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ABSTRACT

While VideoQA Transformer models demonstrate competitive performance on
standard benchmarks, the reasons behind their success are not fully understood.
Do these models jointly capture and leverage the rich multimodal structures and
dynamics from video and text? Or are they merely exploiting shortcuts to achieve
high scores? Hence, we design QUAG (QUadrant AveraGe), a lightweight and
non-parametric probe, to critically analyze multimodal representations. QUAG
facilitates combined dataset-model study by systematic ablation of model’s cou-
pled multimodal understanding during inference. Surprisingly, it demonstrates
that the models manage to maintain high performance even under multimodal im-
pairment. We extend QUAG to design “QUAG-attention”, a simplistic and less-
expressive replacement of self-attention. We find that the models with QUAG-
attention achieve similar performance with significantly less mulops without any
finetuning. These findings indicate that the current VideoQA benchmarks and
metrics do not penalize models that find shortcuts and discount joint multimodal
understanding. Motivated by this, we propose CLAVI (Counterfactual in LAn-
guage and VIdeo), a diagnostic dataset for coupled multimodal understanding in
VideoQA. CLAVI consists of temporal questions and videos that are augmented
to curate balanced counterfactuals in language and video domains. We evaluate
models on CLAVI and find that all models achieve high performance on multi-
modal shortcut instances, but most of them have very poor performance on the
counterfactual instances that necessitate joint multimodal understanding. Overall,
with the multimodal representation analysis using QUAG and diagnostic analysis
using CLAVI, we show that many VideoQA models are incapable of learning mul-
timodal representations and that their success on standard datasets is an illusion
of joint multimodal understanding.

1 INTRODUCTION

Multimodal learning with videos and language is challenging, despite the shared sequential nature of
these modalities, due to their distinct underlying structures. That is, videos exhibit spatio-temporal
dynamics in the pixel space, whereas language representation is composed of the syntax and se-
mantics of word sequences. Hence, tasks like Video Question Answering (VideoQA) (Zhong et al.,
2022) are difficult as they necessitate the model to acquire accurate representations of both the
modalities and establish meaningful connections between them. Transformers have demonstrated
exceptional performance on VideoQA benchmarks (Zhong et al., 2022). However, since they lack
the intrinsic inductive biases for these representation, they must learn it from the data (Xu et al.,
2021; Patrick et al., 2021). But does the good performance of Transformers on current VideoQA
benchmarks necessarily mean that they learn to faithfully represent, leverage, understand and reason
the modalities? Or do the current benchmarks and metrics fail to robustly evaluate the models for
their multimodal understanding?

This is a valid concern because deep learning models can learn shortcuts to achieve good perfor-
mance without faithfully representing underlying modalities (Geirhos et al., 2020). For example,
seemingly spatio-temporal tasks, like some action classification problems, are shown to be solved
without focusing much on temporal representations (Kowal et al., 2022; Sevilla-Lara et al., 2021).
Similarly, in VideoQA, recent works report that the datasets contain specific biases (Buch et al.,
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2022; Lei et al., 2023). However, these works are restricted to isolated analyses of either the models
or the datasets. This raises questions: Are the models actually learning to jointly leverage and
understand the modalities, or is the performance on the current benchmarks an illusion of
joint multimodal learning?

To answer these questions, we propose QUadrant AveraGe (QUAG), a lightweight and non-
parametric probe to systematically gauge the reliance of a finetuned model’s performance on joint
multimodal representations. We posit that joint multimodal understanding is enabled in the fu-
sion layers by progressively attending to the informative tokens within and between the modalities.
QUAG impairs the components of modality fusion by block-averaging attention weights. We apply
QUAG on multiple dataset-model combinations, and consistently find that the models manage to
achieve high performance on the benchmarks without relying specific multimodal interactions.

This finding is concerning because high performance on established benchmarks should be ideally
indicative of coupled multimodal understanding. We establish that these models learn sub-optimal
representations; that is, the modality fusion doesn’t effectively capture the information within each
modality along with the complementary information in the other modality. We validate the sub-
optimality in multimodal representations by replacing self-attention in the pretrained models with
simple and less-expressive QUAG-attention. Even though QUAG-attention impairs multimodal ca-
pabilities, the models augmented with QUAG-attention manage to maintain the high performance
on standard benchmarks without any finetuning. This raises a follow-up question – How then can
we diagnose coupled multimodal understanding?

Thus, we create Counterfactual in LAnguage and VIsion (CLAVI), a diagnostic benchmark to ro-
bustly assess joint multimodal understanding in VideoQA models. Temporal understanding ideally
requires coupled multimodal understanding. However, the standard benchmarks do not contain or
assess performance on counterfactual instances. CLAVI contains automatically generated balanced
temporal counterfactuals in both question and video domains to accurately test if the models can
jointly understand temporal cues in the question (temporal prepositions and adverbs) and the video
(order of frames) domains (Figure 2). We develop consistent-accuracy metrics to precisely assess
the contributions of shortcuts to circumvent joint multimodal understanding. We find that finetuned
models have high-accuracy on shortcut instances in CLAVI, but have poor performance on the coun-
terfactual instances that require coupled multimodal understanding. Hence, we position CLAVI as a
litmus test to diagnose joint multimodal understanding which is overlooked by the existing datasets.

In summary, our contributions are (i) we develop QUAG, a systematic method to identify sub-
optimalities in joint multimodal representations, (ii) using QUAG and QUAG-attention, we demon-
strate that high performance on established VideoQA benchmarks is not representative of faithful
coupled multimodal understanding, and (iii) we develop CLAVI, a new diagnostic benchmark that
contains balanced temporal counterfactuals in videos and questions to confidently disambiguate the
contributions of shortcuts in joint multimodal learning to benchmark the models. Overall, QUAG
and CLAVI provide holistic dataset-model insights that reveal the illusion of multimodal under-
standing in VideoQA models.

2 DO VIDEOQA MODELS LEARN TO JOINTLY LEVERAGE THE MODALITIES?

We posit that coupled multimodal understanding is enabled in the fusion layers by progressively
attending to the informative tokens within and between the modalities. Hence, we design QUAG to
systematically ablate the effects of multimodal attention. It impairs the joint multimodal representa-
tions in the pretrained model by systematically block-averaging the attention weights to attend to all
tokens uniformly at inference time. Based on the targeted modality-interactions, we define special
cases of QUAG, collectively called short-circuit operations and analyze the performance drop.

2.1 VIDEO QUESTION ANSWERING SETUP

In VideoQA, the task is to predict the correct answer given a video-question tuple, (V, T ). A
VideoQA model consists of a vision encoder FV : V → RlV×d, text encoder FT : T → RlT ×d, and
a multimodal fusion module M : (FV(V),FT (T )) → R(lV+lT )×d, where lV and lT are the maxi-
mum input sequence lengths of video and text modalities respectively and d is the dimensionality of
the fusion model.
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Consider M as a composition of n attention-based multimodal fusion blocks, M = Mn ◦Mn−1 ◦
· · ·M1. Each fusion block consists of attention, normalization, and token-mixing modules. For
our analysis, we consider M to be composed of self-attention transformer blocks. That is, query,
key, and value are the transformations of the same input sequence. XVT = [FV(V) ∥ FT (T )] ∈
R(lV+lT )×d is the input for M , where ∥ is concatenation operator. Since QUAG operates at inference
time, we assume the VideoQA model to be finetuned and frozen.

2.2 QUAG: ABLATION OF MODALITY INTERACTIONS

Shortcuts are the spurious features learned by a given model on a given dataset (Murali et al., 2023).
Along this axis, we use QUAG to pinpoint the exact failure modes in the dataset representations
learned by the models.

Let Xi−1 denote the input of the fusion block Mi and let (Qi,Ki,Vi) be its query, key, and value
transformations and X0 = XVT . Then, the token-mixing operation is given by Ti = AiVi, where
Ai = softmax(QiK

⊤
i ) is the attention matrix (we omit the scaling factor

√
d for readability). For

Q1u, K1u, and V1u to denote the query, key, and value projections of modality u for the first fusion
block, M1, we can simplify, A1 and T1 in terms of their partition blocks, referred to as quadrants
henceforth, as:

A1 = softmax


 Q1V K⊤

1V Q1V K⊤
1T

Q1T K⊤
1V Q1T K⊤

1T


 and T1 =

 A1
VV A1

VT

A1
T V A1

T T

 V1V

V1T


where A1

u1u2
represents the quadrant of A1 corresponding to (Q1u1

K⊤
1u2

). Note that we skip layer
normalization layers in the discussion for simplicity. Hence, we can simplify and write T1 as:

T1 =

 A1
VVV1V +A1

VT V1T

A1
T VV1V +A1

T T V1T

 (1)

We follow the same partition quadrants, as defined for A1 in M1, for Aj in the downstream fusion
layer Mj and denote the quadrants as Aj

u1u2
. Next, we define row-wise average and replace operator

R that operates on a quadrant of a matrix to replace the values in the quadrant with the mean
value of the respective partitioned-row. Note that the values in the other quadrants are unaffected.
Given a matrix Z of size p × q and let W denote the location of the quadrant of Z with indices
(pW1 · · · pW2 )× (qW1 · · · qW2 ). We use [ . ]ij to index the element in row i and column j. Then,

[R(Z,W )]ij =

{∑qW2
k=qW1

[Z]ik
qW2 −qW1 +1

i ∈ {pW1 , · · · , pW2 } and j ∈ {qW1 , · · · , qW2 }
[Z]ij otherwise

We can now formally define the QUAG operator, ϕ, as:

ϕ(Ai,Vi, [s1, s2, · · · , sm]) = (Rs1 ◦ Rs2 · · · ◦ Rsm(Ai))Vi

where S = [s1, s2, · · · , sm] is a list of quadrants such that ∀s ∈ S :s ∈ {T T , T V,VT ,VV},
Rsi(Z) is short-hand for R(Z, si), Ai and Vi are the attention and value matrices of Mi re-
spectively. Note that T T refers to the quadrant corresponding to Ai

T T (independent of the index
1 ≤ i ≤ n of A), similarly T V refers to the quadrant corresponding to Ai

T V , and so on. In im-
plementation, we re-adjust the quadrant boundaries to ignore the padded elements. Refer Figure 1
for an illustrative example. Incorporating QUAG in the existing model pipeline is very easy and we
provide the code in the Appendix A.2.2. Since we will be applying the QUAG operator successively
on all the layers of M , for brevity, we denote Φ(M,S) = ∀1≤i≤n ϕ(Ai,Vi, S). Note that ϕ, and
hence, Φ is independent of the order of elements in S.

2.3 SHORT-CIRCUIT OPERATIONS

As QUAG is a generic method of probing multimodal fusion, we consider some special cases based
on the value of S below. We call these operations collectively as short-circuiting operations:
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Figure 1: Illustrative toy example of of unimodal short-circuiting or ϕ(Z, [T T ,VV]), where Z is the
input attention matrix (left-most in the figure), R is the row-wise average and replace operator and
hatching denotes padding. The quadrants that are operated on are highlighted in bright yellow box.
Note that lV = 3 and lT = 2 for the model and the video embeddings are pre-concatenated with the
question embeddings. As shown in the figure, we apply R successively to replace the values in the
quadrant with the respective row-wise average value. The cells are colored as per their quadrants
(VV : red,VT : yellow, T V : blue, T T : green).

1) S = [VV,T T ]: ϕ(A1,V1, [VV, T T ]) is equivalent to scaling the average values of V1V and
V1T in the upper and lower blocks of T1 respectively (as evident from Eqn. 1). Hence, in the upper
block, video queries faithfully attend over text keys but uniformly over video keys. Likewise, text
queries attend faithfully over video queries but uniformly over text queries in the lower block. We
illustrate this operation in Figure 1 and call such a fusion block to be unimodal average conformable.

Having understood the trivial case, we prove by induction that Φ(M, [VV, T T ]) leads to uni-
modal average conformability of all the component fusion blocks in M . Consider a block
Mj ∈ M such that j > 1. We want to show that unimodal average conformability of first
{M0,M1, · · · ,Mj−1} blocks using ∀1≤i≤j−1 ϕ(Ai,Vi, [VV, T T ]) implies ϕ(Aj ,Vj , [VV, T T ])
will make Mj unimodal average conformable. The input of Mj can be decomposed into non-linear
and linear (from the residual connection that skips the feed-forward layer of Mj−1) projections of
Tj−1 +Mj−2 ◦Mj−3 · · · ◦M1(XVT ) +XVT . Hence, when {M0,M1, · · · ,Mj−1} are unimodal
average conformable, XVT is the only non-conformable component. And we have shown in the
trivial case that ϕ(A1,V1, [VV, T T ]) makes M1 conformable, hence Mj is also unimodal average
conformable under ϕ.
Ultimately, Φ(M, [VV, T T ]) bypasses the effect of video-video attention and text-text attention. We
prove that unimodal token-mixing is reduced to scaling the average of the modalities. We term this
as unimodal short-circuiting. It ablates unimodal representations to analyze their dependence on
the performance of the models. Since the following cases can be proved similarly using induction,
we skip the proofs for conciseness.

2) S = [VT ,T V]: Parallel to unimodal short-circuiting, ϕ(A1,V1, [VT , T V]) is equivalent to
scaling the average values of V1T and V1V in the upper and lower blocks of T1 respectively. Video
and text queries faithfully attend to video and text keys respectively while crossmodal attention in
video-text is reduced to uniform attention. We term this effect as crossmodal short-circuiting. It
is complementary to unimodal short-circuiting and assesses the importance of inter-modality token-
mixing. It probes if the models actually learns by fusing the information between the two modalities
or is it largely driven by unimodal biases within the modalities.

3) S = [VV,T V]: This is equivalent to removing the effect of individual of video keys, resulting
in averaging the components of video modality in the upper and lower blocks of all Ti. We call this
video short-circuiting. Similarly, S = [T T ,VT ] leads to text short-circuiting.

2.4 QUAG-ATTENTION

Along with an assessment of multimodal understanding, QUAG enables a detailed analysis of token
mixing for identifying the sub-optimality of learned representations. Sub-optimality occurs if the
fusion process doesn’t effectively capture the information within each modality along with the com-
plementary information in the other modality. Hence, we use QUAG as an inspiration to propose
QUAG-attention, a replacement of self-attention in fusion module that calculates similarities on al-
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ready short-circuited sequences. That is, QUAG-attention intrinsically induces the models to infer
using sub-optimal representations.

Let us consider the case such that the performance of M under video short-circuiting opera-
tion is comparable to its performance without any perturbation. If the input of M is X0 =
[FV(V) ∥ FT (T )], then during token-mixing we effectively average and scale the components in
the upper-partition ([1, · · · , lV ] × d) of the value matrix in all the fusion blocks. This can be effi-
ciently approximated by replacing the entire upper block with a single row-wise average token using
R before projecting to key and value domains. Note that the query remains unchanged. Similar to
QUAG, we perform no finetuning and only modify the calculation of self-attention.

We can generalize it to present new variants of self-attention: collectively known as QUAG-
attention. QUAG-attention operates by consistently averaging the corresponding modality blocks
within the input of each fusion block. The averaging process occurs prior to the transformation
of the input into keys and values. Depending on the sub-optimalities in representation, QUAG-
attention can be applied to only text, video or both the modalities. It reduces the number of keys
and values tokens from (lV + lT ) to either (lT + 1) (text-average), (lV + 1) (video-average) or 2
(text-video-average).

The number of tokens in video and text modalities are generally different. However, due to block
averaging, QUAG-attention reduces the effective number of tokens of the modality in key and value
domains to one. The token-length mismatch would interfere with softmax operation in attention.
Hence, we scale the components of dot-product similarity scores of the averaged keys by the loga-
rithm of the number constituting tokens (that is, the original number of tokens in the block). This is
similar to proportional attention used by Bolya et al. (2023) for token-merging.

2.5 EXPERIMENTAL SETTING

Models and Datasets: We evaluate QUAG and QUAG-attention on JustAsk (Yang et al., 2021a) and
FrozenBiLM (Yang et al., 2022b) models. We evalaute it on the following datasets (i) ActivityNet-
QA (Yu et al., 2019): contains 58K open-ended questions on 5.8K sampled videos from ActivityNet
(ii) MSRVTT-QA (Xu et al., 2017): contains 244K open-ended questions on 10K MSRVTT videos
(iii) NeXT-QA (Xiao et al., 2021): contains 47K 5-way multiple choice questions with one-correct
answer from 5.4K videos. We also report results on the ATP-Hard subset of NeXT-QA (Buch
et al., 2022) that contains a higher concentration of temporally challenging data requiring multi-
frame understanding. Implementation Details: All our experiments were performed on 4 NVIDIA
A5000 GPUs. We use the official open-source code of the models on GitHub and modify only the
self-attention modules. We use the official evaluation code and checkpoints. For NeXT-QA, we use
the official dataset and finetune the models with the default parameters. More details in Appendix
A.2.3.

2.6 ANALYSIS

The results are shown in Table 1. For comparison to the unperturbed model, we specify the base-
line, language-only (without video input) and video-only (without text input) accuracies. The high
performance in language-only setting relative to the baseline is indicative of strong unimodal bias
towards language. However, these metrics do not provide any information about the exact nature
and degree of the sub-optimal representations learned by the models, hence we use QUAG.

The performance of FrozenBiLM on ActivityNet-QA and MSRVTT-QA drops by over 10% (43.6%
to 32.3%; 46.6% to 32.8%) with crossmodal short-circuiting, and by 40% with both unimodal
(43.6% to 2.4%; 46.6% to 1.0%) and text short-circuiting (43.6% to 1.4%; 46.6% to 1.0%). Fur-
thermore, the drop is less than 1% under video short-circuiting (43.6% to 43.1%; 46.6% to 45.7%).
However, for NeXT-QA and ATP-Hard, the performance of FrozenBiLM drops to chance level
(20%) under text and unimodal short-circuiting operations but hardly drops with video and text
short-circuiting. Parallelly, the performance of JustAsk model does not drop by more than 1% for
any of the datasets under any short-circuting operation.

This means that FrozenBiLM consistently does not rely on the core features of the video modality
and has a strong reliance on text-modality. Further, for NeXT-QA and ATP-Hard, the model does not
leverage any crossmodal interactions. However, for ActivityNet-QA and MSRVTT-QA, it leverages
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Table 1: Short-circuit (SC) and QUAG-attention accuracies for JustAsk and FrozenBiLM models
on ActivityNet-QA (A-QA), MSRVTT-QA (M-QA), NeXT-QA (N-QA) and ATP-Hard (ATP-H)
datasets (*video-average for FrozenBiLM and video-text-average for JustAsk; † percentage decrease
in the number of multiplication operations due to QUAG-attention).

FrozenBiLM JustAsk

A-QA M-QA N-QA ATP-H A-QA M-QA N-QA ATP-H

Baseline 43.6 46.6 55.8 55.7 38.7 41.8 53.8 44.0
Language-only 32.2 33.2 55.7 55.8 28.2 29.9 42.2 42.0
Video-only 0.1 0.0 20.2 20.1 2.6 6.7 39.1 23.0

SC: unimodal 2.4 1.0 19.8 21.4 38.5 41.5 53.6 43.6
SC: crossmodal 32.3 32.8 56.0 55.6 38.3 41.3 53.5 44.3
SC: video 43.1 45.7 55.8 55.7 38.2 41.3 53.4 44.3
SC: text 1.4 1.0 20.5 21.1 38.6 41.5 53.7 43.6

QUAG-atten* 43.0 45.8 55.6 55.9 38.0 41.0 53.5 44.1
∆MulOps† 13.6% 68.0%

some crossmodal interactions (video (query) and text (key) only). On the other hand, JustAsk model
does not learn to fuse the modalities across the datasets and relies largely on the text-modality. Note
that while the relative performance drop in the classical language-only and video-only settings for
JustAsk and FrozenBiLM models on ActivityNet-QA and MSRVTT-QA is similar, QUAG points
out the differences in their sub-optimal representations.

We use the results from QUAG to apply QUAG-attention on FrozenBiLM and JustAsk that reduce
the number of multiplication operations by 13.6% and 68.0% respectively, for a less than 1% drop in
performance consistently for all the datasets. However, this raises serious concerns because models
can learn to hack their way around the accuracy metrics for leveraging shortcuts. The supposedly
multimodal datasets contain biases and the evaluation metrics do not penalize shortcut learning and
provide a false confidence about the abilities of the model. This raises the follow-up question – How
can we confidently benchmark multimodal understanding in VideoQA models?

3 DOES MULTIMODAL SUB-OPTIMALITY STEMS FROM DATASET BIASES?

Sub-optimality in model representations and shortcut learning can stem from a combination of facets
like dataset biases, model architecture (Jelassi et al., 2022), optimization method (Gunasekar et al.,
2018), learning paradigm (Liu et al., 2022) etc. Hence, to ablate the effect of dataset biases we curate
CLAVI, a diagnostic dataset with temporal counterfactuals in questions and videos that necessitates
joint multimodal understanding and penalizes simple shortcut learning. CLAVI is not positioned to
replace existing datasets but rather to supplement them, enhancing the understanding of VideoQA
models. We finetune the VideoQA models on CLAVI with the prescribed model architecture and
training recipe to study and diagnose the representational prowess of the pretrained models.

3.1 CLAVI: DIAGNOSING THROUGH COUNTERFACTUALS

CLAVI consists of 6,018 videos and 114,342 questions (72,770 train and 41,572 test). It contains
simple yes-no questions to probe the absolute temporal location of a single action (beginning/end) or
the occurrence sequence for a pair of non-overlapping actions (before/after). CLAVI allows for sys-
tematic benchmarking and diagnosis of joint multimodal understanding through the lens of balanced
video and question temporal counterfactuals. We use question templates to automatically curate the
question-answer pairs from the temporal grounding annotations of Charades-STA (Gao et al., 2017).
To create temporal counterfactuals in the question domain, we replace before with after and begin-
ning with end and vice versa. Further, we create temporal counterfactuals in the video domain by
swapping only the action-segments in the video as shown in Figure 2. We exhaustively consider
all the compositions of temporal counterfactuals in video and question domains to create balanced
counterfactuals instances for systematic assessment of multimodal understanding in videos.
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Figure 2: Illustrative example of the creation of CLAVI. In the original video (V), the action “turn-
ing on a light” (Event A; blue pane) follows “holding clothes” (Event B; brown pane). To create a
counterfactual video (V’), we swap the action segments without manipulating the segment separat-
ing them. The questions (Q), along with their counterfactual (Q’), are curated for each of the videos.
Note that the color of the question panel reflects the correct answer (green for “yes”, pink for “no”).
We provide the list of questions in Table 2.

Table 2: List of questions and their counterfactuals in CLAVI for the illustrative example in Fig. 2.
For brevity, we present 4 (out of 8) negative control (NC) questions for BA type; comprehensive list
in Appendix A.3.3.

Question (Q) Counterfactual Question (Q’)

Existence (E) type
Was someone turning on light?
Was someone holding clothes?

Existence (E) type – (NC)
Was someone washing mirror?

Beginning/End (BE) type
Was the person turning on light at the beginning? Was the person turning on light at the end?
Was the person holding clothes at the end? Was the person holding clothes at the beginning?

Before/After (BA) type
Did turning on light happen before holding clothes? Did turning on light happen after holding clothes?
Did holding clothes happen after turning on a light? Did holding clothes happen before turning on light?

Before/After (BA) type – (NC)
Did turning on light happen before washing mirror? Did turning on a light happen after washing mirror?
Did holding clothes happen after washing mirror? Did holding clothes happen before washing mirror?

We briefly explain the design principle of CLAVI. We choose temporal sequence counterfactuals
to benchmark joint multimodal understanding because it requires unimodal understanding within
the modalities (sensitive to the sequence of (i) frames in the video; (ii) objects, verbs and temporal
phrases in the question) as well as crossmodal understanding (relating the sequence of actions in
the video with that of the question). This also makes temporal ordering as one of the fundamental
elements of VideoQA. Using yes-no questions with balanced negative instances allows us to have
questions that are unambiguous, and answers that are mutually exclusive and equally informative
to not be eliminated by prior biased knowledge. We deliberately maintain a simple design for ques-
tion templates and answer vocabulary that excludes other abilities such as language comprehension,
commonsense reasoning, and long-term memory to facilitate isolated diagnostic analysis of joint
multimodal understanding. Also, we ensure that the dataset size is sufficiently large, as compared to
the existing datasets, so that the models do not overfit (Appendix A.3.2).

Based on the temporal cue in the question, CLAVI contains three question types – Existence (E),
Beginning/End (BE) and Before/After (BA). Further, we define negative control questions con-
taining actions that do not occur in the video (that is, the answer is always “no”) for E and BA types
as shown in Table 2. Answering the negative control does not require understanding temporal cues
in language and video. Hence, it serves the dual purpose of sanity check of learning and a baseline
for learning by temporal shortcuts. We remove the bias against beginning and end by randomly
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Table 3: Test performance (% accuracy) on CLAVI after finetuning
Metric JustAsk FrozenBiLM Singularity-T All-In-One+

(Yang et al., 2021b) (Yang et al., 2022a) (Lei et al., 2023) (Wang et al., 2023a)

Balanced Acc 72.2 ± 0.2 80.5 ± 0.1 76.8 ± 0.5 73.9 ± 0.1
CAccV 50.6 ± 0.3 74.0 ± 0.1 47.2 ± 1.1 49.6 ± 0.5
CAccT 50.3 ± 0.1 75.5 ± 0.1 47.0 ± 1.0 49.5 ± 0.3
CAccV -control 98.0 ± 0.2 93.2 ± 0.2 92.7 ± 2.0 98.1 ± 0.5
CAccT -control 98.2 ± 0.2 93.7 ± 0.2 93.5 ± 1.9 98.2 ± 0.7
CAccV -counter 3.6 ± 0.1 54.1 ± 0.2 1.7 ± 0.2 1.2 ± 0.3
CAccT -counter 2.4 ± 0.1 57.2 ± 0.2 0.5 ± 0.2 0.8 ± 0.1

extending the boundaries of the action-segments in the video. The detailed curation process and
dataset statistics are presented in Appendix A.3.1.

We want to evaluate the sensitivity of the model to the temporal cues in language and video in-
dependently. Hence, we define consistent accuracies. Given a question, if the model predicts the
answers correctly for both – the video and its corresponding counterfactual video, it is called video-
consistent. Similarly, for a given video, if the model correctly answers a question and it corre-
sponding counterfactual question, it is called text-consistent. The proportion of video and question
consistent predictions are reported as video-consistent accuracy (CAccV ) and text-consistent ac-
curacy (CAccT ) respectively. We report the consistent accuracies separately for the control subset
(E, E-NC, and BA-NC question types) and the counterfactual subset (BE and BA question types).
The control subset can be answered by leveraging shortcuts while answering the counterfactual sub-
set necessitates joint multimodal understanding.

3.2 EXPERIMENT

We finetune and evaluate 4 models: JustAsk (Yang et al., 2021a), FrozenBiLM (Yang et al., 2022b),
Singularity-Temporal (Lei et al., 2023) and All-In-One+ (Wang et al., 2023b) on CLAVI using the
official finetuning instructions (Appendix A.3.5). We follow the same experimental settings as dis-
cussed in Section 2.5. To account for class imbalance in the answers, we use balanced accuracy for
validation and testing. The results are summarized in Table 3. All the models have greater than 70%
balanced accuracy. At first, it might give an illusion of good multimodal understanding in VideoQA
models. However, the consistent accuracy metrics demystify the illusion.

Text and video consistent accuracies are greater than 90% for the control subset for all the models.
This is because, unlike the counterfactual subset, the control subset does not requires coupled under-
standing. That is, the model can answer it correctly by simple shortcuts – irrespective of the context
of the negative control action in the question and the location of the object and/or the action in the
video. However, for achieving high consistent accuracies on the counterfactual subset, the model
needs to jointly understand the order of the events and the temporal cues in the question along with
the order of the events in the video. We get significantly lower consistent accuracies (less than 4%)
for the counterfactual subset, except for FrozenBiLM. Overall, this means that the other models are
able to exploit shortcuts but unable to learn joint multimodal representations.

How can we be sure that FrozenBiLM is not learning spurious shortcuts on CLAVI? We find that
the video-average QUAG-attention on FrozenBiLM cause the CAccT -counter and CAccV -counter
to drop to 23% and 3.6% respectively. That is, the performance on the counterfactual subset signif-
icantly drops under multimodal impairment. However, CAccT -control and CAccV -control values
increase to 98.6% and 99.2% respectively, perhaps because QUAG-attention promotes reliance on
shortcuts, and the control subset can be solved easily by shortcuts. These confirm FrozenBiLM’s
reliance on multimodal representations for its high performance relative to the other models.

Beyond the consistency accuracy metrics we can use CLAVI for diverse representation analyses. As
an example, we present a qualitative representation sensitivity analysis for FrozenBiLM in Appendix
A.3.7. We align the attention matrices for counterfactual pairs and find that the representations of
correctly answered counterfactual pairs are more distinct than the wrongly answered pairs to validate
joint multimodal understanding.
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4 RELATED WORK

Dataset Biases: Works in NLP (Papadimitriou et al., 2022; Sinha et al., 2021), vision (Brendel &
Bethge, 2019) and vision-language (Yuksekgonul et al., 2023) demonstrate that models can achieve
high performance without even understanding the sequence of the embeddings. This is partly be-
cause the current benchmarks have unintended biases that could potentially be exploited by models
to learn shortcuts; hence accuracy is not always a faithful metric (Pham et al., 2021; Yuksekgonul
et al., 2023; Kafle & Kanan, 2017; Sevilla-Lara et al., 2021). For VideoQA, MovieQA (Tapaswi
et al., 2016) and TVQA (Lei et al., 2018) datasets are biased towards plot understanding or dialogue
comprehension (Winterbottom et al., 2020). Biases are not always immediately apparent; for exam-
ple, Social-IQ (Zadeh et al., 2019) contains sentiment-biased annotations (Gat et al., 2021). More-
over, statistical regularities like answer length, answer frequency (Goyal et al., 2017; Agrawal et al.,
2016) and co-occurrence (Dancette et al., 2021a; Manjunatha et al., 2019; Subramanian et al., 2019)
introduce spurious features. Overall, these biases allow the models learn shortcuts (Geirhos et al.,
2020) that circumvent multimodal reasoning (Chao et al., 2018; Ye & Kovashka, 2021). While syn-
thetic VideoQA benchmarks such as VQuAD (Gupta et al., 2022), CLEVRER (Yi et al., 2019) have
been carefully curated to mitigate many biases, they are unable to capture the intricate dynamics of
the real world. Recently proposed Preception Test (Pătrăucean et al., 2023), while comprehensive,
does not contain diagnostic metrics that penalize the effect of shortcut learning. We curate CLAVI by
systematically augmenting real-world videos to faithfully represent the complexity of the physical
world while controlling the biases to confidently evaluate multimodal temporal understanding.

Shortcut Learning: Tangential to the bias amelioration methods (Cadene et al., 2019; Clark et al.,
2019), Lei et al. (2023) and Winterbottom et al. (2020) achieve state-of-the-art performance with
simple models by leveraging VideoQA dataset shortcuts in the model. ATP (Buch et al., 2022)
demonstrates single frame bias by re-training the models with an informative frame-selection mod-
ule to achieve competitive performance. Perceptual Score (Gat et al., 2021) quantifies modality bias
in terms of relative performance drop under modality-permutation operation. QUAG combines these
ideas to evaluate the dependence of models on shortcuts for circumventing multimodal understand-
ing in terms of performance drop under multimodal representation collapse. Unlike others, it assists
in identifying sub-optimal representations in a combined model-dataset approach at test time.

Leveraging Counterfactuals: We share our motivation for developing CLAVI with VQA-CP
(Agrawal et al., 2018): that iid train-test splits in the presence of strong priors leads to learning via
shortcuts. However, rather than reducing the bias by mining new complementary image instances,
CLAVI weakens prior of multimodal understanding with synthesized balanced video-question tem-
poral hard-negatives. Concurrent to our work, Momeni et al. (2023) and Wang et al. (2023c) have
employed hard-negatives for improving verb-understanding in VideoQA models. Bagad et al. (2023)
stitch pairs of unrelated videos to improve the temporal understanding of video-language models.
However, unlike CLAVI that uses synthesized negative video instance from the same video, stitched
video dataset cannot be a robust diagnostic benchmark because the incoherent contexts can be ex-
ploited as a static bias shortcut (Choi et al., 2019).

5 CONCLUSION

In this work, we perform a rigorous analysis of VideoQA models, focusing on multimodal rep-
resentations. We introduced QUAG, a coupled dataset-model approach, to conduct a systematic
analysis of learned multimodal representations. It provides deep insights into how the models in-
fer and why the models fail. We found that VideoQA models can learn shortcuts on seemingly
multimodal datasets without truly learning to align and fuse the information both – within and be-
tween the modalities. Using this understanding, we developed QUAG-attention and exposed the
sub-optimality of VideoQA models. Hence, we proposed CLAVI, a diagnostic benchmark for ana-
lyzing joint multimodal understanding in VideoQA models. With the simple task of temporal order-
ing we find that most of the current models are unable to jointly infer from text and video modalities.
All our proposed approaches – QUAG, QUAG-attention and CLAVI are simple, compute-friendly
and generic to be extended to any combination of modalities, datasets and models. Our thorough and
systematic dataset-model combined representation analysis provides insights that are shrouded and
misled by the standard datasets and evaluation metrics that create the illusion of joint multimodal
understanding.
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6 ETHICAL STATEMENT

Datasets in machine learning have a history of containing unintentional biases like race, gender, age
along with safety and privacy concerns (Birhane & Prabhu, 2021; Peng et al., 2021; Hirota et al.,
2022). We curate CLAVI from existing and popular Charades (Sigurdsson et al., 2016) dataset be-
cause it is well-studied and collected in controlled settings with consent. Further the owners of
Charades ensure the anonymity and privacy of the participants. However, our approach of develop-
ing CLAVI is quite generic and can be easily extended to multiple datasets and/or modalities. Also,
for automatically generated questions, we ensure to keep the question templates gender neutral.

One of the central goals of our work was to reassert the brittleness in multimodal models by present-
ing a combined dataset-model centric interpretable representation learning approach through QUAG
and CLAVI. We hope our work galvanizes the research community further to not just blindly trust
the accuracy score on benchmarks but thoroughly investigate the potential biases that are (1) present
in the dataset and (2) are learned by the models.

7 REPRODUCIBILITY STATEMENT

We provide the code to implement QUAG and QUAG-attention in Appendix A.2.2. It can be easily
integrated by replacing the self-attention module of the models. Also, QUAG and QUAG-attention
are deterministic and non-parametric. Hence, the reproducibility of the results is ensured by repro-
ducibility of the model codebase which we have thoroughly verified.

We provide the scripts to curate CLAVI from Charades along with a representative subset of the
dataset in the supplementary material because of licensing restrictions. We have ensured that the
dataset curation code is reproducible and it will be released on GitHub under GPL3.0 license. Fol-
lowing the guidelines of Gebru et al. (2021), we provide a comprehensive documentation of CLAVI
with the intended use in Appendix A.3.8. For the finetuning experiments on CLAVI, all the experi-
ments were repeated with three random seeds (0, 42 and 71) and the mean results reported with the
standard error. We will release the finetuned checkpoints with the code on GitHub post acceptance
notification.
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Hal Daumé Iii, and Kate Crawford. Datasheets for datasets. Communications of the ACM, 64
(12):86–92, 2021.

11

https://openreview.net/pdf?id=SkfMWhAqYQ
https://aclanthology.org/2022.acl-long.209
https://aclanthology.org/D19-1418


Under review as a conference paper at ICLR 2024

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V
in VQA matter: Elevating the role of image understanding in visual question answering. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July
2017.

Suriya Gunasekar, Jason D Lee, Daniel Soudry, and Nati Srebro. Implicit bias of gradient descent
on linear convolutional networks. Advances in neural information processing systems, 31, 2018.

Vivek Gupta, Badri N Patro, Hemant Parihar, and Vinay P Namboodiri. Vquad: Video question an-
swering diagnostic dataset. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 282–291, 2022.

Jiachang Hao, Haifeng Sun, Pengfei Ren, Jingyu Wang, Qi Qi, and Jianxin Liao. Can shuffling
video benefit temporal bias problem: A novel training framework for temporal grounding. In
Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXXVI, pp. 130–147. Springer, 2022.

Jack Hessel and Lillian Lee. Does my multimodal model learn cross-modal interactions? it’s harder
to tell than you might think! In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 861–877, 2020.

Yusuke Hirota, Yuta Nakashima, and Noa Garcia. Gender and racial bias in visual question an-
swering datasets. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and
Transparency, pp. 1280–1292, 2022.

Soumya Jahagirdar, Minesh Mathew, Dimosthenis Karatzas, and CV Jawahar. Watching the news:
Towards videoqa models that can read. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 4441–4450, 2023.

Samy Jelassi, Michael Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure.
Advances in Neural Information Processing Systems, 35:37822–37836, 2022.

Baoxiong Jia, Ting Lei, Song-Chun Zhu, and Siyuan Huang. Egotaskqa: Understanding human
tasks in egocentric videos. Advances in Neural Information Processing Systems, 35:3343–3360,
2022.

Kushal Kafle and Christopher Kanan. An analysis of visual question answering algorithms. In
Proceedings of the IEEE international conference on computer vision, pp. 1965–1973, 2017.

Matthew Kowal, Mennatullah Siam, Md Amirul Islam, Neil DB Bruce, Richard P Wildes, and Kon-
stantinos G Derpanis. A deeper dive into what deep spatiotemporal networks encode: Quantifying
static vs. dynamic information. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13999–14009, 2022.

Jie Lei, Licheng Yu, Mohit Bansal, and Tamara Berg. TVQA: Localized, compositional video ques-
tion answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Lan-
guage Processing, pp. 1369–1379, Brussels, Belgium, October-November 2018. Association for
Computational Linguistics. doi: 10.18653/v1/D18-1167. URL https://aclanthology.
org/D18-1167.

Jie Lei, Tamara Berg, and Mohit Bansal. Revealing single frame bias for video-and-language learn-
ing. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 487–507, Toronto, Canada, July 2023. Association for Compu-
tational Linguistics. doi: 10.18653/v1/2023.acl-long.29. URL https://aclanthology.
org/2023.acl-long.29.

Paul Pu Liang, Yiwei Lyu, Gunjan Chhablani, Nihal Jain, Zihao Deng, Xingbo Wang, Louis-
Philippe Morency, and Ruslan Salakhutdinov. Multiviz: Towards visualizing and understand-
ing multimodal models. In The Eleventh International Conference on Learning Representations,
2022a.

12

https://aclanthology.org/D18-1167
https://aclanthology.org/D18-1167
https://aclanthology.org/2023.acl-long.29
https://aclanthology.org/2023.acl-long.29


Under review as a conference paper at ICLR 2024

Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations and recent trends in
multimodal machine learning: Principles, challenges, and open questions. arXiv preprint
arXiv:2209.03430, 2022b.

Paul Pu Liang, Yun Cheng, Ruslan Salakhutdinov, and Louis-Philippe Morency. Multimodal fusion
interactions: A study of human and automatic quantification. arXiv preprint arXiv:2306.04125,
2023.

Xiao Liu, Ankur Sikarwar, Joo Hwee Lim, Gabriel Kreiman, Zenglin Shi, and Mengmi Zhang.
Reason from context with self-supervised learning. arXiv preprint arXiv:2211.12817, 2022.

Varun Manjunatha, Nirat Saini, and Larry S Davis. Explicit bias discovery in visual question an-
swering models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9562–9571, 2019.

Liliane Momeni, Mathilde Caron, Arsha Nagrani, Andrew Zisserman, and Cordelia Schmid. Verbs
in action: Improving verb understanding in video-language models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pp. 15579–15591, October
2023.

Nihal Murali, Aahlad Manas Puli, Ke Yu, Rajesh Ranganath, and Kayhan Batmanghelich. Shortcut
learning through the lens of early training dynamics. arXiv preprint arXiv:2302.09344, 2023.

Mayu Otani, Yuta Nakahima, Esa Rahtu, and Janne Heikkilä. Uncovering hidden challenges in
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A APPENDIX

A.1 ADDITONAL RELATED WORKS

Multimodal Fusion Interpretability and Visualization: Liang et al. (2022b) and Liang et al.
(2023) analyze multimodal fusion interactions along the dimensions of response, information, and
mechanics. The closest alignment of QUAG and CLAVI is at the interface of multimodal fusion
response and mechanics. Previous works have quantified the presence or absence of specific kinds
of modality interactions through the study of datasets (Dancette et al., 2021b), models (Chefer et al.,
2021), projections onto simpler models (Hessel & Lee, 2020; Wörtwein et al., 2022) and visual-
ization studies (Liang et al., 2022a; Aflalo et al., 2022; Wang et al., 2021). However, using QUAG,
unlike other methods, we perform a combined dataset-model analysis without any additional param-
eters or finetuning.

A.2 QUAG

A.2.1 ATTENTION MAP VISUALIZATION

We provide a visualization example of the attention values before and after short-circuting operations
in Figure 3.

A.2.2 CODE

Below is the implementation of QUAG as an augmentation of the existing self-attention function.
We use row-wise average and replace operation in each if-clause statements, while ignoring the
padding, to ablate the effect of the quadrant.

1 def self_attention(inputs, mask, dim_model, l_v, l_t, quads):
2 # Inputs:
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Figure 3: Visualization of the first attention head, as a heatmap, from the second layer of JustAsk
model with lV = 20 and lT = 20. Note that here the text embeddings are pre-concatenated to the
video embedding in the input. The lengths of the video and text tokens are 9 and 7 respectively.
The text and video tokens are individually padded to length 20 each. We visualize (a) the original
attention values and (b)-(d) after short-circuiting (SC) operations.

3 # inputs: Tensor of shape (batch_size, sequence_length,
dim_model)

4 # mask: Tensor of shape (batch_‘size, sequence_length)
5 # dim_model: Dimension of the model (e.g., 512)
6 # l_v: int maximum length of video tokens
7 # l_t: int maximum length of question tokens
8 # quads: list containing elements from {’VV’, ’VT’, ’TV’, ’TT’}
9 query = linear_transform_query(inputs)

10 key = linear_transform_key(inputs)
11 value = linear_transform_value(inputs)
12 attention_scores = compute_attention_scores(query, key, mask)
13 apply_quag(attention_scores, mask, l_v, l_t, quads)
14 attended_output = apply_attention_scores(attention_scores, value)
15 return attended_output
16

17 def compute_attention_scores(query, key, mask):
18 scaled_dot_product = dot_product(query, key) / sqrt(dim_model)
19 attention_scores = softmax(scaled_dot_product + (1 - mask) * -1e9)
20 return attention_scores
21

22 def apply_quag(attention_scores, mask, l_v, l_t, quads):
23 if ’VV’ is in quads:
24 replace_with_rowwise_average(attention_scores[:, :l_v, :l_v],

mask[:, :l_v, :l_v])
25 if ’VT’ is in quads:
26 replace_with_rowwise_average(attention_scores[:, :l_v, -l_t:],

mask[:, :l_v, -l_t:])
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27 if ’TV’ is in quads:
28 replace_with_rowwise_average(attention_scores[:, -l_t:, :l_v],

mask[:, -l_t:, :l_v])
29 if ’TT’ is in quads:
30 replace_with_rowwise_average(attention_scores[:, -l_t:, -l_t

:], mask[:, -l_t:, -l_t:])
31

32 def replace_with_rowwise_average(scores, mask):
33 rowwise_sum = sum(scores, axis=-1)
34 rowwise_mean = rowwise_sum / sum(mask, axis=-2)
35 expanded_rowwise_mean = expand_dims(rowwise_mean, axis=-1)
36 replace_elements(scores, expanded_rowwise_mean)
37

38 def apply_attention_scores(attention_scores, value):
39 attended_output = dot_product(attention_scores, value)
40 return attended_output

Next, we provide the code for QUAG-attention. QUAG-attention modifies the existing self-attention
block in the fusion module by replacing the block with the block average. We also demonstrate the
normalizing the softmax function so that the each single average sequence is representative of the
constituent sequences.

1 def quag_attention(inputs, mask, dim_model, l_v, l_t, type):
2 # Inputs:
3 # inputs: Tensor of shape (batch_size, sequence_length,

dim_model)
4 # mask: Tensor of shape (batch_size, sequence_length)
5 # dim_model: Dimension of the model (e.g., 512)
6 # l_v: int maximum length of video tokens
7 # l_t: int maximum length of question tokens
8 # type: one of ’text’, ’video’, ’text-video’
9 query = linear_transform_query(inputs)

10 avg_input = compute_avg_input(inputs, l_v, l_t, type)
11 key = linear_transform_key(avg_input)
12 value = linear_transform_value(avg_input)
13 mask = apply_mask(mask, l_v, l_t, type)
14 scaled_dot_product = compute_scaled_dot_product(query, key,

dim_model, mask)
15 attention_scores = softmax(scaled_dot_product)
16 attended_output = apply_attention_scores(attention_scores, value)
17 return attended_output
18

19 def compute_avg_input(inputs, l_v, l_t, type):
20 if type == "video":
21 avg_upper_block = sum(inputs[:, :l_v, :], axis=-2)
22 avg_upper_block = expand_dims(avg_upper_block, axis=1)
23 avg_input = concatenate((avg_upper_block, inputs[:, :-l_t, :])

, axis=1)
24 elif type == "text":
25 avg_lower_block = sum(inputs[:, :-l_t, :], axis=-2)
26 avg_lower_block = expand_dims(avg_lower_block, axis=1)
27 avg_input = concatenate((inputs[:, :l_v, :], avg_lower_block),

axis=1)
28 elif type == "text-video":
29 avg_upper_block = sum(inputs[:, :l_v, :], axis=-2)
30 avg_upper_block = expand_dims(avg_upper_block, axis=1)
31 avg_lower_block = sum(inputs[:, :-l_t, :], axis=-2)
32 avg_lower_block = expand_dims(avg_lower_block, axis=1)
33 avg_input = concatenate((avg_upper_block, avg_lower_block),

axis=1)
34 return avg_input
35

36 def apply_mask(mask, l_v, l_t, type):
37 mask = expand_dims(mask, axis=-1)
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Table 4: Fine-grained performance of JustAsk on ActivityNet-QA
Config Motion Spatial Temp Y/N Color Obj Loc Num Other

Baseline 30.6 19.9 4.9 64.2 34.7 26.7 35.5 48.9 36.8
Lang-only 1.4 9.1 4.3 51.8 28.7 23.0 16.6 46.9 29.1
Vid-only 20.3 0.9 1.8 0.0 0.0 1.6 1.3 0.0 0.7
SC: unimodal 30.1 19.1 4.9 63.9 33.6 26.4 36.8 48.4 37.0
SC: crossmodal 28,0 18.9 4.8 64.7 34.7 25.8 35.5 48.5 36.4
SC: text 30.4 19.3 5.0 64.1 34.0 26.4 35.5 46.7 37.2
SC: video 28.6 18.8 4.5 64.3 34.6 25.5 35.5 48.4 36.1
QUAG-attention 28.1 18.5 4.9 64.1 33.6 25.2 34.7 48.0 36.6

38 mask = tile(mask, [1, 1, sequence_length])
39

40 if "video" in type:
41 video_length = sum(mask[:, :l_v, 0], axis=1)
42 video_length = expand_dims(video_length, axis=-1)
43 scaled_dot_product[:, :, 0] = scaled_dot_product[:, :, 0] *

log(video_length)
44 upper_mask = ones(mask.shape[0], mask.shape[1], 1)
45 mask = concatenate((upper_mask, mask[:, :, l_v:]), axis=-1)
46

47 if "text" in type:
48 text_length = sum(mask[:, :-l_t, 0], axis=1)
49 text_length = expand_dims(text_length, axis=-1)
50 scaled_dot_product[:, :, -1] = scaled_dot_product[:, :, -1] *

log(text_length)
51 lower_mask = ones(mask.shape[0], mask.shape[1], 1)
52 mask = concatenate((mask[:, :, :-l_t], lower_mask), axis=-1)
53

54 return mask
55

56 def compute_scaled_dot_product(query, key, dim_model, mask):
57 scaled_dot_product = dot_product(query, key) / sqrt(dim_model)
58 return scaled_dot_product
59

60 def apply_attention_scores(attention_scores, value):
61 attended_output = dot_product(attention_scores, value)
62 return attended_output

A.2.3 EXPERIMENT DETAILS

As mentioned in the main manuscript, we use the official checkpoints and code of JustAsk [web-
site] and FrozenBiLM [website]. For all the experiments with JustAsk, we use the checkpoints
of the model pretrained on HowToVQA69M and WebVidVQA3M. For FrozenBiLM, we use the
WebVid10M-pretrained checkpoint for all our experiments. Since QUAG operates at inference time,
we do not need to perform any training. Since the model owners do not report results on NeXT-QA,
we finetune the models with the official recipe to achieve performance similar to that independently
reported by others Xiao et al. (2022). While FrozenBiLM can also take subtitles as the input, for
fair comparison, we do not pass it in any of the experiments. We provide the hardware details in the
main manuscript.

A.2.4 FINEGRAINED ACCURACIES

A.2.5 JUSTASK MODEL

We present the fine-grained performance of JustAsk on the discussed datasets in Tables 4, 5, 6, and
7
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Table 5: Fine-grained performance of JustAsk on MSRVTT-QA
Config What How Color Where Who When

Baseline 35.8 83.7 51.7 39.4 51.3 82.3
Lang-only 24.3 83.3 43.4 30.5 37.1 72.3
Vid-only 8.5 0.0 3.5 0.4 3.0 10.1
SC: unimodal 35.6 83.3 51.8 39.8 50.8 82.3
SC: crossmodal 35.35 83.75 51.98 39.8 50.8 81.8
SC: text 35.7 83.2 51.8 39.0 50.8 82.1
SC: video 35.4 83.8 51.8 39.8 50.7 81.6
QUAG-attention 35.1 83.5 51.1 38.6 50.2 82.1

Table 6: Fine-grained performance of JustAsk on NeXT-QA
Config Causal Temporal Descriptive

Baseline 50.8 52.8 65.0
Lang-only 39.5 44.3 47.1
Vid-only 39.2 37.9 44.0
SC: unimodal 50.5 52.5 65.3
SC: crossmodal 50.8 51.8 65.0
SC: text 50.7 52.7 65.0
SC: video 50.7 52.1 65.0
QUAG-attention 50.8 52.0 65.1

Table 7: Fine-grained performance of JustAsk on ATP-Hard subset of NeXT-QA
Config Causal Temporal

Baseline 44.4 43.4
Lang-only 41.2 43.1
Vid-only 23.5 22.3
SC: unimodal 43.2 43.3
SC: crossmodal 44.2 44.4
SC: text 43.7 43.4
SC: video 44.3 44.4
QUAG-attention 44.2 43.9

A.2.6 FROZENBILM MODEL

We present the fine-grained performance of FrozenBiLM on the discussed datasets in Tables 8, 9,
10, and 11

A.2.7 ADDITIONAL RESULTS

We evaluated QUAG on All-in-one model and find that, as the authors claim, the model utilizes both
– unimodal and cross-modal modality interactions. The results are summarized in Table A.2.7.

A.2.8 PROGRESSIVE QUAG

We apply QUAG progressively to the first n fusion layers of FrozenBiLM to find their relative
importance in multimodality. We apply it in the step size of 4 (24 fusion blocks in total) and report
the results for ActivityNet-QA (Figure 4) and MSRVTT-QA (Figure 5) Datasets. We consistently
find that the first 8 layers are the most important in unimodal interaction and text interactions (and
cross-modal interactions as well for ActivityNet-QA).
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Table 8: Fine-grained performance of FrozenBiLM on ActivityNet-QA
Config Motion Spatial Temp Y/N Color Obj Loc Num Other

Baseline 30.1 22.5 6.4 75.6 34.6 27.7 37.1 55.8 41.6
Lang-only 2.6 10.5 4.8 63.3 32.3 23.9 16.6 44.7 31.6
Vid-only 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0
SC: unimodal 0.0 0.1 0.1 8.3 0.0 0.0 0.0 1.3 0.5
SC: crossmodal 1.8 11.1 3.88 64.5 32.7 21.7 16.8 46.0 32.1
SC: text 0.0 0.1 0.1 4.4 0.1 0.3 0.0 1.2 0.3
SC: video 28.8 21.8 6.5 75.1 34.3 29.3 36.0 55.3 41.0
QUAG-attention 28.9 22.3 6.0 74.4 35.0 27.3 37.3 54.1 41.1

Table 9: Fine-grained performance of FrozenBiLM on MSRVTT-QA
Config What How Color Where Who When

Baseline 40.5 87.2 57.9 41.5 56.6 81.4
Lang-only 27.3 83.6 50.0 35.8 41.2 77.6
Vid-only 0.0 0.0 0.0 0.0 0.0 0.0
SC: unimodal 0.7 0.0 1.2 0.8 1.8 0.2
SC: crossmodal 27.1 83.4 50.9 32.9 41.1 66.3
SC: text 0.3 0.0 0.8 0.0 2.8 0.0
SC: video 39.8 85.5 58.8 41.9 55.4 80.9
QUAG-attention 39.9 86.2 58.1 42.7 55.2 81.1

Figure 4: Result of progressive application of QUAG on FrozenBiLM model on ActivityNet-QA
dataset
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Table 10: Fine-grained performance of FrozenBiLM on NeXT-QA
Config Causal Temporal Descriptive

Baseline 56.0 56.1 54.5
Lang-only 55.9 56.1 54.2
Vid-only 20.7 19.1 20.9
SC: unimodal 19.7 21.1 17.3
SC: crossmodal 56.1 56.5 54.3
SC: text 20.0 21.6 19.9
SC: video 56.1 56.1 54.5
QUAG-attention 55.9 55.8 54.1

Table 11: Fine-grained performance of FrozenBiLM on ATH-Hard subset of NeXT-QA
Config Causal Temporal

Baseline 55.2 56.3
Lang-only 55.5 56.2
Vid-only 20.0 20.1
SC: unimodal 20.7 22.5
SC: crossmodal 54.9 56.6
SC: text 20.2 22.3
SC: video 55.3 56.3
QUAG-attention 55.3 56.7

Table 12: Short-circuit (SC) results for All-in-one+ model on ActivityNet-QA (A-QA), and
MSRVTT-QA (M-QA) datasets.

All-in-one+

ActivityNet-QA MSRVTT-QA

Acc 41.9 43.1
text only 23.5 20.8
vid only 14.2 4.2

SC: unimodal 11.4 3.8
SC: crossmodal 20.6 27.6
SC: video 19.2 12.7
SC: text 5.6 7.3

A.3 CLAVI

A.3.1 DATASET CREATION

We curate CLAVI by leveraging Charades-STA (https://prior.allenai.org/
projects/data/charades/license.txt) (Gao et al., 2017), containing 9,848 videos of
humans performing actions based on a short script written by composing predefined vocabulary
that describe multiple daily actions. The videos are annotated with the start and end times of each
action. The action category, the start, and the end of each action segment are referred to as the
action tuple. Each video may contain more than two action tuples. We select pairs of action tuples
based on the uniqueness of the action category and complete exclusivity (that is no overlap between
the occurrence of the actions). In a given selected pair of action tuples, the two actions along with
the inter-action region constitute the video segment. We ensure that the two action categories in
the pair are distinct. Additionally, to address temporal boundary ambiguities in the annotations,
we filter out segments where either of the selected action classes occurs in close proximity to the
segment boundaries
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Figure 5: Result of progressive application of QUAG on FrozenBiLM model on NeXT-QA dataset

We also extend the boundaries of the two actions in the pair. We define two boundary extensions
– out-extension and in-extension. The out-extension encompasses regions that are not a part of
the selected segment but extend outwards in both directions into the original video. Similarly, in-
extension extends inwards into the inter-action segment. To avoid temporal position bias (Hao et al.,
2022; Otani et al., 2020), the lengths of the extension boundaries are selected randomly. However,
since inter-action separation can affect their recognition (Bagad et al., 2023), we constraint the inter-
action separation in the original and the corresponding negative video to be the same. That is, the
sum of out-extension boundaries is always equal to the sum of in-extension boundaries.

We trim each boundary-extended contiguous segment from the original video to curate a positive
video instance. To create the counterfactual video, we swap the boundary-extended action regions
as shown in Figure 2. Note that the region between the boundary-extended actions is unaffected.
Swapping operation preserves the actions but only alters their chronology, and can be applied in-
dependently to question negatives (unlike manipulations like video reversal (Wang et al., 2023c)).
This independence provides fine-grained control to create a balanced benchmark for comprehensive
analysis.

We create three types of questions using pre-defined templates and action-class annotations:

1) Existence (E) type: The E-type questions for both the action classes follow the template ”Was
someone 〈A〉?”, where 〈A〉 is one of two action classes in video. We use it as a positive control to
verify if the model is able to correctly recognize the action classes. We use the exact same question
for negative video instance as well, totalling to 4 control (questions, video, answer) instances for a
Charades-extracted video segment.

2) Beginning/End (BE) type: BE type questions the absolute location of the action in the video.
The question is of the form, ”Was the person 〈A〉 at the {beginning/end}?” where 〈A〉 is one of two
action classes in the video, and we select one of beginning and end. Hence, for a given video and its
negative, we have, in total, 8 instances of BE (questions, video, answer) tuples combined. Note that
the answer for a given BE question is complemented in the negative video.

3) Before/After (BA) type: BA type comprises of questions on the relative order of occurrence of
actions. The question is of the form ”Did 〈A1〉 happen {after/before} 〈A2〉?”, where 〈A1〉 and 〈A2〉
are the selected action classes. We consider all the permutations of action classes. Hence, we have a
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total of 8 instances of BA type (questions, video, answer) tuples per extracted video. Similar to BE
type, the answer is complemented in the negative video.

Further, we add negative controls for E and BA type questions. A negative control action is an action
that does not occur in the video. Since we want to probe only for temporal understanding, we keep
the negative control action-class easy to detect by randomly selecting an action-class that does not
contain any of the objects or actions in the original video. Hence, answering the negative control
does not require understanding temporal cues in language and video and can be answered by object
elimination. It serves the dual purpose of sanity check of learning and a baseline for learning by
temporal shortcuts. The answer of negative control questions is always false. This adds two E type
and sixteen BA type negative control questions for the video and its negative combined. Hence,
including the negative control questions, each video in CLAVI is associated with 19 questions: 2 E,
4 BE, 4 BA, 1 E negative control and 8 BA negative controls. The ratio of ”yes”:”no” answers is
6:13.

A.3.2 COMPARISON WITH EXISTING DATASETS

We provide a comparison of size of CLAVI with established VideoQA datasets in Table 13.

Table 13: Comparison of CLAVI with other other VideoQA datasets sorted in the reverse order of
recency.

Dataset Number of (V,Q,A) samples

MSRVTT-QA (Xu et al., 2017) 243K
ActivityNet-QA (Yu et al., 2019) 58K
Social-IQ QA (Zadeh et al., 2019) 7.5K
NeXT-QA (Xiao et al., 2021) 52K
iVQA (Yang et al., 2021b) 10K
STAR (Wu et al., 2021) 60K
EgoTaskQA (Jia et al., 2022) 40K
FIBER (Castro et al., 2022) 28K
NewsQA (Jahagirdar et al., 2023) 8.6K
CLAVI (Ours) 114K

A.3.3 COMPREHENSIVE LIST OF QUESTIONS

We provide a comprehensive list of the questions for the example presented in Fig 2 of the main
paper. We define the actions as: A: turning on light B: holding clothes C: washing mirror, where
action A occurs before action B in the original video and action C does not occur anywhere in the
original video.

Enlisted below are the questions and its negatives (Q and Q’ respectively) for the video (V) (that is
event A occurs after event B):Note that the color of the panel is representative of the answer of the
question (red: “no”, green: “yes”).

E-Type:
Q : Was someone turning on light?

Q : Was someone holding clothes?

E-Type (negative control):
Q : Was someone washing mirror?

BE-Type
Q : Was the person turning on light at the beginning?

Q’: Was the person turning on light at the end?
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Q : Was the person holding clothes at the end?

Q’: Was the person holding clothes at the beginning?

BA-Type
Q : Did turning on light happen before holding clothes?

Q’: Did turning on light happen after holding clothes?

Q : Did holding clothes happen after turning on light?

Q’: Did holding clothes happen before turning on light?

BA-Type (negative-control)
Q’: Did washing mirror happen before turning on light?

Q’: Did washing mirror happen after turning on light?

Q’: Did turning on light happen before washing mirror?

Q’: Did turning on light happen after washing mirror?

Q’: Did washing mirror happen before holding clothes?

Q’: Did washing mirror happen after holding clothes?

Q’: Did holding clothes happen before washing mirror?

Q’: Did holding clothes happen after washing mirror?

Enlisted below are the questions and its negatives (Q and Q’ respectively) for the negative video
instance (V’) (that is event B occurs after event A).

E-Type:
Q : Was someone turning on light?

Q : Was someone holding clothes?

E-Type (negative control):
Q : Was someone washing mirror?

BE-Type
Q : Was the person turning on light at the beginning?

Q’: Was the person turning on light at the end?

Q : Was the person holding clothes at the end?

Q’: Was the person holding clothes at the beginning?

BA-Type
Q : Did turning on light happen before holding clothes?

Q’: Did turning on light happen after holding clothes?

Q : Did holding clothes happen after turning on light?

Q’: Did holding clothes happen before turning on light?

BA-Type (negative-control)
Q’: Did washing mirror happen before turning on light?

Q’: Did washing mirror happen after turning on light?
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Figure 6: Distribution of length of (a) action and (b) video durations

Q’: Did turning on light happen before washing mirror?

Q’: Did turning on light happen after washing mirror?

Q’: Did washing mirror happen before holding clothes?

Q’: Did washing mirror happen after holding clothes?

Q’: Did holding clothes happen before washing mirror?

Q’: Did holding clothes happen after washing mirror?

A.3.4 DATASET METRICS

The duration of individual action in CLAVI lies in the range [4.0 sec, 36.0 sec]; the average length
of action is 7.7 ± 3.42 sec. The average video length is 19.95 ± 7.34 secs and the range is [8.67 sec,
65.73 sec]. We plot the distribution of the action and video durations in Fig. 6.

CLAVI consists of 141 unique action classes. Each action class is composed of noun (objects)
and verb. There are 37 unique noun classes and 28 unique verb classes. We show the frequency
distributions of action, verb and noun classes in Fig 7.

A.3.5 EXPERIMENT DETAILS

As mentioned in the main manuscript, we use the official checkpoints, finetuning code and hyper-
parameters of JustAsk [website], FrozenBiLM [website] , Singularity-Temporal [website], and All-
in-one+ [website]. For JustAsk, we use the checkpoint of the model pretrained on HowToVQA69M
and WebVidVQA3M. For FrozenBiLM, we use the WebVid10M-pretrained checkpoint. All-in-
one+ is pretrained on eight datasets comprising of both images and videos (videos: Webvid, YT-
Temporal-180M, HowTo100M and images: CC3M, CC12M, COCO, Visual Genome, SBU Cap-
tions). Singularity-Temporal is pretrained on a 17.28M images and video subset (images: COCO,
Visual Genome, SBU Captions, CC3M, CC12M and videos: WebVid). We have depicted the fine-
tuning details in Table 14.

A.3.6 FINE-GRAINED ACCURACIES

In Table 15 we provide error bars for the finetuning experiments. The experiments were performed
thrice on the same hardware with the same set of hyperparameters.
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Figure 7: Metrics of the dataset (a) distribution of question types (same for training and testing set),
(b) histogram plot of frequencies of action classes (c) histogram plot of frequencies of verb classes
(d) histogram plot of frequencies of noun classes.

Table 14: Hyperparameters and checkpoint details of CLAVI finetuning experiment
Model Checkpoint Epochs LR

JustAsk HowToVQA69M, WebVidVQA3M 20 1.00E-05
FrozenBiLM WebVid10M 20 5.00E-05

All-In-One+ Webvid, YT-Temporal-180M, HowTo100M, CC3M, CC12M,
COCO, Visual Genome, SBU Captions 10 1.00E-04

Singularity-T COCO, Visual Genome, SBU Captions, CC3M, CC12M, WebVid 20 1.00E-05
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Table 15: Fine-grained performance (% of accuracy) on CLAVI for question (Q) and counterfactual
question (Q’), video (V) and counterfactual video (V’) (Note: N.C. refers to Negative Control)

V/V’ Question Q/Q’ JustAsk FrozenBiLM Singularity-T All-in-one+

V

E-type Q 89.55± 0.01 87.51± 0.00 90.75± 0.03 86.08± 2.59
E-type (N.C.) - 75.28± 0.02 88.66± 0.00 79.16± 0.03 69.34± 11.72

BE-type Q 69.80± 0.07 69.15± 0.01 98.23± 0.01 99.31± 0.84
Q’ 30.58± 0.07 73.25± 0.01 1.87± 0.01 0.73± 0.84

BA-type Q 27.81± 0.02 56.88± 0.01 62.55± 0.09 25.82± 5.49
Q’ 72.31± 0.02 86.79± 0.01 37.23± 0.09 74.31± 0.84

BA-type (N.C.) - 98.23± 0.00 96.79± 0.00 93.72± 0.03 98.44± 1.02

V’

E-type Q 89.17± 0.01 86.96± 0.01 90.58± 0.02 86.03± 2.66
E-type (N.C.) Q 76.10± 0.03 88.45± 0.01 79.04± 0.03 69.17± 11.26

BE-type Q 30.18± 0.07 73.61± 0.01 1.80± 0.01 0.76± 1.00
Q’ 69.88± 0.07 70.00± 0.02 98.28± 0.01 99.12± 1.02

BA-type Q 71.61± 0.02 85.43± 0.01 38.00± 0.08 74.24± 5.12
Q’ 28.34± 0.02 54.44± 0.00 62.15± 0.07 25.90± 4.93

BA-type (N.C.) - 98.51± 0.00 96.87± 0.00 93.51± 0.03 98.46± 1.04

Table 16: Statistics of L2 distance values between aligned attention matrices of BA-type CLAVI
questions, averaged over all heads and layers for FrozenBiLM. We report the statistics separately
for correctly and incorrectly answered consistent counterfactual predictions.

Type Consistent Prediction Mean Variance

Video Counterfactual Correct 0.70 0.02
Incorrect 0.50 0.03

Text Counterfactual Correct 0.55 0.01
Incorrect 0.38 0.02

A.3.7 REPRESENTATION SENSITIVITY ANALYSIS

CLAVI can be used for diverse analyses to understand and interpret the joint multimodal represen-
tations in VideoQA models. We present one such analysis here. We want to find out the difference
in representations between correctly and wrongly-answered counterfactual pairs. Ideally, the coun-
terfactual pairs should have distinctly dissimilar representations to be answered correctly.

We use L2 norm as the distance metric. For CLAVI, we construct counterfactuals by augmenting
the sequence of the frames (video counterfactuals) or replacing before/after and beginning/end (text
counterfactual). Hence, we cannot directly compute the distance between the attention matrices of
the counterfactuals because they contain different tokens (text counterfactual) or different order of
the same tokens (video counterfactual). We solve this by finding token correspondence between the
counterfactual pairs for each layer and head. By treating each attention matrix as a graph, we model
the matrix alignment problem to finding the node correspondence between two isomorphic weighted
directed complete graphs. Node correspondence between two graphs can be viewed as an instance
of a linear sum assignment problem. That is, we want to learn a permutation transformation so that
the two attention matrices as similar. We define similarity as negative of L2 distance. We solve this
using modified Jonker-Volgenant algorithm as described by Crouse (2016).

We plot the histogram of L2 distance (averaged over heads and layers) for BA-type video and ques-
tion counterfactuals in Figure 8. As expected, we find that if the answer is correct, then the average
L2 distance is generally higher (skewed towards right). The mean and variance values L2 mean
distribution of the correctly and incorrectly answered counterfactual pairs is summarized in Table
16. We find that the correct predictions have higher mean and lower variance than the incorrectly
inferred counterfactual pairs. These findings validate that the model in indeed learning joint multi-
modal representations rather than creating its illusion.
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Figure 8: Histogram plots of mean l2 distance between counterfactual BA-type pairs for (a) video
and (b) text counterfactuals for FrozenBiLM predictions (note that green is consistently correct;
that is both the pairs in the counterfactuals are correctly answered, Similarly, red is consistently
incorrect; that is at least one of the instance from the counterfactual pair is incorrectly answered).

A.3.8 DATASHEET

In this section we provide a more detailed documentation of the dataset with the intended uses. We
base ourselves on the datasheet proposed by Gebru et al. (2021)

Motivation

• For what purpose was the dataset created? CLAVI is curated to diagnose and benchmark
the joint multimodal understanding in VideoQA models. It uses temporal counterfactuals
in video and question domains to assess the impact of multimodal shortcuts that can create
an illusion of joint temporal understanding.

• Who created the dataset and on behalf of which entity? ANONYMOUS

• Who funded the creation of the dataset? ANONYMOUS

Composition

• What do the instances that comprise the dataset represent? Each instance in CLAVI
comprises of a video, question, question type, and answer (“yes” or “no”).

• How many instances are there in total? CLAVI consists of 6,018 videos composing of
3,830 training and 2,188 testing videos. Each video is associated with 19 question-answer
pairs, hence 114,342 data-points (72,770 training and 41,572 testing).

• Does the dataset contain all possible instances or is it a sample (not necessarily ran-
dom) of instances from a larger set? The videos and question answer pairs in CLAVI are
generated by manipulating real-world real-world videos. In theory, we can generate more
instances with more videos with temporal annotations. We will release the code to generate
the true and counterfactual video and question instances.

• What data does each instance consist of? Each instance in CLAVI comprises of a video,
question, question type, and answer (“yes” or “no”).

• Is there a label or target associated with each instance? Yes, each question is associated
with a ’type’ label depending on the type of the question (types described in the main
manuscript).

• Is any information missing from individual instances? No, all the instances have com-
plete information the corresponding attributes.

• Are relationships between individual instances made explicit? Yes, the video name
attribute if of the form XXXXXXXX 1 for the original video segment and XXXXXXXX 2
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for the counterfactual video segment, where XXXXXXXX is a unique 8-digit video id.
The relationship between counterfactual questions is tabulated in the README file of the
dataset.

• Are there recommended data splits (e.g., training, development/validation, testing)?
We provide the split files which are curated from the original split files of Charades.

• Are there any errors, sources of noise, or redundancies in the dataset? No. The owners
of Charades do not report any known errors. And since our data is generated by machine,
we do not expect any errors. For unforeseen errors in temporal annotation boundaries in
the original dataset, we eliminate it by selecting the segments where the actions of interest
do not occur in the immediate neighbourhood (detailed in the main manuscript).

• Is the dataset self-contained, or does it link to or otherwise rely on external resources?
This dataset provides video IDs from the Charades dataset under their Non-Commercial
license.

• Does the dataset contain data that might be considered confidential? No. We curate
our dataset from publicly and non-commercially available Charades dataset.

• Does the dataset identify any sub-populations (e.g., by age, gender)? No. While it
is possible to identify gender from Charades temporal captions, we do not use it in the
curation of CLAVI. We only use neutral pronoun someone.

• Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? No. The owners
of Charades dataset have anonymized the subject information.

• Does the dataset contain data that might be considered sensitive in any way? No. The
owners of Charades dataset ensure this and we curate CLAVI from Charades.

Collection Process

• How was the data associated with each instance acquired? Each sample of CLAVI
associates with a question, answer (yes/no) and video-id from Charades dataset.
We generated instances in CLAVI that with corresponding video, question, answer and
their respective counterfactuals from Charades.

• What mechanisms or procedures were used to collect the data (e.g., hardware appa-
ratuses or sensors, manual human curation, software programs, software APIs)? We
design a template-based VideoQA generation process to generate data each instance from
Charades.

• Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
Not applicable

• If the dataset is a sample from a larger set, what was the sampling strategy (e.g., de-
terministic, probabilistic with specific sampling probabilities)? Yes. We have outlined
the process of filtering the data in detail in the appendix.

• Who was involved in the data collection process (e.g., students, crowdworkers, con-
tractors) and how were they compensated (e.g., how much were crowdworkers paid)?
Not applicable.

• Over what timeframe was the data collected? Our dataset is generated from Charades.
We generate the dataset from February 2023 to June 2023.

• Were any ethical review processes conducted (e.g., by an institutional review board)?
Not Applicable.

• Does the dataset relate to people? Yes. The Charades dataset contains videos of humans
performing actions and we use it to curate CLAVI under their non-commercial license.
However, we do not use the information pertaining to humans anyway.

• Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)? No. Our video data is from Charades under their
Non-Commercial license. Charades Homepage: https://prior.allenai.org/projects/charades.

29



Under review as a conference paper at ICLR 2024

• Were the individuals in question notified about the data collection? Not applicable.
We curate our dataset from Charades and the original owners have ensured this.

• Did the individuals in question consent to the collection and use of their data? Not
applicable. We curate our dataset from Charades and the original owners have ensured this.

• If consent was obtained, were the consenting individuals provided with a mechanism
to revoke their consent in the future or for certain uses? Not applicable.

Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or buck-
eting, tokenization, part-of-speech tagging, SIFT feature extraction, removal of in-
stances, processing of missing values) No.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? No. The raw data (Charades) is distributed under
Non-Commerical license.

• Is the software that was used to preprocess/clean/label the data available? Not appli-
cable.

Uses

• Has the dataset been used for any tasks already? Video Question Answering.
• Is there a repository that links to any or all papers or systems that use the dataset?

No.
• What (other) tasks could the dataset be used for? Video-Text and Text-Video retrieval.
• Is there anything about the composition of the dataset or the way it was collected and

preprocessed/cleaned/labeled that might impact future uses? No.
• Are there tasks for which the dataset should not be used? No.
• Will the dataset be distributed to third parties outside of the entity (e.g., company,

institution, organization) on behalf of which the dataset was created? CLAVI is an
academic dataset for public non-commercial use.

• How will the dataset be distributed (e.g., tarball on website, API, GitHub)? The dataset
files will be released on GitHub.

• When will the dataset be distributed? Latest by the official paper acceptance.
• Will the dataset be distributed under a copyright or other intellectual property (IP)

license, and/or under applicable terms of use (ToU)? Yes. The dataset will be released
under GPL3.0 license and terms of usage will be outlined on the dataset hosting website
along with the license and the required scripts.
Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.
Do any export controls or other regulatory restrictions apply to the dataset or to indi-
vidual instances? No.

Maintenance

• Who will be supporting/hosting/maintaining the dataset? ANONYMOUS
How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
ANONYMOUS

• Is there an erratum? Not yet.
• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete

instances)? Updates, if any, will be clearly mentioned on GitHub.
• If the dataset relates to people, are there applicable limits on the retention of the data

associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted)? No.
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• Will older versions of the dataset continue to be supported/hosted/maintained? Yes.
• If others want to extend/augment/build on/contribute to the dataset, is there a mech-

anism for them to do so? Yes, we will provide the necessary code files with the dataset.

A.4 LIMITATIONS AND FUTURE WORK

Our dataset is intentionally simple, so as to focus the benchmark only on simple temporal sequence
understanding, which preempts spatio-temporal referential understanding. We plan to include more
complex temporal organizations of action classes like containment and partial-overlap that are de-
fined using prepositions like during and while in future work. As the current state-of-the-art models
catch-up to our benchmark, our future plan is to curate a more complex dataset with more natural
questions that include temporal referring expressions with similar balanced doubly-negative strat-
egy.
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