74 69.49 48.23 62.03 45.49 77.95 34.67 32.97 23.84
Improvement over SFT (%) (+2.97) (+7.78) (+2.26) (+2.62) (+2.22) (+8.09) (+3.32) (+11.68) (+3.97) (+12.04) (+13.23) (+30.73)
Improvement over PPO (%) (+2.56) (+7.33) (+2.88) (+5.61) (+2.87) (+12.88) (+1.74) (+7.31) (+2.67) (+3.31) (+79.59) (+116.31)

Table 2: Exact Match Score Comparison Across Differ-
ent SFT-PPO Training Ratios for CodeT5 and CodeGen
Models.

Training Method CodeGen Exact Match (%) CodeT5 Exact Match (%)

SFT+PPO (9+1) 30.72 20.03
SFT+PPO (7+3) 32.97 23.84
SFT+PPO (5+5) 29.37 22.76
SFT+PPO (3+7) 28.11 20.38
SFT+PPO (1+9) 26.93 17.94

ical flow and functionality. Although higher PPO447

ratios improve syntax match scores, they may re-448

duce semantic coherence, emphasizing the impor-449

tance of finding the right balance between syntactic450

accuracy and overall code quality.451

Table 2 confirms these results, with the 7:3 con-452

figuration achieving the best Exact Match scores453

for both models. This further supports the idea that454

a strategic mix of SFT and PPO epochs can effec-455

tively balance rapid pattern recognition with de-456

tailed structural refinement, making it the most ef-457

fective approach for complex software repair tasks.458

Overall, the 7:3 SFT-PPO mix proves most ef-459

fective for CodeGen and CodeT5, ensuring both460

syntactic and functional integrity without compro-461

mising one for the other.462

4.3 RQ3: Case Study463

Figure 5 presents a case study of repairing a464

JavaScript function using the PPO, SFT approaches,465

and their combination in SYNTHFIX (SFT+PPO),466

all trained with the same computational resources467

on the CodeGen-NL 350M model. The original468

code snippet contains a syntax error in the con-469

ditional statement. Specifically, the condition "if470

(arr[i] =! null)" is syntactically incorrect and leads471

to compilation failure.472

The Dynamic Repair (PPO) method corrects the473

syntax by replacing "=!" with "!=", resulting in a474

syntactically valid code. However, the fix does not475

fully address potential logical issues, as the strict476

inequality "!==" would be a more robust choice in477

JavaScript.478

The Static Repair (SFT) method, on the other479

function calculateSum(arr) {
let sum = 0;
for (let i = 0; i < arr.length; i++) {

if (arr[i] =! null) {
sum += arr[i];

}
}
return sum;

}

Buggy Code（Javascript）

function calculateSum(arr) {
let sum = 0;
for (let i = 0; i < arr.length; i++) {

if (arr[i] != null) {
sum += arr[i];

}
}
return sum;

}

function calculateSum(arr) {
let sum = 0;
for (let i = 0; i < arr.length; i++) {

if (arr[i] == null) {
sum += arr[i];

}
}
return sum;

}

Dynamic Repair（PPO） Static Repair（SFT）

function calculateSum(arr) {
let sum = 0;
for (let i = 0; i < arr.length; i++) {

if (arr[i] !== null) {
sum += arr[i];

}
}
return sum;

}

SythFix（SFT+PPO）

Partial Fix Logical Error

Full Fix

Figure 5: Case study example for JavaScript code repair.
The erroneous snippets are highlighted in red.

hand, introduces a logical error by using the equal- 480

ity operator "==" instead of correcting the syntax 481

with the appropriate operator. This results in a 482

condition that incorrectly processes "null" values, 483

leading to unintended behavior. 484

In contrast, SYNTHFIX (SFT+PPO) effectively 485

combines the strengths of both methods, correct- 486

ing the syntax and preserving the intended logic of 487

the original code by using the strict equality opera- 488

tor "!==". This ensures that the generated code is 489

both compilable and logically consistent with the 490

original intent. 491

This case study demonstrates the effectiveness 492

of SYNTHFIX in handling complex code repairs, 493

where both syntax and logical correctness are crit- 494

ical. By leveraging compiler-level feedback and 495

combining dynamic and static approaches, SYN- 496

THFIX provides a more reliable solution for au- 497

tomated code repair, ensuring that the final code 498

is both functional and adheres to best practices in 499

software development. 500

4.4 RQ4: Ablation Study of Reward Model 501

Continuing from the optimal SFT-PPO mix identi- 502

fied in RQ2, this ablation study, detailed in Table 503
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Table 3: Performance of Different Reward Model Configurations in Ablation Study. This table reflects the impact of
including or excluding scores (AST, CFG, ESLint) on training outcomes.

Training Method CodeBLEU (%) N-gram (%) Weighted N-gram (%) Syntax (%) Dataflow (%) Exact Match (%)

CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5

Using all three scores 69.61 47.28 68.96 60.74 69.49 48.23 62.03 45.49 77.95 34.67 32.97 23.84
Excluding AST 67.10 45.54 66.17 58.34 67.22 46.65 60.09 44.08 74.91 33.29 30.15 21.80
Excluding CFG 66.92 45.39 66.35 58.50 66.87 46.40 60.01 44.00 74.43 33.06 30.04 21.77
Excluding ESLint 65.32 44.32 61.47 54.21 66.13 45.92 59.27 43.50 74.40 33.03 29.91 21.66
Excluding AST and CFG 64.97 44.07 63.79 56.27 65.06 45.20 58.79 43.18 72.22 32.08 28.14 20.38
Excluding AST and ESLint 64.59 43.76 61.59 54.23 65.74 45.68 58.93 43.30 72.08 32.02 28.64 20.76
Excluding CFG and ESLint 64.03 43.39 61.75 54.40 65.12 45.11 57.47 42.23 71.76 31.85 27.19 19.70

3, assesses the impact of omitting AST, CFG, and504

ESLint components.505

Excluding CFG and ESLint scores particularly506

affects performance, with substantial reductions507

in CodeBLEU and dataflow scores, emphasizing508

their crucial roles in structural and semantic accu-509

racy. This streamlined analysis reinforces the need510

for a comprehensive approach in neural models511

for effective code repair, ensuring deep semantic512

understanding alongside syntactic precision.513

5 Related Work514

This section reviews advancements in machine515

learning applied to code vulnerability repair, focus-516

ing on the integration of SFT, PPO, and compiler517

technologies within our framework, SYNTHFIX.518

Neural Code Repair: Advancements in AI, par-519

ticularly with large language models (LLMs) and520

code language models (CLMs), have substantially521

improved tasks like code synthesis, bug detection,522

and vulnerability repair through SFT (Yin and Neu-523

big, 2017; Hayati et al., 2018; Parisotto et al., 2016;524

Habib and Pradel, 2019; Li et al., 2019; Gupta525

et al., 2019; Allamanis et al., 2021; Ziems and Wu,526

2021; Thapa et al., 2022; Gupta et al., 2020). These527

models are often adapted to specific coding tasks528

using domain-specific datasets, enhancing their un-529

derstanding and rectification capabilities (Xia and530

Zhang, 2022; Shi et al., 2023; Jiang et al., 2023).531

However, traditional approaches sometimes sim-532

plify code repair to mere content generation, miss-533

ing deeper semantic and structural intricacies (Be-534

rabi et al., 2021; Huang et al., 2023). SYNTHFIX535

addresses these limitations by enriching SFT with536

compiler-level insights, thus improving both syn-537

tactic and semantic repair accuracy.538

Reinforcement Learning in Software Develop-539

ment: While PPO is extensively used across vari-540

ous domains for adaptability and iterative learning,541

its application in code repair is less explored (Le542

et al., 2022; Shojaee et al., 2023). Reinforcement543

Learning (RL) has proven effective in managing544

dynamic adjustments based on feedback, essential 545

in unpredictable environments like code optimiza- 546

tion and software testing (Bagherzadeh et al., 2021; 547

Wang et al., 2022). SYNTHFIX capitalizes on these 548

attributes, applying PPO to enhance the adaptabil- 549

ity and iterative improvement in vulnerability re- 550

pair. 551

Compiler-Informed Insights in Code Repair: 552

Compiler intermediate representations such as AST 553

and CFG have been pivotal in advancing code vul- 554

nerability repair, aiding in software defect predic- 555

tion and complex repair tasks (Shi et al., 2020; 556

Wu et al., 2022; Mesbah et al., 2019; Jiang et al., 557

2018; An et al., 2018; Klieber et al., 2021; Chen 558

et al., 2002; Mandal et al., 2018; Jiang et al., 2006). 559

These insights help in understanding code depen- 560

dencies and flows, crucial for addressing intricate 561

vulnerabilities. In SYNTHFIX, these intermediate 562

representations are seamlessly integrated with PPO, 563

enhancing the model’s learning efficacy and repair 564

precision. 565

6 Conclusion 566

We presented SYNTHFIX, a hybrid neural-compiler 567

framework that substantially enhances automated 568

code vulnerability repair by integrating SFT and 569

PPO. Our results demonstrate that SYNTHFIX out- 570

performs traditional SFT or PPO methods, effec- 571

tively combining syntactic learning with dynamic, 572

feedback-driven adjustments. 573

The incorporation of compiler intermediate rep- 574

resentations like AST and CFG within SYNTHFIX 575

not only improves semantic robustness and struc- 576

tural integrity but also sets new benchmarks for 577

reliability in software systems. 578

Future efforts will explore refining this integra- 579

tion and expanding its application to broader pro- 580

gramming contexts, underscoring SYNTHFIX’s po- 581

tential to influence further advancements in auto- 582

mated code repair. 583
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7 Limitations584

While SYNTHFIX has demonstrated promising re-585

sults in automated code vulnerability repair, several586

limitations remain that warrant attention.587

7.1 Epoch-Level Transitions588

Currently, the transitions between SFT and PPO589

phases are implemented at the epoch level. Al-590

though this method has shown effectiveness, it may591

overlook the potential benefits of finer-grained con-592

trol. Transitioning at the batch level could allow593

for more dynamic adjustments during training, po-594

tentially enhancing the overall performance and595

convergence speed of the model.596

7.2 Lack of Mixture of Experts (MoE)597

The current version of SYNTHFIX does not lever-598

age a MoE framework, which could provide a more599

specialized approach to different aspects of code600

repair. By integrating RL and NLP as separate601

experts, each trained to handle distinct types of vul-602

nerabilities, the framework may more effectively603

address the diverse challenges presented by various604

code structures and patterns.605

7.3 Absence of Rigorous Mathematical606

Justification607

Although SYNTHFIX employs an EM-like algo-608

rithm, the underlying mathematical justification is609

not as rigorously developed as it could be. A more610

formal mathematical explanation using EM princi-611

ples would help in better understanding and poten-612

tially improving the model’s ability to generalize613

across different codebases and types of vulnerabili-614

ties.615

In conclusion, while SYNTHFIX provides a ro-616

bust framework for automated code repair, these617

limitations should be addressed to further improve618

its performance and applicability.619
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