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Abstract

Addressing code vulnerabilities is crucial for
software security and reliability. We present
SYNTHFIX, an innovative framework for au-
tomated code repair that combines Supervised
Fine-Tuning (SFT) with Proximal Policy Opti-
mization (PPO) in an iterative training regime.
Inspired by optimization strategies from statis-
tical algorithms, SYNTHFIX balances the rapid
pattern recognition of SFT with the adaptive
learning of PPO. By incorporating compiler in-
sights, such as Abstract Syntax Trees (AST),
Control Flow Graphs (CFG), and ESLint, SYN-
THFIX enhances training dynamics, improv-
ing scalability and adaptability. Evaluation
on the FixJS dataset with over 30k JavaScript
code pairs, demonstrates that SYNTHFIX out-
performs existing methods, achieving up to
7.78% improvement in CodeBLEU over SFT
and 7.33% over PPO on the CodeT5 and Code-
Gen models. SYNTHFIX further shows substan-
tial gains in Exact Match, achieving up to 2.16x
improvement. This innovative training architec-
ture outperforms traditional models and shows
potential for advancing other software engineer-
ing tasks through feedback adjustments. The
code for SYNTHFIX has been anonymized and
can be found at https://github.com/

1 Introduction

In Software Engineering (SE), the automated re-
pair of code vulnerabilities is essential for reducing
extensive manual debugging efforts and enhancing
system security and reliability. Traditional vulner-
ability repair, often rule-based and manual, lacks
scalability, leading to the adoption of Al methods.
Yet, these Al approaches, relying heavily on neural
networks and natural language processing (NLP),
primarily capture superficial code patterns, often
missing deeper structural and semantic complexi-
ties crucial for effective repair (Mesbah et al., 2019;
Jiang et al., 2018; An et al., 2018; Klieber et al.,
2021).

Supervised Fine-Tuning (SFT) is quick to learn
syntactic patterns but often fails to grasp the com-
plexities of code, limiting its ability to address in-
tricate vulnerabilities (Berabi et al., 2021; Huang
et al., 2023). On the other hand, Proximal Policy
Optimization (PPO) adopts a reinforcement learn-
ing strategy, enabling deeper analysis through itera-
tive feedback-driven refinements. However, PPO’s
effectiveness is constrained by its resource intensity
and slow convergence (Schulman et al., 2017). To
address these limitations, enhancing PPO with an
actor-critic architecture, which uses separate neural
network models to distinctly assess the current pol-
icy (actor) and optimize the value function (critic),
provides a more robust solution.

Inspired by iterative statistical models that refine
parameter estimates to optimize performance (Wu,
1983; Gupta et al., 2011), SYNTHFIX effectively
merges SFT with PPO in a hybrid framework
specifically designed for software repair challenges.
SFT sets the initial learning conditions, akin to an
"expectation" step, quickly assimilating common
coding patterns and addressing basic errors. PPO,
enhanced by our specialized actor-critic architec-
ture, acts as a "maximization" step, refining these
foundational insights into deeper, more complex
structural and logical aspects of code crucial for
intricate software vulnerabilities.

This blend not only overcomes the limitations
of each method when used alone—slow learning
curves of PPO and superficiality of SFT—but also
leverages their strengths to efficiently tackle so-
phisticated software engineering tasks. By inte-
grating compiler constructs like Abstract Syntax
Trees (AST), Control Flow Graphs (CFG), along-
side ESLint!, SYNTHFIX enhances the adaptability
and scalability of our PPO’s actor-critic architec-
ture, key for software repair where adaptability to

'"ESLint is a widely used linting tool that helps in identify-
ing and reporting on patterns found in ECMAScript/JavaScript
code, thus aiding in maintaining code quality and consistency.
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various coding issues is essential.

Moreover, SYNTHFIX demonstrates substantial
improvements, achieving up to a 7.78% increase in
CodeBLEU over SFT and 7.33% over PPO. SYN-
THFIX further shows notable gains in Exact Match,
achieving up to 2.16x improvement, highlighting
its precision and reliability in generating correct
patches. These results underscore the potential
of the proposed integrated approach of SFT and
PPO for advancing automated code repair. Modi-
fying the feedback in our PPO’s critic model can
inspire new methodologies, potentially setting new
benchmarks in the field. Our contributions can be
summarized as follows:

* We introduce SYNTHFIX, a novel hybrid
framework that integrates SFT with PPO for
automated code vulnerability repair, leverag-
ing the strengths of both techniques to achieve
superior results.

* We incorporate compiler constructs such as
AST, CFG, and ESLint into the training pro-
cess, improving the model’s ability to ad-
dress complex structural and semantic issues
in code.

* Our evaluation on the FixJS dataset shows
that SYNTHFIX outperforms existing meth-
ods, with up to a 7.78% improvement in Code-
BLEU and a 2.16x gain in Exact Match over
traditional SFT and PPO approaches.

* SYNTHFIX sets new standards in the field
by achieving more accurate and reliable code
patches, showcasing its potential to advance
other software engineering tasks through adap-
tive feedback adjustments.

2 Approach

In this section, we introduce SYNTHFIX, a hybrid
training method that combines SFT with PPO. By
integrating compiler insights like AST, CFG, and
ESLint scores, SYNTHFIX aims to improve code re-
pair accuracy and adaptability. The following sub-
sections outline the framework, actor-critic mecha-
nism, and hybrid training strategy.

2.1 SYNTHFIX Framework

In this section, we outline SYNTHFIX, a framework
that advances beyond traditional training methods.
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Figure 1: Overview of SYNTHFIX. This diagram shows
the online and offline training processes in SYNTHFIX,
highlighting how dynamic and static code repairs are
informed by compiler insights and feedback loops to
enhance model adaptability and effectiveness.

As depicted in Figure 1, our training process be-
gins with static repair using SFT, as shown in Fig-
ure 2(b). This phase establishes basic code recog-
nition and repair abilities.

The process then progresses to dynamic repair
with PPO, detailed in Figure 2(a), which enhances
these abilities into deeper repair skills using an
actor-critic architecture. This dual-phase approach
ensures thorough learning and effective vulnerabil-
ity repair.

These two repairs cycle in a certain ratio, typi-
cally setting the one of smaller proportion as one
epoch in a cycle. For example, in a 5:5 ratio, one
SFT is followed by one PPO in a cycle; for a 7:3 ra-
tio, two SFTs are followed by one PPO to complete
one cycle, repeating three times with an additional
SFT to adjust accordingly.

Figure 1 also highlights the critic component
of our model, depicted in Figure 2(c), where the
critic model pre-trained offline optimizes the re-
ward model based on compiler feedback from AST,
CFG, and ESLint scores. This comprehensive train-
ing strategy not only refines the repairs but also
ensures high adaptability and precision, setting a
new standard in automated code repair, further dis-
cussed in Subsection 2.4.

2.2 Actor-Critic Mechanism

Central to our approach is the actor-critic mech-
anism (Bahdanau et al., 2016; Grondman et al.,
2012), depicted in Figure 2(c), which is crucial
during the PPO training phase. The actor model
proposes repair actions a;, while the critic model
evaluates these actions based on AST, CFG, and
ESLint scores, generating a reward signal 7.

The interaction is governed by the following
equations:
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Figure 2: Detailed Workflow of SYNTHFIX. This diagram delineates the interactive processes among the dynamic
and static repair training phases and the offline critic model training within SYNTHFIX. (a) PPO Training (Dynamic
Repair) uses a reference model to guide the actor model through reward feedback enhanced by compiler metrics
(AST and CFG rewards) and ESLint scores, facilitating syntactic and semantic improvements in generated code. (b)
SFT Training (Static Repair) focuses on optimizing code fixes using static data to reduce bugs effectively. (c) The
Critic Model (Offline Training) pre-trained on fixed and buggy code evaluates the actor’s output using compiler
insights, ensuring that the learning is grounded in both code quality metrics and practical functionality.
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and e is the clipping parameter.

The value network is updated as:
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Here, R; is the cumulative reward. The actor
uses 7 to refine its policy, improving code repair
effectiveness over time.

2.3 Hybrid Training Methodology

The training protocol of SYNTHFIX combines su-
pervised learning from static datasets with dynamic,
interactive learning via PPO, as depicted in Fig-
ure 2(a) and Figure 2(b). Initially, SFT trains the
model on common code repair patterns, serving
as an “expectation” step where the model learns
to recognize and respond to prevalent issues. This
foundational phase sets up a robust base of cod-
ing knowledge, akin to preparing the model with
a comprehensive understanding of typical coding
errors and their solutions.

Transitioning to PPO, the “maximization” step
of the Expectation-Maximization (EM) algorithm,
the model refines this knowledge through real-
time interactions and feedback, focusing on com-
plex, less common problems that require deeper

insight. This phase dynamically enhances the
model’s decision-making processes and deepens
its understanding of intricate code structures and
semantics, enabling a sophisticated response to di-
verse and challenging coding scenarios.

PPO is a policy gradient method for reinforce-
ment learning that alternates between sampling
data through interaction with the environment and
optimizing a surrogate objective function using
stochastic gradient descent. The key advantage
of PPO over other policy gradient methods is its
ability to keep updates within a specified range,
preventing large, destabilizing updates. This is
achieved by using a clipping function in the objec-
tive, defined as:
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between the new policy 7, and the old policy 7,
Ay is the advantage function, and € is a hyperparam-
eter for clipping. This clipping mechanism ensures
that policy updates remain stable by limiting the
extent of each update.

To complement this, the value network, which
estimates the expected return for a given state, is

updated by minimizing the following loss function:

LYo (V) = By [(V(se) — Re)?] (4)



In this equation, V' (s;) represents the estimated
value of the state s;, and R; denotes the cumulative
reward. By minimizing this loss, the critic model
provides a more accurate evaluation of the actions
suggested by the actor model, thereby guiding the
policy refinement in the PPO phase.

The EM-like algorithm alternates between the
SFT and PPO phases, iteratively refining the
model’s parameters 6, ¢, and V' to enhance both
semantic and structural understanding. The process
can be summarized in the following steps:

1. Initialize the model parameters 6, policy pa-
rameters ¢, and value parameters V.

2. Expectation Step (SFT):
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In this step, the model is trained on a static
dataset to predict fixed code from buggy code,
with the parameters 6 updated to maximize
the likelihood of correct predictions.

3. Critic Evaluation and Feedback:

VD = arg H%/in E, [(V(ngT) _ Rt)Q]

(6)

Here, the critic model evaluates the output

QZSF T from the SFT phase based on its struc-

tural and semantic accuracy, providing a feed-
back signal R, to guide further training.

4. Maximization Step (PPO):
oY = arg mgx E, [min <rt(qb)flt,

clip(re(¢), 1 — e, 1+ e)At)} 7

The actor model then uses this feedback to
adjust its policy ¢, aiming to generate more
effective code repairs.

5. Repeat steps 2 to 4 until convergence is
achieved, ensuring a thorough refinement of
the model parameters.

In practice, for each data point z;, the process
begins with the SFT phase, establishing a baseline
repair. The output from this phase, gQZS FT is then
evaluated by the critic model, which generates a
feedback signal R;. The PPO phase follows, where

the actor model proposes a new repair a; based on

this feedback, and the critic model reassesses the
repair. Through this iterative process, the model
gradually improves its ability to perform robust and
effective code repairs, leveraging the strengths of
both static and dynamic learning methodologies.

2.4 Training the Critic Model

The critic model (D’Oro and Jaskowski, 2020) in
SYNTHFIX, illustrated in Figure 2(c), harnesses
ASTs and CFGs to enhance code repair by ensuring
both structural and behavioral correctness. ASTs
capture the code’s syntax and structure, ensuring
alignment with language specifications and high-
lighting syntactic inaccuracies. CFGs complement
this by capturing the execution paths within the
code, validating the logical sequence of operations
to maintain functional integrity.

The integration of ASTs and CFGs allows for
a nuanced assessment that encompasses both the
static aspects of code, such as its structure and
syntax, and its dynamic behavior, including exe-
cution flow. This thorough evaluation ensures that
repairs are not only syntactically correct but also
functionally sound, leading to reliable and effective
solutions.

Moreover, the model uses ESLint to enforce cod-
ing standards, where rule violations adjust the train-
ing rewards, thus promoting code that is not only
correct but also clean and maintainable.

Compiler-informed rewards are specifically cal-
culated based on: - AST Reward: Based on how
closely the repaired code’s AST aligns with that of
the original, assessing structural and syntactic cor-
rectness. - CFG Reward: Focused on the integrity
of control flows, ensuring that functional behaviors
are preserved in the repaired code.

This integration of AST, CFG, and ESLint into
the critic model’s framework ensures a comprehen-
sive evaluation of repairs, advancing the precision
and efficacy of automated code repair processes.

The training algorithm, as outlined in Al-
gorithm 1, exemplifies the structured approach
adopted by SYNTHFIX to achieve this precision.
By iteratively alternating between SFT and PPO,
the model effectively balances the learning of static
and dynamic code repair tasks. The Critic Evalua-
tion phase serves as the linchpin, providing contin-
uous feedback informed by syntactic and semantic
metrics. This hybrid training process, characterized
by its systematic refinement of model parameters,
culminates in a robust framework capable of ad-
dressing complex code vulnerabilities with high



Algorithm 1 SYNTHFIX Hybrid Training

Require: Model parameters 6, policy parameters ¢, value
parameters V'
Ensure: Convergence of model parameters
1: while not converged do
2: SFT Phase:
3: Train model on static dataset to predict fixed code from
buggy code
4: Update 0 to maximize the likelihood of predicted code
5:  Obtain baseline repair ;77
6: Critic Evaluation:
7 Evaluate 457 using AST, CFG, and ESLint metrics
8: Generate feedback signal R,
9 PPO Phase:
0 Actor model proposes repair a; based on g% and
feedback R
11:  Critic model evaluates the proposed repair
12:  Update ¢ using PPO objective function to refine policy
13:  Iteration of Hybrid Training:
14:  Alternate between SFT and PPO phases according to
the predefined ratio (e.g., 5:5 or 7:3)
15:  Repeat the cycle to further refine model parameters 6
and ¢
16: end while

accuracy.

3 Experimental Design

In this section, we outline the experimental setup
used to evaluate SYNTHFIX’s performance on
automated code repair. We utilized the FixJS
dataset, which includes over 30k JavaScript func-
tion pairs, and conducted experiments on two mod-
els, CodeGen-NL 350M and CodeT5, to demon-
strate the framework’s robustness across different
architectures. The following subsections detail our
evaluation criteria and research questions that guide
the experimental analysis.

3.1 Experimental Setup

We use the FixJS dataset (Csuvik and Vidécs,
2022), containing over 30,000 JavaScript function
pairs from two million bug-fix commits, which
is ideal for studying Automated Program Repair
(APR) in JavaScript. The dataset is divided into
training, validation, and testing in an 8:1:1 ratio.
Our experiments were conducted on a workstation
with dual NVIDIA A6000 GPUs.

We evaluated our framework using two mod-
els: the CodeGen-NL 350M model (Nijkamp et al.,
2022), known for its proficiency with programming
languages and diverse coding datasets, and the
CodeT5 model (Wang et al., 2021), which serves as
a strong benchmark in code generation and repair
tasks. By comparing results across both models, we
aim to demonstrate the robustness and adaptability
of SYNTHFIX across different architectures.

3.2 Evaluation Criteria

CodeBLEU (Ren et al., 2020), used to assess
our framework, combines traditional N-gram as-
sessments with syntactic and dataflow evaluations.
The overall CodeBLEU score is computed as a
weighted average of the following metrics, align-
ing with standard practices:

* N-gram Match Score: Measures lexical sim-
ilarity to the original code in the dataset.

* Weighted N-gram Match Score: Adjusts the
importance of specific code elements based
on their criticality.

* Syntax Match Score: Evaluates structural
integrity through AST comparisons.

* Dataflow Match Score: Assesses logical in-
tegrity and functional correctness.

In addition to CodeBLEU, we also use Exact
Match as a key evaluation metric. Exact Match
measures the percentage of generated patches that
are identical to the ground truth patches, serving
as a robust indicator of the model’s precision in
code repair. This metric is crucial for assessing the
effectiveness of SYNTHFIX in generating correct
and reliable patches.

These metrics are calculated to compare the code
generated by our model against the ground truth
provided in the FixJS dataset, ensuring a rigorous
and comparable evaluation with established bench-
marks in automated code repair.

3.3 Research Questions

The uniformity of training duration and resource
allocation is critical for a balanced experimental
design. SFT sessions last approximately 1 hour
and 22 minutes, while PPO sessions are about 1
hour and 41 minutes. This consistency allows us
to implement equivalent epoch settings across both
training methods, ensuring a fair comparison.

With a consistent experimental setup, we orga-
nized our experiments to systematically answer the
following research questions:

* RQ1: How does the hybrid training approach,
integrating SFT and PPO, compare against
using SFT or PPO exclusively in terms of effi-
cacy in code vulnerability repair?

* RQ2: What is the optimal balance between
SFT and PPO epochs that maximizes repair
performance?



* RQ3: How does the SYNTHFIX frame-
work perform in a real-world application sce-
nario for code repair, specifically focusing on
JavaScript vulnerabilities?

¢ RQ4: What are the contributions of different
components (AST, CFG, ESLint) in the re-
ward model to the overall effectiveness of the
PPO training?

4 Results

In this section, we present the outcomes of our ex-
periments to evaluate the effectiveness of SYNTH-
FIX in repairing code vulnerabilities. We compare
various training paradigms, optimize the balance
between SFT and PPO epochs, and analyze the per-
formance through case studies and ablation tests.
These results highlight the strengths of our hybrid
approach in achieving superior code repair accu-
racy and robustness.

4.1 RQ1: Analysis of Training Paradigms

Table 1 presents a detailed performance com-
parison of different training paradigms used for
JavaScript code repair, evaluated on both CodeT5
and CodeGen-NL 350M models. Each method is
analyzed based on improvements over the SFT (Su-
pervised Fine-Tuning) approach, which serves as
a baseline for measuring the efficacy of more ad-
vanced training configurations.

The SFT-only approach demonstrates significant
gains across most metrics, particularly in the N-
gram and CodeBLEU scores, showcasing its effi-
ciency in rapidly acquiring syntactic patterns. How-
ever, the PPO-only model, while slightly lagging
in terms of quick pattern recognition, shows better
performance in Syntax and Dataflow Match scores,
emphasizing its ability to improve the deeper struc-
tural integrity of the code.

The hybrid SFT-PPO model, SYNTHFIX, which
strategically intersperses three epochs of PPO with
seven epochs of SFT, achieves the highest overall
performance. For instance, on the CodeGen-NL
350M model, SYNTHFIX improves the CodeBLEU
score by 2.97% over the SFT approach and by
2.56% over the PPO approach. On the CodeT5
model, SYNTHFIX yields even more significant
improvements, with an increase of 7.78% in Code-
BLEU over SFT and 7.33% over PPO. This indi-
cates that the combined approach effectively lever-
ages the strengths of both SFT’s quick learning and
PPO’s deep structural analysis, resulting in superior
code repair outcomes.

4.2 RQ2: Optimizing the SFT-PPO Epoch
Mix
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Figure 3: CodeBLEU similarity scores for CodeGen
and CodeT5 across different SFT-PPO ratios. The 7:3
ratio shows optimal performance.
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Figure 4: Trends in Syntax and Dataflow match scores
for CodeGen and CodeT5 across different SFT-PPO
ratios.

Figure 3 compares the impact of various SFT-
PPO training ratios on CodeGen and CodeT5 mod-
els. The 7:3 ratio achieves the highest Code-
BLEU scores, 69.61% for CodeGen and 47.28%
for CodeT)5, effectively combining SFT for strong
initial learning with PPO for targeted optimiza-
tion. This balance is crucial for establishing a solid
foundation while allowing for refinement through
feedback-driven adjustments.

Figure 4 highlights trends in Syntax and
Dataflow match scores across different SFT-PPO
ratios. The 7:3 ratio also maintains the highest
dataflow match scores, 77.95% for CodeGen and
34.67% for CodeT5, indicating well-preserved log-



Table 1: Performance Comparison of Different Training Paradigms. The training configuration for SYNTHFIX
strategically distributed the epochs to ensure a balanced approach, interspersing three epochs of PPO evenly with

seven epochs of SFT across the total training sessions.

Training Method CodeBLEU (%) N-gram (%) ‘Weighted N-gram (%) Syntax (%) Dataflow (%) Exact Match (%)
CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5

Baseline 50.26 30.84 49.26 33.74 50.69 26.17 54.95 39.86 46.14 23.58 7.03 3.85

SFT (10 epochs) 67.60 43.87 67.43 59.19 67.98 44.62 60.04 40.73 74.97 30.94 29.12 18.24

PPO (10 epochs) 67.87 44.05 67.03 57.51 67.55 42.73 60.97 42.39 75.92 33.56 18.36 11.02

SYNTHFIX (10 epochs) 69.61 47.28 68.96 60.74 69.49 48.23 62.03 45.49 77.95 34.67 32.97 23.84
Improvement over SFT (%) (+2.97) (+7.78) (+2.26)  (+2.62) (+2.22) (+8.09) (+3.32) (+11.68) (+3.97) (+12.04) (+13.23) (+30.73)
Improvement over PPO (%) (+2.56)  (+7.33)  (+2.88) (+5.61)  (+2.87)  (+12.88)  (+1.74) (+731)  (+2.67) (+3.31) (+79.59) (+116.31)

Table 2: Exact Match Score Comparison Across Differ-
ent SFT-PPO Training Ratios for CodeT5 and CodeGen
Models.

Training Method CodeGen Exact Match (%) CodeT5 Exact Match (%)
SFT+PPO (9+1) 30.72 20.03
SFT+PPO (7+3) 32.97 23.84
SFT+PPO (5+5) 29.37 22.76
SFT+PPO (3+7) 28.11 20.38
SFT+PPO (1+9) 26.93 17.94

ical flow and functionality. Although higher PPO
ratios improve syntax match scores, they may re-
duce semantic coherence, emphasizing the impor-
tance of finding the right balance between syntactic
accuracy and overall code quality.

Table 2 confirms these results, with the 7:3 con-
figuration achieving the best Exact Match scores
for both models. This further supports the idea that
a strategic mix of SFT and PPO epochs can effec-
tively balance rapid pattern recognition with de-
tailed structural refinement, making it the most ef-
fective approach for complex software repair tasks.

Overall, the 7:3 SFT-PPO mix proves most ef-
fective for CodeGen and CodeT5, ensuring both
syntactic and functional integrity without compro-
mising one for the other.

4.3 RQ3: Case Study

Figure 5 presents a case study of repairing a
JavaScript function using the PPO, SFT approaches,
and their combination in SYNTHFIX (SFT+PPO),
all trained with the same computational resources
on the CodeGen-NL 350M model. The original
code snippet contains a syntax error in the con-
ditional statement. Specifically, the condition "if
(arr[i] =! null)" is syntactically incorrect and leads
to compilation failure.

The Dynamic Repair (PPO) method corrects the
syntax by replacing "=!" with "!=", resulting in a
syntactically valid code. However, the fix does not
fully address potential logical issues, as the strict
inequality "!==" would be a more robust choice in
JavaScript.

The Static Repair (SFT) method, on the other

Buggy Code (Javascript)

lfunction calculateSum(arr) {
let sum = 0;
for (leti = 0; i < arr.length; i++) {

sum +=ar{i);

}
return sum;

)

Dynamic Repair (PPO) Static Repair (SFT)

[function calculateSum(arr) { function calculateSum(arr) {
let sum = 0; let sum = 0;
for (leti = 0; < arrlength; i++) { for (leti = 0; < arrlength; i++) {

sum += arr[i]; 0 sum += arrfil; e

} }
} - }
return sum; T return sum;
i (_ Partial Fix ) i Logical Error

SythFix (SFT+PPO)

function calculateSum(arr) {
let sum = 0;
for (leti = 0; i < arrlength; i++) {
if (arr(i] == null) {
sum += ar]i];

Figure 5: Case study example for JavaScript code repair.
The erroneous snippets are highlighted in red.

return sum;

)

hand, introduces a logical error by using the equal-
ity operator "=="instead of correcting the syntax
with the appropriate operator. This results in a
condition that incorrectly processes "null" values,
leading to unintended behavior.

In contrast, SYNTHFIX (SFT+PPO) effectively
combines the strengths of both methods, correct-
ing the syntax and preserving the intended logic of
the original code by using the strict equality opera-
tor "!==". This ensures that the generated code is
both compilable and logically consistent with the
original intent.

This case study demonstrates the effectiveness
of SYNTHFIX in handling complex code repairs,
where both syntax and logical correctness are crit-
ical. By leveraging compiler-level feedback and
combining dynamic and static approaches, SYN-
THFIX provides a more reliable solution for au-
tomated code repair, ensuring that the final code
is both functional and adheres to best practices in
software development.

4.4 RQ4: Ablation Study of Reward Model

Continuing from the optimal SFT-PPO mix identi-
fied in RQ?2, this ablation study, detailed in Table



Table 3: Performance of Different Reward Model Configurations in Ablation Study. This table reflects the impact of
including or excluding scores (AST, CFG, ESLint) on training outcomes.

Training Method CodeBLEU (%) N-gram (%)

Weighted N-gram (%)

Syntax (%) Dataflow (%) Exact Match (%)

CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5S CodeGen CodeT5 CodeGen CodeT5 CodeGen CodeT5
Using all three scores 69.61 47.28 68.96 60.74 69.49 48.23 62.03 45.49 77.95 34.67 32.97 23.84
Excluding AST 67.10 45.54 66.17 58.34 67.22 46.65 60.09 44.08 74.91 33.29 30.15 21.80
Excluding CFG 66.92 45.39 66.35 58.50 66.87 46.40 60.01 44.00 74.43 33.06 30.04 21.77
Excluding ESLint 65.32 44.32 61.47 54.21 66.13 45.92 59.27 43.50 74.40 33.03 29.91 21.66
Excluding AST and CFG 64.97 44.07 63.79 56.27 65.06 45.20 58.79 43.18 7222 32.08 28.14 20.38
Excluding AST and ESLint 64.59 43.76 61.59 54.23 65.74 45.68 58.93 43.30 72.08 32.02 28.64 20.76
Excluding CFG and ESLint 64.03 43.39 61.75 54.40 65.12 45.11 57.47 4223 71.76 31.85 27.19 19.70

3, assesses the impact of omitting AST, CFG, and
ESLint components.

Excluding CFG and ESLint scores particularly
affects performance, with substantial reductions
in CodeBLEU and dataflow scores, emphasizing
their crucial roles in structural and semantic accu-
racy. This streamlined analysis reinforces the need
for a comprehensive approach in neural models
for effective code repair, ensuring deep semantic
understanding alongside syntactic precision.

5 Related Work

This section reviews advancements in machine
learning applied to code vulnerability repair, focus-
ing on the integration of SFT, PPO, and compiler
technologies within our framework, SYNTHFIX.
Neural Code Repair: Advancements in Al, par-
ticularly with large language models (LLMs) and
code language models (CLMs), have substantially
improved tasks like code synthesis, bug detection,
and vulnerability repair through SFT (Yin and Neu-
big, 2017; Hayati et al., 2018; Parisotto et al., 2016;
Habib and Pradel, 2019; Li et al., 2019; Gupta
et al., 2019; Allamanis et al., 2021; Ziems and Wu,
2021; Thapa et al., 2022; Gupta et al., 2020). These
models are often adapted to specific coding tasks
using domain-specific datasets, enhancing their un-
derstanding and rectification capabilities (Xia and
Zhang, 2022; Shi et al., 2023; Jiang et al., 2023).
However, traditional approaches sometimes sim-
plify code repair to mere content generation, miss-
ing deeper semantic and structural intricacies (Be-
rabi et al., 2021; Huang et al., 2023). SYNTHFIX
addresses these limitations by enriching SFT with
compiler-level insights, thus improving both syn-
tactic and semantic repair accuracy.
Reinforcement Learning in Software Develop-
ment: While PPO is extensively used across vari-
ous domains for adaptability and iterative learning,
its application in code repair is less explored (Le
et al., 2022; Shojaee et al., 2023). Reinforcement
Learning (RL) has proven effective in managing

dynamic adjustments based on feedback, essential
in unpredictable environments like code optimiza-
tion and software testing (Bagherzadeh et al., 2021;
Wang et al., 2022). SYNTHFIX capitalizes on these
attributes, applying PPO to enhance the adaptabil-
ity and iterative improvement in vulnerability re-
pair.

Compiler-Informed Insights in Code Repair:
Compiler intermediate representations such as AST
and CFG have been pivotal in advancing code vul-
nerability repair, aiding in software defect predic-
tion and complex repair tasks (Shi et al., 2020;
Wu et al., 2022; Mesbah et al., 2019; Jiang et al.,
2018; An et al., 2018; Klieber et al., 2021; Chen
et al., 2002; Mandal et al., 2018; Jiang et al., 2006).
These insights help in understanding code depen-
dencies and flows, crucial for addressing intricate
vulnerabilities. In SYNTHF1X, these intermediate
representations are seamlessly integrated with PPO,
enhancing the model’s learning efficacy and repair
precision.

6 Conclusion

We presented SYNTHFIX, a hybrid neural-compiler
framework that substantially enhances automated
code vulnerability repair by integrating SFT and
PPO. Our results demonstrate that SYNTHFIX out-
performs traditional SFT or PPO methods, effec-
tively combining syntactic learning with dynamic,
feedback-driven adjustments.

The incorporation of compiler intermediate rep-
resentations like AST and CFG within SYNTHFI1X
not only improves semantic robustness and struc-
tural integrity but also sets new benchmarks for
reliability in software systems.

Future efforts will explore refining this integra-
tion and expanding its application to broader pro-
gramming contexts, underscoring SYNTHFIX’s po-
tential to influence further advancements in auto-
mated code repair.



7 Limitations

While SYNTHFIX has demonstrated promising re-
sults in automated code vulnerability repair, several
limitations remain that warrant attention.

7.1 Epoch-Level Transitions

Currently, the transitions between SFT and PPO
phases are implemented at the epoch level. Al-
though this method has shown effectiveness, it may
overlook the potential benefits of finer-grained con-
trol. Transitioning at the batch level could allow
for more dynamic adjustments during training, po-
tentially enhancing the overall performance and
convergence speed of the model.

7.2 Lack of Mixture of Experts (MoE)

The current version of SYNTHFIX does not lever-
age a MoE framework, which could provide a more
specialized approach to different aspects of code
repair. By integrating RL and NLP as separate
experts, each trained to handle distinct types of vul-
nerabilities, the framework may more effectively
address the diverse challenges presented by various
code structures and patterns.

7.3 Absence of Rigorous Mathematical
Justification

Although SYNTHFIX employs an EM-like algo-
rithm, the underlying mathematical justification is
not as rigorously developed as it could be. A more
formal mathematical explanation using EM princi-
ples would help in better understanding and poten-
tially improving the model’s ability to generalize
across different codebases and types of vulnerabili-
ties.

In conclusion, while SYNTHFIX provides a ro-
bust framework for automated code repair, these
limitations should be addressed to further improve
its performance and applicability.
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