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ABSTRACT
This exploratory study addresses the challenges of evaluating the
quality of hand-gesture synthesis. It introduces an interdisciplinary
methodology aimed at providing objective evaluation criteria. The
study examines expert annotations applied on a small dataset com-
bining both natural and synthetic gestures, showing how their
comparison can reveal key indicators for assessing communicative
efficiency and adequate movement dynamics. Communicative ges-
tures are more frequent, shorter, and easier to interpret in natural
data, while synthetic gestures are more ambiguous, with less precise
annotations and less consistent velocity profiles. These findings
support the idea that only an interdisciplinary approach —combin-
ing computational modeling with insights from gesture studies in
the language sciences— can yield meaningful criteria for evaluating
and ultimately improving the quality of synthesized gestures.

CCS CONCEPTS
• General and reference → Evaluation; • Computing method-
ologies→Model verification and validation; Motion capture;
Neural networks; Cross-validation.

KEYWORDS
Deep learning architectures, Artifical co-speech gestures, Linguistic
expertise, Corpus Enrichement, Model Assessment

ACM Reference Format:
Mickaëlla Grondin Verdon, Domitille Caillat, Louis Abel, and Slim Ouni.
2025. Evaluating Automatic Hand-Gesture Generation Using Multimodal
Corpus Annotations: The Benefits of a Multidisciplinary Approach. In Pro-
ceedings of the International Workshop on Generation and Evaluation of
Non-verbal Behaviour for Embodied Agents (GENEA ’25), October 27–28, 2025,
Dublin, Ireland. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3746268.3759430

∗Both authors contributed equally to this research.

Please use nonacm option or ACM Engage class to enable CC licenses
This work is licensed under a Creative Commons Attribution 4.0 International License.
GENEA ’25, October 27–28, 2025, Dublin, Ireland
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2050-5/2025/10
https://doi.org/10.1145/3746268.3759430

1 INTRODUCTION
Designing a gesture synthesis model requires taking into account
the complex relationship between gestures and speech. Indeed,
foundational works [20, 21, 26, 27] have shown that gestures natu-
rally generated by speakers have their own value, semantic, prag-
matic, or syntactic, and thus facilitate the speech interpretation
[14, 19, 29]. Understanding and modeling these complex multi-
modal components is a major challenge for developing credible
human-machine communication, particularly through embodied
conversational agents (ECAs) [9, 10]. In this context, research on
co-speech gesture generation has focused on two main objectives:
achieving physiological realism (human-likeness) and ensuring
communicative efficiency (speech appropriateness).

While the automatic generation of gestures for ECAs is garner-
ing increasing interest, as evidenced by the recent surge in research
and challenge on this topic [5, 15, 18, 22, 23], current generation
models still struggle to produce natural and effective gestures. For
this reason, the Syncogest project [7] aims to explore an interdisci-
plinary approach that combines the development of computational
models with findings from the gesture studies in language sciences.
Led by computer scientists and linguists, Syncogest aims to mea-
sure the benefit of integrating expert multimodal annotations into
the development of AI training designed for classifying and gener-
ating co-verbal manual gestures. This initiative is grounded in the
premise that accurate replication of appropriate gestures can only
be achieved by considering the different aspects of conversational
gestures.

Gestures, defined as visible movements of body parts used to
communicate [8, 20, 21, 26, 27] complement verbal discourse by
conveying meaning and intention. In order to study how these two
levels interact, gesture studies often rely on the annotation of both
speech (e.g., global utterances, phonetic units, prosodic features)
and various formal and functional aspects of gestures. These include
gesture detection and segmentation (i.e., identifying meaningful
units and their different phases such as preparation, stroke —the
gesture’s core—, retraction, and hold [20]), their form (eg.: body-
parts involved), their link to the speech (eg.: lexical affiliates [31],
prosodic affiliates [16]), and their function [11–13] —often catego-
rized using standard typologies [20, 21, 26, 27], which identifies
distinct communicative roles.
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This paper presents the results of part of our exploratory study.
It attempts to formalize objective types of criterion for evaluating
gestures automatically generated through annotations made by
specialists in multimodal linguistics. Our assumption is that expert
annotation of multimodal data may help establish more objective
evaluation methods, as recent studies have pointed out the incon-
sistency and limited comparability of traditional assessments [28].
Indeed, a comparative approach to the annotation of natural and
generated data can help determine more precise criteria for evalu-
ating the quality of generated gestures, in terms of formal aspects,
communicative contribution, proportions and distributions.

To support this thesis, we conducted a detailed annotation (seg-
mentation, functional classification, lexical affiliation) of the ges-
tures naturally produced by a speaker and the gestures automat-
ically generated from the same short verbal production. These
annotations are then compared, allowing us to identify several for-
mal and functional aspects that could serve as criteria for more
objectively evaluating the quality of generated gestures and, con-
sequently, provide insights for improving the effectiveness of the
generation and recognition model.

2 METHODOLOGY
2.1 Dataset description
2.1.1 Original corpus. This study is based on The Body Expres-
sion Audio Text (BEAT) corpus [24], a large-scale, multimodal, and
multilingual dataset containing approximately 60 hours of English
recordings (among other languages). BEAT provides motion cap-
ture data for the body, hands, and face, recorded at 120 Hz with 16
synchronized cameras and Vicon suits equipped with 77 reflective
markers, alongside corresponding audio. Annotations were also
provided —including words and phonemes, gesture segmentation
and classification, and lexical affiliations—, but they suffer from ma-
jor inconsistencies that make them difficult to use [17]. As part of
our exploratory project aimed at improving the accuracy and con-
sistency of multimodal gesture corpora —within which the present
study is situated— we reassessed the annotations of 14 randomly
selected files, all taken from English rehearsed monologues by the
Wayne speaker.

2.1.2 The STARGATE model. The synthesized data of this study
were generated using the STARGATE model, a deep-learning based
model developed using all of Speaker Wayne’s files of the BEAT
corpus [3, 4] and which leverages audio and text transcription to
generate co-verbal manual gestures [2–4]. The model, built on a
chunked-autoregressive architecture, generates multiple gesture
frames per step, which are then used as input to produce the next
segment. It consists of three encoders—audio, text, and motion.
The motion encoder employs a spatio-temporal graph convolution
network [32] to project input into a latent space while preserving
graph structure, whereas the audio and text encoders use traditional
convolutional networks. The latent spaces are concatenated and
fed to the decoder to generate the next gesture frames. STARGATE
processes sliding windows: 1 second of past motion and 2 seconds
of audio and text (1 second past, 1 second future). This model was
selected for this study for two main reasons. First, it was trained

Table 1: Natural and synthetic data file description.

Natural data Synthesis data

File duration 1 minute 13 seconds 1 minute 11 seconds
Audio (english) BEAT BEAT
BVH origin BEAT STARGATE
Annotated By Syncogest Syncogest
FPS 120 60
Finger motion Yes No

Agent visual

exclusively on the Wayne speaker, allowing for a reliable compari-
son with the natural data used in our exploratory study, without
the risk of bias that could arise from individual variation. Secondly,
it outperformed previous state-of-the-art approaches, producing
not only rhythmic gestures but also more complex ones.

2.1.3 Data selection. The present analysis focused on File 2 from
speaker Wayne (right-handed), which provided a basis for both
gesture synthesis testing and natural–synthetic gesture comparison.
Two version of this file were then compared (Table 1): natural (Nat.)
data and synthesis (Synt.) data, both featuring the same audio and
text from BEAT but differing in motion capture (BVH from BEAT
in Nat. and BVH from STARGATE for Synt.). BVH files were used
to reconstruct the movement on ECAs, as shown in Table 1. Their
durations are 1min13s and 1min11s, respectively. Due to a 1s cut at
the beginning of the Synt. file —caused by the model’s architecture,
which prevents it from generating the first and last seconds of
gestures from a given input—, we added 64 empty video frames to
synchronize both files for later comparisons.

Natural data kept BEAT corpus FPS, while synthesis was ren-
dered at 60 FPS. Although this should be monitored long-term, this
had no noticeable visual impact for the annotators. The joints in
the .bvh files were recalculated with the hip as the reference point
(0, 0, 0) as shown in Fig.1, and all joint positions were expressed
relative to this reference in centimeters for both data. The natural
data includes detailed finger movements, whereas the synthesized
data only provides fingertip positions. Given the importance of fine
finger articulation for gesture analysis, the initial absence of finger
joints in STARGATEwas a limitation that affected certain aspects of
the comparative analysis, as will be discussed later. This limitation
should be addressed in the long term. The small size of the dataset
is justified by the objectives of the present study: it is not intended
to produce measurements generalizable to the diversity of speakers’
gestural styles or to the outputs of different generation models, but
rather to explore, through this brief comparison, the fundamental
principles and benefits of an evaluation methodology for synthetic
gestures based on expert annotations.

2.2 Annotation process
2.2.1 General protocol. To conduct this study, both Nat. and Synt.
files were manually annotated, following a protocol designed to
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serve our objectives. The process involved using PRAAT [6] and
ELAN [1] and had two main steps: first, verbal transcription and
annotation (text, word segmentation, POS tagging), then gesture
identification and annotation (functional classification), together
forming an initial multidimensional, multimodal classification.

Both files were annotated by the same two experts in gestural
analysis to ensure consistency. An initial synchronization phase
was conducted, during which four of the 14 files used in our overall
exploratory project were collaboratively annotated to establish a
strong consensus on both formal and semantic criteria underlying
the annotations. Then, each annotator independently annotated
the remaining files. This annotation process was complemented by
a joint review of all annotated data, providing a cross-validation
step that ensured a level of accuracy and reliability rarely achieved
— whether in linguistic corpora, where single-expert annotation re-
mains common due to the labor-intensive nature of the task, or even
more so in computational corpora, such as the BEAT corpus, where
annotation quality is often significantly hindered by insufficient
annotator training. During the joint revision, each functional cate-
gorization was assigned a score reflecting the degree of certainty of
both annotators. Disagreements on segmentation or interpretation
that could not be resolved during this phase were annotated as such.
The annotation was not blind, as the natural and synthetic data
were visually distinct due to differences in agent appearance and
finger motion. However, even under ideal conditions distinguishing
natural gestures from synthetic ones would remain highly percep-
tible, as will be demonstrated later, raising a persistent objectivity
issue despite the use of the same blind annotation protocol.

2.2.2 Annotation template. The annotation template used in this
study consists of multiple tiers, each serving a specific purpose
in capturing various aspects of the data. The tiers include verbal
transcriptions, gesture labels, and additional categorizations to
further structure the data, among which those used in this study
and their main aspects are listed in Table 2.

Verbal and prosodic annotations. Transcription and segmentation
are carried out with an emphasis on accuracy and alignment with
the spoken material, using the audio provided in the original corpus.
This includes sentence-level segmentation, orthographic transcrip-
tion of individual words using an automatic speech-recognition
model (ASR), manually revised, and segmentation of words and
phonemes using the Montreal Forced Aligner (MFA) [25], based on
Kaldi [30]. This study does not examine gesture-speech coordina-
tion, planned for future Syncogest work. The exception is lexical
affiliation (LA), where gestures were manually linked to at least
one lexical item by gesture ID when relevant.

Gesture annotations. The annotations concern manual gestures.
They follow a structured set of categories designed to capture the
communicative roles of gestures after segmentation, such as se-
mantic, syntactic and pragmatic functions. In addition to these
categories, defined in Table 2, two special labels —Unclear and Un-
defined— were introduced to address ambiguous cases. The Unclear
label is assigned when annotators disagree due to differing interpre-
tations, regarding the segmentation, the communicative nature, or
the specific function of an activity. In contrast, the Undefined label

Table 2: Extract from the Annotation Template for Each File.

Tier Labels Definition

Sentences Punctuated transcription per sentence.
Words Orthographic transcription per word.
LA Word(s) affiliated with a gesture.

Act. Phase Stroke Corresponding to a gesture’s core.
Unclear Disagreement on interpretation.

Act. Type Communicative Movement interpreted as serving a com-
municative role.
= Gesture.

Unclear Disagreement on interpretation.
Undefined Shared doubts on interpretation.

Gest. Type Butterworth Hesitation support at the verbal level.
Designation Designates to a person or thing.
Metaphoric Illustrates metaphorically what is said.
Modal Illustrates a discursive modality.
Parsing Marks syntactic structure.
Quasilinguistic Comprehensible without speech.
Spatial Refers to a mentioned place.
Temporal Marks a temporal aspect.
Unclear Disagreement on interpretation.
Undefined Shared doubts on interpretation.

Manuality TH Use of both hands.
LH Use of the left hand.
RH Use of the right hand.

Certainty Score
0 = No certainty. 3 = Moderate certainty.
1 = Very low certainty. 4 = High certainty.
2 = Low certainty. 5 = Absolute certainty.

LA = Lexical affiliation; Act. = Activity; Gest. = Gesture

is used when both annotators express doubt about the communica-
tive nature of an activity or its alignment with existing functional
categories. This nuanced annotation system accommodates the
complexity and ambiguity of gesture-based communication and
enhances the ability to analyze gesture-speech coordination.

2.3 Categories of gesture annotations
The gesture annotation categories include annotations related to the
formal level and to the functional level, with each gesture uniquely
identified by an identification number.

2.3.1 Formal level. The first two tiers focus on observing formal
characteristics and dynamic properties, such as mobility and veloc-
ity. The activity tier identifies temporal sequences that are likely
to correspond to gestures rather than mere movements (which were
not annotated in this study). Based on Kendon’s classification of
gesture phases [20, 21], these activities are then categorized on the
activity phase tier as corresponding to what could be the core
phase of a gesture, then labeled as Stroke, or labeled Unclear when
there is a disagreement between the annotators regarding this corre-
spondence. Thus segmentation corresponds to the earliest start and
the latest end timestamps among annotators. Each activity is also
annotated on the manuality tier, specifying the hand(s) involved
in the gesture execution: two hands (TH, either symmetrical or
asymmetrical), right hand (RH), or left hand (LH).
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2.3.2 Functional level. Several types of tiers provide insights into
the functional status of the annotated activities. When labeled as
Communicative on the activity type tier, activities are those that
clearly and unequivocally serve a communicative purpose. They
correspond to gesture, contributing semantic, pragmatic, or syn-
tactic value to the interaction. Conversely, activities labeled as
Undefined or Unclear on this tier are those whose communicative
status remains uncertain for both annotators or for which no con-
sensus could be reached between them. Each activity labeled as
Communicative is then categorized on at least one gesture type
tier as gestures may have more than one functional role. Gesture
types are then annotated for the first functional dimension (d1)
and when present for the second functional dimension (d2), pri-
marly based on [20, 21, 26, 27]. They include several categories that
highlight the specific roles gestures play in speech, namely in the
two files compared: Butterworth, Designation, Metaphoric, Modal,
Parsing, Quasi-linguistic, Spatial and Temporal gestures, as defined
in Table 2. Note that only the functional categories observed in the
study corpus are detailed — beat gestures, for example, are absent.
The labels Unclear and Undefined were used when the annotators
either disagreed or were unable to precisely determine the role of
a gesture. Apart from these two cases, all functional labels were
also annotated in the corresponding tier for each dimension with
a certainty score ranging from 0 (no confidence) to 5 (absolute
confidence) as described in Table 2.

2.4 Analysis methodologies
The annotations were analyzed to derive quantitative and qualita-
tive insights highlighting the main aspects in which, in our dataset,
the synthetic gestures differ from the natural gestures — thereby
shedding light on the various potential types of limitations of the
sample model.

2.4.1 Quantitative analysis. Data management and descriptive sta-
tistics were performed in RStudio, focusing on occurrences (Occ. or
N), average duration (AD, in seconds), and median duration (MD,
in seconds).

2.4.2 Inter-annotator agreement analysis on annotation timestamps.
The time difference between our annotations was analyzed for ges-
tures with common annotation identification. Absolute differences
were calculated for both the start and end times of annotations,
avoiding compensatory effects of positive and negative values. This
approach, however, does not preserve the directionality of the dif-
ferences (i.e., whether annotator (Ann.) 1’s timing is earlier or later
than annotator 2’s).

2.4.3 Activity trajectory and position analysis. Gesture trajectories
for each annotated activity were reconstructed in an animated 3D
space based on the positions of the right and left index fingertips,
as this choice provides a more expansive and thus more compre-
hensive visualization. Only hand(s) involved were annotated in the
manuality tier. Color coding was applied based on their vertical
distance (cm) from the reference point (hip = 0, in blue) to the top
of the head (red), with points below the hip colored dark blue for
enhanced interpretability of movement dynamics. Position plots
visualize the motion of the right index fingertip, with its position
relative to the hip (in cm) represented along three dimensions:

Table 3: Activity Phase and Activity Type Annotation Details.

Synthesis Natural

N
AD MD

N
AD MD

(seconds) (seconds)

Stroke 25 0.584 0.519 39 0.352 0.32
Unclear 16 0.706 0.669 - - -

Communicative 31 0.660 0.625 38 0.354 0.322
Unclear 10 0.545 0.605 - - -
Undefined - - - 1 - -

Activity 41 0.632 0.625 39 0.352 0.32

laterality (right>0>left), verticality (down>0>up), and depth (back-
ward>0>forward), where values indicates the position relative to
the hip (= 0). The line plot represents the fingertip’s position at
each frame.

2.4.4 Velocity computation. Velocities were derived from the suc-
cessive 3D positional data [𝑥,𝑦, 𝑧] of the right index fingertip which
is involved in nearly all of the annotated activities in both datasets.
Assuming a constant time interval Δ𝑡 = 1/𝑓 𝑝𝑠 , velocity vectors
were calculated as the difference between successive positions, with
a zero vector [0, 0, 0] added for the first frame. The Euclidean norm
of the velocity vectors was computed to convert them into scalar
values (cm/s).

3 RESULTS
3.1 Annotation analysis
The analysis of the annotation categories, as summarized in Table
3, reveals a quite similar number of annotated activities in both
the synthesized (41) and natural (39) datasets. However, significant
differences emerge between the two files.

3.1.1 Activity phases. In the synthesized dataset, the activity phase
annotations reveal that the majority of annotated activities are
identified as Strokes, accounting for 25 occurrences (61% of the
annotations). The remaining 16 activities (39%) were marked as
Unclear phases due to disagreements among annotators regarding
this correspondence. In contrast, all 39 activities annotated in the
natural dataset are consistently identified as Stroke phases (100%).
Synthesis annotated activities are longer overall, with mean and
median durations (mean = 0.632s, median = 0.625s) nearly double
those of natural activities (mean = 0.352s, median = 0.32s), with a
slightly shorter duration for activities identified as corresponding
to a Stroke phase (mean = 0.584s, median = 0.519s) compare to
activities labeled as Unclear (mean = 0.706s, median = 0.669s). Both
the disparities in activity phase categorization and activity duration
point to a clearer identification of the gesture’s core in the natural
dataset, while highlighting ambiguities in gesture identification
within the synthesized dataset.

3.1.2 Activity types. Table 3 also highlights differences in activity
types between synthesis and natural data. In the synthesis dataset,
31 of the 41 activities are interpreted as gesture and then labeled
Communicative (76% of annotations); the other 10 occurrences were
all subject to disagreement between the annotators regarding their



Evaluating Automatic Hand-Gesture Generation Using Multimodal Corpus Annotations GENEA ’25, October 27–28, 2025, Dublin, Ireland

Table 4: Gesture Type Annotation Details.

Synthesis data Natural data

d1 d1 d2

N
AD MD

N
AD MD

N
AD MD

(seconds) (seconds) (seconds)

Undefined 16 0.671 0.635 14 0.343 0.374 - - -
Unclear 10 0.612 0.598 - - - - - -
Parsing 3 0.441 0.473 8 0.293 0.319 1 - -
Metaphoric 2 1.135 1.135 4 0.691 0.642 1 - -
Designation - - - 5 0.240 0.217 2 0.646 0.646
Modal - - - 3 0.348 0.403 1 - -
Spatial - - - 1 - - 2 0.302 0.302
Quasi-ling. - - - 1 - - 1 - -
Butterworth - - - 1 - - - - -
Temporal - - - 1 - - - - -

Gesture type 31 0.660 0.625 38 0.354 0.322 8 0.408 0.336

communicative status and labeled as Unclear (24%). No activities
were annotated as Undefined in the synthesis data. In the natural
dataset, activities interpreted as Communicative dominate with
38 occurrences (97% of annotations). No communicative status
was subject to disagreement (the Unclear category is absent in the
natural data), but one of the activity is labeled Undefined as its
communicative status remains uncertain for both annotators.

The higher frequency of Communicative activity types and the
absence of Unclear activity types in the natural dataset suggest
easier interpretability. In contrast, the synthesized dataset, charac-
terized by a significant proportion of Unclear annotations activity
types, reflects greater ambiguity. Both activities labeled as Com-
municative (mean = 0.659s, median = 0.625s) and Unclear (mean
= 0.545s, median = 0.605s) in the synthesis data are significantly
longer than the communicative activities in the natural data (mean
= 0.354s, median = 0.322s). Durations exhibit homogeneity, with
means close to medians, suggesting a relatively uniform distribu-
tion. This may support the notion that, even when gestures were
interpreted as communicative, annotators faced challenges in pre-
cisely identifying their boundaries.

3.1.3 Gesture types. Gesture type annotations for the first (d1)
and second (d2) dimensions are compared by Table 4. All activities
labeled as Communicative have at least one functional label. Note
that no d2 dimension was found in synthesis data. In synthesis data,
the gesture type of the 32 communicative activities are labeled in
d1 as follow: Undefined (16 occ.), Unclear (11 occ.), Parsing (3 occ.)
and Metaphoric (2 occ.). In the natural data, where 38 activities are
interpreted as Communicative, Undefined gestures (15 occ.) remain
the most prominent gesture type in d1, followed by Parsing (8 occ.),
Metaphoric (4 occ.), Designation (5 occ.), andModal gestures (3 occ.).
Fewer isolated gestures were annotated as Spatial, Quasi-linguistic
(Quasi-ling.), Butterworth, and Temporal. In natural data d2, only
8 gesture types were annotated as a second functional dimension.
Spatial gestures (2 occ.) were noted, along with single instances
of Quasi-linguistic, Parsing, Metaphoric, and Modal gestures. While
synthesized data (d1) and natural data (d1) show similar occurrences
of Undefined gestures (difficulty of interpretation), only the syn-
thesized data includes the Unclear gesture type (disagreement on

Table 5: Annotations of Activity types per sentences.

Sent. id 1 2 3 4 5 6 7 8 9
↩→Words 47 24 16 12 19 17 36 26 9

Natural (LAc = 24)
Activities 8 4 5 2 2 2 8 6 2
↩→Und. - - - - - - 1 - -
↩→CA 8 4 5 2 2 2 7 6 2

↩→LAc 8 2 5 2 1 1 4 2 1

Synthesis (LAc = 4)
Activities 9 3 4 3 3 3 9 5 2
↩→Unc. 2 1 - - - 1 5 1 -
↩→CA 7 2 4 3 3 2 4 4 2

↩→LAc 1 - 1 - - 2 - - -

interpretation), and to a significant extent. This suggests a lack of
interpretability in the synthesized data, in contrast to the natural
data which also displays a greater diversity of specific gesture types.
As previously noted, synthetic gestures are generally longer than
natural gesture. Metaphoric gestures are consistently longer than
all other types in both datasets, with durations exceeding the over-
all average. In synthetic data, Parsing gestures are notably shorter
than the average, suggesting more precise identification or concise
execution. Conversely, Undefined gestures in synthetic data are
much longer, with average durations nearly double those in natural
data. The duration could serve as an indicator of the difficulty in
interpreting gestures, especially when compared to natural data.

3.1.4 Verbal distribution. Table 5 highlight various aspects of the
distribution of annotations in relation to the text by providing
detailed statistics on sentences (Sent.), including the number of
words, annotated activities, communicative activities (CA), and
lexical affiliate count (LAc). Across both datasets, which include 9
sentences totaling 206 words, longer sentences, such as Sent. 1 and
Sent. 7, generally contain more activities (Communicative, Unclear
(Unc.), or Undefined (Und.)), reflecting a logical correlation between
sentence length and the number of annotations. However, when
focusing solely on gestures (communicative activities), this correla-
tion is more evident in the natural data than in the synthesized data.
In addition, many gesture in the synthesized dataset lack lexical
affiliations throughout the entire file (only 4 lexical affiliations; LAc
=4), unlike those in the natural dataset (LAc =24), as detailed also in
Table 5. This observation aligns with the difference in gesture types
annotated in both files. Gestures labeled as Undefined and Unclear,
which are highly prevalent in the synthesized data, are annotated
as such due to their difficult interpretability, and inherently lack
a clear connection to the speech. In contrast, gestures identified
with functional types (d1 and d2), which are more frequent in the
natural data, typically have corresponding lexical affiliations that
are frequently established in both datasets.

3.2 Annotation Agreement analysis
3.2.1 Interannotator agreement on annotation timestamps. The Ta-
ble 6 compares the time differences in the annotation timestamps of
activities between annotators. For the synthesized data, the median
difference is 0.117s, with a mean of 0.195s, whereas the natural
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Table 6: Annotation Duration and Timestamp Variability.

File Annotation time Revision time Timestamps diff.

Ann. 1 Ann. 2 AD(s) MD(s)

Synthesis 0:37:58 1:20:00 12:00:00 0.117 0.195
Natural 1:24:40 2:13:00 02:00:00 0.050 0.084
Ann. = Annotator; Diff. = differences (s).

dataset shows much smaller differences, with a median of 0.050s
and a mean of 0.084s. These duration differences highlight a higher
consistency in the natural data annotations, where the identified
activities, aligning reliably with the gesture’s stroke, were anno-
tated at nearly identical positions. In contrast, annotations in the
synthesized data exhibit greater variability, reflecting a lower level
of agreement on he precise boundaries of gestures.

3.2.2 Certainty scores of gesture type annotations. The certainty
scores for gesture type annotations across natural and synthesis
files are presented by Table 7. For the natural data, dimension d1
has a mean score of 4.05 and a median of 4, while dimension d2
shows slightly higher scores (mean = 4.13, median = 4). These values
indicate strong confidence in gesture type interpretation, as scores
of 4/5 reflect high certainty as observed for overall gesture types
identified (N=32). Conversely, the synthesis data demonstrates sig-
nificantly lower scores, with dimension d1 (N=5) reporting a mean
of 1.4 and a median of 1, indicating very low certainty in gesture
type interpretation. This disparity underscores the challenges as-
sociated with determining gesture functions in the synthesized
dataset. This finding is consistent with the lower number of gesture
types identified in the synthesized files compared to the natural
data, with both observations reinforcing the gap in interpretability
between the two datasets.

3.2.3 Annotation and revision time. Table 6 compares the times
spent by the two annotators on the annotation and revision process
across both datasets. For both the synthesized and natural datasets,
annotator 2 required significantly more time to complete the anno-
tations (natural: 2h13; synthesized: 1h20) compared to annotator 1
(natural: 1h24; synthesized: 38min), a trend that is consistent across
all 14 re-annotated files in the main study. Additionally, both an-
notators spent substantially less time annotating the synthesized
data than the natural data. This indicates that a more complete and
detailed annotation process was possible for the natural data than
for the synthesized data, as activity type and gesture type labels
that cannot be determined (Undefined and Unclear), which occur
more frequently in the synthesized data, do not require further an-
notation details. Table 6 also highlights a notable difference in the
revision time between the annotation of synthesized and natural

Table 7: Certainty Scores of Gesture Type Annotations.

Natural Synthesis

N Mean Median N Mean Median

d1 24 4.05 4 5 1.4 1
d2 8 4.13 4 - - -

Gesture type 32 4.06 4 5 1.4 1

data. The annotators spent only 2 hours revising the natural data
annotations, compared to 12 hours revising the synthesized data
annotations. This time disparity reflects the more ambiguous or less
consistent nature of the synthesized data. Indeed, it demonstrates
the challenge for annotators in relying on the criteria usually used
to segment and interpret gestures properly, leading to a longer revi-
sion period for this dataset. In contrast, the natural dataset allowed
for a more straightforward revision process.

3.3 Kinematic and Spatial Properties
3.3.1 Manuality. Information on the distribution of manuality
types observed across both datasets is provided by Table 8. It speci-
fies which hand(s) are involved in performing the activities: either
both hands move in the same way, only the left hand is used, or
only the right hand. The table reveals that in both datasets, the
left hand is rarely used on its own. However, in the natural data,
the speaker uses both hands almost as frequently as he uses only
his right hand, while in the synthetic data, gestures are predomi-
nantly performed with bimanual movements. The limited number
of activities involving only the left hand in the synthetic data may
be explained by the fact that, as Wayne is right-handed, this con-
figuration is generally rare in the data used for training. But the
prevalence of TH gestures in the synthetic data could reflect certain
formal complexities of gestures. Indeed, even when a specific hand
is clearly engaged, the other hand is rarely completely static, as it
is often at least influenced by the overall movement of the body.

3.3.2 Trajectories and positions. In Fig. 1, we observe the super-
imposed trajectories of the engaged hands across all activity anno-
tations. For the natural data Fig.1A, there is a noticeable gradient
in color, with activities reaching higher into the space, evident in
the presence of orange and red, and a broader distribution of move-
ments both in height and along the sides. This suggests that the
speaker utilizes a large and dynamic space for gestures. In contrast,
the synthesis data Fig.1B shows several limitations. The color range
is more restricted, mostly around light blue and green, indicating
movements slightly above the hip. Gestures are placed noticeably
lower overall, and show less variation in height or horizontal range,
with trajectories generally concentrated in the same spatial region.
Additionally, the hands are often positioned similarly, performing
movements with minimal diversity, with an excessive symmetry
and more constrained motion profiles. Complementarily, Fig.2 dis-
plays positions of the right index fingertip in space. Movement
peaks of the index fingertip closely follow the velocity peaks, re-
flecting the dynamics of the motion and highlights a significant
difference in the movement profiles of the index finger between
natural and synthesized activities. The synthesized gestures exhibit

Table 8: Manualities for Annotated Activities and Gestures.

Natural Synthesis

Activity Gesture Activity Gesture

Two Hands 19 19 31 28
Left Hand 3 3 1 -
Right Hand 17 16 9 3
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Figure 1: Motion during annotated activites.

a lower profile, with less contrast in positional changes compared
to the natural gestures. Both the differences in trajectory patterns
and in distance variation highlight the expansive and dynamic na-
ture of natural gesture space compared to the confined and rigid
movement profile observed in the synthesis data.

3.3.3 Velocity. We can also observe in Fig.2, the scalar velocity val-
ues of the right index fingertip motion over time in frames for both
natural and synthesis data, expressed in cm/s. For the natural data,
the velocity ranges from 0 to a maximum of around 300 cm/s (mean
= 38.84 cm/s, median = 22.88 cm/s). This indicates that the majority
of the movement is relatively slow, with some clear peaks of higher
speed over time. They generally correspond to peaks in distance,
reflecting the dynamics of the motion, and then appear to globally
correspond with temporal annotations of strokes, suggesting a clear
pattern of position changes in the natural data. The relatively low
average and median values further support the notion of subtle,
slow movements with occasional bursts of faster motion. The up-
ward deviation of the mean is likely influenced by these velocity
peaks that align with the movement, which temporarily increase
the speed during some of them. In contrast, for the synthesis data,
the velocity shows a narrower range, with values from 0 to 100 cm/s
(mean = 26.68 cm/s, median = 22.98 cm/s). The profile appears more
erratic in the synthesis data, with frequent and less pronounced
changes in speed. While movements are generally more continuous,
this constant activity reduces the prominence of peaks in motion.
Additionally, these peaks tend to be less pronounced, with lower
values compared to natural data.

4 DISCUSSION
Striking differences emerged between natural and synthetic ges-
tures when examined through the lens of expert annotations con-
ducted using the same protocol. These differences relate to gesture
identifications (formal aspects) and the determination of discourse

contributions (communicative aspects). In the natural data, poten-
tial gestures were easily identified, segmented and largely recog-
nized as effectively communicative. Gesture roles were determined
in majority of cases (63%) with high certainty scores and mostly
linked to specific discourse elements. In contrast, interpretability
issues emerged for synthetic data, as early as the formal level, with
segmentation discrepancies among the annotators. One-third of
the annotations showed disagreement, with annotators perceiving
different gesture’s core position. These movements were also ques-
tioned on their genuine communicative role (25%) and when com-
municative, on their role in discourse (1/2 undefined, 1/3 unclear).
Synthesized data produced four movements that were annotated
as gestures with link to discourse elements, but interpretation had
a very low certainty score.

While some interpretability issues in the synthesis data can be at-
tributed to the absence of finger motion—since it is a crucial feature
for disambiguating functional gesture categories—this limitation
mainly affected the ability to determine the specific communicative
contribution of the generated gestures. This may therefore partly
explain the higher proportion of “undefined” gestures in synthesis
data, but it had less impact on detecting potential gestures per se.
Differences in gesture interpretability are more closely linked to
kinematic and spatial factors. Synthetic movements suffer from
speed-position variation peaks and dynamism, making it harder to
identify salient elements within the constant and relatively subtle
gesticulations produced by the model. Overall, in synthesis data,
it remains difficult to determine with certainty whether the move-
ments interpreted as gestures are not merely coincidental. Indeed,
annotators naturally sought to connect movements to the accom-
panying discourse but the communicative status attributed to a
synthetic movement could either reflect their primary influence by
the verbal context, or genuinely result from the system producing
movements in response to this verbal input. For instance, anno-
tators might be tempted to interpret movements as illustrating a
verbal enumeration —a Parsing— given their potential coincidence
with listed elements in discourse.

As expected, expert annotation comparisons of natural and syn-
thetic data provided valuable insights into the salient characteris-
tics absent or poorly reproduced by the sample gesture generative
model. By examining differences between the properties of gestures
produced in both contexts, it became possible to identify major ele-
ments that characterize human co-verbal gestures. Aspects such as
pattern diversity, velocity increase, spatial variation, finger micro-
movements, and connection to discourse are thus revealed to be
essential. While these results are based on the study of a single
generation model and a single speaker —reflecting the exploratory
aim of this study, which is not to generalize the findings but to
offer avenues for reflection on how to assess the effectiveness and
credibility of synthetic gestures—, they nonetheless confirm that
expert annotations can serve as an effective means of identifying
aspects where synthetic gestures may show limitations. As such,
they can serve as key criteria in establishing a reference framework
for both a more objective evaluation of a model’s output quality
and cross-model comparison, as both currently suffer from issues
of objectivity and a lack of standardization [28].

Indeed, while the comparison conducted in this small exploratory
study allowed us to identify some initial concrete limitations of
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Figure 2: Analysis of the velocities (cm/s) and distance from hips (cm) of right index fingertip motion.

synthetic gestures, the features that characterize high-quality ges-
tures should be further refined and expanded through a larger-scale
study. Such a study would, at minimum, involve expert annotation
of a broader set of natural motion-capture data, including analysis
of the dynamic and communicative properties of gestures and their
alignment with discourse at both lexical and prosodic levels. The
aspects identified could then serve as reference standards, provid-
ing objective benchmarks for evaluating synthetic gestures. Then,
fundamental aspects aspects identified by a broader study—such
as increases in velocity or spatial variations, as highlighted in this
paper—could form distinct categories within objective metrics for
evaluating human-likeness. Complementarily, the speech appropri-
ateness of gestures could be assessed through the ability of trained
annotators to recognize a communicative contribution in the gen-
erated movements, to measure their diversity, and to identify their
anchoring in discourse.

In this sense, the study lays the groundwork for developing
new, objective means of evaluation that may eventually replace the
currently used subjective assessments—still recently regarded as
the gold standard [28] —but which, as their name suggests, remain
inherently limited by their subjective nature.

5 CONCLUSION
Multimodal annotations are time-consuming task, but they are an
essential resource for understanding the mechanisms of speech-
gesture articulation. While a model may replicate movements re-
sembling human gestures, this does not guarantee appropriate
placement or motion, which could hinder meaning conveyance. To
address these limitations, the Syncogest project [7] aims to guide
the model’s learning towards annotated gesture segments and their

associated features. Incorporating salient communicative motion
should enable the model to better identify patterns, distinguish
them from surrounding noise, and determine their functional rela-
tionship with discourse, thereby improving generation.

Our analysis, the first of its kind to attempt to identify objective
evaluation criteria for generated gestures through a comparison
of natural and synthetic gestures annotated by expert, indeed re-
veals specific limitations of synthetic gestures. Its primary aim is to
highlight the crucial importance of interdisciplinary collaboration
in gesture research —at the intersection of gesture studies, compu-
tational modeling, and annotation practices. By emphasizing this
necessity, our work advocates for a more fine-grained and in-depth
evaluation of gesture synthesis that extends beyond surface-level
perceptual assessments. Only by taking into account the specific
characteristics of human gesturality can we objectively assess ‘to
what extent gestures visually look like something a human might
produce’ (human-likeness) and ‘quantify the link between the ges-
tures and the speech’ (speech appropriatness). Our findings thus
lay the groundwork for an interdisciplinary methodology aimed
at providing a foundation for future advances in gesture research,
establishing a benchmark for model cross-evaluation, and guiding
future improvements in computational modeling by highlighting
fundamental features and unmet targets.
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