
Published as a conference paper at ICLR 2023

UNDERSTANDING TRAIN-VALIDATION SPLIT IN
META-LEARNING WITH NEURAL NETWORKS

Xinzhe Zuo‡, Zixiang Chen�, Huaxiu Yao†, Yuan Cao?, Quqnquan Gu�
‡ Department of Mathematics, University of California, Los Angles
zxz@math.ucla.edu
� Department of Computer Science, University of California, Los Angles
{chenzx19, qgu}@cs.ucla.edu
† Department of Computer Science, Stanford University
huaxiu@cs.stanford.edu
? Department of Statistics & Actuarial Science, University of Hong Kong
yuancao@hku.hk

ABSTRACT

The goal of meta-learning is to learn a good prior model from a collection of tasks
such that the learned prior is able to adapt quickly to new tasks without accessing
many data from the new tasks. A common practice in meta-learning is to perform
a train-validation split on each task, where the training set is used for adapting the
model parameter to that specific task and the validation set is used for learning a
prior model that is shared across all tasks. Despite its success and popularity in
multitask learning and few-shot learning, the understanding of the train-validation
split is still limited, especially when the neural network models are used. In this
paper, we study the benefit of train-validation split for classification problems with
neural network models trained by gradient descent. For first-order model-agnostic
meta-learning (FOMAML), we prove that the train-validation split is necessary to
learn a good prior model when the noise in the training sample is large, while
the train-train method fails. We validate our theory by conducting experiment
on both synthetic and real datasets. To the best of our knowledge, this is the
first work towards the theoretical understanding of train-validation split in meta-
learning with neural networks.

1 INTRODUCTION

In recent years, meta-learning has gained increasing popularity and been successfully applied to a
wide range of problems including few-shot learning (Ren et al., 2018; Li et al., 2017; Rusu et al.,
2018; Snell et al., 2017), reinforcement learning (Gupta et al., 2018b;a), neural machine translation
(Gu et al., 2018), and neural architecture search (NAS) (Liu et al., 2018; Real et al., 2019). A
popular meta-learning idea is to formulate it as a bi-level optimization problem, where the inner
level computes the parameter adaptation to each task, while the outer level tries to minimize the
meta-training loss. Such a bi-level optimization formulation is empirically proved effective to learn
new tasks quickly using only a few examples with the aid of past experience. Following this idea,
meta-learning algorithms such as model agnostic meta-learning (MAML) (Finn et al., 2017) have
achieved remarkable success in many applications.

Due to the nature of bi-level optimization, meta-learning algorithms can often take advantage of a
train-validation split in the dataset, so that the inner and outer levels of the algorithm use different
data points (Finn et al., 2017; Rajeswaran et al., 2019; Bai et al., 2021; Fallah et al., 2020). It is
believed that the train-validation split can help the meta-learning algorithm to achieve a better per-
formance. There has been several attempts to understand the importance of train-validation split in
meta-learning for linear models (Wang et al., 2021; Bai et al., 2021; Saunshi et al., 2021). Specifi-
cally, Wang et al. (2021) showed that when learning linear models, the train-train method performs
much worse than the train-validation method if the sample size is small and the noise is large. They
also show that the train-train method is able to perform well on linear models when the sample
size is large enough. Bai et al. (2021) considered the linear centroid model introduced in Denevi

1

Published as a conference paper at ICLR 2023

et al. (2018b) and showed that the train-validation method outperforms the train-train method in an
agnostic setting, while in the realizable noiseless setting, the train-train method can asymptotically
achieve a strictly smaller mean square error than the train-validation method as the sample size and
dimension go to infinity at a fixed ratio. Saunshi et al. (2021) considered a representation learning
perspective, and demonstrated that train-validation split encourages the learned representation to
be low-rank while the train-train method encourages high-rank representations. However, all these
works focus on the linear regression setting, while the advantage of train-validation split remains
elusive for meta-learning with neural networks.

Based on the above observation, we raise the following question:

How does train-validation split affect the meta learning with neural networks?

In this paper, we answer the above question via a case study of few-shot binary classification using
a two-layer convolutional neural network. We consider a learning problem where the data model
consists of large noises, and only a limited number of data are available. Under this setting, we
theoretically compare the performance of first-order MAML (FOMAML (Finn et al., 2017)), which
is a simplification of MAML that ignores the hessian terms, with a train-validation split (the train-
validation method) and without a train-validation split (the train-train method). We summarize our
contributions as follows:

1. We show that under our setting, despite the complex bi-level structure of the FOMAML loss
and its non-convex landscape, it is guaranteed that the train-validation method and the train-
train method can both train a two-layer CNN to a global minimum of the training loss with high
probability.

2. We also demonstrate that there is a significant performance gap on new test data. Specifically, we
show that the neural network trained by the train-validation method can achieve a test loss that
decreases exponentially fast as the number of training tasks increase. On the other hand, we also
show that the train-train method can at best achieve a constant level test loss.

3. Our study demonstrates the importance of train-validation split in learning neural networks. To
the best of our knowledge, this is the first theoretical work studying train-validation split of meta-
learning with neural networks. Notably, the learning problem we consider is linearly realizable,
for which Bai et al. (2021) showed that the train-train method can asymptotically achieve better
MSE than the train-validation method under a linear model. However, our results give the oppo-
site conclusion for learning CNNs – the train-validation method still outperforms the train-train
method even for linearly realizable learning problems. Therefore, our results indicate that train-
validation split may have a more significant advantage when learning complicated prediction
models.

4. We perform experiments on both synthetic and real datasets with neural networks as backbone
model to justify our theoretical results. In particular, even when the data and the neural network
structure do not meet our theoretical assumptions, the experiment results still corroborate our
theory to a certain extent. This demonstrates the practical value of our analysis.

Notation. For an integer k, we denote [k] = {1, 2, . . . , k}. Given two sequences {xn} and {yn}
with yn > 0, we denote xn = O(yn) if |xn|/yn is upper bounded by a constant for all n. Similarly,
we denote xn = Ω(yn) if |xn|/yn is lower bounded by a positive constant. We denote xn = Θ(yn)

if xn = O(yn) and xn = Ω(yn). Finally, we use Õ(·), Ω̃(·), and Θ̃(·) to hide logarithmic factors.

2 ADDITIONAL RELATED WORK

Optimization and generalization guarantees for meta-learning. A number of recent works stud-
ied the optimization guarantees for meta-learning algorithms. Finn & Levine (2017) proved the
universality of gradient based meta-learning. Wang et al. (2020) studied the global optimality con-
ditions for MAML with a nonconvex objective. Fallah et al. (2020) studied the convergence guar-
antee for MAML with nonconvex loss function and proposed Hessian-Free MAML with the same
theoretical guarantee of MAML without accessing second order information. Finn et al. (2019);
Balcan et al. (2019); Khodak et al. (2019); Denevi et al. (2019; 2018a) studied online meta-learning
using online convex optimization. Another series of works have also studied the generalization error
and sample complexities of meta-learning methods. Specifically, Amit & Meir (2018) extended the
PAC-Bayes argument to the meta-learning setting and established a generalization error bound for

2

Published as a conference paper at ICLR 2023

meta-learning. Saunshi et al. (2020) analyzed the sample complexity under the nonconvex setting
using Reptile (Nichol et al., 2018). There has also been a stream of work studying generalization
in meta-learning from the representation learning perspective (Du et al., 2020; Tripuraneni et al.,
2020; Denevi et al., 2018a). These works do not employ a train-validation split, instead they as-
sume some underlying low-rank constraints on the representation. Chen et al. (2022); Huang et al.
(2022); Wang et al. (2022) also studied generalization error bounds for meta-learning in the over-
parametrized regime.

Feature learning in over-parameterized neural networks. There is a series of recent work study-
ing the feature learning dynamics of neural networks. For example, Allen-Zhu & Li (2020a) studied
a sparse coding model and showed that adversarial training can help CNN filters to learn “pure”
dictionary bases. Allen-Zhu & Li (2020b) studied the impact of ensemble and knowledge distilla-
tion on the feature learning process. Zou et al. (2021) demonstrated the generalization gap between
Adam and stochastic gradient descent through the lens of feature learning. Cao et al. (2022) studied
feature learning and noise memorization in learning two-layer CNNs and showed a phase transition
between benign and harmful overfitting.

3 PROBLEM SETUP

In this section, we introduce our data model, neural network model, loss function, and the details
about the FOMAML algorithm with train-train and train-validation methods.

We first introduce our data model. In meta-learning, the goal is to train a model based on the data
from K tasks, so that the trained model can learn a new task efficiently. Theoretical analysis of
meta-learning thus requires careful modeling of (i) the relation among different tasks, and (ii) the
data distribution for each specific task. To achieve this, we suppose that the data distribution Dk for
the k-th task is defined based on a vector νk, i.e., Dk = D(νk), and that the vectors ν1, . . . ,νK
are independently drawn from a distribution Π. Following this framework, the data points of a new
task can be generated by first sampling a vector ν̃ from Π, then sampling data from the distribution
D(ν̃). In the following, we present the detailed definitions of Π and D(ν̃).

Definition 3.1 (Distribution of tasks). Let ν, z1, . . . , zM ∈ Rd be fixed vectors, where z1, . . . , zM
are orthogonal to ν. A vector ν̃ is generated from Π by (i) randomly pick a vector z from
{z1, . . . , zM}, and (ii) let ν̃ = ν + z.

Definition 3.1 is based on a set of fixed vectors ν, z1, . . . , zM ∈ Rd. Here ν captures the feature
shared by all tasks. And z1, . . . , zM give a dictionary of possible unique features of each specific
task. It is important to note that we focus on the setting where the number of observed tasksK �M .
Under our setting, with high probability, different tasks will use different unique features.

Definition 3.2 (Distribution of data). Given a vector ν̃ ∈ Rd, each data point (x, y) with x =
[x(1)>, x(2)>]> ∈ R2d and y ∈ {−1, 1} is generated from D(ν̃) as follows:

1. The label y is assigned as +1 or −1 with equal probability.
2. A noise vector ξ is generated fromN (0, σ2

ξ ·(I−P)), where P ∈ Rd×d is the projection operator
onto span({ν, z1, . . . , zM}).

3. One of x(1), x(2) is randomly selected and assigned as y · νk; the other is assigned as ξ.

For k ∈ [K], we denote by Sk = {(xk,i, yk,i)}ni=1 the set of independent samples from the k-
th observed task. We consider a specific type of data input that consists of two patches, xk,i =

[x(1)>
k,i , x(2)>

k,i]>, to meet our study of convolutional neural networks. Note also that Definition 3.2
requires the noises in the data input to be sampled from the Gaussian distributionN (0, σ2

ξ · (I−P))
to ensure that the noise vector ξ is orthogonal to the features ν, z1, . . . , zM . It is then easy to check
that our data model is linearly realizable: the linear predictor θ∗ = ‖ν‖−2

2 · [ν>,ν>]> ∈ R2d

satisfy 〈θ∗, x〉 = y for all (x, y) drawn from our data distribution. Our motivation to study this
linearly realizable setting is that it has been proved in Bai et al. (2021) that the train-train method is
strictly better than the train-validation method when learning linear models in the realizable setting.
On the contrary, in this paper we aim to show that for the linearly realizable data model defined in
Definitions 3.1 and 3.2, the train-validation method can still outperform the train-train method for
FOMAML in learning two-layer CNNs.

3

Published as a conference paper at ICLR 2023

We study a two-layer CNN with m hidden layer neurons whose second layer weights are frozen as
±1’s. We use the Huberized-ReLU (Chatterji et al., 2021) activation function, which is defined as

σ(z) =


0, z < 0

z2/(2h), z ∈ [0, h]

z − h/2, otherwise.

where we set h = 1/2 in our analysis. Let W represent the collection of all weights of our net-
work. For a data input x = [x(1)>, x(2)>]>, we consider the CNN f(W, x) = F+1(W+1, x) −
F−1(W−1, x), where

Fj(Wj , x) =

m∑
r=1

2∑
p=1

σ(〈wj,r, x(p)〉) , j ∈ {−1, 1}.

We use wj,r to denote the r-th convolution filter with second layer weight j, and use Wj to denote
the collection of wj,1, . . . ,wj,m. We consider cross-entropy loss. The loss of a data point (x, y) is
given by L(W, x, y) = `[y · f(W, x)], where `(z) = log(1 + exp(−z)). The loss of a collection of
data points S is defined by

L(W,S) =
1

|S|
∑

(x,y)∈S

L(W, x, y).

Following the data model given in Definitions 3.1 and 3.2, we define the test loss achieved by a
CNN with weights W asLtest(W) := Eν̃∼Π,(x,y)∼D(ν̃)`(y·f(W, x)). We implement the FOMAML
algorithm (Finn et al., 2017) to train the neural network. The train-train and train-validation methods
are given as follows.

Train-train: for each task k, we use all of the samples for adapting the parameter in the inner-loop
updates. Specifically, the meta objective is to minimize

L̂tr-tr(W, {Sk}Kk=1) =
1

K

K∑
k=1

L(W̃(W,Sk),Sk) ,

where W̃(W,Sk) represents the weights of the network after J gradient descent steps (w.r.t. loss
L(·,Sk)) starting from W with step size γ. The FOMAML algorithm updates the CNN weights
using the following gradient update rule with step size η:

W(t+1) = W(t) − η · 1

K

K∑
k=1

∇WL(W,Sk)|W=W̃(W(t),Sk). (3.1)

Train-validation: for each task k, we denote by I tr
k = {1, . . . , n1} the training data indices, and

Ival
k = {n1 + 1, . . . , n} the validation data indices. We then use S tr

k = {(xk,i, yk,i)}i∈I tr
k

as the
training data set, and Sval

k = {(xk,i, yk,i)}i∈Ival
k

as the validation data set. The meta objective of the
train-validation method is to minimize

L̂tr-val(W, {Sk}Kk=1) =
1

K

K∑
k=1

L(W̃(W,S tr
k),Sval

k) ,

where W̃(W,S tr
k) represents the weights of the network after J gradient descent steps (w.r.t. loss

L(·,S tr
k)) starting from W with step size γ. For the train-validation method, the FOMAML algorithm

implements the following outer-loop update rule to train the network:

W(t+1) = W(t) − η · 1

K

K∑
k=1

∇WL(W,Sval
k)|W=W̃(W(t),S tr

k). (3.2)

4 MAIN RESULTS

In this section, we present our theoretical results for the train-train and train-validation methods. We
first introduce the following condition.

4

Published as a conference paper at ICLR 2023

Condition 4.1. There exists σs > 0 such that (1/2) · σs
√
d ≤ ‖zi‖2 ≤ (3/2) · σs

√
d for i ∈ [M],

and 〈zi, zj〉 ≤ O(σ2
s ·
√
d log(d)) for all i 6= j.

Condition 4.1 specifies the properties of the task-specific features in Definition 3.1. Here we require
that the task-specific features to have weak correlations to each other, which is standard in dictionary
learning. Moreover, it is easy to see that such z1, . . . , zM exist as long as M = O(poly(d)): with
a simple Gaussian concentration argument, one can show that M independent zero-mean Gaussian
random vectors with covariance matrix σ2

s(I − νν>/‖ν‖22) are orthogonal to ν and satisfy Condi-
tion 4.1 with high probability.

With Condition 4.1 and our data model in Definitions 3.1 and 3.2, it is necessary for a neural network
to learn the shared feature ν to make accurate predictions on a new task. On the other hand, if a
neural network only utilizes the task-specific features or the noises in the observed data to fit the
labels, then it can only achieve a good training loss, but will have a poor prediction accuracy on new
tasks. Following this intuition, we aim to construct a concrete setting under which the train-train and
train-validation methods give different test losses while both achieving small training losses. The
details of our constructed setting is summarized in the following condition.

Condition 4.2. ‖ν‖2 = 1, σξ = d−1/2 · polylog(d), σs = d−1/2/polylog(d), n = Θ(1), K =

polylog(d), m = polylog(d), Ω(d1/2) ≤M ≤ d/2.

Condition 4.2 defines an over-parameterized setting where d � Kn. Moreover, under Condi-
tion 4.2, the norms of the shared and task-specific features ‖ν‖2, ‖z1‖2, . . . , ‖zK‖2 are all O(1).
In comparison, with high probability, the norms of noise vectors in the data are Θ(polylog(d)).
Therefore, Condition 4.2 defines a setting with relatively large noises.

The FOMAML algorithm involves inner and outer-loop training of the neural network. We specify
our detailed hyper-parameter configurations in the following condition.

Condition 4.3. In the FOMAML algorithm defined in Eq. (3.1) and Eq. (3.2), we initialize the
CNN weights W(0) by Gaussian random initialization with standard deviation σ0 = d−1/2. We
set the inner-loop step size γ = polylog(d), and the outer-loop step size η = 1/polylog(d). We
run T = poly(d) outer-loop iterations. Within each outer-loop iteration, we run J = 5 inner-loop
gradient descent steps.

In Condition 4.3, we use a slightly larger step size for inner-loop compared to that for the outer-loop.
This is to ensure that the inner-loop updates can make a difference, and it matches the meta-learning
practice. Moreover, we set J = 5 to demonstrate that our analysis applies to the case with multiple
inner-loop iterations. The exact value of J is not essential – we can easily apply our analysis to other
values of J = Θ(1).

We are now in the position to state our main theoretical results. The theorem below gives the training
and test loss guarantees for the train-train method.

Theorem 4.4. Under Conditions 4.1, 4.2 and 4.3, suppose that one uses the train-train method to
train the neural network. Then with probability at least 1− (Kn)−10,

1. the training loss is small:

min
t∈[T]

L̂tr−tr(W(t), {Sk}Kk=1) ≤ O
(

1

poly(d)

)
.

2. the test loss is large:
min
t∈[T]

Ltest(W(t)) = Ω(1) .

Theorem 4.4 demonstrates that FOMAML with train-train method can successfully train the CNN
to minimize the training loss. However, it also shows that the train-train method fails on new tasks
and can only achieve a constant level test loss. In comparison, we have the following theorem for
the train-validation method.

Theorem 4.5. Under Conditions 4.1, 4.2 and 4.3, suppose that one uses the train-validation method
to train the neural network. Then with probability at least 1− (Kn)−10,

5

Published as a conference paper at ICLR 2023

1. the training loss is small:

min
t∈[T]

L̂tr−val(W(t), {Sk}Kk=1) ≤ O
(

1

poly(d)

)
.

2. the test loss is also small: there exists a constant c > 0 such that

Ltest(W(T)) = O(exp(−Kc)) .

Although both methods can achieve a 1/poly(d) training loss, the train-validation method is able to
achieve a test loss ofO(exp(−Kc)) compared to a constant test loss Ω(1) by the train-train method.
Thus, Theorems 4.4 and 4.5 show that for our data model, it is necessary to perform a train-validation
split to achieve good performance on test data.

We also compare FOMAML with the vanilla supervised learning framework where one simply
combines all data from theK tasks together and uses gradient descent to minimize the overall cross-
entropy loss. In fact, the results of Theorem 4.4 still hold even for J = 0, where algorithm Eq. (3.1)
reduces to gradient descent for vanilla supervised learning. Therefore, vanilla supervised learning
can also only achieve Θ(1) test loss. Clearly, our results imply that FOMAML with train-validation
split can significantly outperform vanilla supervised learning when learning our data model.

Comparison with Bai et al. (2021). Recently, Bai et al. (2021) studied the importance of the train-
validation split in meta-learning under the linear centroid framework. Specifically, they considered
linear ridge regression in the inner-loop and linear ridgeless regression in the outer-loop, and showed
that the train-train method strictly outperforms the train-validation method in the realizable setting.
As we have discussed in Section 3, our data model is linearly realizable, and thus by Bai et al. (2021),
the train-train method should outperform the train-validation method when learning our data model
with linear ridge/ridgeless regression. On the contrary, Theorems 4.4 and 4.5 demonstrate that
the train-validation method still significantly outperforms the train-train method for FOMAML in
learning CNNs. We believe the key reason behind this difference is that the CNN model has a much
higher expressive power, and therefore can more easily overfit noises in the training data points
when using FOMAML. The train-validation split thus greatly helps feature learning of the neural
network by performing a sample splitting between the inner and outer-loops. Therefore, our results
indicate that train-validation split may have a more significant advantage when learning complicated
prediction models.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUPS

Synthetic data. We generate synthetic data to test our theory. For our data generation we choose:
d = 1000, K = 343, n = 10, σξ = 10.42, σs = 0.00066, ‖ν‖2 = 1. For our neural network we
choose: m = 18, σ0 = 0.032. And finally we choose the following parameters for inner and outer
level optimization: γ = 0.001, J = 5, η = 0.0001.

Real-world Data. In our experiments, we further justify our theoretical findings in two real-world
datasets: RainbowMNIST, miniImagenet, which are discussed as follows.

• RainbowMNIST. Following (Yao et al., 2021), RainbowMNIST is a 10-way meta-learning
dataset built upon original MNIST dataset, where each task is constructed by applying one com-
bination of image transformations (e.g., coloring, rotation) on the original data. Here, 40 and 16
combinations are used for meta-training and meta-testing, respectively.

• miniImagenet. Following the traditional meta-learning setting (Finn & Levine, 2017; Snell et al.,
2017), miniImagenet dataset is split into meta-training, meta-validation and meta-testing classes,
where 64/16/20 classes are used for meta-training/validation/testing. We adopt the traditional N-
way, K-shot setting to split the training and validation set in our experiment, where N=5 and K=1
in this paper (i.e., 5-way, 1-shot learning).

Backbones and Hyperparameters. For all real-world datasets, follow (Finn & Levine, 2017; Snell
et al., 2017), we adopt the standard four-block convolutional layers as the base learner, where
Huberized-ReLU is used as the activation function. The number of inner-loop steps is set as 5.
The inner-loop and outer-loop learning rates are set as: 0.01 and 0.001 (miniImagenet), 0.1 and 0.01

6

Published as a conference paper at ICLR 2023

(RainbowMNIST), respectively. We report the average accuracy with 95% confidence interval over
all meta-testing tasks. For synthetic data, we follow our theoretical analysis and report the cross-
entropy loss with 95% confidence interval over all meta-testing tasks. The inner-loop and out-loop
learning rates are 0.01, 0.001, respectively.

5.2 RESULTS

Comparison between Different Activation Functions. We first conduct experiments to compare
the performance between Huberized-ReLU activation function used in our theoretical analysis and
the traditional ReLU function. The results are reported in Table 1, indicating that Huberized-ReLU
performs similarly to ReLU. Thus it is a reasonable replacement to simplify our analysis.

Table 1: Performance comparison between different activation functions.

Setting Activation Synthetic RainbowMNIST miniImagenet

Loss ↓ Acc ↑ Acc ↑

Train-Train ReLU 8.22 ± 0.42 68.70 ± 0.51% 27.19 ± 1.23%
Huberized-ReLU 8.50 ± 0.43 65.32 ± 0.54% 25.93 ± 1.10%

Train-Validation ReLU 4.62 ± 0.24 87.68 ± 0.21% 46.73 ± 1.32%
Huberized-ReLU 4.66 ± 0.23 87.52 ± 0.20% 46.15 ± 1.36%

Performance w.r.t. the Number of Inner-Loop Steps. We further compare the performance be-
tween the train-train and train-validation methods for different inner-loop optimization steps. The
results are reported in Table 2. According to the results, we observe that the train-validation split
performs much better than the train-train method with more inner-loop steps. This is what we ex-
pected since less number of inner-loop steps corresponds to less overfitting to the training set during
the inner-loop optimization. In the case of using less inner-loop steps, using the training set in the
outer-loop optimization can still contribute to the optimization.

Table 2: Performance comparison of the number of optimization steps in the inner-loop.

Setting # of Inner Steps Synthetic RainbowMNIST miniImagenet

Loss ↓ Acc ↑ Acc ↑

1 step Train-Train 7.22 ± 0.37 79.76 ± 0.41% 25.09 ± 1.11%
Train-Validation 4.81± 0.24 85.83 ± 0.25% 25.17 ± 1.04%

5 steps Train-Train 8.50 ± 0.43 65.32 ± 0.54% 25.93 ± 1.10%
Train-Validation 4.66 ± 0.23 87.52 ± 0.20% 46.15 ± 1.36%

Performance w.r.t. the Inner-Loop Learning Rate and the Outer-Loop Learning Rate. Finally,
we analyze the influence of inner-loop and outer-loop learning rates. The results in Table 3 show that
train-validation split performs better when the inner-loop learning rate is smaller than the outer-loop
learning rate, which corroborates our theoretical results. On synthetic data, the train-train method
performs better when the outer-loop learning rate larger than the inner-loop learning rate. This is
not surprising since smaller inner-loop learning rate corresponds to less overfitting, similar to the
phenomenon when using less inner-loop optimization steps (Table 2).

Table 3: Performance w.r.t. the inner-loop learning rate and the outer-loop learning rate.

Setting Learning Rate Synthetic RainbowMNIST miniImagenet

Loss ↓ Acc ↑ Acc ↑

outer-lr > inner-lr Train-Train 5.76 ± 0.39 64.82 ± 0.48% 20.00 ± 0.00%
Train-Validation 5.21 ± 0.31 66.13 ± 0.31% 20.00 ± 0.00%

outer-lr < inner-lr Train-Train 8.50 ± 0.43 65.32 ± 0.54% 20.00 ± 0.10%
Train-Validation 4.66 ± 0.23 87.52 ± 0.20% 46.15 ± 1.36%

6 OVERVIEW OF PROOF TECHNIQUES

From here onward, we will use upper script (t, τ) on wj,r to denote the t-th outer-loop iteration and
the τ -th inner-loop iteration. However, according to Eq. (3.1) and Eq. (3.2), the inner-loop updates

7

Published as a conference paper at ICLR 2023

for a CNN filter wj,r is task-specific. Therefore we cannot rigorously use the notation w(t,τ)
j,r without

referring to a specific task k. Luckily, all our analyses are based on the study of inner products of
the form 〈wj,r, x(p)

k,i 〉. We can use the notation 〈w(t,τ)
j,r , x(p)

k,i 〉 as the inner product after t outer-loop
updates followed by τ inner-loop updates, where the inner-loop updates only use samples from task
k. With these notations, we give the following two key lemmas that highlight the main differences
between the train-train and train-validation methods.
Lemma 6.1. Suppose one uses the train-train method to train the neural network. Let T (1)

k,i be

the first iteration such that maxr∈[m]〈w
(t,0)
j,r , ξk,i〉 ≥ Ω

(
1/polylog(d)

)
for k ∈ [K], i ∈ [n], and

j = yk,i. Then, under the same condition as in Theorem 4.4, for any t ≤ T (1)
k,i ,

1. for any k′ ∈ [K], r ∈ [m], and j′ ∈ {−1, 1} we have

j′〈w(t,J)
j′,r ,νk′〉 ≤ |〈w

(t,0)
j′,r ,νk′〉|O(1)γJ .

2. for r = arg maxr′∈[m]〈w
(t,0)
j,r′ , ξk,i〉,

〈w(t,J)
j,r , ξk,i〉 ≥ 〈w(t,0)

j,r , ξk,i〉Ω(1)
(
γΘ(polylog(d))

)J
.

Lemma 6.2. Suppose one uses the train-validation method to train the neural network. Let T (2)
j be

the first iteration such that maxr∈[m] j〈w
(t,0)
j,r ,ν〉 ≥ Ω(1/polylog(d)) for j ∈ {−1, 1}. Then, under

the same condition as in Theorem 4.5, for any t ≤ T (2)
j ,

1. for any k ∈ [K] and r = arg maxr′∈[m] j〈w
(t,0)
j,r′ ,ν〉

j〈w(t,J)
j,r ,νk〉 = Ω(1)j〈w(t,0)

j,r ,νk〉Θ(1)γJ .

2. for any r ∈ [m], k ∈ [K], i ∈ Ival
k , and j′ ∈ {−1, 1}

〈w(t,J)
j′,r , ξk,i〉 ≤ O

(
max

{
〈w(t,0)
j′,r , ξk,i〉, JÕ(d−1/2)

})
.

The above two lemmas give some intuitions for the better generalization power of the train-validation
method. According to Lemma 6.1, the J inner-loop gradient steps amplify the noise inner products
more than the feature inner product for the train-train method. On the contrary, by Lemma 6.2, the
J inner-loop gradient steps amplify the feature inner product and do not have a big impact on the
noise inner products for the train-validation method.

In the rest of this section, we mainly sketch the proof of Theorem 4.5 for the train-validation method.
Based on Lemma 6.2, we can see that the inner-loop updates in the train-validation method priori-
tizes feature learning over noise memorization. Our further study of the outer-loop training proce-
dure gives the following lemma.

Lemma 6.3. Under the same condition as in Theorem 4.5, let T (2) = maxj T
(2)
j , where T (2)

j is

defined in Lemma 6.2. Then maxr∈[m]〈w
(T (2),0)
j,r , ξk,i〉 = Õ(d−1/2) for any k ∈ [K], i ∈ Ival

k and
j ∈ {−1, 1}.

We remind our readers that T (2) (defined in Lemma 6.2) represents the time taken for the feature
inner product to grow to Ω(1/polylog(d)). Therefore Lemma 6.3 is essentially still a comparison
between the growth rate of feature and noise inner products: it shows that when the feature inner
product grows to Θ̃(1), the noise inner products still remain at their initialization order which is
Õ(d−1/2). The next lemma provides a key result for the convergence of the training loss.
Lemma 6.4. Let T = poly(d) be the total number of iterations. Under the same condition as in
Theorem 4.5, we have

min
t∈[T (2),T−1]

∑
(k,i)∈Ψ

−`′(t,J)
k,i ≤ Õ

(
1

Tη

)
,

where `′(t,J)
k,i = `′(yk,i · f(W̃(W(t),Str

k), xk,i)).

8

Published as a conference paper at ICLR 2023

By definition, the feature inner product has grown to Ω(1/polylog(d)) at time T (2). After T (2), we
implement a more careful study of the training process, as some data points may have been well-
fitted (with a small loss) and no longer significantly contribute to the training. Our next theorem
shows that using the train-validation method, after T (2), the feature inner product will grow even
larger and will be at least Ω(Kc) for some c > 0 at the end of the training.

Lemma 6.5. Under the same condition as in Theorem 4.5, suppose one runs the train-validation
method for a total of T = poly(d) iterations. Then maxr∈[m] j〈w

(T,0)
j,r ,ν〉 ≥ Ω(Kc) for all j ∈

{−1, 1} and for some c > 0.

Lemma 6.5 shows that at the end of training, the neural network has sufficiently learned the shared
feature ν. When given a fresh task, we should expect a small test loss because the shared feature ν
will also be present in this newly sampled task.

We are now ready to present the proof of Theorem 4.5.

Proof of Theorem 4.5. By definition, L̂tr−val(W(t), {Sk}Kk=1) =
∑
k∈[K]

∑
i∈Ivalk

`
(t,J)
k,i , where

`
(t,J)
k,i = `(yk,i · f(W̃(W(t),Str

k), xk,i)) . Then by Lemma 6.4 and the property of the cross-entropy
loss that −`′(x) ≥ exp(−x)/2 ≥ `(x)/2 for x > 0, we have

min
t∈[T]

L̂tr−val(W(t), {Sk}Kk=1) ≤ min
t∈[T (2),T−1]

−2
∑
k∈[K]

∑
i∈Ivalk

`
′(t,J)
k,i = Õ

(
1

Tη

)
= Õ

(
1

poly(d)

)
.

This proves the first part of Theorem 4.5. For the second part, consider a new data point (x, y). By
Definition 3.1 and Definition 3.2, the new data input x consists of two patches, one of which is a noise
vector ξ that is generated fromN (0, σ2

ξ ·(I−P)). Denote by E the event that |〈ξk,i, ξ〉| ≤ d−1/4 and

|〈w(0,0)
j,r , ξ〉| ≤ d3/2 for all k ∈ [K], i ∈ [n], r ∈ [m] and j ∈ {−1, 1}, where ξ is the noise vector

from the new data x. Then using Gaussian concentration, we have P(E) ≥ 1−Õ(exp(−d1/4)). We
divide Ltest(W(T)) into two parts:

Ltest(W(T)) = E
[
`
(
yf(W(T), x)

)]
= E[1(E)`

(
yf(W(T), x)

)
]︸ ︷︷ ︸

I1

+E[1(Ec)`
(
yf(W(T), x)

)
]︸ ︷︷ ︸

I2

.

From this decomposition, it is clear that bounding I1 is more important, since P(Ec) is exponentially
small, which makes I2 small. Indeed, one can bound I2 = O(poly(d)) exp(−0.5d1/4). Moreover,
under the event E , it holds that F−y(W(T)

−y , x) < log(2), and Fy(W(T)
y , x) ≥ σ

(
maxr∈[m] y ·

〈w(T,0)
y,r ,ν〉

)
. Applying Lemma 6.5, we have

`
(
yf(W(T), x)

)
= `
(
Fy(W(T)

y , x)− F−y(W(T)
−y , x)

)
≤ `(Kc − log(2)) ≤ 2 exp(−Kc)

where the last inequality is by the definition of `(·) and the inequality log(1+x) ≤ x, ∀x ≥ 0. There-
fore we have that I1 ≤ 2 exp(−Kc). Combining the bounds on I1 and I2 yields Ltest(W(T)) ≤
2 exp(−Kc) +O(poly(d)) exp(−0.5d1/4) = O

(
exp(−Kc)

)
, which proves the theorem.

7 CONCLUSION AND FUTURE WORK

In this work, we study the FOMAML algorithm applied to a classification problem with a two-layer
CNN trained by gradient descent. We proved that although both train-train and train-validation
methods can achieve a small training loss, to get good generalization results, it is necessary to
perform a train-validation split in the data when the noise is large and the number of samples is
limited. It is of interest to extend our result to more other types of data model (for example, natural
language data), and deeper neural network structures. We would also like to extend our analysis to
other popular meta-learning algorithms such as MAML (with hessian term), iMAML (Rajeswaran
et al., 2019), Meta-MiniBatchProx (Zhou et al., 2019), Reptile (Nichol et al., 2018) and closed-form
solvers (Bertinetto et al., 2018).

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENTS

We thank the anonymous reviewers and area chair for their helpful comments. ZC and QG are sup-
ported in part by the National Science Foundation IIS-2008981 and the Sloan Research Fellowship.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. arXiv preprint arXiv:2005.10190, 2020a.

Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding ensemble, knowledge distillation and
self-distillation in deep learning. arXiv preprint arXiv:2012.09816, 2020b.

Ron Amit and Ron Meir. Meta-learning by adjusting priors based on extended pac-bayes theory. In
International Conference on Machine Learning, pp. 205–214. PMLR, 2018.

Yu Bai, Minshuo Chen, Pan Zhou, Tuo Zhao, Jason Lee, Sham Kakade, Huan Wang, and Caiming
Xiong. How important is the train-validation split in meta-learning? In International Conference
on Machine Learning, pp. 543–553. PMLR, 2021.

Maria-Florina Balcan, Mikhail Khodak, and Ameet Talwalkar. Provable guarantees for gradient-
based meta-learning. In International Conference on Machine Learning, pp. 424–433. PMLR,
2019.

Luca Bertinetto, Joao F Henriques, Philip HS Torr, and Andrea Vedaldi. Meta-learning with differ-
entiable closed-form solvers. arXiv preprint arXiv:1805.08136, 2018.

Yuan Cao, Zixiang Chen, Mikhail Belkin, and Quanquan Gu. Benign overfitting in two-layer con-
volutional neural networks. arXiv preprint arXiv:2202.06526, 2022.

Niladri S Chatterji, Philip M Long, and Peter L Bartlett. When does gradient descent with logistic
loss find interpolating two-layer networks? J. Mach. Learn. Res., 22:159–1, 2021.

Lisha Chen, Songtao Lu, and Tianyi Chen. Understanding benign overfitting in nested meta learning.
arXiv preprint arXiv:2206.13482, 2022.

Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Incremental learning-to-
learn with statistical guarantees. arXiv preprint arXiv:1803.08089, 2018a.

Giulia Denevi, Carlo Ciliberto, Dimitris Stamos, and Massimiliano Pontil. Learning to learn around
a common mean. In ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31
(NIPS 2018), volume 31. NIPS Proceedings, 2018b.

Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn
stochastic gradient descent with biased regularization. In International Conference on Machine
Learning, pp. 1566–1575. PMLR, 2019.

Simon S Du, Wei Hu, Sham M Kakade, Jason D Lee, and Qi Lei. Few-shot learning via learning
the representation, provably. arXiv preprint arXiv:2002.09434, 2020.

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-
based model-agnostic meta-learning algorithms. In International Conference on Artificial Intelli-
gence and Statistics, pp. 1082–1092. PMLR, 2020.

Chelsea Finn and Sergey Levine. Meta-learning and universality: Deep representations and gradient
descent can approximate any learning algorithm. arXiv preprint arXiv:1710.11622, 2017.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International Conference on Machine Learning, pp. 1126–1135. PMLR,
2017.

Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning. In
International Conference on Machine Learning, pp. 1920–1930. PMLR, 2019.

10

Published as a conference paper at ICLR 2023

Jiatao Gu, Yong Wang, Yun Chen, Kyunghyun Cho, and Victor OK Li. Meta-learning for low-
resource neural machine translation. arXiv preprint arXiv:1808.08437, 2018.

Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised meta-
learning for reinforcement learning. arXiv preprint arXiv:1806.04640, 2018a.

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and Sergey Levine. Meta-
reinforcement learning of structured exploration strategies. Advances in neural information pro-
cessing systems, 31, 2018b.

Yu Huang, Yingbin Liang, and Longbo Huang. Provable generalization of overparameterized meta-
learning trained with sgd. arXiv preprint arXiv:2206.09136, 2022.

Mikhail Khodak, Maria-Florina Balcan, and Ameet Talwalkar. Adaptive gradient-based meta-
learning methods. arXiv preprint arXiv:1906.02717, 2019.

Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. Meta-sgd: Learning to learn quickly for few-
shot learning. arXiv preprint arXiv:1707.09835, 2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms. arXiv
preprint arXiv:1803.02999, 2018.

Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with im-
plicit gradients. Advances in neural information processing systems, 32, 2019.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780–4789, 2019.

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B Tenenbaum,
Hugo Larochelle, and Richard S Zemel. Meta-learning for semi-supervised few-shot classifica-
tion. arXiv preprint arXiv:1803.00676, 2018.

Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon Osin-
dero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

Nikunj Saunshi, Yi Zhang, Mikhail Khodak, and Sanjeev Arora. A sample complexity separation
between non-convex and convex meta-learning. In International Conference on Machine Learn-
ing, pp. 8512–8521. PMLR, 2020.

Nikunj Saunshi, Arushi Gupta, and Wei Hu. A representation learning perspective on the importance
of train-validation splitting in meta-learning. In International Conference on Machine Learning,
pp. 9333–9343. PMLR, 2021.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Nilesh Tripuraneni, Michael I Jordan, and Chi Jin. On the theory of transfer learning: The impor-
tance of task diversity. arXiv preprint arXiv:2006.11650, 2020.

Haoxiang Wang, Yite Wang, Ruoyu Sun, and Bo Li. Global convergence of maml and theory-
inspired neural architecture search for few-shot learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pp. 9797–9808, 2022.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. On the global optimality of model-
agnostic meta-learning. In International Conference on Machine Learning, pp. 9837–9846.
PMLR, 2020.

Xiang Wang, Shuai Yuan, Chenwei Wu, and Rong Ge. Guarantees for tuning the step size using a
learning-to-learn approach. In International Conference on Machine Learning, pp. 10981–10990.
PMLR, 2021.

11

Published as a conference paper at ICLR 2023

Huaxiu Yao, Linjun Zhang, and Chelsea Finn. Meta-learning with fewer tasks through task interpo-
lation. arXiv preprint arXiv:2106.02695, 2021.

Pan Zhou, Xiaotong Yuan, Huan Xu, Shuicheng Yan, and Jiashi Feng. Efficient meta learning via
minibatch proximal update. Advances in Neural Information Processing Systems, 32, 2019.

Difan Zou, Yuan Cao, Yuanzhi Li, and Quanquan Gu. Understanding the generalization of adam in
learning neural networks with proper regularization. arXiv preprint arXiv:2108.11371, 2021.

12

Published as a conference paper at ICLR 2023

A COMPARISON WITH BAI ET AL. (2021)

In this section, we point out some differences between our experiment setup and that of Bai et al.
(2021), which also studies the importance of a train-validation split in meta-learning. The main
conclusion of Bai et al. (2021) is that the train-train method could outperform the train-validation
method asymptotically under a linear centroid model. They have also run experiments using CNN
as backbone to support their theory (see Table 1 of Bai et al. (2021)). This may seem to contradict
our experiments at first sight, since we showed in Table 1 that the train-validation method should
outperform the train-train method using CNN as backbone. We would like to point out that this is
due to the different choice of loss function and optimization algorithms used by us and Bai et al.
(2021) as explained as follows.

A.1 REGULARIZER IN INNER-LOOP

Let us focus on the train-train method. Our loss function is given by

L̂tr−tr(W, {Sk}Kk=1) =
1

K

K∑
k=1

L(W̃(W,Sk),Sk) ,

where W̃(W,Sk) represents the weights of the network after J gradient descent steps (w.r.t. loss
L(·,Sk)) starting from W. While Bai et al. (2021) has their loss function given by

L̂tr−tr(W, {Sk}Kk=1) =
1

K

K∑
k=1

L(Ŵ(W,Sk),Sk) , (A.1)

where
Ŵ(W,Sk) = arg min

W′
L(W′,Sk) + λ‖W′ −W‖2F , (A.2)

where λ is a regularization parameter. This regularizer is popularized by Rajeswaran et al. (2019)
and Zhou et al. (2019). In practice, however, many meta-learning methods do not use this regularizer
in the inner-loop (add citations).

A.2 EXPERIMENT ALGORITHMS

To compare the performance of train-validation and train-train methods, Bai et al. (2021) used
iMAML (Rajeswaran et al., 2019) for the train-validation method and Meta-MiniBatchProx (Zhou
et al., 2019) for the train-train method. Both algorithms were developed to target the loss function
given by Eq. (A.1). In particular, iMAML used implicit function theorem to calculate the gradient
∇WŴ(W,Sk), and then uses this information to do gradient descent on W with respect to the loss
function given by Eq. (A.1). iMAML is similar to MAML in the sense that both algorithms perform
gradient descent on W with respect to their respective loss functions L̂tr−tr. However, the structure
of Meta-MiniBatchProx is different from that of iMAML and MAML. It is more closely related to
Reptile (Nichol et al., 2018), which is another first order meta-learning algorithm. Instead of per-
forming gradient descent in the outer-loop, Reptile updates W at each step as a convex combination
of W and W̃(W,Sk). This gives

W←W + ε
1

K

K∑
k=1

(
W̃(W,Sk)−W

)
, (A.3)

for some ε ∈ (0, 1). And Meta-MiniBatchProx replaces W̃(W,Sk) with Ŵ(W,Sk) in the above.
In our experiments, we used FOMAML for both train-validation and train-train. We believe that by
using the same algorithm for train-validation with train-train, the comparison is fairer.

B ADDITIONAL EXPERIMENTS

B.1 COMPARISON WITH REPTILE (NICHOL ET AL., 2018)

We compare FOMAML (using the train-validation method) with Reptile, which is another first-
order algorithm used in meta-learning. Different from FOMAML, Reptile does not require a train-
validation split in the data set. In addition, the outer-loop of Reptile does not perform gradient

13

Published as a conference paper at ICLR 2023

descent, but use a convex combination between the unadapted weights and the task-adapted weights
(see Eq. (A.3)). The results are summarized in Table 4. We see that on both RainbowMNIST and
miniImagenet, FOMAML with train-validation outperforms Reptile by a small margin.

Table 4: Performance comparison between FOMAML and Reptile.

Algorithm RainbowMNIST miniImagenet

FOMAML 87.52 ± 0.20% 46.15 ± 1.36%

Reptile 84.97 ± 0.26% 45.19 ± 1.31%

B.2 TIME EVOLUTION OF TEST LOSS OF FOMAML

We plot the time evolution of test loss using trained by FOMAML with train-validation and with
train-train on our synthetic data set. The results are illustrated in Figure 1a and 1b for train-validation
and train-train, respectively.

0 200 400 600 800 1000
Iteration

5.0
5.5
6.0
6.5
7.0
7.5

Te
st

 L
os

s

(a) Train-Validation

0 200 400 600 800 1000
Iteration

7.9
8.0
8.1
8.2
8.3
8.4
8.5

Te
st

 L
os

s

(b) Train-Train
Figure 1: Comparison of test loss over time of FOMAML trained with train-validation and with
train-train. The test loss for the train-validation method decreases almost monotonically, whereas
the test loss for the train-train method first decreases and then increases due to overfitting.
B.3 FOMAML WITH DIFFERENT NEURAL NETWORKS

In this section, we show that FOMAML with train-validaiton still outperforms FOMAML with
train-train on CNN with more layers and ResNet. The experiments are run on miniImagenet. The
results are recorded in Table 5. We see that FOMAML with train-validation outperforms FOMAML
with train-train by a large margin under all 3 neural network structures.

Table 5: Performance w.r.t. different neural networks.

Setting CNN 4 layers + normalization CNN 6 layers + normalization ResNet18

Train-train 25.93 ± 1.10% 26.89 ± 1.18% 35.63 ± 1.26%

Train-validation 46.15 ± 1.36% 50.89 ± 1.39% 55.32 ± 1.43%

B.4 EFFECT OF THE NUMBER OF SAMPLES PER TASK

We then discuss the performance with respect to the number of examples. In Table 6, we report the
performance on miniImagenent when the number of examples per class is 1, 3, 5, which corresponds
to 5-way 1-shot, 5-way 3-shot and 5-way 5-shot settings. We observe that as the number of samples
per class increases, both the train-train and train-validation methods receive a performance increase.

C PRELIMINARY CALCULATIONS

In this section, we present some calculations that are useful for our derivations later. Recall that
`(z) = log(1+exp(−z)), which gives `′(z) = −(1+exp(z))−1. Then, we can compute the partial
derivative of the loss function using samples from task k as

∂

∂wj,r
L(W,Sk) =

1

n

n∑
i=1

∂

∂wj,r
`(yk,i · f(W, xk,i))

14

Published as a conference paper at ICLR 2023

Table 6: Performance comparison w.r.t. the number of samples per class on miniImagenet.

Number of samples per class 1 3 5

Train-train 25.93 ± 1.10% 36.23 ± 0.82% 38.76 ± 0.66%

Train-validation 46.15 ± 1.36% 59.97 ± 1.02% 63.18 ± 0.90%

=
1

n

n∑
i=1

`′(yk,i · f(W, xk,i))
∂

∂wj,r
Fj(Wj , xk,i)j

=
1

n

n∑
i=1

`′(yk,i · f(W, xk,i))yk,ij
(2∑
p=1

σ′(〈wj,r, x(p)
k,i 〉)x(p)

k,i

)
.

Similarly, if we only evaluate the loss on the training set of Sk we have

∂

∂wj,r
L(W,Str

k) =
1

n1

n1∑
i=1

`′(yk,i · f(W, xk,i))yk,ij
(2∑
p=1

σ′(〈wj,r, x(p)
k,i 〉)x(p)

k,i

)
.

Let t ≥ 0 and τ ∈ [0, J] be the indices for the outer-loop and inner-loop respectively. We remind the
readers our notation. Denote `′(t,J)

k,i = `′(yk,i · f(W̃(W(t),Sk), xk,i)) when referring to the train-

train method and `′(t,J)
k,i = `′(yk,i · f(W̃(W(t),S tr

k), xk,i)) when referring to the train-validation
method.

At outer step t, using the samples from task k, we have the inner-loop updates as

j〈w(t,τ+1)
j,r ,νk〉 = j〈w(t,τ)

j,r ,νk〉 −
γ

n

n∑
i=1

`
′(t,τ)
k,i σ′(〈w(t,τ)

j,r ,νk〉yk,i) ‖νk‖22 . (C.1)

For noise ξk,i, we have the inner-loop updates as (suppose we are using all the samples from task k
for the inner-loop optimization)

〈w(t,τ+1)
j,r , ξk,i〉 = 〈w(t,τ)

j,r , ξk,i〉 −
γ

n

∑
i′ 6=i

`
′(t,τ)
k,i′ yk,i′jσ

′(〈w(t,τ)
j,r , ξk,i′〉)〈ξk,i′ , ξk,i〉

− γ

n
`
′(t,τ)
k,i yk,ijσ

′(〈w(t,τ)
j,r , ξk,i〉) ‖ξk,i‖22 , (C.2)

where the first sum goes from i′ = 1 to i′ = n, omitting the term when i′ = i. If we consider a noise
ξk,i from the validation set of some task, i.e. k ∈ [K] and i ∈ Ival

k , and we only use the training set
of task k for inner-loop updates, then

〈w(t,τ+1)
j,r , ξk,i〉 = 〈w(t,τ)

j,r , ξk,i〉 −
γ

n1

n1∑
i′=1

`
′(t,τ)
k,i′ yk,i′jσ

′(〈w(t,τ)
j,r , ξk,i′〉)〈ξk,i′ , ξk,i〉 . (C.3)

If we consider a noise ξk,i from the training set of a task, i.e. k ∈ [K] and i ∈ Itr
k , and we only use

the training set of task k for inner-loop updates, then

〈w(t,τ+1)
j,r , ξk,i〉 = 〈w(t,τ)

j,r , ξk,i〉 −
γ

n1

n1∑
i′ 6=i

`
′(t,τ)
k,i′ yk,i′jσ

′(〈w(t,τ)
j,r , ξk,i′〉)〈ξk,i′ , ξk,i〉

− γ

n1
`
′(t,τ)
k,i yk,ijσ

′(〈w(t,τ)
j,r , ξk,i〉) ‖ξk,i‖22 , (C.4)

where the sum goes from i′ = 1 to i′ = n1 except when i′ = i. Using only the training set of task
k, the feature inner product update is

j〈w(t,τ+1)
j,r ,νk〉 = j〈w(t,τ)

j,r ,νk〉 −
γ

n1

n1∑
i=1

`
′(t,τ)
k,i σ′(〈w(t,τ)

j,r ,νk〉yk,i) ‖νk‖22 . (C.5)

Next we look at the outer-loop updates. For the train-train method, the noise update is

〈w(t+1,0)
j,r , ξk,i〉 =〈w(t,0)

j,r , ξk,i〉 −
η

Kn

∑
(k′,i′)6=(k,i)

`
′(t,J)
k′,i′ yk′,i′jσ

′(〈w(t,J)
j,r , ξk′,i′〉)〈ξk′,i′ , ξk,i〉

15

Published as a conference paper at ICLR 2023

− η

Kn
`
′(t,J)
k,i yk,ijσ

′(〈w(t,J)
j,r , ξk,i〉) ‖ξk,i‖22 , (C.6)

where the sum is over all k′ ∈ [K] and i′ ∈ [n] except when (k′, i′) = (k, i). Hence, the number of
terms in the sum is Kn− 1. And

`
′(t,τ)
k,i = `′

(
yk,i

∑
j=±1

j

m∑
r=1

σ(〈w(t,τ)
j,r ξk,i〉) + σ(〈w(t,τ)

j,r νk〉yk,i)
)
. (C.7)

The arguments in σ′(·) in Eq. (C.6) are given by Eq. (C.2). The outer-loop feature update is

j〈w(t+1,0)
j,r ,ν〉 = j〈w(t,0)

j,r ,ν〉 − η

Kn

∑
k,i

`
′(t,J)
k,i σ′(〈w(t,J)

j,r ,νk〉yk,i) ‖ν‖22 , (C.8)

where the arguments in σ′(·) are given by Eq. (C.1). The arguments in σ(·) in Eq. (C.7)) are given
by Eq. (C.2) and Eq. (C.1). For the train-validation method, consider a noise ξk,i from the validation
set of the k-th task, i.e. i ∈ Ival

k . We have

〈w(t+1,0)
j,r , ξk,i〉 =〈w(t,0)

j,r , ξk,i〉 −
η

Kn2

∑
i′>n1,(k′,i′) 6=(k,i)

`
′(t,J)
k′,i′ yk′,i′jσ

′(〈w(t,J)
j,r , ξk′,i′〉)〈ξk′,i′ , ξk,i〉

− η

Kn2
`
′(t,J)
k,i yk,ijσ

′(〈w(t,J)
j,r , ξk,i〉) ‖ξk,i‖22 , (C.9)

where the sum is over all k′ ∈ [K] and i′ ∈ Ival
k except when (k′, i′) = (k, i). The arguments in

σ′(·) are given by Eq. (C.3). If we consider a noise ξk,i from the training set, i.e. k ∈ [K] and
i ∈ Itr

k , then the outer-loop update is given by

〈w(t+1,0)
j,r , ξk,i〉 =〈w(t,0)

j,r , ξk,i〉 −
η

Kn2

∑
k,i′>n1

`
′(t,J)
k′,i′ yk′,i′jσ

′(〈w(t,J)
j,r , ξk′,i′〉)〈ξk′,i′ , ξk,i〉 ,

(C.10)

where the sum is over all k ∈ [K] and i ∈ Ival
k . And the arguments in σ′(·) are given by Eq. (C.4).

The outer-loop update of the feature using the train-validation method is similar to using the train-
train method:

j〈w(t+1,0)
j,r ,ν〉 = j〈w(t,0)

j,r ,ν〉 − η

Kn2

∑
k,i>n1

`
′(t,J)
k,i σ′(〈w(t,J)

j,r ,νk〉yk,i) ‖ν‖22 , (C.11)

where the arguments in σ′(·) in Eq. (C.11) are given by Eq. (C.5). Note that the `′ term in Eq. (C.9),
Eq. (C.10) and Eq. (C.11) are given by Eq. (C.7), but the arguments in σ(·) in Eq. (C.7)) are now
given by Eq. (C.3) and Eq. (C.5).

D PRELIMINARY LEMMAS

We will work under the following parameters for the rest of the proof.

Condition D.1. ‖ν‖2 = 1, σ0 = 1√
d

, σs = 1√
d log(d)0.4

, σξ = log(d)0.5√
d

, n = Θ(1), K = log(d)0.5,

m = log(d)0.2, η = 1
log(d)−5 , γ = log(d)0.4, J = 5, h = 1

2 , M = d/2. We will also assume that
our data split is symmetric: for each k ∈ [K], and j ∈ {−1, 1}∣∣{i : i ∈ I tr

k , yk,i = j}
∣∣ > 0 ,

∣∣{i : i ∈ Ival
k , yk,i = j}

∣∣ > 0 .

Lemma D.2. Under Condition D.1 and Condition 4.1, the following estimates hold with probability
at least 1− (Kn)−10.

1. ‖ξk,i‖22 = Θ(σ2
ξd) for any k ∈ [K] and i ∈ [n].

2. max
{
|〈ξk,i, ξk′,i′〉| : k, k′ ∈ [K], i, i′ ∈ [n], (k, i) 6= (k′, i′)

}
≤ O(σ2

ξ

√
d
√

log(Kn)).

3. max
{
|〈w(0,0)

j,r ,ν〉| : r ∈ [m]
}

= Θ(σ0

√
log(mKn)) for any j ∈ {−1, 1}.

4. max
{
|〈w(0,0)

j,r , ξk,i〉| : r ∈ [m]
}

= Θ(σ0σξ
√
d
√
log(mKn)) for any j ∈ {−1, 1}, k ∈ [K], i ∈

[n].

16

Published as a conference paper at ICLR 2023

5. Ω(σ0) ≤ maxr∈[m] j〈w
(0,0)
j,r ,ν〉 ≤ O(σ0

√
log(mKn)) for any j ∈ {−1, 1}.

6. Ω(σ0σξ
√
d) ≤ maxr∈[m]〈w

(0,0)
j,r , ξk,i〉 ≤ O(σ0σξ

√
d
√

log(mKn)) for any j ∈ {−1, 1}, k ∈
[K], i ∈ [n].

7. max
{
|〈w(0,0)

j,r , zk〉| : r ∈ [m]
}

= Θ(σ0σs
√
d
√
log(mKn)) for any j ∈ {−1, 1}, k ∈ [K].

8. Ω(σ0σs
√
d) ≤ maxr∈[m] j〈w

(0,0)
j,r , zk〉 ≤ O(σ0σs

√
d
√
log(mKn)) for any j ∈ {−1, 1}, k ∈

[M].

Proof. By Lemma G.1, we have with probability at least 1− δ/3,

1

2
σ2
ξd ≤ ‖ξk,i‖

2
2 ≤

3

2
σ2
ξd ,

|〈ξk,i, ξk′,i′〉| ≤ 2σ2
ξ

√
d
√

log
(
12(Kn)2/δ

)
,

for all k, k′ ∈ [K] and i, i′ ∈ [n] with (k, i) 6= (k′, i′). By Lemma G.2, we have with probability at
least 1− δ/3,

|〈w(0,0)
j,r ,ν〉| ≤

√
2 log(24m/δ)σ0 ,

|〈w(0,0)
j,r , ξk,i〉| ≤

√
2 log(24mKn/δ)σ0σξ

√
d ,

for all r ∈ [m], j ∈ {−1, 1}, k ∈ [K] and i ∈ [n]. Moreover,

σ0

2
≤ max
r∈[m]

j〈w(0,0)
j,r ,ν〉 ≤

√
2 log(24m/δ)σ0 ,

σ0σξ
√
d

4
≤ max
r∈[m]

〈w(0,0)
j,r , ξk,i〉 ≤

√
2 log(24mKn/δ)σ0σξ

√
d ,

for all j ∈ {−1, 1}, k ∈ [K] and i ∈ [n]. Using similar ideas, we get that with probability at least
1− δ/3,

|〈w(0,0)
j,r , zk〉| = |〈w(0,0)

j,r , zk/ ‖zk‖2〉| ‖zk‖2 ≤
3

2
σs
√
d|〈w(0,0)

j,r , x〉| ≤ 3

2

√
2 log(12m/δ)σ0σs

√
d ,

for any k ∈ [K], r ∈ [m], and j ∈ {−1, 1}. The second inequality is by Condition 4.1. The last
inequality is again by Lemma G.2. Moreover,

σ0σs
√
d

4
≤ max
r∈[m]

j〈w(0,0)
j,r , zk〉 ≤

3

2

√
2 log(12m/δ)σ0σs

√
d .

Combining the above results, we get that all of the above events hold simultaneously with probability
at least 1− δ. Taking δ = (Kn)−10 gives the desired result.

Remark D.3. Since we will use the estimates in Lemma D.2 in the rest of our proofs repeatedly,
we will not mention the high probability bound in our theorems. It should be understood that our
theorems hold with the high probability bound given in Lemma D.2.
Remark D.4. Recall that under Condition D.1, the term

√
log(mKn) = polyloglog(d). Its pres-

ence/absence will not affect any of our proofs.

Lemma D.5. Let {xt, yt} be two positive sequences updated as

xt+1 ≥ xt(1 +A) ,

yt+1 ≤ yt(1 +B) ,

where x0 = o(1), y0 = o(1), A = o(1), and B = o(1). For any D = O(1), let T be the first
iteration that xt ≥ D. We have that yT ≤ O(Gy0) if x0 ≥ O

(
G−

A
B

)
.

17

Published as a conference paper at ICLR 2023

Proof. Let us consider the above two sequences xt and yt with the inequalities replaced with equal-
ity. Note that this will not affect our conclusion. Then we have

xt = x0(1 +A)t ,

yt = y0(1 +B)t .

And for simplicity, let us also assume that xT = D. Then we have D
x0

= (1 +A)T , which entails

T =
log(D) + log(1

x0
)

log(1 +A)

= O
(

log(1
x0

)

A

)
. (D.1)

Let T ′ be the first iteration such that yT ′ ≥ Gy0. Again, for simplicity, let us suppose that yT ′ =
Gy0. Using the same procedure, we obtain that

T ′ = Ω

(
log(G)

B

)
. (D.2)

Applying our assumption that x0 ≥ O
(
G−

A
B

)
to Eq. (D.1) and Eq. (D.2), we conclude that T <

T ′.

E TRAIN-TRAIN METHOD

E.1 PHASE I

In this section, we will show that under Condition D.1, our neural network will memorize
the noise and will not learn the feature. Let Ξ

(t)
k,i = max

{
〈w(t,0)

j,r , ξk,i〉 : j = yk,i, r ∈ [m]
}

and Λ
(t)
j = max

{
j〈w(t,0)

j,r ,ν〉 : r ∈ [m]
}

. Let T (1)
k,i be the first iteration such that Ξ

(t)
k,i ≥

m−1/2
(

1 +
γσ2
ξd

n

)−J
= Θ̃(1) and let T (1) = maxk,i T

(1)
k,i and (k̂, ı̂) = arg maxk,i T

(1)
k,i . So T (1)

is the time for the slowest learned noise to have an inner product of size Θ̃(1). And this is witnessed
by the noise vector ξk̂,̂ı.

Lemma E.1 (Restatement of Lemma 6.1). Under Condition D.1 and Condition 4.1, if one uses the
train-train method, then for any t ≤ T (1)

1. For any k ∈ [K], r ∈ [m], and j ∈ {−1, 1} we have

j〈w(t,J)
j,r ,νk〉 ≤ |〈w(t,0)

j,r ,νk〉| (1 + γO(1))
J
.

2. For j = yk̂,̂ı and r = arg maxr′∈[m]〈w
(t,0)
j,r , ξk̂,̂ı〉,

〈w(t,J)
j,r , ξk̂,̂ı〉 ≥ 〈w

(t,0)
j,r , ξk̂,̂ı〉

(
1 +

γ

n
Ω(1)Θ(σ2

ξd)
)J

.

Proof. The proof for both parts relies on the following hypothesis which we will verify inductively
later:

max
r
j〈w(t,0)

j,r , zk〉 = o(1)Λ
(t)
j , for all k ∈ [K], j ∈ {−1, 1}. (E.1)

− `′(t,τ)

k̂,̂ı
= Θ(1), for all τ ∈ [J]. (E.2)

j〈w(t,τ)
j,r ,νk〉 = o(1), for all τ ∈ [J], k ∈ [K], r ∈ [m], j ∈ {−1, 1}. (E.3)

σ′(〈w(t,τ)
j,r , ξk̂,̂ı〉) = Θ(1)〈w(t,τ)

j,r , ξk̂,̂ı〉, for all τ ∈ [J] if j = yk̂,̂ı and 〈w(t,τ)
j,r , ξk̂,̂ı〉 > 0. (E.4)

Let us first suppose that the above hypothesis hold. By Eq. (C.1), we know j〈w(t,τ)
j,r ,νk〉 is an in-

creasing sequence in τ . Without loss of generality, suppose that j〈w(t,0)
j,r ,νk〉 > 0. Then Hypothesis

E.3 implies
σ′(〈w(t,τ)

j,r ,νk〉j) = 2j〈w(t,τ)
j,r ,νk〉 .

18

Published as a conference paper at ICLR 2023

Then using the fact that −`′(·) ≤ 1, we can apply Eq. (C.1) repeatedly to get

j〈w(t,J)
j,r ,νk〉 ≤ j〈w(t,0)

j,r ,νk〉 (1 + γO(1))
J
, (E.5)

where we have also used ‖νk‖22 = ‖ν‖22 + ‖zk‖22 = 1 + o(1). This proves part (1) of the lemma.
Let j = yk̂,̂ı. Define r(t) = arg maxr′∈[m]〈w

(t,0)
j,r′ , ξk̂,̂ı〉. By Eq. (C.2), we have

〈w(t,τ+1)
j,r(t) , ξk̂,̂ı〉 ≥ 〈w

(t,τ)
j,r(t), ξk̂,̂ı〉 −

γ

n

∑
i 6=ı̂

O(1)|〈ξk̂,i, ξk̂,̂ı〉| −
γ

n
`
′(t,τ)

k̂,̂ı
σ′(〈w(t,τ)

j,r(t), ξk̂,̂ı〉)
∥∥∥ξk̂,̂ı∥∥∥2

2

≥ 〈w(t,τ)
j,r(t), ξk̂,̂ı〉 − γO(1)Θ(σ2

ξ

√
d
√

log(Kn))

+
γ

n
Θ(1)σ′(〈w(t,τ)

j,r(t), ξk̂,̂ı〉)Θ(σ2
ξd) , (E.6)

where the first inequality is because −`′(·) ≤ 1 and σ′(·) ≤ 1. And we have used Lemma D.2 and
Hypothesis E.2 to get the second inequality. Let us compare the size of the second and third term
on the right hand side of Eq. (E.6). At (t, τ) = (0, 0), if we leave out γ in both terms and consider,
the third term is of size Θ(σ0σ

3
ξd

3/2/n) = Θ(log(d)1.5/
√
d), whereas the second term always has

size O(σ2
ξ

√
d
√

log(Kn)) = O(log(d)/
√
d)O(polyloglog(d)). Hence the third term will dominate

the second term at (t, τ) = (0, 0). Note that the size of the second term does not change as t and τ
increase, meaning that if at time (t ≥ 0, τ ≥ 0) we have

〈w(t,τ)
j,r(t), ξk̂,̂ı〉 = Ω(1)Ξ

(0)

k̂,̂ı
,

then it always holds that the third term dominates the second term on the right hand side of Eq. (E.6),
which implies

〈w(t,τ+1)
j,r(t) , ξk̂,̂ı〉 ≥ 〈w

(t,τ)
j,r(t), ξk̂,̂ı〉+

γ

n
Ω(1)σ′(〈w(t,τ)

j,r(t), ξk̂,̂ı〉)Θ(σ2
ξd) . (E.7)

Applying Eq. (E.7) J times at t = 0 and using Hypothesis E.4, we obtain

〈w(0,J)
j,r(0), ξk̂,̂ı〉 ≥ 〈w

(0,0)
j,r(0), ξk̂,̂ı〉

(
1 +

γ

n
Ω(1)Θ(σ2

ξd)
)J

. (E.8)

By Eq. (C.6), we have

〈w(t+1,0)
j,r(t) , ξk̂,̂ı〉 ≥ 〈w

(t,0)
j,r(t), ξk̂,̂ı〉 −

η

Kn

∑
(k,i)6=(k̂,̂ı)

O(1)|〈ξk,i, ξk̂,̂ı〉|

+
η

Kn
Θ(1)σ′(〈w(t,J)

j,r(t), ξk̂,̂ı〉)
∥∥∥ξk̂,̂ı∥∥∥2

2

≥ 〈w(t,0)
j,r(t), ξk̂,̂ı〉 − ηO(1)Θ(σ2

ξ

√
d
√

log(Kn))

+
η

Kn
Θ(1)σ′(〈w(t,J)

j,r(t), ξk̂,̂ı〉)Θ(σ2
ξd) , (E.9)

where we have used Hypothesis E.2 and the fact that−`′(·) ≤ 1 and σ′(·) ≤ 1 to get first inequality.
Let us compare the second and third term on the right hand side of Eq. (E.9). At t = 0, using
Eq. (E.8) we have that

σ′(〈w(0,J)
j,r(0), ξk̂,̂ı〉) ≥ Θ(1)〈w(0,0)

j,r(0), ξk̂,̂ı〉
(

1 +
γ

n
Ω(1)Θ(σ2

ξd)
)J

. (E.10)

If we drop η in both terms, under Condition D.1 and Condition 4.1, one can calculate that the third
term has size Θ(log(d)8/

√
d) whereas the second term has size O(log(d)/

√
d)O(polyloglog(d)).

Thus the third term dominates the second term in Eq. (E.9) at t = 0. And we get

〈w(1,0)
j,r(1), ξk̂,̂ı〉 ≥ 〈w

(1,0)
j,r(0), ξk̂,̂ı〉 ≥ 〈w

(0,0)
j,r(0), ξk̂,̂ı〉

(
1 +

η

Kn

(
1 +

γ

n
Ω(1)Θ(σ2

ξd)
)J

Θ(σ2
ξd)
)

= 〈w(0,0)
j,r(0), ξk̂,̂ı〉

(
1 + Ω(1)

ησ2
ξd

Kn

(γσ2
ξd

n

)J)
,

19

Published as a conference paper at ICLR 2023

where the first inequality in the first line is by definition of r(t). We note that the size of the second
term on the right hand side of Eq. (E.9) does not change as t and τ increase. Thus, if 〈w(t,0)

j,r , ξk̂,̂ı〉 =

Ω(1)Ξ
(0)

k̂,̂ı
for some t > 0, Eq. (E.10) implies that σ′(〈w(t,J)

j,r , ξk̂,̂ı〉) = Ω(1)σ′(〈w(0,J)
j,r , ξk̂,̂ı〉). Then

we have that the third term will dominate the second term on the right hand side of Eq. (E.9) at
t > 0, which yields 〈w(t+1,0)

j,r(t) , ξk̂,̂ı〉 > 〈w
(t,0)
j,r(t), ξk̂,̂ı〉 since the third term on the right hand side of

Eq. (E.9) is positive. We have shown that

〈w(t+1,0)
j,r(t+1), ξk̂,̂ı〉 ≥ 〈w

(t+1,0)
j,r(t) , ξk̂,̂ı〉 > 〈w

(t,0)
j,r(t), ξk̂,̂ı〉 .

Then using the same derivation of Eq. (E.8), we obtain

〈w(t,J)
j,r(t), ξk̂,̂ı〉 ≥ 〈w

(t,0)
j,r(t), ξk̂,̂ı〉

(
1 +

γ

n
Ω(1)Θ(σ2

ξd)
)J

.

for any t ≤ T (1). This proves the second part of the lemma.

We have the following theorem characterizing the size of ΛT (1)

j .

Theorem E.2. Under Condition D.1 and Condition 4.1, if one uses the train-train method, then for
any t ≤ T (1)

1. Λt
j = Θ(1)Λ0

j = Õ(d−1/2), for j ∈ {−1, 1}.
2. For any k ∈ [K], i ∈ [n], j = −yk,i and r ∈ [m], we have

〈w(t,0)
j,r , ξk,i〉 ≤ Õ(d−1/2) .

Proof. Recall that the outer-loop for the feature is given by

j〈w(t+1,0)
j,r ,νk〉 = j〈w(t,0)

j,r ,νk〉 −
η

Kn

∑
k′,i

`
′(t,J)
k′,i σ′(〈w(t,J)

j,r ,νk′〉yk′,i)〈νk,νk′〉 , (E.11)

where the summation is over all k′ ∈ [K] and i ∈ [n]. Since 〈νk,νk′〉 = ‖ν‖2 + 〈zk, zk′〉 ≥
1− o(1) > 0, we get that j〈w(t,0)

j,r ,νk〉 is an increasing sequence in t for any k ∈ [K] and r ∈ [m].

And Eq. (C.8) shows that j〈w(t,0)
j,r ,ν〉 is an increasing sequence in t. We have

σ′(〈w(t,J)
j,r νk〉yk,i) ≤ 2j〈w(t,J)

j,r νk〉 ≤ 2j〈w(t,0)
j,r ,νk〉 (1 + γO(1))

J

= O(1)j〈w(t,0)
j,r ,ν〉 (1 + γO(1))

J
,

where is first inequality is by Hypothesis E.3 and our assumption that j〈w(t,0)
j,r ,νk〉 > 0. The second

inequality is by Lemma E.1. And the last equality is due to our Hypothesis E.1. Without loss of
generality, consider j = 1. Let r(t) = arg maxr′∈[m]〈w

(t,0)
1,r′ ,ν〉. We can upper bound the growth

of the feature in the outer-loop by

Λ
(t+1)
1 = 〈w(t+1,0)

1,r(t+1),ν〉 ≤ 〈w
(t,0)
1,r(t+1),ν〉

(
1 + ηO(1)

(
1 + γΘ(1)

)J)
= 〈w(t,0)

1,r(t+1),ν〉
(
1 +O(1)ηγJ

)
≤ 〈w(t,0)

1,r(t),ν〉
(
1 +O(1)ηγJ

)
= Λ

(t)
1

(
1 +O(1)ηγJ

)
, (E.12)

where we have also used the fact that −`′(·) < 1 by definition. Note that Eq. (E.12) also holds for
j = −1, i.e., Λ

(t+1)
−1 ≤ Λ

(t)
−1

(
1 +O(1)ηγJ

)
using the same derivation. Next, we want to find a

lower bound on the learning speed of the noise. After that, we wish to show that the lower bound for
the noise actually grows much faster than the upper bound of the memorization of the feature, which
implies that noise will be learnt sufficiently well before our neural network can pick up any learning

20

Published as a conference paper at ICLR 2023

on the feature. Consider j = yk̂,̂ı. Denote r′(t) = arg maxr∈[m]〈w
(t,0)
j,r , ξk̂,̂ı〉. Plugging Lemma E.1

and Hypothesis E.4 into Eq. (E.9) we have the following upper bound hold for all t ≤ T (1)

〈w(t+1,0)
j,r′(t+1), ξk̂,̂ı〉 ≥ 〈w

(t+1,0)
j,r′(t) , ξk̂,̂ı〉 ≥ 〈w

(t,0)
j,r′(t), ξk̂,̂ı〉

(
1 + Ω(1)

ησ2
ξd

Kn

(γσ2
ξd

n

)J)
, (E.13)

where the first inequality is by definition of r′(t). Now we can compare the learning speed of the
feature and noise:

Λ
(t+1)
j ≤ Λ

(t)
j

(
1 +O(1)ηγJ

)
, (E.14)

Ξ
(t+1)

k̂,̂ı
≥ Ξ

(t)

k̂,̂ı

(
1 + Ω(1)

ηγJ

K

(σ2
ξd

n

)J+1)
. (E.15)

We can apply Lemma D.5 once we check all of its conditions are satisfied. We have Λ
(0)
j =

Θ̃(d−1/2) = o(1), Ξ
(0)

k̂,̂ı
= Θ̃(d−1/2) = o(1). Let G = 2, A = O(1)ηγJ and B =

Ω(1)ηγ
J

K

(σ2
ξd

n

)J+1
, we have Ξ

(0)

k̂,̂ı
= Θ̃(d−1/2) > G−A/B = 2− log(d)5.5 . Therefore, by Lemma

D.5, for any t ≤ T (1), we have Λ
(t)
j ≤ 2Λ

(0)
j . This proves part (1) of our theorem.

We now prove part (2) of our theorem. Let k ∈ [K], i ∈ [n], r ∈ [m] and j = −yk,i. By Eq. (C.6)

〈w(t+1,0)
j,r , ξk,i〉 ≤ 〈w(t,0)

j,r , ξk,i〉 −
η

Kn

∑
(k′,i′)6=(k,i)

`
′(t,J)
k′,i′ yk′,i′jσ

′(〈w(t,J)
j,r , ξk′,i′〉)〈ξk′,i′ , ξk,i〉

≤ 〈w(t,0)
j,r , ξk,i〉+

η

Kn

∑
(k′,i′)6=(k,i)

O(1)|〈ξk′,i′ , ξk,i〉|

≤ 〈w(t,0)
j,r , ξk,i〉+ ηO(1)Θ(σ2

ξ

√
d
√

log(Kn)) , (E.16)

where the second inequality is because both −`′(·) and σ′(·) are bounded by 1. Using Eq. (E.15)
and the definition of T (1), we can calculate that T (1) = Õ(1) under Condition D.1. Therefore, for
any t ≤ T (1) − 1 we have

max
r∈[m]

〈w(t+1,0)
j,r , ξk,i〉 ≤ max

r∈[m]
〈w(0,0)

j,r , ξk,i〉+ tηO(1)Θ(σ2
ξ

√
d
√

log(Kn))

≤ O(σ0σξ
√
d
√

log(mKn)) + T (1)ηO(1)Θ(σ2
ξ

√
d
√

log(Kn))

= Õ(d−1/2) ,

where we have used Lemma D.2 to get the second inequality.

It remains to verify Hypothesis E.1-E.4. Let us suppose that Hypothesis E.1-E.4 hold for all t <
T (1). Then we have Λ

(t+1)
j ≤ 2Λ

(0)
j , and 〈w(t+1,0)

j,r , ξk,i〉 ≤ Õ(d−1/2) for any k ∈ [K], i ∈ [n],
r ∈ [m] and j = −yk,i by Theorem E.2.

Proof of Hypothesis E.1. For each task-specific feature zk, we have at t = 0 using Lemma D.2

Ω(σ0σs
√
d) ≤ max

r
j〈w(0,0)

j,r , zk〉 ≤ O(σ0σs
√
d
√

log(mKn)) ,

max
r
|〈w(0,0)

j,r ,ν〉| = Θ(σ0

√
log(mKn)) .

Since σs
√
d = o(1), we see that Hypothesis E.1 holds at t = 0. We want to prove that it holds at

t+ 1. For any k ∈ [K], r ∈ [m] we have

j〈w(t+1,0)
j,r , zk〉 = j〈w(t,0)

j,r , zk〉 −
η

Kn

∑
k′ 6=k

n∑
i=1

`
′(t,J)
k′,i σ′(〈w(t,J)

j,r ,νk′〉yk′,i)〈zk′ , zk〉

− η

Kn

n∑
i=1

`
′(t,J)
k,i σ′(〈w(t,J)

j,r ,νk〉yk,i) ‖zk‖22

21

Published as a conference paper at ICLR 2023

≤ j〈w(t,0)
j,r , zk〉 −

η

Kn

∑
k′ 6=k

n∑
i=1

`
′(t,J)
k′,i σ′(〈w(t,J)

j,r ,νk′〉yk′,i)Θ(σ2
s

√
d
√

log(d))

− η

Kn

n∑
i=1

`
′(t,J)
k,i σ′(〈w(t,J)

j,r ,νk〉yk,i)Θ(σ2
sd)

≤ j〈w(t,0)
j,r , zk〉 −

η

Kn

K∑
k′=1

n∑
i=1

`
′(t,J)
k′,i σ′(〈w(t,J)

j,r ,νk′〉yk′,i)Θ(σ2
sd) , (E.17)

where we used Condition 4.1 to get the first inequality. The last inequality is because log(d) � d.
Suppose that at time t+ 1, there exists some r̃ ∈ [m] and k̃ ∈ [K] such that

j〈w(t+1,0)
j,r̃ , zk̃〉 ≥ 2 max

r
j〈w(0,0)

j,r , zk̃〉 ≥ Ω(σsσ0

√
d) .

Then, by Eq. (E.17) we get

− η

Kn

t∑
t′=0

∑
k,i

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r̃ ,νk〉yk,i)Θ(σ2
sd) ≥ 2 max

r
j〈w(0,0)

j,r , zk̃〉 − j〈w
(0,0)
j,r̃ , zk̃〉

≥ Θ(σsσ0

√
d) ,

− η

Kn

t∑
t′=0

∑
k,i

`
′(t,J)
k,i σ′(〈w(t,J)

j,r̃ ,νk〉yk,i) ≥ Θ

(
σ0

σs
√
d

)

= Θ

(
log(d)0.2

√
d

)
.

Here the second inequality is by Lemma D.2. But then, Eq. (C.8) implies

j〈w(t+1,0)
j,r̃ ,ν〉 = j〈w(0,0)

j,r̃ ,ν〉 − η

Kn

t∑
t′=0

∑
k,i

`
′(t,J)
k,i σ′(〈w(t,J)

j,r̃ ,νk〉yk,i)

≥ min
r∈[m]

j〈w(0,0)
j,r ,ν〉+ Θ

(
log(d)0.2

√
d

)
≥ −Θ(σ0

√
log(mKn)) + Θ

(
log(d)0.2

√
d

)
= Θ(log(d)0.1)Λ

(0)
j .

We used Lemma D.2 to get the third line and last line. This is a contradiction, since we should have

j〈w(t+1,0)
j,r̃ ,ν〉 ≤ Λ

(t+1)
j ≤ 2Λ

(0)
j .

Therefore for all k ∈ [K] we conclude

max
r
j〈w(t+1,0)

j,r , zk〉 ≤ 2 max
r
j〈w(0,0)

j,r , zk〉 = o(1) max
r
j〈w(0,0)

j,r ,ν〉 = o(1) max
r
j〈w(t+1,0)

j,r ,ν〉 .

This proves that Hypothesis E.1 holds at time t+ 1.

Proof of Hypothesis E.2. Without loss of generality, let us assume that yk̂,̂ı = 1. By our estimates
in Lemma D.2, Hypothesis E.2 clearly holds at initialization. Suppose it holds at time t. Recall
Eq. (C.7) and that∑

j=±1

m∑
r=1

j
(
σ(〈w(t+1,τ)

j,r , ξk̂,̂ı〉)+σ(〈w(t+1,τ)
j,r ,νk̂〉)

)
≤

m∑
r=1

σ(〈w(t+1,τ)
1,r , ξk̂,̂ı〉) + σ(〈w(t+1,τ)

1,r ,νk̂〉) , (E.18)

22

Published as a conference paper at ICLR 2023

by the non-negativity of σ(·). For any r ∈ [m], we have

j〈w(t+1,0)
j,r ,νk̂〉 = j〈w(t+1,0)

j,r , zk̂〉+ j〈w(t+1,0)
j,r ,ν〉

≤ arg max
r′∈[m]

j〈w(t+1,0)
j,r′ , zk̂〉+ arg max

r′∈[m]

j〈w(t+1,0)
j,r′ ,ν〉

= (1 + o(1)) arg max
r′∈[m]

j〈w(t+1,0)
j,r′ ,ν〉

= O(1)Λ
(t+1)
j

≤ 2Λ
(0)
j ,

where we used Hypothesis E.1 to get the third line. Then, by Eq. (E.5) we have that for any τ ∈ [J]

〈w(t+1,τ)
1,r ,νk̂〉 ≤ 〈w

(t+1,0)
1,r ,νk̂〉 (1 + γO(1))

τ

= O(1)Λ
(t+1)
1 (1 + γO(1))

τ

= Õ(1)Λ
(0)
1 . (E.19)

This implies
m∑
r=1

σ(〈w(t+1,τ)
1,r ,νk̂〉) ≤ Õ(1)mΛ

(0)
1 = o(1) .

We also have that
m∑
r=1

σ(〈w(t+1,0)
1,r , ξk̂,̂ı〉) ≤ mσ(Ξ

(t+1)

k̂,̂ı
) = o(1) .

where the inequality is due to t+ 1 < T (1) which implies Ξ
(t+1)

k̂,̂ı
< m−1/2

(
1 +

γσ2
ξd

n

)−J
. Hence,

by Eq. (E.18) we get that −`′(t+1,0)

k̂,̂ı
= −`′(o(1)) = Ω(1). Now, suppose that −`′(t+1,τ)

k̂,̂ı
= Ω(1)

for some 0 ≤ τ ≤ J − 1. We wish to show that −`′(t+1,τ+1)

k̂,̂ı
= Ω(1). By our previous argument,

it suffices to show
∑m
r=1 σ(〈w(t+1,τ+1)

1,r , ξk̂,̂ı〉) = O(1). Because that would imply −`′(t+1,τ+1)

k̂,̂ı
=

−`′(O(1)) = Ω(1). We have,
m∑
r=1

σ(〈w(t+1,τ+1)
1,r , ξk̂,̂ı〉) ≤ mσ

(
Ξ

(t+1)

k̂,̂ı

(
1 +

γ

n
O(1)Θ(σ2

ξd)
)τ+1)

≤ mσ
(
m−1/2

(
1 +

γσ2
ξd

n

)−J(
1 +

γ

n
O(1)Θ(σ2

ξd)
)J)

≤ O(1) ,

where the second inequality is because τ + 1 ≤ J . This implies −`′(t+1,τ+1)

k̂,̂ı
= −`′(O(1)) = Ω(1)

and we are done.

Proof of Hypothesis E.3. By our estimates in Lemma D.2, Hypothesis E.3 clearly holds at initial-
ization. Suppose it holds at time t. Using Eq. (E.19), we immediately have that for any τ ∈ [J],
r ∈ [m] and k ∈ [K],

j〈w(t+1,τ)
j,r ,νk〉 ≤ Õ(1)Λ

(0)
j = o(1) .

Proof of Hypothesis E.4. By our estimates in Lemma D.2, Hypothesis E.4 clearly holds at initial-
ization. Suppose it holds at time t. Suppose that 〈w(t+1,0)

j,r , ξk̂,̂ı〉 > 0 for j = yk̂,̂ı and some r ∈ [m].
Recall that by the assumption of t+ 1 ≤ T (1), we have

〈w(t+1,0)
j,r , ξk̂,̂ı〉 ≤ Ξ

(t+1)

k̂,̂ı
≤ m−1/2

(
1 +

γσ2
ξd

n

)−J
= o(1) .

23

Published as a conference paper at ICLR 2023

Hence, by definition of σ′(·) we have σ′(〈w(t+1,0)
j,r , ξk̂,̂ı〉) = 2〈w(t+1,0)

j,r , ξk̂,i〉. While

〈w(t+1,τ)
j,r , ξk̂,̂ı〉 = o(1), we have σ′(〈w(t+1,τ)

j,r , ξk̂,̂ı〉) = 2〈w(t+1,τ)
j,r , ξk̂,̂ı〉. By Eq. (C.2) we have

〈w(t+1,τ+1)
j,r , ξk̂,̂ı〉 ≤ 〈w

(t+1,τ)
j,r , ξk̂,̂ı〉+

γ

n

∑
i6=ı̂

O(1)|〈ξk̂,i, ξk̂,̂ı〉| −
γ

n
`
′(t+1,τ)

k̂,̂ı
σ′(〈w(t+1,τ)

j,r , ξk̂,̂ı〉)
∥∥∥ξk̂,̂ı∥∥∥2

2

= 〈w(t+1,τ)
j,r , ξk̂,̂ı〉+ γO(1)O(σ2

ξ

√
d
√

log(Kn)) +
γ

n
O(1)σ′(〈w(t+1,τ)

j,r , ξk̂,̂ı〉)Θ(σ2
ξd)

= 〈w(t+1,τ)
j,r , ξk̂,̂ı〉

(
1 +

γ

n
O(1)Θ(σ2

ξd)
)

+ Õ(d−1/2)

≤ 〈w(t+1,0)
j,r , ξk̂,̂ı〉

(
1 +

γ

n
O(1)Θ(σ2

ξd)
)τ+1

+ Õ(d−1/2)τ
(

1 +
γ

n
O(1)Θ(σ2

ξd)
)τ

= 〈w(t+1,0)
j,r , ξk̂,̂ı〉

(
1 +

γ

n
O(1)Θ(σ2

ξd)
)τ+1

+ Õ(d−1/2)

≤ Ξ
(t+1)

k̂,̂ı

(
1 +

γ

n
O(1)Θ(σ2

ξd)
)τ+1

+ Õ(d−1/2) . (E.20)

We used −`′(·) ≤ 1 and σ′(·) ≤ 1 to get the first line. We used Lemma D.2 for the second line. It is
straightforward to check recursively that 〈w(t+1,τ)

j,r , ξk̂,̂ı〉 ≤ o(1) for τ ∈ [J−1] and hence Eq. (E.20)

holds for τ ∈ [J − 1]. In the meantime, this also implies σ′(〈w(t+1,τ)
j,r , ξk̂,̂ı〉) = 2〈w(t+1,τ)

j,r , ξk̂,̂ı〉 for
τ ∈ [J − 1]. Then Eq. (E.20) implies

〈w(t+1,J)
j,r , ξk̂,̂ı〉 ≤ Ξ

(t+1)

k̂,̂ı

(
1 +

γ

n
O(1)Θ(σ2

ξd)
)J

+ Õ(d−1/2)

≤ O(m−1/2) = o(1) .

Therefore, σ′(〈w(t+1,J)
j,r , ξk̂,̂ı〉) = 2〈w(t+1,J)

j,r , ξk̂,̂ı〉.

We note that by our definition, T (1) is the time taken for the slowest-learnt noise to be memorized by
our neural network. Other noises are learned faster. Our next theorem guarantees that other noises
has almost the same inner product as the slowest-learnt noise at time T (1).
Theorem E.3. Under Condition D.1 and Condition 4.1, suppose one uses the train-train method.
For any k ∈ [K], i ∈ [n] with (k, i) 6= (k̂, ı̂), let t ∈ [T

(1)
k,i , T

(1)], then we have Ξ
(t)
k,i = Θ̃(1) . More

precisely, it holds that

Ξ
(t)
k,i ≥ Ω

(
m−1/2

(
1 +

γσ2
ξd

n

)−J)
.

And

Ξ
(t)
k,i ≤ O

(
m−1/2

(
1 +

γσ2
ξd

n

)−J+0.5
)
.

Proof. We first show that Ξ
(t)
k,i ≥ Ω

(
m−1/2

(
1 +

γσ2
ξd

n

)−J)
= Ω̃(1). By definition of T (1)

k,i , we

know that Ξ
(t)
k,i ≥ m−1/2

(
1 +

γσ2
ξd

n

)−J
when t = T

(1)
k,i . Suppose there exists t ∈ [T

(1)
k,i , T

(1)] such

that it is the first iteration such that Ξ
(t)
k,i < m−1/2

(
1 +

γσ2
ξd

n

)−J
. If such t does not exist, then we

automatically have Ξ
(t)
k,i ≥ m−1/2

(
1 +

γσ2
ξd

n

)−J
for all t ∈ [T

(1)
k,i , T

(1)]. By definition of t we have

Ξ
(t−1)
k,i ≥ m−1/2

(
1 +

γσ2
ξd

n

)−J
. By Eq. (E.9), we have the following lower bound on Ξ

(t)
k,i

Ξ
(t)
k,i ≥ Ξ

(t−1)
k,i − ηO(1)Θ(σ2

ξ

√
d
√

log(Kn))

≥ m−1/2
(

1 +
γσ2

ξd

n

)−J
− Õ(d−1/2)

= Ω
(
m−1/2

(
1 +

γσ2
ξd

n

)−J)
,

24

Published as a conference paper at ICLR 2023

where in the first inequality we used −`′(·) ≤ 1 and σ′(·) ≤ 1 and Lemma D.2. The second and the
third line are direct calculations under Condition D.1. Using the same proof as Hypothesis E.2, we
have that −`′(t,τ)

k,i = Ω(1) for any τ ∈ [J]. Using a similar derivation of Eq. (E.13), we found that

Ξ
(t+1)
k,i ≥ Ξ

(t)
k,i

(
1 + Ω(1)

ησ2
ξd

Kn

(γσ2
ξd

n

)J)
≥
(
Ξ

(t−1)
k,i − Õ(d−1/2)

)(
1 + Ω(1)

ησ2
ξd

Kn

(γσ2
ξd

n

)J)
> Ξ

(t−1)
k,i ,

where the last inequality is because Ξ
(t−1)
k,i ≥ m−1/2

(
1 +

γσ2
ξd

n

)−J
= Ω̃(1) � Õ(d−1/2), and(

1+Ω(1)
ησ2
ξd

Kn

(γσ2
ξd

n

)J)
= Ω(polylog(d))� O(1). This shows that even if Ξ

(t)
k,i < Ξ

(t−1)
k,i at some

t, we still have Ξ
(t)
k,i = Ω

(
m−1/2

(
1+

γσ2
ξd

n

)−J)
= Ω̃(1) and Ξ

(t+1)
k,i > Ξ

(t−1)
k,i . Hence, Ξ

(t)
k,i ≥ Ω̃(1)

for all t ∈ [T
(1)
k,i , T

(1)] . Next, we need to show that Ξ
(t)
k,i ≤ O

(
m−1/2

(
1 +

γσ2
ξd

n

)−J+0.5)
.

Let

t′ = inf
{
t ∈ (T

(1)
k,i , T

(1)] : Ξ
(t̃)
k,i ≥ m

−1/2
(
1 +

γσ2
ξd

n

)−J+0.5
,∀t̃ ∈ [t, T (1)]

}
,

where the inf of an empty set is defined as ∞. If t′ = ∞ then we are done, because that implies

Ξ
(T (1))
k,i < m−1/2

(
1 +

γσ2
ξd

n

)−J+0.5
. Assume t′ is finite. We first need to show that Ξ

(t′)
k,i =

O
(
m−1/2

(
1 +

γσ2
ξd

n

)−J+0.5)
. By definition of t′, we know Ξ

(t′−1)
k,i < m−1/2

(
1 +

γσ2
ξd

n

)−J+0.5
.

By Eq. (C.6), we have

Ξ
(t′)
k,i ≤ Ξ

(t′−1)
k,i + Õ(d−1/2) +

η

Kn
Θ(σ2

ξd)

< m−1/2
(

1 +
γσ2

ξd

n

)−J+0.5

+ Õ(d−1/2) + Θ
(ησ2

ξd

Kn

)
≤ 1.5

(
m−1/2

(
1 +

γσ2
ξd

n

)−J+0.5)
,

where we used `′(·) ≤ 1, σ′(·) ≤ 1 and Lemma D.2 in the first inequality. The last inequality is

because Õ(d−1/2) + Θ
(ησ2

ξd

Kn

)
= o(1)m−1/2

(
1 +

γσ2
ξd

n

)−J+0.5
by a direct calculation. We now

show that −`′(t,J)
k,i = O(exp(− log(d)0.6)) for all t ∈ [t′, T (1)]. Without loss of generality, assume

yk,i = 1. Let r(t) = arg maxr∈[m]〈w
(t,0)
1,r , ξk,i〉. Using similar proof of Hypothesis E.2, we have

that −`′(t,τ)
k,i = Θ(1) for τ ∈ [J − 1]. Since 〈w(t,0)

1,r(t), ξk,i〉 ≥ m−1/2
(
1 +

γσ2
ξd

n

)−J+0.5
, we apply

Eq. (E.7) J times to get 〈w(t,J)
1,r(t), ξk,i〉 ≥ Θ

(
m−1/2

(
1 +

γσ2
ξd

n

)0.5)
. Then we have

−`′(t,J)
k,i = −`′

(∑
j=±1

m∑
r′=1

j
(
σ(〈w(t,J)

j,r′ , ξk,i〉) + σ(〈w(t,J)
j,r′ ,νk〉)

))

≤ −`′
(
σ(〈w(t,J)

1,r(t), ξk,i〉)−
m∑
r′=1

(
σ(〈w(t,J)

−1,r′ , ξk,i〉) + σ(〈w(t,J)
−1,r′ ,νk〉)

))

≤ −`′
(

Θ
(
m−1/2

(
1 +

γσ2
ξd

n

)0.5)
− o(1)− o(1)

)
≤ O

(
exp

(
−Θ(1) log(d)0.6

))
. (E.21)

The second line is because −`′(·) is non-increasing. To justify the third line, we first note that the
second part of Theorem E.2 implies 〈w(t,0)

−1,r′ , ξk,i〉 = Õ(d−1/2) for all r′ ∈ [m]. And

〈w(t,τ+1)
−1,r′ , ξk,i〉 = 〈w(t,τ)

−1,r′ , ξk,i〉+
γ

n

∑
i′ 6=i

`
′(t,τ)
k,i′ yk,i′σ

′(〈w(t,τ)
−1,r′ , ξk,i′〉)〈ξk,i′ , ξk,i〉

25

Published as a conference paper at ICLR 2023

+
γ

n
`
′(t,τ)
k,i σ′(〈w(t,τ)

−1,r′ , ξk,i〉) ‖ξk,i‖
2
2

≤ 〈w(t,τ)
−1,r′ , ξk,i〉+

γ

n

∑
i′ 6=i

O(1)|〈ξk,i′ , ξk,i〉|

≤ 〈w(t,τ)
−1,r′ , ξk,i〉+ Õ(d−1/2) ,

where we used −`′(·) ≤ 1, σ′(·) ≤ 1 and Lemma D.2. This implies

〈w(t,J)
−1,r′ , ξk,i〉 ≤ 〈w

(t,0)
−1,r′ , ξk,i〉+ JÕ(d−1/2) = Õ(d−1/2) ,

since J = O(1) and 〈w(t,0)
−1,r′ , ξk,i〉 = Õ(d−1/2). Hence,

m∑
r′=1

σ(〈w(t,J)
−1,r′ , ξk,i〉) ≤ mÕ(d−1/2) = o(1) .

By Eq. (C.1) and Eq. (E.11) we get that

〈w(t,J)
−1,r ,νk〉 ≤ 〈w

(t,0)
−1,r,νk〉 ≤ 〈w

(0,0)
−1,r,νk〉 = O(d−1/2

√
log(m)) ,

where the last equality is due to Lemma D.2. Thus,
m∑
r=1

σ(〈w(t,J)
−1,r ,νk〉) ≤ mÕ(d−1/2

√
log(m)) = o(1) .

This justifies the third line of Eq. (E.21). Using Eq. (E.15), one can directly calculate that T (1) =
O(polylog(d)). Then, using Eq. (C.6) we have

Ξ
(t+1)
k,i ≤ Ξ

(t)
k,i + Õ(d−1/2)− η

Kn
`
′(t,J)
k,i Θ(σ2

ξd)

≤ Ξ
(t)
k,i + Õ(d−1/2) +

η

Kn
Θ(σ2

ξd)O
(

exp
(
− log(d)0.6

))
,

Ξ
(T (1))
k,i ≤ Ξ

(t′)
k,i + (T (1) − t′)

(
Õ(d−1/2) +

η

Kn
Θ(σ2

ξd)O
(

exp
(
− log(d)0.6

)))
≤ Ξ

(t′)
k,i + T (1)

(
Õ(d−1/2) +

η

Kn
Θ(σ2

ξd)O
(

exp
(
− log(d)0.6

)))
= Ξ

(t′)
k,i + Õ(d−1/2) + Θ̃(1)O

(
exp

(
− log(d)0.6

)))
≤ 2Ξ

(t′)
k,i ≤ 3

(
m−1/2

(
1 +

γσ2
ξd

n

)−J+0.5)
.

In the second last line, we can absorb T (1) into Õ(d−1/2). And T (1) η
KnΘ(σ2

ξd) = Θ̃(1). To get the

last line, recall that Ξ
(t′)
k,i ≥

(
m−1/2

(
1 +

γσ2
ξd

n

)−J+0.5)
= Ω(1/polylog(d)). And Θ̃(1)O

(
exp

(
−

log(d)0.6
)))

= o(1/polylog(d)). This concludes our proof.

In short, we have shown that in Phase I, the feature has not been learnt well by any neurons, which is

characterized by the inequality Λ
(T (1))
j ≤ O(d−1/2) for j ∈ {−1, 1}. And for each noise vector ξk,i,

there exists weights w(T (1),0)
j,r with j = yk,i such that their inner product is large: 〈w(T (1),0)

j,r , ξk,i〉 =

Θ̃(1).

E.2 PHASE II

We have already proven that at the end of Phase I, all of the noises are memorized by the network
with an inner product of size Θ̃(1) whereas the feature is barely memorized, with an inner product
of size Õ(d−1/2). After Phase I, there is no guarantee that −`′(t,J)

k,i = Ω(1). For this reason, the
learning of both the feature and noises will slow down. The difficulty in analysis at this stage is that
we no longer have −`′(t,J)

k,i = Θ(1). The value of `′(t,J)
k,i is getting smaller as the inner products

26

Published as a conference paper at ICLR 2023

〈w(t,J)
j,r , ξk,i〉 gets larger. Moreover, if we examine Eq. (C.6), we observe that the second term on the

right hand side could have a non-trivial effect on the growth of the noise inner product, if the third
term on the right hand side becomes exponentially smaller than the second term because of `′(t,J)

k,i .
But the sign of each of the summand in the second term is undetermined, which makes the analysis
even harder. We first make some claims that will help prove our theorems. And we will verify these
claims at the end of this section. Let T = poly(d) be the total run time. We have the following
claims under Condition D.1 and Condition 4.1.
Claim E.4. For any k ∈ [K], i ∈ [n], r ∈ [m], and t ∈ [T (1), T], let j = −yk,i, then

〈w(t,0)
j,r , ξk,i〉 = Õ(d−1/2) .

And
〈w(t,J)
j,r , ξk,i〉 = Õ(d−1/2) .

Claim E.5. For any j ∈ {−1, 1} and t ∈ [T (1), T] we have

Λ
(t)
j ≤ O(d−1/4) .

Claim E.6. For any j ∈ {−1, 1}, k ∈ [K], r ∈ [m] and t ∈ [T (1), T] we have

max
r
j〈w(t,0)

j,r , zk〉 = o(1)Λ
(t)
j .

Lemma E.7. Let t ∈ [T (1), T], k ∈ [K], i ∈ [n], j = yk,i and r = arg maxr′∈[m]〈w
(t,0)
j,r′ , ξk,i〉.

Suppose Claim E.4 E.5E.6 hold at t. Then

〈w(t,0)
j,r , ξk,i〉 ≥ Ω

(
m−1/2

(
1 +

γσ2
ξd

n

)−J)
.

And
〈w(t,J)
j,r , ξk,i〉 ≥ Ω(m−1/2) .

Proof. The proof of the first inequality is very similar to the first part of the proof of Theorem E.3.
Hence we will omit it and focus on proving the second inequality. We first recall from Eq. (C.2) that

〈w(t,τ+1)
j,r , ξk,i〉 = 〈w(t,τ)

j,r , ξk,i〉 −
γ

n

∑
i′ 6=i

`
′(t,τ)
k,i′ yk,i′jσ

′(〈w(t,τ)
j,r , ξk,i′〉)〈ξk,i′ , ξk,i〉

− γ

n
`
′(t,τ)
k,i σ′(〈w(t,τ)

j,r , ξk,i〉) ‖ξk,i‖22

≥ 〈w(t,τ)
j,r , ξk,i〉 − Õ(d−1/2)− γ

n
`
′(t,τ)
k,i σ′(〈w(t,τ)

j,r , ξk,i〉) ‖ξk,i‖22 , (E.22)

for all τ ∈ [J − 1]. Here we have used −`′(·) ≤ 1, σ′(·) ≤ 1 and Lemma D.2 to get the inequality.
If 〈w(t,0)

j,r , ξk,i〉 > m−1/2, then we have

〈w(t,J)
j,r , ξk,i〉 ≥ 〈w(t,0)

j,r , ξk,i〉 − JÕ(d−1/2) = Ω(m−1/2) .

The last equality is because m−1/2 � JÕ(d−1/2). By the first part of this theorem, we have

〈w(t,0)
j,r , ξk,i〉 ≥ Ω

(
m−1/2

(
1 +

γσ2
ξd

n

)−J)
. Let us consider Ω

(
m−1/2

(
1 +

γσ2
ξd

n

)−(τ+1)) ≤
〈w(t,0)

j,r , ξk,i〉 ≤ O
(
m−1/2

(
1 +

γσ2
ξd

n

)−τ)
for some τ ∈ [J − 1]. Using similar proof as

the proof of Hypothesis E.2, it can be shown that −`′(t,τ
′)

k,i = Ω(1) for all τ ′ ≤ τ if

〈w(t,0)
j,r , ξk,i〉 ≤ Ω

(
m−1/2

(
1+

γσ2
ξd

n

)−τ)
. Applying Eq. (E.22) τ+1 times, we get 〈w(t,τ+1)

j,r , ξk,i〉 ≥

〈w(t,0)
j,r , ξk,i〉Ω

((
1 +

γσ2
ξd

n

)τ+1)
, which implies 〈w(t,τ+1)

j,r , ξk,i〉 ≥ Ω(m−1/2) if 〈w(t,0)
j,r , ξk,i〉 ≥

Ω
(
m−1/2

(
1 +

γσ2
ξd

n

)−(τ+1))
. Lastly, Eq. (E.22) also implies

〈w(t,J)
j,r , ξk,i〉 ≥ 〈w(t,τ+1)

j,r , ξk,i〉 − (J − (τ + 1))Õ(d−1/2) = Ω(m−1/2) .

This proves the lemma.

27

Published as a conference paper at ICLR 2023

Lemma E.8. Suppose Claim E.4 E.5E.6 hold at t. Let k ∈ [K], i ∈ [n]. If

Ξ
(t)
k,i = Θ

(
m−1/2

(
1 +

γσ2
ξd

n

)−J+1)
,

then −`′(t,J)
k,i = O(d− log(d)0.3).

Proof. Without loss of generality, assume yk,i = 1. Let r′(t) = arg maxr∈[m]〈w
(t,0)
1,r , ξk,i〉. We

have

−`′(t,J)
k,i = −`′

(∑
j=±1

m∑
r=1

j
(
σ(〈w(t,J)

j,r , ξk,i〉) + σ(〈w(t,J)
j,r ,νk〉)

))

≤ −`′
(
σ(〈w(t,J)

1,r′(t), ξk,i〉)−
m∑
r=1

(
σ(〈w(t,J)

−1,r , ξk,i〉) + σ(〈w(t,J)
−1,r ,νk〉)

))
.

Using similar proof as the proof of Hypothesis E.2, it can be shown that −`′(t,τ)
k,i = Ω(1) for all

τ ∈ [J − 1] under Claim E.5E.6. We then apply Eq. (E.22) J − 1 times to get

〈w(t,J)
1,r′(t), ξk,i〉 ≥

(
〈w(t,0)

1,r′(t), ξk,i〉 − JÕ(d−1/2)
)(

1−Θ(1)
γσ2

ξd

n

)J
=
(
Ξ

(t)
k,i − JÕ(d−1/2)

)(
1−Θ(1)

γσ2
ξd

n

)J
= Ω(1)Ξ

(t)
k,i

(
1−Θ(1)

γσ2
ξd

n

)J
= Ω(1)m−1/2

γσ2
ξd

n
.

The third line is because by assumption we have Ξ
(t)
k,i = Θ

(
m−1/2

(
1 +

γσ2
ξd

n

)−J+1)
= Θ̃(1) �

JÕ(d−1/2). On the other hand, Claim E.4, tells us that

〈w(t,J)
−1,r , ξk,i〉 = Õ(d−1/2) ,

for all r ∈ [m]. Hence,
m∑
r=1

σ(〈w(t,J)
−1,r , ξk,i〉) = mÕ(d−1/2) = o(1) .

By Eq. (C.1) and Eq. (E.11) we get that

〈w(t,J)
−1,r ,νk〉 ≤ 〈w

(t,0)
−1,r,νk〉 ≤ 〈w

(0,0)
−1,r,νk〉 = O(d−1/2) .

Thus,
m∑
r=1

σ(〈w(t,J)
−1,r ,νk〉) = mÕ(d−1/2) = o(1) .

We now have

−`′(t,J)
k,i ≤ −`′

(
σ(〈w(t,J)

1,r′ , ξk,i〉)−
m∑
r=1

(
σ(〈w(t,J)

−1,r , ξk,i〉) + σ(〈w(t,J)
−1,r ,νk〉)

))

≤ −`′
(

Ω(1)m−1/2
γσ2

ξd

n
− o(1)− o(1)

)
= O(1) exp

(
− Ω(1)m−1/2

γσ2
ξd

n

)
= O(d− log(d)0.3) .

This proves the lemma.

28

Published as a conference paper at ICLR 2023

Theorem E.9. If Claim E.4E.5E.6 hold for all T (1) ≤ t ≤ T − 1, then

Ξ
(T)
k,i ≤ O

(
m−1/2

(
1 +

γσ2
ξd

n

)−J+1)
,

for all k ∈ [K], i ∈ [n].

Proof. Set A(q) = m−1/2
(

1 +
γσ2
ξd

n

)−q
for q ∈ [J]. We proved in Theorem E.3 that Ω(A(J)) ≤

Ξ
(T (1))
k,i ≤ O(A(J − 0.5)) for all k ∈ [K], i ∈ [n]. Define

t(k, i) = inf
{
t < T : Ξ

(t′)
k,i > A(J − 1),∀t′ > t

}
,

where the infimum over an empty set is defined as ∞. In words, t(k, i) is the last iteration with
Ξ

(t)
k,i ≤ A(J − 1). We have shown in the proof of Theorem E.3 that Ξ

(t(k,i)+1)
k,i < 1.5A(J − 1).

Similarly define

t̃(k, i) = inf
{
t(k, i) ≤ t ≤ T : Ξ

(t′)
k,i > 4A(J − 1),∀t′ > t

}
.

Again the inf over an empty set is defined as∞. So t̃(k, i) is the last iteration with Ξ
(t)
k,i ≤ 4A(J −

1). Our goal is to show that t̃(k, i) = ∞ for any k ∈ [K] and i ∈ [n]. We will prove this by
contradiction. Let us suppose that t̃(k, i) < ∞. Then, for any t ∈ [t(k, i) + 1, t̃(k, i)] we have that
−`′(t,J)

k,i = O(d− log(d)0.3) by Lemma E.8. Recall

Ξ
(t+1)
k,i ≥ Ξ

(t)
k,i +

η

Kn

∑
(k′,i′) 6=(k,i)

`
′(t,J)
k′,i′ σ

′(〈w(t,J)
j,r , ξk′,i′〉)Θ(σ2

ξ

√
d
√

log(Kn))

− η

Kn
`
′(t,J)
k,i σ′(〈w(t,J)

j,r , ξk,i〉)Θ(σ2
ξd)

≥ Ξ
(t)
k,i +

η

Kn

∑
(k′,i′) 6=(k,i)

`
′(t,J)
k′,i′ Θ(σ2

ξ

√
d
√

log(Kn))

− η

Kn
`
′(t,J)
k,i σ′(〈w(t,J)

j,r , ξk,i〉)Θ(σ2
ξd) , (E.23)

where the second inequality is because σ′(·) ≤ 1. And similarly we have

Ξ
(t+1)
k,i ≤ Ξ

(t)
k,i −

η

Kn

∑
(k′,i′)6=(k,i)

`
′(t,J)
k′,i′ σ

′(〈w(t,J)
j,r , ξk′,i′〉)Θ(σ2

ξ

√
d
√

log(Kn))

− η

Kn
`
′(t,J)
k,i σ′(〈w(t,J)

j,r , ξk,i〉)Θ(σ2
ξd)

≤ Ξ
(t)
k,i −

η

Kn

∑
(k′,i′)6=(k,i)

`
′(t,J)
k′,i′ Θ(σ2

ξ

√
d
√

log(Kn))− η

Kn
`
′(t,J)
k,i Θ(σ2

ξd) , (E.24)

where we have again used σ′(·) ≤ 1 to the second inequality. We have the following bound due to
Lemma E.8

−
t̃(k,i)∑

t=t(k,i)+1

η

Kn
`
′(t,J)
k,i Θ(σ2

ξd) =

t̃(k,i)∑
t=t(k,i)+1

η

Kn
Θ(σ2

ξd)O(d− log(d)0.3)

≤
ησ2

ξd

Kn
TO(d− log(d)0.3)

= o(d−1) , (E.25)

where the last equality is because T = O(poly(d)). Let

(k′, i′) = arg max
(k̂,̂ı)6=(k,i)

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)

k̂,̂ı
.

29

Published as a conference paper at ICLR 2023

Suppose it holds that
t̃(k,i)∑

t=t(k,i)+1

−`′(t,J)
k′,i′ < d1/4 . (E.26)

Then using Eq. (E.24) we get

Ξ
(t̃(k,i)+1)
k,i ≤ Ξ

(t(k,i)+1)
k,i − η

Kn

t̃(k,i)∑
t=t(k,i)+1

∑
(k̂,̂ı)6=(k,i)

`
′(t,J)
k′,i′ Θ(σ2

ξ

√
d
√

log(Kn))

− η

Kn

t̃(k,i)∑
t=t(k,i)+1

`
′(t,J)
k,i Θ(σ2

ξd)

≤ Ξ
(t(k,i)+1)
k,i + ηΘ(σ2

ξ

√
d
√

log(Kn))d1/4 + o(d−1)

≤ 2Ξ
(t(k,i)+1)
k,i

≤ 3A(J − 1) .

The second inequality is due to Eq. (E.25), Eq. (E.26) and the definition of (k′, i′). The third
inequality is because ηΘ(σ2

ξ

√
d
√

log(Kn))d1/4 + o(d−1) = Õ(d−1/4) and Ξ
(t(k,i)+1)
k,i ≥ A(J −

1) = Θ̃(1). Thus Eq. (E.26) contradicts Ξ
(t̃(k,i)+1)
k,i ≥ 4A(J − 1) and we must have t̃(k, i) = ∞.

Next, we will show that if Eq. (E.26) does not hold, then we also have t̃(k, i) =∞. Let us suppose

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)
k′,i′ ≥ d

1/4 .

Since −`′(t,J)
k′,i′ > 0 for any t, we get that

∑t0
t=t(k,i)+1−`

′(t,J)
k′,i′ is increasing in t0. Let t(k, i) + 1 <

t0 < t̃(k, i) be the first iteration such that

t0∑
t=t(k,i)+1

−`′(t,J)
k′,i′ ≥ d

−1/8

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)
k′,i′ ≥ d

−1/8+1/4 = d1/8 .

Since each −`′(t,J)
k′,i′ < 1, we get that

t0∑
t=t(k,i)+1

−`′(t,J)
k′,i′ =

t0−1∑
t=t(k,i)+1

−`′(t,J)
k′,i′ − `

′(t0,J)
k′,i′

≤ 1 + d−1/8

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)
k′,i′

≤ 2d−1/8

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)
k′,i′ , (E.27)

where the second and third line are by definition of t0. We can sum Eq. (E.23) over time to obtain
t0∑

t=t(k,i)+1

Ξ
(t+1)
k′,i′ ≥

t0∑
t=t(k,i)+1

Ξ
(t)
k′,i′ +

η

Kn

t0∑
t=t(k,i)+1

∑
(k̂,̂ı) 6=(k′,i′)

`
′(t,J)

k̂,̂ı
Θ(σ2

ξ

√
d
√

log(Kn))

− η

Kn

t0∑
t=t(k,i)+1

`
′(t,J)
k′,i′ σ

′(〈w(t,J)
j,r , ξk′,i′〉)Θ(σ2

ξd)

≥
t0∑

t=t(k,i)+1

Ξ
(t)
k′,i′ +

η

Kn

t̃(k,i)∑
t=t(k,i)+1

∑
(k̂,̂ı) 6=(k′,i′)

`
′(t,J)

k̂,̂ı
Θ(σ2

ξ

√
d
√

log(Kn))

30

Published as a conference paper at ICLR 2023

− η

Kn

t0∑
t=t(k,i)+1

`
′(t,J)
k′,i′ σ

′(〈w(t,J)
j,r , ξk′,i′〉)Θ(σ2

ξd)

≥
t0∑

t=t(k,i)+1

Ξ
(t)
k′,i′ +

η

Kn

t̃(k,i)∑
t=t(k,i)+1

∑
(k̂,̂ı) 6=(k′,i′)

`
′(t,J)
k′,i′ Θ(σ2

ξ

√
d
√

log(Kn))

− η

Kn

t0∑
t=t(k,i)+1

`
′(t,J)
k′,i′ σ

′(〈w(t,J)
j,r , ξk′,i′〉)Θ(σ2

ξd) ,

where the second inequality is because t0 < t̃(k, i). We have used the definition of (k′, i′) to get the
last inequality. Then, subtracting

∑t0
t=t(k,i)+1 Ξ

(t)
k′,i′ from both sides yields

Ξ
(t0+1)
k′,i′ −Ξ

(t(k,i)+1)
k′,i′ ≥ Θ

(ησ2
ξ

√
d

Kn

√
log(Kn)

)
Kn

t̃(k,i)∑
t=t(k,i)+1

`
′(t,J)
k′,i′

−Θ
(ησ2

ξd

Kn
√
m

) t0∑
t=t(k,i)+1

`
′(t,J)
k′,i′

= Θ̃(d−1/2)

t̃(k,i)∑
t=t(k,i)+1

`
′(t,J)
k′,i′ − Θ̃(1)d−1/8

t̃(k,i)∑
t=t(k,i)+1

`
′(t,J)
k′,i′

= −Θ̃(1)d−1/8

t̃(k,i)∑
t=t(k,i)+1

`
′(t,J)
k′,i′

≥ Θ̃(d1/8) , (E.28)
where we used Lemma E.7 to get the first inequality. The first equality is due to Eq. (E.27). The last
inequality is by our assumption

∑t̃(k,i)
t=t(k,i)+1−`

′(t,J)
k′,i′ ≥ d1/4. It is then straightforward to check that

Ξ
(t)
k′,i′ ≥ Θ̃(d1/8) ,

for all t0 + 1 ≤ t ≤ t̃(k, i). To see this, let us sum Eq. (E.23) over time to obtain
t−1∑

t̂=t0+1

Ξ
(t̂+1)
k′,i′ ≥

t−1∑
t̂=t0+1

Ξ
(t̂)
k′,i′ +

η

Kn

t−1∑
t̂=t0+1

∑
(k̃,̃ı) 6=(k′,i′)

`
′(t̂,J)

k̃,̃ı
Θ(σ2

ξ

√
d
√

log(Kn))

−
t−1∑

t̂=t0+1

η

Kn
`
′(t̂,J)
k′,i′ σ

′(〈w(t̂,J)
j,r , ξk′,i′〉)Θ(σ2

ξd)

≥
t−1∑

t̂=t0+1

Ξ
(t̂)
k′,i′ +

η

Kn

t−1∑
t̂=t0+1

∑
(k̃,̃ı) 6=(k′,i′)

`
′(t̂,J)

k̃,̃ı
Θ(σ2

ξ

√
d
√

log(Kn))

≥
t−1∑

t̂=t0+1

Ξ
(t̂)
k′,i′ +

η

Kn

t̃(k,i)∑
t̂=t(k,i)+1

∑
(k̃,̃ı) 6=(k′,i′)

`
′(t̂,J)

k̃,̃ı
Θ(σ2

ξ

√
d
√

log(Kn))

≥
t−1∑

t̂=t0+1

Ξ
(t̂)
k′,i′ +

η

Kn

t̃(k,i)∑
t̂=t(k,i)+1

Kn`
′(t̂,J)
k′,i′ Θ(σ2

ξ

√
d
√

log(Kn))

Ξ
(t)
k′,i′ ≥ Ξ

(t0+1)
k′,i′ + Θ

(
ησ2

ξ

√
d
√

log(Kn)

Kn

)
Kn

t̃(k,i)∑
t=t(k,i)+1

`
′(t,J)
k′,i′

≥ Θ̃(1)d−1/8

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)
k′,i′ + Θ̃(d−1/2)

t̃(k,i)∑
t=t(k,i)+1

`
′(t,J)
k′,i′

31

Published as a conference paper at ICLR 2023

= Θ̃(1)d−1/8

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)
k′,i′

≥ Θ̃(d1/8) ,

where the second inequality is because we are removing a positive term from the sum. The third
inequality is because t−1 < t̃(k, i) and t0 > t(k, i). The fourth inequality is by definition of (k′, i′).
The second last inequality is by the second last line of Eq. (E.28). And our last inequality follows
Eq. (E.28). Then, using similar proof of Lemma E.8, we have −`′(t,J)

k′,i′ = O(exp(−Θ̃(d1/8))) for
all t0 + 1 ≤ t ≤ t̃(k, i). This yields

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)
k′,i′ =

t0∑
t=t(k,i)+1

−`′(t,J)
k′,i′ +

t̃(k,i)∑
t=t0+1

−`′(t,J)
k′,i′

≤ 2d−1/8

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)
k′,i′ +

t̃(k,i)∑
t=t0+1

O(exp(−Θ̃(d1/8)))

≤ 2d−1/8

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)
k′,i′ + T · O(exp(−Θ̃(d1/8)))

≤ 2d−1/8

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)
k′,i′ + o(d−1)

≤ (2d−1/8 + o(d−1))

t̃(k,i)∑
t=t(k,i)+1

−`′(t,J)
k′,i′ , (E.29)

where we used Eq. (E.27) to get the second line. And we used T = O(poly(d)) to get the fourth
line. To obtain the last inequality, we recall the assumption

∑t̃(k,i)
t=t(k,i)+1−`

′(t,J)
k′,i′ > d1/4, which

implies o(d−1) < o(d−1)
∑t̃(k,i)
t=t(k,i)+1−`

′(t,J)
k′,i′ . Eq. (E.29) is a contradiction in the form of x ≤ Ax

for some x ≥ 0 and A < 1. This implies that under the assumption
∑t̃(k,i)
t=t(k,i)+1−`

′(t,J)
k′,i′ > d1/4,

we should still have t̃(k, i) =∞. Combining with our previous result which says t̃(k, i) =∞ when∑t̃(k,i)
t=t(k,i)+1−`

′(t,J)
k′,i′ ≤ d1/4, we conclude that t̃(k, i) =∞ and we are done.

Now that we know the noise inner products are upper bounded by O
(
m−1/2

(
1 +

γσ2
ξd

n

)−J+1)
, we

can provide a convergence guarantee based on this upper bound.
Theorem E.10 (Restatement of Theorem 4.4 (1)). Under Condition D.1 and Condition 4.1, let
T = poly(d) be the total number of iterations. Then

min
t∈[T]

L̂tr-tr(W(t)) ≤ Θ̃(T−1η−1) .

Proof. By Theorem E.9, we know that

Ξ
(T)
k,i ≤ O

(
m−1/2

(
1 +

γσ2
ξd

n

)−J+1)
= Õ(1) ,

for all k ∈ [K] and i ∈ [n]. Denote Ξ(t) =
∑
k,i Ξ

(t)
k,i. It then follows that Ξ(T) ≤ KnÕ(1) =

Õ(1). Moreover, if we sum Eq. (E.24) over all k, i, we get

Ξ(t+1) ≥ Ξ(t) + η(Kn− 1)
∑
(k,i)

`
′(t,J)
k,i Θ(σ2

ξ

√
d
√

log(Kn))− η

Kn

∑
k,i

`
′(t,J)
k,i Ω

(1√
m

)
Θ(σ2

ξd)

≥ Ξ(t) − Ω(1)
η

Kn

∑
k,i

`
′(t,J)
k,i Ω

(1√
m

)
Θ(σ2

ξd) ,

32

Published as a conference paper at ICLR 2023

where the Ω
(

1√
m

)
term is by Lemma E.7. We can then sum over t to obtain

T−1∑
t=T (1)

Ξ(t+1) ≥
T−1∑
t=T (1)

Ξ(t) − Ω(1)
η

Kn

T−1∑
t=T (1)

∑
k,i

`
′(t,J)
k,i

2√
m

Θ(σ2
ξd) ,

Ξ(T) −Ξ(T (1)) ≥ −Ω
(ησ2

ξd

Kn
√
m

) T−1∑
t=T (1)

∑
k,i

`
′(t,J)
k,i ,

η

T−1∑
t=T (1)

∑
k,i

−`′(t,J)
k,i ≤ O

(K√m
σ2
ξd

)
Õ(1) = Õ(1) . (E.30)

The last inequality is because Ξ(T) −Ξ(T (1)) ≤ Õ(1). And we can bound the minimum over t by

min
t∈[T (1),T−1]

∑
k,i

−`′(t,J)
k,i ≤ Õ

(1

(T − T (1))η

)
= Õ

(1

Tη

)
,

where the second equality is because T (1) = polylog(d) = o(T). Denote −`′(t,J)
k,i =

−`′(α(t, J, k, i)), i.e. the argument of −`′(t,J)
k,i is α(t, J, k, i). Then the loss is related to −`′(t,J)

k,i by

L̂tr-tr(W(t)) =
∑
k,i

`
(
α(t, J, k, i)

)
.

Let t′ = arg mint
∑
k,i−`

′(t,J)
k,i . By definition of `′(·) and `(·) we can bound −`′(x) ≥

exp(−x)/2 ≥ `(x)/2 for x > 0. This can be used to bound our loss by

min
t∈[T]

L̂tr-tr(W(t)) ≤ L̂tr-tr(W(t′))

=
∑
k,i

`
(
α(t′, J, k, i)

)
≤ −2

∑
k,i

`′
(
α(t, J, k, i)

)
≤ Õ

(1

Tη

)
.

This proves our theorem.

It remains to prove Claims E.4E.5E.6.

Proof of Claim E.4. Without loss of generality, assume yk,i = 1. By Eq. (E.16), we have the fol-
lowing upper bound

〈w(t+1,0)
−1,r , ξk,i〉 ≤ 〈w(t,0)

−1,r, ξk,i〉 −
η

Kn

∑
(k′,i′) 6=(k,i)

`
′(t,J)
k′,i′ σ

′(〈w(t,J)
−1,r , ξk′,i′〉)Θ(σ2

ξ

√
d
√

log(Kn))

≤ 〈w(t,0)
−1,r, ξk,i〉 −

η

Kn

∑
(k′,i′)

`
′(t,J)
k′,i′ σ

′(〈w(t,J)
−1,r , ξk′,i′〉)Θ(σ2

ξ

√
d
√

log(Kn))

≤ 〈w(t,0)
−1,r, ξk,i〉 −

η

Kn
Θ(σ2

ξ

√
d
√

log(Kn))
∑

(k′,i′)

`
′(t,J)
k′,i′ ,

where the second inequality is because we are adding a non-negative term to the sum. The last
inequality is because σ′(·) ≤ 1. Suppose all of our claims hold for t ≤ T ′, where T ′ ≤ T − 1.
Using a similar derivation of Eq. (E.30) we have

− η

Kn
Θ(σ2

ξ

√
d
√

log(Kn))

T ′∑
t=T (1)

∑
(k′,i′)

`
′(t,J)
k′,i′ ≤

KΘ(σ2
ξ

√
d
√

log(Kn))

(σ2
ξd)JγJ−1nJ−2

.

33

Published as a conference paper at ICLR 2023

Then we get

〈w(T ′+1,0)
−1,r , ξk,i〉 ≤ 〈w(T (1),0)

−1,r , ξk,i〉 −
η

Kn
Θ(σ2

ξ

√
d
√

log(Kn))

T ′∑
t=T (1)

∑
(k′,i′)

`
′(t,J)
k′,i′

≤ 〈w(T (1),0)
−1,r , ξk,i〉+

KΘ(σ2
ξ

√
d
√

log(Kn))

(σ2
ξd)JγJ−1nJ−2

≤ Õ(d−1/2) + Õ(d−1/2)

= Õ(d−1/2) ,

where the third line is due to part (2) of Theorem E.2. This proves our claim.

Proof of Claim E.5. We will show that for any T ′ ≤ T = O(poly(d)), we have that Λ
(T ′)
j =

O(d−1/4) for j ∈ {−1, 1}. We have the following upper bound

Λ
(t+1)
j ≤ Λ

(t)
j −

η

Kn

∑
k,i

`
′(t,J)
k,i Λ

(t)
j γJO(1)

≤ Λ
(t)
j

(
1−O(1)

ηγJ

Kn

∑
k,i

`
′(t,J)
k,i

)
Suppose that there exists some t̃ ≤ T ′ such that Λ

(t̃)
j ≥ d−1/4 for the first time. Then

d−1/4 ≤ Λ
(t̃)
j ≤ Λ

(T (1))
j

t̃−1∏
t=T (1)

(
1−O(1)

ηγJ

Kn

∑
k,i

`
′(t,J)
k,i

)
,

d−1/4

Λ
(T (1))
j

≤
t̃−1∏

t=T (1)

(
1−O(1)

ηγJ

Kn

∑
k,i

`
′(t,J)
k,i

)
,

t̃−1∏
t=T (1)

(
1−O(1)

ηγJ

Kn

∑
k,i

`
′(t,J)
k,i

)
≥ Ω̃(d1/4) ,

t̃−1∑
t=T (1)

log

(
1−O(1)

ηγJ

Kn

∑
k,i

`
′(t,J)
k,i

)
≥ Ω(log(d)) ,

t̃−1∑
t=T (1)

−O(1)
ηγJ

Kn

∑
k,i

`
′(t,J)
k,i ≥ Ω(log(d)) ,

t̃−1∑
t=T (1)

∑
k,i

−`′(t,J)
k,i ≥ Ω

(log(d)Kn

ηγJ

)
.

The third inequality is because by the first part of Theorem E.2, we have Λ
(T (1))
j = Õ(d−1/2). And

hence d−1/4/Λ
(T (1))
j = Ω̃(d1/4). Note that in the proof of Theorem E.10, we have that

T∑
t=T (1)

∑
k,i

−`′(t,J)
k,i ≤ K2

γJ−1η(σ2
ξd)J

= o
(log(d)Kn

ηγJ

)
,

which creates a contradiction. Hence, for all t̃ ≤ T ′, we have Λ
(t̃)
j ≤ d−1/4. This proves the

claim.

Proof of Claim E.6. By our result in Phase I, we have that Claim E.6 holds at T (1). The rest of the
proof is similar to the proof of Hypothesis E.1 and we will omit it here.

34

Published as a conference paper at ICLR 2023

We have shown that for T = poly(d), the feature has not been learnt well if one uses the train-train
method. Thus the testing loss will be large, which is characterized by the following theorem.
Theorem E.11 (Restatement of Theorem 4.4 (2)). Under Condition 4.1 and Condition D.1, the test
loss is large throughout the whole training process

min
t∈[T]

Ltest(W(t)) = Ω(1) .

Proof. Sample a new example x from the distribution, since we use the convolutional structure,
we can assume that the first patch x(1) = y · (ν + z) and the second patch x(2) = ξ. Clearly
〈ξk,i, ξ〉 follows the Gaussian distribution with mean zero and standard deviation σξ · ‖ξk,i‖2. By
Lemma D.2, we further know that ‖ξk,i‖2 ≤ 2σξ

√
d. Therefore

P
(
|〈ξk,i, ξ〉| ≥ d−1/4

)
≤ 2 exp

(
− 1

8σ4
ξd

3/2

)
≤ 2 exp(−d1/4) . (E.31)

Similarly we have that

P
(
|〈w(0,0)

j,r , ξ〉| ≥ d3/2
)
≤ 2 exp

(
− 1

8σ2
0σ

2
ξd

3/2

)
≤ 2 exp(−d1/4) . (E.32)

Denote E to be the event that |〈ξk,i, ξ〉| ≤ d−1/4 and |〈w(0,0)
j,r , ξ〉| ≤ d3/2 for all k ∈ [K], i ∈

[n], r ∈ [m] and j ∈ {−1, 1}. Applying union bound, we have that the P(E) ≥ 1 − 2(nK +
m) exp(−d1/4) ≥ 1/2. We can divide Ltest(W) into two parts:

Ltest(W) = E
[
`
(
yf(W, x)

)]
= E[1(E)`

(
yf(W, x)

)
] + E[1(Ec)`

(
yf(W, x)

)
]

≥ E[1(E)`
(
yf(W, x)

)
] . (E.33)

Let T ′ ≤ T . And suppose that T ′ ≥ T (1). When event E holds, for any j ∈ {−1, 1}, we have

〈w(T ′,0)
j,r , ξ〉 = 〈w(0,0)

j,r , ξ〉 − η

Kn2

T ′−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i σ′(〈w(t,J)

j,r , ξk,i〉)〈ξ, ξk,i〉

≤ 〈w(0,0)
j,r , ξ〉 − η

Kn2

T ′−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i σ′(〈w(t,J)

j,r , ξk,i〉)d−1/4

≤ 〈w(0,0)
j,r , ξ〉 − η

Kn2

T ′−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i d−1/4

≤ 〈w(0,0)
j,r , ξ〉 − ηd−1/4

Kn2

T (2)−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i − ηd−1/4

Kn2

T ′−1∑
t=T (2)

∑
(k,i)∈Ψ

`
′(t,J)
k,i

≤ 〈w(0,0)
j,r , ξ〉+ ηd−1/4T (2) +

ηd−1/4

Kn2
Õ(1)

≤ 〈w(0,0)
j,r , ξ〉+ Õ(d−1/4) + Õ(d−1/4)

= Õ(d−1/4) , (E.34)

where the second line is by Eq. (E.31). The third line is by 0 ≤ σ′(·) ≤ 1. The third last line is due
to −`′(·) ≤ 1, T (2) = polylog(d) and

∑T−1
t=T (2)

∑
(k,i)∈Ψ `

′(t,J)
k,i = Õ(1) . The second last line is

by Eq. (E.32). We note that Eq. (E.34) holds for all j ∈ {−1, 1}, r ∈ [m], and y ∈ {−1, 1}. Using
the same procedure, one can show that j〈w(T ′,0)

j,r , z〉 ≤ Õ(d−1/4) for all r ∈ [m] and j ∈ {−1, 1}.
Now without loss of generality assume y = 1. We have

`
(
y
(
F+1(W(T ′)

+1 , x)− F−1(W(T ′)
−1 , x)

))
= `
(
F+1(W(T ′)

+1 , x)− F−1(W(T ′)
−1 , x)

)
35

Published as a conference paper at ICLR 2023

≥ `
(
F+1(W(T ′)

+1 , x)
)

= `

(m∑
r=1

σ(〈w(T ′,0)
1,r ,ν + z〉) + σ(〈w(T ′,0)

1,r , ξ〉)
)

≥ `
(m∑
r=1

σ
(
Õ(d−1/4) + Õ(d−1/4)

)
+ σ

(
Õ(d−1/4)

))
= `
(
mÕ(d−1/4)

)
= Ω(1) . (E.35)

where second line is because `(·) is nonincreasing and the fourth line is due to Claim E.5. Finally
plugging Eq. (E.35) into Eq. (E.33) gives that

Ltest(W) ≥ E[1(E)`
(
yf(W, x)

)
] ≥ E[1(E)Ω(1)] = Ω(P(E)) = Ω(1).

Since T ′ ∈ [T (1), T] is arbitrary, we get that

min
t∈[T (1),T]

Ltest(W(t)) = Ω(1) .

However, the above proof would also work for T ′ < T (1) using our proofs from Phase I. Hence,

min
t∈[T]

Ltest(W(t)) = Ω(1) ,

which concludes our theorem.

F TRAIN-VALIDATION METHOD

Contrary to the train-train method, we will show in this section that under Condi-
tion D.1, the feature will be learned by our neural network. Abusing notations, let
Ξ

(t)
k,i = max

{
〈w(t,0)

1,r , ξk,i〉 : r ∈ [m]
}

, Γ
(t)
k,i = max

{
〈w(t,0)
−1,r, ξk,i〉 : r ∈ [m]

}
, and Λ

(t)
j =

max
{
j〈w(t,0)

j,r ,ν〉 : r ∈ [m]
}

for j ∈ {−1, 1}. Define C = Jγσ2
ξ

√
d
√

log(Kn), Ξ̂
(t)
k,i =

max{C,Ξ(t)
k,i}, and Γ̂

(t)
k,i = max{C,Γ(t)

k,i}. Let Ψ = {(k, i) : k ∈ [K], i > n1}, Ψ+ = {(k, i) : k ∈
[K], i > n1, yk,i = 1}, and Ψ− = {(k, i) : k ∈ [K], i > n1, yk,i = −1}. So Ψ represents all of
the samples from the validation set of all tasks. And Ψj represents the samples from the validation
set of all tasks with label j. We first present a series of useful lemmas that hold for all t ≥ 0. Theses
lemmas basically show that the learning speed of zk are very slow compared with the learning speed
of the feature ν.

Lemma F.1. Under Condition D.1 and Condition 4.1, for any t ≥ 0, k ∈ [M], j ∈ {−1, 1}, if one
uses the train-validation method, then we have

max
r

∣∣∣j〈w(t,0)
j,r , zk〉

∣∣∣ = o(1)Λ
(t)
j .

Proof. Without loss of generality, let j = 1, k ∈ [M]. Denote r(t) = arg maxr∈[m]

∣∣〈w(t,0)
1,r , zk〉

∣∣.
Define

D(t) :=

∣∣〈w(t,0)
1,r(t), zk〉

∣∣
Λ

(t)
1

.

At t = 0, by Lemma D.2 we have

D(0) =

∣∣〈w(0,0)
1,r(0), zk〉

∣∣
Λ

(0)
1

≤
Θ(σsσ0

√
d
√

log(mKn))

Θ(σ0)
= Θ(σs

√
d
√

log(mKn)) = o(1) .

36

Published as a conference paper at ICLR 2023

Define D0 := Θ(σs
√
d
√

log(mKn)). We show that for any t′ > 0, we have D(t′) ≤ 2D0 = o(1).
Observe that similar to Eq. (E.17), we have for any t ≥ 0,

〈w(t+1,0)
1,r , zk〉 = 〈w(t,0)

1,r , zk〉 −
η

Kn2

∑
(k′,i)∈Ψ

`
′(t,J)
k′,i σ′(〈w(t,J)

1,r ,νk′〉yk′,i)〈zk′ , zk〉

≤ 〈w(t,0)
1,r , zk〉 −

η

Kn2

∑
(k′,i)∈Ψ

`
′(t,J)
k′,i σ′(〈w(t,J)

1,r ,νk′〉yk′,i)Θ(σ2
sd) , (F.1)

where we used Condition 4.1 for the inequality, since 〈zk′ , zk〉 ≤ max(‖zk‖22 , ‖zk′‖
2
2) = Θ(σ2

sd).
Comparing Eq. (C.11) and Eq. (F.1), we can roughly understand why this lemma is true: for any r ∈
[m], the growth of 〈w(t,0)

1,r ,ν〉 is at least a factor of 1/(σ2
sd) = ω(1) faster than that of 〈w(t,0)

1,r , zk〉.
We can compute∣∣〈w(t′,0)

1,r(t′), zk〉
∣∣ ≤ ∣∣∣ t′−1∑

t=0

(
〈w(t+1,0)

1,r(t′) , zk〉 − 〈w
(t,0)
1,r(t′), zk〉

)∣∣∣+
∣∣〈w(0,0)

1,r(t′), zk〉
∣∣

≤
t′−1∑
t=0

∣∣〈w(t+1,0)
1,r(t′) , zk〉 − 〈w

(t,0)
1,r(t′), zk〉

∣∣+
∣∣〈w(0,0)

1,r(t′), zk〉
∣∣

≤
t′−1∑
t=0

Θ(σ2
sd)
∣∣〈w(t+1,0)

1,r(t′) ,ν〉 − 〈w
(t,0)
1,r(t′),ν〉

∣∣+
∣∣〈w(0,0)

1,r(t′), zk〉
∣∣

=

t′−1∑
t=0

Θ(σ2
sd)
(
〈w(t+1,0)

1,r(t′) ,ν〉 − 〈w
(t,0)
1,r(t′),ν〉

)
+
∣∣〈w(0,0)

1,r(t′), zk〉
∣∣

= Θ(σ2
sd)
(
〈w(t′,0)

1,r(t′),ν〉 − 〈w
(0,0)
1,r(t′),ν〉

)
+
∣∣〈w(0,0)

1,r(t′), zk〉
∣∣

≤ Θ(σ2
sd)
(
Λ

(t′)
1 − min

r∈[m]
〈w(0,0)

1,r ,ν〉
)

+
∣∣〈w(0,0)

1,r(0), zk〉
∣∣

≤ Θ(σ2
sd)
(
Λ

(t′)
1 + Θ(σ0

√
log(mKn))

)
+D0Λ

(0)
1 ,

where the first and second lines are by triangle inequality. The third line is by comparing Eq. (C.11)
and Eq. (F.1). The fourth line is by the fact that 〈w(t,0)

1,r ,ν〉 is increasing in t for any r ∈ [m]. The

sixth line is by definition of Λ
(t′)
1 and definition of r(0). The last line is by Lemma D.2. Then we

have ∣∣〈w(t′,0)
1,r(t′), zk〉

∣∣
Λ

(t′)
1

≤
Θ(σ2

sd)
(
Λ

(t′)
1 + Θ(σ0

√
log(mKn))

)
+D0Λ

(0)
1

Λ
(t′)
1

≤ Θ(σ2
sd)(1 +

√
log(mKn)) +D0

< 2D0 ,

where we used Λ
(t)
j is increasing in t to get the second inequality. The third inequality is

by direct calculation and comparison: D0 = Θ(σs
√
d
√

log(mKn)), σ2
sd = (σs

√
d)2 =

σs
√
d/polylog(d) = o(1)D0, σ2

sd
√

log(mKn) = σs
√

log(mKn)/polylog(d) = o(1)D0. This
proves the lemma.

Lemma F.2. Under Condition D.1 and Condition 4.1, for any j ∈ {−1, 1}, r ∈ [m], if at time t we
have j〈w(t,0)

j,r ,ν〉 ≥ d−1/3, then for any k ∈ [K]

j〈w(t,0)
j,r , zk〉 = O(σ2

sd)j〈w(t,0)
j,r ,ν〉 = o(1)j〈w(t,0)

j,r ,ν〉 .

Proof. Without loss of generality, assume j = 1. And suppose 〈w(t,0)
1,r ,ν〉 ≥ d−1/3 for some

r ∈ [m]. By Eq. (C.11), we have

d−1/3 ≤ 〈w(t,0)
1,r ,ν〉 = 〈w(0,0)

1,r ,ν〉 − η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 ,

37

Published as a conference paper at ICLR 2023

d−1/3 − 〈w(0,0)
1,r ,ν〉 ≤ − η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 ,

d−1/3 −O(σ0

√
log(mKn)) ≤ − η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 ,

Ω(d−1/3) ≤ − η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 .

Recall that from Condition D.1 and Condition 4.1∣∣〈w(0,0)
1,r ,ν〉

∣∣ ≤ Õ(d−1/2)� O(d−1/3) ≤ −η
Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 .

This implies

∣∣〈w(0,0)
1,r ,ν〉

∣∣ = −o(1)
η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 ,

Hence,

〈w(t,0)
1,r ,ν〉 = −Θ(1)

η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 . (F.2)

On the other hand, from Eq. (F.1) and Lemma D.2 we have

〈w(t,0)
1,r , zk〉 ≤ 〈w(0,0)

1,r , zk〉 −
η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i)Θ(σ2
sd)

≤ O(σsσ0

√
d
√

log(mKn))− η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i)Θ(σ2
sd)

≤ −O(1)
η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i)Θ(σ2
sd)

= −O(σ2
sd)

η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i)

= O(σ2
sd)〈w(t,0)

1,r ,ν〉

= o(1)〈w(t,0)
1,r ,ν〉 ,

where the third line is a direct comparison of the sizes of the first and second term of the second
line. The second last equality is due to Eq. (F.2).

Lemma F.3. Under Condition D.1 and Condition 4.1, for any j ∈ {−1, 1}, r ∈ [m], if at time t we
have j〈w(t,0)

j,r ,ν〉 < d−1/3, then for any k ∈ [K]

j〈w(t,0)
j,r , zk〉 < d−1/3 .

Proof. Without loss of generality, consider j = 1. Let k ∈ [K], r ∈ [m] and suppose 〈w(t,0)
1,r ,ν〉 <

d−1/3 at time t. By Eq. (C.11), we have

d−1/3 > 〈w(t,0)
1,r ,ν〉 = 〈w(0,0)

1,r ,ν〉 − η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 ,

38

Published as a conference paper at ICLR 2023

d−1/3 − 〈w(0,0)
1,r ,ν〉 > − η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 ,

d−1/3 − min
r′∈[m]

〈w(0,0)
1,r′ ,ν〉 > −

η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 ,

d−1/3 +O(d−1/2) > − η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 ,

2d−1/3 > − η

Kn2

t−1∑
t′=0

∑
(k,i)∈Ψ

`
′(t′,J)
k,i σ′(〈w(t′,J)

j,r ,νk〉yk,i) ‖ν‖22 , (F.3)

where the fourth line is by Lemma D.2. Meanwhile, using Eq. (F.1) and Lemma D.2 we obtain

〈w(t,0)
1,r , zk〉 ≤ 〈w(0,0)

1,r , zk〉 −
η

Kn2

t−1∑
t′=0

∑
(k′,i)∈Ψ

`
′(t,J)
k′,i σ′(〈w(t,J)

1,r ,νk′〉yk′,i)Θ(σ2
sd)

≤ 〈w(0,0)
1,r , zk〉+ 2d−1/3Θ(σ2

sd)

≤ O(σ0σs
√
d
√

log(mKn)) + 2d−1/3Θ(σ2
sd)

< d−1/3 ,

where the second line is by Eq. (F.3). The last inequality is because the first term in the second last
line is Õ(d−1/2) and Θ(σ2

sd) = o(1). This proves our lemma.

Lemma F.4. Under Condition D.1 and Condition 4.1, for any j ∈ {−1, 1}, r ∈ [m] and k ∈ [K] if
at time t we have j〈w(t,0)

j,r , zk〉 = O(σ2
sd)j〈w(t,0)

j,r ,ν〉, then

j〈w(t,J)
j,r , zk〉 = O(σ2

sd)j〈w(t,J)
j,r ,ν〉 ,

where w(t,J)
j,r on both hand sides refer to the weights w(t,0)

j,r after J steps inner-loop updates using
samples from S tr

k .

Proof. Without loss of generality, let j = 1. Using samples from S tr
k , similar to Eq. (C.5) we have

〈w(t,τ+1)
1,r ,ν〉 = 〈w(t,τ)

1,r ,ν〉 − γ

n1

n1∑
i=1

`
′(t,τ)
k,i σ′(〈w(t,τ)

j,r ,νk〉yk,i) ‖ν‖22 . (F.4)

And

〈w(t,τ+1)
1,r , zk〉 = 〈w(t,τ)

1,r , zk〉 −
γ

n1

n1∑
i=1

`
′(t,τ)
k,i σ′(〈w(t,τ)

j,r ,νk〉yk,i) ‖zk‖22 .

This implies

〈w(t,J)
1,r ,ν〉 = 〈w(t,0)

1,r ,ν〉 − γ

n1

J−1∑
τ=0

n1∑
i=1

`
′(t,τ)
k,i σ′(〈w(t,τ)

j,r ,νk〉yk,i) ‖ν‖22 ,

〈w(t,J)
1,r , zk〉 = 〈w(t,0)

1,r , zk〉 −
γ

n1

J−1∑
τ=0

n1∑
i=1

`
′(t,τ)
k,i σ′(〈w(t,τ)

j,r ,νk〉yk,i) ‖zk‖22 .

Recall ‖ν‖22 = 1 and ‖zk‖22 = O(σ2
sd) by Condition 4.1. Since we are given 〈w(t,0)

1,r , zk〉 =

O(σ2
sd)〈w(t,0)

1,r ,ν〉, we conclude that

〈w(t,J)
1,r , zk〉 = O(σ2

sd)〈w(t,J)
1,r ,ν〉 .

39

Published as a conference paper at ICLR 2023

The following corollary is an immediate result of Lemma F.2 and Lemma F.4.

Corollary F.5. Fix j ∈ {−1, 1}. Then for any r ∈ [m], if at time t we have j〈w(t,0)
j,r ,ν〉 ≥ d−1/3,

then for any k ∈ [K],

j〈w(t,J)
j,r , zk〉 = O(σ2

sd)j〈w(t,J)
j,r ,ν〉 = O(1/polylog(d))j〈w(t,J)

j,r ,ν〉 ,

where w(t,J)
j,r on both hand sides refer to the weights w(t,0)

j,r after J steps inner-loop updates using
samples from S tr

k .
Lemma F.6. Under Condition D.1 and Condition 4.1, for any j ∈ {−1, 1}, r ∈ [m], and k ∈ [K],
if we are using the samples from S tr

k , then for any t ≥ 0 we have

j〈w(t,J)
j,r ,ν〉 ≤ 2 max

{
Λ

(t)
j , Jγ

}
.

Proof. Without loss of generality, consider j = 1. Let r ∈ [m] and k ∈ [K]. Using samples from
S tr
k , by Eq. (F.4) we have

〈w(t,τ+1)
1,r ,ν〉 ≤ 〈w(t,τ)

1,r ,ν〉+ γ ,

for any τ ∈ [J − 1], where we have used the fact that −`′(·) ≤ 1 and σ′(·) ≤ 1. Repeating J times
we get

〈w(t,J)
1,r ,ν〉 ≤ 〈w(t,0)

1,r ,ν〉+ Jγ ≤ Λ
(t)
1 + Jγ ≤ 2 max

{
Λ

(t)
1 , Jγ

}
.

F.1 PHASE I

Let T (2)
j be the first iteration such that Λ

(t)
j ≥ m−1/2 (1 + γ)

−J
= Θ̃(1) and let T (2) = maxj T

(2)
j .

Without loss of generality, let us assume that T (2)
−1 ≤ T

(2)
1 .

Recall that we assumed T (2)
1 ≥ T (2)

−1 .
Lemma F.7 (Restatement of Lemma 6.2). Under Condition D.1 and Condition 4.1, if one uses the
train-validation method, then for any t ≤ T (2),

1. For any k ∈ [K] and r = arg maxr′∈[m]〈w
(t,0)
1,r′ ,ν〉

〈w(t,J)
1,r ,νk〉 = Ω(1)〈w(t,0)

1,r ,ν〉(1 + Θ(1)γ)J .

2. For any r ∈ [m], (k, i) ∈ Ψ, and j ∈ {−1, 1}

〈w(t,J)
j,r , ξk,i〉 ≤ O

(
max

{
〈w(t,0)
j,r , ξk,i〉, C

})
.

Proof. The proof of the first part relies on the following hypothesis which we will verify inductively
later.

− `′(t,τ)
k,i = Θ(1), for all τ ∈ [J], k ∈ [K], i ∈ [n] such that yk,i = 1 . (F.5)

σ′(〈w(t,τ)
1,r ,νk〉) = Θ(1)〈w(t,τ)

1,r ,νk〉, for all τ ∈ [J], k ∈ [K] if 〈w(t,τ)
1,r ,νk〉 > 0 . (F.6)

By Eq. (C.5), we know 〈w(t,τ)
1,r ,νk〉 is increasing in τ for any r ∈ [m] and k ∈ [K]. Moreover, we

have

〈w(t+1,0)
1,r ,νk〉 = 〈w(t,0)

1,r ,νk〉 −
η

Kn

∑
(k′,i)∈Ψ

`
′(t,J)
k′,i σ′(〈w(t,J)

1,r ,νk′〉yk′,i)〈νk,νk′〉 ,

which shows that 〈w(t,0)
1,r ,νk〉 is increasing in t for all r ∈ [m], k ∈ [K], since 〈νk,νk′〉 = ‖ν‖22 +

〈zk, zk′〉 > 0. And Eq. (C.11) shows that 〈w(t,0)
1,r ,ν〉 is increasing in t for all r ∈ [m]. Let r(t) =

arg maxr∈[m]〈w
(t,0)
1,r ,ν〉. Recall that under Lemma D.2, we have 〈w(0,0)

1,r(0),ν〉 = Ω(σ0) > 0. Since
this is increasing in t, we have

〈w(t,0)
1,r(t),ν〉 ≥ 〈w

(t,0)
1,r(0),ν〉 ≥ 〈w

(0,0)
1,r(0),ν〉 > 0 ,

40

Published as a conference paper at ICLR 2023

where the first inequality is by definition of r(t). By Lemma F.1, we have for any k ∈ [K],

〈w(t,0)
1,r(t),νk〉 = 〈w(t,0)

1,r(t),ν〉+ 〈w(t,0)
1,r(t), zk〉 ≥ (1− o(1))〈w(t,0)

1,r(t),ν〉 > 0 .

And by monotonicity in τ , we have 〈w(t,τ)
1,r(t),νk〉 > 0 for all τ ∈ [J]. From Eq. (C.5) we can

compute

〈w(t,τ+1)
1,r(t) ,νk〉 = 〈w(t,τ)

1,r(t),νk〉 −
γ

n1

∑
i≤n1,yk,i=1

`
′(t,τ)
k,i σ′(〈w(t,τ)

1,r(t),νk〉) ‖νk‖
2
2

= 〈w(t,τ)
1,r(t),νk〉+ γΘ(1)〈w(t,τ)

1,r(t),νk〉

= 〈w(t,τ)
1,r(t),νk〉(1 + Θ(1)γ) .

where we have used Hypothesis F.5 F.6 and ‖νk‖2 = Θ(1) to get the second line. Applying this
repeatedly to get

〈w(t,J)
1,r(t),νk〉 = 〈w(t,0)

1,r(t),νk〉(1 + Θ(1)γ)J

= Ω(1)〈w(t,0)
1,r(t),ν〉(1 + Θ(1)γ)J , (F.7)

where we have used Lemma F.1 to get the second equality. This proves the first part of the lemma.
Consider some (k, i) ∈ Ψ. Without loss of generality we will prove the second part of the lemma
for j = 1, since the proof for j = −1 is the same. By Eq. (C.3), for any r ∈ [m] we have

〈w(t,τ+1)
1,r , ξk,i〉 ≤ 〈w(t,τ)

1,r , ξk,i〉+ γΘ(1)Θ(σ2
ξ

√
d
√

log(Kn)) ,

where we used −`′(·) ≤ 1, σ′(·) ≤ 1 and Lemma D.2. This implies

〈w(t,J)
1,r , ξk,i〉 ≤ 〈w(t,0)

1,r , ξk,i〉+ JγΘ(1)Θ(σ2
ξ

√
d
√

log(Kn))

≤ O
(

max
{
〈w(t,0)

1,r , ξk,i〉, C
})

. (F.8)

The second inequality is by definition of C. This proves the second part of the lemma.

Remark F.8. Eq. (F.8) is not a surprising result. Since ξk,i comes from the validation set and the
inner-loop updates only uses samples from the training set, we expect that after J steps of inner-loop
updates, the inner product should remain as the same order as before the J steps inner-loop updates.

Theorem F.9 (Restatement of Lemma 6.3). Under Condition D.1 and Condition 4.1, if one uses the
train-validation method, then for any t ≤ T (2), (k, i) ∈ Ψ,

Ξ̂
(t)
k,i ≤ O(1)Ξ̂

(0)
k,i = Õ(d−1/2) .

And
Γ̂

(t)
k,i ≤ O(1)Γ̂

(0)
k,i = Õ(d−1/2) .

Proof. We will only prove our first statement that involves Ξ̂
(t)
k,i, because the proof of the second

statement that involves Γ̂
(t)
k,i will be exactly the same.

Similar to the proof of Theorem E.2, we will give lower bound on the growth of Λ
(t)
1 and upper

bound on the growth of Ξ̂
(t)
k,i. We can upper bound the growth of Λ

(t)
1 using Lemma F.7. We first

note that since 〈w(t,J)
1,r(t),νk〉 > 0, we have −〈w(t,J)

1,r(t),νk〉 < 0. Thus, if (k, i) ∈ Ψ− we have

σ′(〈w(t,J)
1,r(t),νk〉yk,i) = 0. Then by Eq. (C.11), we get

Λ
(t+1)
1 ≥ 〈w(t+1,0)

1,r(t) ,ν〉 = 〈w(t,0)
1,r(t),ν〉 −

η

Kn2

∑
(k,i)∈Ψ

`
′(t,J)
k,i σ′(〈w(t,J)

1,r(t),νk〉yk,i)

= 〈w(t,0)
1,r(t),ν〉 −

η

Kn2

∑
(k,i)∈Ψ+

`
′(t,J)
k,i Θ(1)〈w(t,J)

1,r(t),νk〉

41

Published as a conference paper at ICLR 2023

= 〈w(t,0)
1,r(t),ν〉+ ηΩ(1)〈w(t,0)

1,r(t),ν〉(1 + Θ(1)γ)J

= 〈w(t,0)
1,r(t),ν〉(1 + Ω(1)ηγJ)

= Λ
(t)
1 (1 + Ω(1)ηγJ) , (F.9)

where we used σ′(〈w(t,J)
1,r(t),νk〉yk,i) = 0 if (k, i) ∈ Ψ−, and Hypothesis F.5 F.6 to get the second

equality. We used Lemma F.7 to get the third equality. Next, let (k, i) ∈ Ψ and r ∈ [m]. We will
derive an upper bound on the growth of Ξ̂

(t)
k,i. By Eq. (C.9), we have

〈w(t+1,0)
1,r , ξk,i〉 ≤ 〈w(t,0)

1,r , ξk,i〉+
η

Kn2

∑
(k′,i′)∈Ψ\{(k,i)}

Θ(σ2
ξ

√
d
√

log(Kn))

+
η

Kn2
σ′(〈w(t,J)

1,r , ξk,i〉)Θ(σ2
ξd)

≤ 〈w(t,0)
1,r , ξk,i〉+ ηΘ(σ2

ξ

√
d
√

log(Kn)) +
η

Kn2
Θ(σ2

ξd)
∣∣〈w(t,J)

1,r , ξk,i〉
∣∣

≤ 〈w(t,0)
1,r , ξk,i〉+ ηΘ(σ2

ξ

√
d
√

log(Kn))

+
η

Kn2
Θ(σ2

ξd)O
(

max
{
〈w(t,0)

1,r , ξk,i〉, C
})

, (F.10)

where we used −`′(·) ≤ 1 and σ′(·) ≤ 1 and Lemma D.2 in the first inequality. We used
σ′(x) ≤ 2|x| for any x ∈ R to get the second inequality. And we used Lemma F.7 to get
the last inequality. Abusing notation, let r(t) = arg maxr∈[m]〈w

(t,0)
1,r , ξk,i〉. By definition,

we have Ξ
(t)
k,i = 〈w(t,0)

1,r(t), ξk,i〉. Let us compare the size of the second and third term on the
right hand side of Eq. (F.10). The third term outweighs the second term at least by a factor of
Θ(Jγσ2

ξd/(Kn2)) = log(d)0.9, due to the presence of the constant C in the third term. Therefore,
the second term is dominated by the third term for all r ∈ [m] and for all t ≥ 0. So Eq. (F.10)
becomes

〈w(t+1,0)
1,r , ξk,i〉 ≤ 〈w(t,0)

1,r , ξk,i〉+
η

Kn2
Θ(σ2

ξd)O
(

max
{
〈w(t,0)

1,r , ξk,i〉, C
})

≤ max
{
〈w(t,0)

1,r , ξk,i〉, C
}

+
η

Kn2
Θ(σ2

ξd)O
(

max
{
〈w(t,0)

1,r , ξk,i〉, C
})

≤ max
{

Ξ
(t)
k,i, C

}
+

η

Kn2
Θ(σ2

ξd)O
(

max
{

Ξ
(t)
k,i, C

})
= Ξ̂

(t)
k,i

(
1 +O(1)

ησ2
ξd

Kn2

)
.

Since the above inequality holds for all r ∈ [m] on the left hand side, it holds for r(t + 1) in
particular. This gives

Ξ
(t+1)
k,i ≤ Ξ̂

(t)
k,i

(
1 +O(1)

ησ2
ξd

Kn2

)
.

And it is straightforward to check by definition of Ξ̂
(t)
k,i that

Ξ̂
(t+1)
k,i ≤ Ξ̂

(t)
k,i

(
1 +O(1)

ησ2
ξd

Kn2

)
. (F.11)

We are now ready to prove our theorem. Compare Eq. (F.9) and Eq. (F.11), we can use Lemma D.5

to get an upper bound on Ξ̂
(T (2))
k,i . We take A = Ω(1)ηγJ , B = O(1)

ησ2
ξd

Kn2
, G = 2, D = m−1/2γ−J

in Lemma D.5. We see that since Λ
(0)
1 = Θ(d−1/2) > G−A/B = 2− log(d)1.5 under Condition D.1,

Lemma D.5 tells us that
Ξ̂

(T (2))
k,i ≤ O(Ξ̂

(0)
k,i) .

This proves our main theorem.

It remains to verify our previous hypothesis. Note that if we suppose all of our hypothesis hold at
time t < T (2), then Theorem F.9 implies that for all (k, i) ∈ Ψ we have Ξ̂

(t+1)
k,i ≤ O(Ξ̂

(0)
k,i). By

Lemma D.2, it is clear that Hypothesis F.5 and F.6 hold at initialization.

42

Published as a conference paper at ICLR 2023

Proof of Hypothesis F.5. The proof will be similar to the proof of Hypothesis E.2. Let k ∈ [K] and
i ∈ [n] be such that yk,i = 1. Recall Eq. (C.7) and that∑

j=±1

m∑
r=1

j
(
σ(〈w(t+1,τ)

j,r , ξk,i〉)+σ(〈w(t+1,τ)
j,r ,νk〉)

)
≤

m∑
r=1

(
σ(〈w(t+1,τ)

1,r , ξk,i〉) + σ(〈w(t+1,τ)
1,r ,νk〉)

)
. (F.12)

Assume our Hypothesis hold at time t. We have
m∑
r=1

σ(〈w(t+1,0)
1,r , ξk,i〉) ≤

m∑
r=1

σ
(
Ξ̂

(t+1)
k,i

)
≤ mσ

(
O(Ξ̂

(0)
k,i)
)

= o(1) , (F.13)

where the first inequality is by definition of Ξ̂
(t+1)
k,i and the second inequality is because Ξ̂

(t+1)
k,i ≤

O(Ξ̂
(0)
k,i). The third equality is because m = polylog(d) and σ

(
O(Ξ̂

(0)
k,i)
)

= Õ(d−1). For any
r ∈ [m], we have

〈w(t+1,0)
1,r ,νk〉 = 〈w(t+1,0)

1,r ,ν〉+ 〈w(t+1,0)
1,r , zk〉

≤ Λ
(t+1)
1 + max

r′∈[m]
〈w(t+1,0)

1,r′ , zk〉

≤ O(1)Λ
(t+1)
1

≤ O(1)Λ
(T (2))
1

= O(m−1/2(1 + γ)−J) ,

where the second line is by definition of Λ
(t+1)
1 . The third line is by Lemma F.1. The fourth line is

because t+ 1 ≤ T (2) and Λ
(t)
1 is increasing in t. The last line is by definition of T (2). Thus

m∑
r=1

σ(〈w(t+1,τ)
1,r ,νk〉 ≤ m · O(m−1/2(1 + γ)−J) = o(1) . (F.14)

Combining Eq. (C.7), Eq. (F.12), Eq. (F.13), and Eq. (F.14), we have

−`′(t+1,0)
k,i ≥ −`′(o(1) + o(1)) = Ω(1) .

Now, suppose that−`′(t+1,τ)
k,i = Ω(1) for some 0 ≤ τ ≤ J−1. We wish to show that−`′(t+1,τ+1)

k,i =

Ω(1). By Eq. (F.8), we know that for i > n1, we have

〈w(t+1,τ+1)
1,r , ξk,i〉 ≤ O

(
max

{
〈w(t+1,0)

1,r , ξk,i〉, C
})

≤ O
(

max
{

Ξ
(t+1)
k,i , C

})
= O

(
Ξ̂

(t+1)
k,i

)
,

where the second and third line are by definition of Ξ
(t+1)
k,i and Ξ̂

(t+1)
k,i respectively. This gives

m∑
r=1

σ(〈w(t+1,τ+1)
1,r , ξk,i〉) ≤

m∑
r=1

σ
(
O(Ξ̂

(t+1)
k,i)

)
≤ mσ

(
O(Ξ̂

(0)
k,i)
)

= o(1) , (F.15)

43

Published as a conference paper at ICLR 2023

where the second inequality is because Ξ̂
(t+1)
k,i ≤ O(Ξ̂

(0)
k,i). If i ∈ [n1], then by Eq. (C.4) we can

bound

〈w(t+1,τ+1)
1,r , ξk,i〉 ≤ 〈w(t+1,τ)

1,r , ξk,i〉+ γΘ(σ2
ξ

√
d
√

log(Kn)) +
γ

n1
Θ(σ2

ξd)σ′(〈w(t+1,τ)
1,r , ξk,i〉)

≤
∣∣〈w(t+1,τ)

1,r , ξk,i〉
∣∣(1 + γΘ(σ2

ξd)/n1

)
+ γΘ(σ2

ξ

√
d
√

log(Kn))

≤ max
{∣∣〈w(t+1,τ)

1,r , ξk,i〉
∣∣, C}(1 + γΘ(σ2

ξd)/n1

)
,

where we used −`′(·) ≤ 1 and σ′(·) ≤ 1 and Lemma D.2 in the first inequality. And we used
σ′(x) ≤ 2|x| for any x ∈ R to get the second inequality. This implies

max
{∣∣〈w(t+1,τ+1)

1,r , ξk,i〉
∣∣, C} ≤ max

{∣∣〈w(t+1,τ)
1,r , ξk,i〉

∣∣, C}(1 + γΘ(σ2
ξd)/n1

)
≤ max

{∣∣〈w(t+1,0)
1,r , ξk,i〉

∣∣, C}(1 + γΘ(σ2
ξd)/n1

)τ+1

= Ξ̂
(t+1)
k,i

(
1 + γΘ(σ2

ξd)/n1

)τ+1

≤ O
(
Ξ̂

(0)
k,i

)(
1 + γΘ(σ2

ξd)/n1

)τ+1

= Õ(d−1/2) ,

where the third line is by definition of Ξ̂
(t+1)
k,i . The fourth line is because Ξ̂

(t+1)
k,i ≤ O(Ξ̂

(0)
k,i). And

the last equality is by direct calculation. Thus

〈w(t+1,τ+1)
1,r , ξk,i〉 ≤ max

{∣∣〈w(t+1,τ+1)
1,r , ξk,i〉

∣∣, C} ≤ Õ(d−1/2) .

This gives
m∑
r=1

σ(〈w(t+1,τ+1)
1,r , ξk,i〉) ≤

m∑
r=1

σ
(
Õ(d−1/2)

)
= m · σ

(
Õ(d−1/2)

)
= o(1) .

Using Eq. (C.5), we have

〈w(t+1,τ+1)
1,r ,νk〉 ≤ 〈w(t+1,τ)

1,r ,νk〉+ γΘ(1)
∣∣〈w(t+1,τ)

1,r ,νk〉
∣∣

≤
∣∣〈w(t+1,τ)

1,r ,νk〉
∣∣(1 + Θ(1)γ)

≤
∣∣〈w(t+1,0)

1,r ,νk〉
∣∣(1 + Θ(1)γ)τ+1

≤
∣∣〈w(t+1,0)

1,r ,νk〉
∣∣(1 + Θ(1)γ)J

≤ O(m−1/2(1 + γ)−J)(1 + Θ(1)γ)J

= O(m−1/2) , (F.16)

where we used `′(·) ≤ 1, σ′(x) ≤ 2|x| for any x ∈ R and ‖νk‖2 = Θ(1) in the first inequality. The
fifth inequality is by t+ 1 ≤ T (2) and the definition of T (2). Then we have

m∑
r=1

σ(〈w(t+1,τ+1)
1,r ,νk〉 ≤ m · O(m−1) = O(1) . (F.17)

The inequality is because σ(O(m−1/2)) = O(m−1). Combining Eq. (C.7), Eq. (F.12), Eq. (F.15),
and Eq. (F.17) we obtain

−`′(t+1,τ+1)
k,i ≥ −`′(O(1) + o(1)) = Ω(1) .

This proves the hypothesis.

Proof of Hypothesis F.6. By Eq. (F.16), we have that 〈w(t+1,τ)
1,r ,νk〉 < O(m−1/2). Thus if

〈w(t+1,τ)
1,r ,νk〉 > 0, then

σ′(〈w(t+1,τ)
1,r ,νk〉) = 2〈w(t+1,τ)

1,r ,νk〉 ,
by definition of σ′(·).

44

Published as a conference paper at ICLR 2023

F.2 PHASE II

We have shown that when the feature inner product has grown to Θ̃(1), the noise inner products
remain at Θ̃(d−1/2), which is exactly the opposite of Theorem E.2. Next we will show that this
difference is maintained at least when Λ

(t)
j has grown to O(log(d)0.1). For (k, i) ∈ Ψ, let

Ξ̃
(t)
k,i = max

{
max
r∈[m]

{
〈w(t,0)

yk,i,r
, ξk,i〉

}
, d−1/3

}
.

And
Γ̃

(t)
k,i = max

{
max
r∈[m]

{
〈w(t,0)
−yk,i,r, ξk,i〉

}
, C
}
.

Let T (3)
j be the first iteration such that Λ

(t)
j ≥ log(d)0.1. Let T (3) = max

{
T

(3)
−1 , T

(3)
1

}
. And recall

T = poly(d) is the total number of iterations. We first present two claims under Condition D.1 and
Condition 4.1.

Claim F.10. For any t ≥ T (2), any (k, i) ∈ Ψ, we have Γ̃
(t)
k,i ≤ Θ̃(d−1/2).

Claim F.11. For any t ≤ T (3)
j , (k, i) ∈ Ψj , we have Ξ̃

(t)
k,i ≤ O(d−1/4).

Remark F.12. Under Claim F.10, it holds that Γ̃
(t)
k,i = o(1)Ξ̃

(t)
k′,i′ for all (k, i), (k′, i′) ∈ Ψ.

Remark F.13. By Theorem F.9, Claim F.10 holds at time T (2). Also by Theorem F.9, Claim F.11
holds for all t ≤ T (2).

Note that from Eq. (C.11), the growth of j〈w(t,0)
j,r ,ν〉 depends on the size of j〈w(t,J)

j,r ,νk〉. We first

need a lemma that can gives a lower bound on j〈w(t,J)
j,r ,νk〉 for t ≥ T (2). The following lemma will

be of a similar form to Lemma E.7.

Lemma F.14. For any T (3)
j ≥ t ≥ T (2), let r(t) = arg maxr∈[m] j〈w

(t,0)
j,r ,ν〉. Assume Claim F.11

holds, then j〈w(t,J)
j,r(t),νk〉 ≥ Ω(m−1/2) for any k ∈ [K].

Proof. For simplicity, take j = 1. We shall see that our proof does not depend on the choice of j and
thus taking j = 1 is not a loss of generality. By Eq. (C.5), we know that 〈w(t,τ)

1,r(t),νk〉 is an increasing

function of τ . Thus if 〈w(t,0)
1,r(t),νk〉 = Ω(m−1/2), then we must have 〈w(t,J)

1,r(t),νk〉 ≥ Ω(m−1/2).

By Eq. (C.11) and the definition of r(t), we also have that 〈w(t,0)
1,r(t),ν〉 is an increasing function in

t. By definition of T (2), for any t ≥ T (2), it holds that 〈w(t,0)
1,r(t),ν〉 ≥ m−1/2(1 + γ)−J . Then by

Lemma F.2, we have 〈w(t,0)
1,r(t),νk〉 ≥ O(1)m−1/2(1 + γ)−J . It suffices to prove that if

m−1/2(1 + γ)−τ ≤ 〈w(t,0)
1,r(t),νk〉 ≤ m

−1/2(1 + γ)−τ+1 , (F.18)

for τ ∈ [J], then 〈w(t,J)
1,r(t),νk〉 ≥ Ω(m−1/2). Let us suppose that F.18 is true for some τ . Under

our assumption that Ξ̃
(t)
k,i ≤ O(d−1/4), we can apply the same proof as Hypothesis F.5 to get that

−`′(t,τ
′)

k,i = Ω(1) for any τ ′ ∈ [τ]. Then using the same derivation of Eq. (F.7), we obtain

〈w(t,τ)
1,r(t),νk〉 = Ω(1)〈w(t,0)

1,r(t),ν〉(1+Θ(1)γ)τ ≥ m−1/2(1+γ)−τΩ(1)(1+Θ(1)γ)τ = Ω(1)m−1/2 .

This concludes the lemma.

The next lemma shows that as long as the noise vectors have not been learnt well by our network,
the loss from different samples are essentially due to the feature and hence are of similar sizes.

Lemma F.15. Let j ∈ {−1, 1}. Under Condition D.1 and Condition 4.1, while Ξ̃
(t)
k,i ≤ O(d−1/4)

and Γ̃
(t)
k,i ≤ O(d−1/2) for all (k, i) ∈ Ψj , and mσ2

sdΛ
(t)
j ≤ O(1), we have `′(t,J)

k1,i1
= Θ(1)`

′(t,J)
k2,i2

if
(k1, i1), (k2, i2) ∈ Ψj .

45

Published as a conference paper at ICLR 2023

Proof. Without loss of generality, assume yk1,i1 = yk2,i2 = j = 1. We can essentially use the proof
of Hypothesis F.5 to get that

m∑
r=1

σ(〈w(t,J)
1,r , ξkq,iq 〉) = o(1) , (F.19a)

m∑
r=1

σ(〈w(t,J)
−1,r , ξkq,iq 〉) = o(1) , (F.19b)

for q ∈ {1, 2}. Moreover, since j〈w(t,τ)
j,r ,νk〉 is increasing in t and τ for any j ∈ {−1, 1}, r ∈

[m], k ∈ [K], we get that 〈w(t,J)
−1,r ,νk〉 ≤ 〈w

(0,0)
−1,r,νk〉 ≤ O(d−1/2). This implies

m∑
r=1

σ(〈w(t,J)
−1,r ,νkq 〉) = o(1) ,

for q ∈ {1, 2}. By Eq. (C.7), it suffices to show that∣∣∣∣ m∑
r=1

σ(〈w(t,J)
1,r ,νk1〉)− σ(〈w(t,J)

1,r ,νk2〉)
∣∣∣∣ ≤ O(1) .

We divide the weights into two sets. Let G =
{
r ∈ [m] : 〈w(t,0)

1,r ,ν〉 ≥ d−1/3
}

, and H =
{
r ∈

[m] : r /∈ G
}

. Let us first consider r ∈ G. By Corollary F.5, we have that

〈w(t,J)
1,r , zkq 〉 = O(σ2

sd)〈w(t,J)
1,r ,ν〉 ,

for q ∈ {1, 2}, which implies

〈w(t,J)
1,r ,νkq 〉 = (1 +O(σ2

sd))〈w(t,J)
1,r ,ν〉 .

Moreover, by Lemma F.6 we get

〈w(t,J)
1,r ,νkq 〉 ≤ 〈w

(t,J)
1,r ,ν〉+O(σ2

sd)2 max
{
Λ

(t)
1 , Jγ

}
.

By a direct calculation, we have mσ2
sdJγ = o(1) and by assumption mσ2

sdΛ
(t)
1 ≤ O(1). We can

then calculate∑
r∈G

σ(〈w(t,J)
1,r ,νkq 〉) ≤

∑
r∈G

σ
(
〈w(t,J)

1,r ,ν〉+O(σ2
sd)2 max

{
Λ

(t)
1 , Jγ

})
≤
∑
r∈G

σ(〈w(t,J)
1,r ,ν〉) +

∑
r∈G
O(1)O(σ2

sd)2 max
{
Λ

(t)
1 , Jγ

}
≤
∑
r∈G

σ(〈w(t,J)
1,r ,ν〉) +mO(σ2

sd)2 max
{
Λ

(t)
1 , Jγ

}
≤
∑
r∈G

σ(〈w(t,J)
1,r ,ν〉) +O(1) , (F.20)

where in the second line we used σ(x + ε) ≤ σ(x) + O(1)ε for ε ≥ 0. The third line is due to
|G| ≤ m. If r ∈ H, then by Lemma F.3 we have 〈w(t,0)

1,r , zkq 〉 < d−1/3. Then by Eq. (C.5) we have∣∣〈w(t,τ+1)
1,r ,νkq 〉

∣∣ ≤ ∣∣〈w(t,τ)
1,r ,νkq 〉

∣∣(1 +O(1)γ) ,

for τ ∈ [J − 1]. Hence ∣∣〈w(t,J)
1,r ,νkq 〉

∣∣ ≤ ∣∣〈w(t,0)
1,r ,νkq 〉

∣∣(1 +O(1)γ)J

≤ Õ(d−1/3) . (F.21)

Combining the above results, we finally have
m∑
r=1

σ(〈w(t,J)
1,r ,νkq 〉) =

∑
r∈G

σ(〈w(t,J)
1,r ,νkq 〉) +

∑
r∈H

σ(〈w(t,J)
1,r ,νkq 〉)

46

Published as a conference paper at ICLR 2023

≤
∑
r∈G

σ(〈w(t,J)
1,r ,ν〉) +O(1) +

∑
r∈H

σ
(
Õ(d−1/3)

)
≤
∑
r∈G

σ(〈w(t,J)
1,r ,ν〉) +O(1) +mσ

(
Õ(d−1/3)

)
=
∑
r∈G

σ(〈w(t,J)
1,r ,ν〉) +O(1) + o(1)

=
∑
r∈G

σ(〈w(t,J)
1,r ,ν〉) +O(1) , (F.22)

where the second line is due to Eq. (F.20) and Eq. (F.21). Since the above holds for q ∈ {1, 2}, we
get ∣∣∣∣ m∑

r=1

σ(〈w(t,J)
1,r ,νk1〉)− σ(〈w(t,J)

1,r ,νk2〉)
∣∣∣∣ ≤ O(1) +O(1) = O(1) .

And using Eq. (C.7), we conclude that `′(t,J)
k1,i1

= Θ(1)`
′(t,J)
k2,i2

.

Lemma F.16. Under Claim F.11, for any t ≤ T (3)
j we have−`′(t,J)

k,i = ω(d−1/8) for all (k, i) ∈ Ψj .

Proof. Without loss of generality, let us consider j = 1. Let (k, i) ∈ Ψ+. By Eq. (C.7), Eq. (F.19)
and Eq. (F.22) we have that

−`′(t,J)
k,i ≥ −`′

(∑
r∈G

σ(〈w(t,J)
1,r ,ν〉) +O(1)

)
≥ −`′

(∑
r∈[m]

σ(〈w(t,J)
1,r ,ν〉) +O(1)

)
,

where in the first line G =
{
r ∈ [m] : 〈w(t,0)

1,r ,ν〉 ≥ d−1/3
}

. Then recall that t ≤ T
(3)
1 implies

Λ
(t)
1 < log(d)0.1. Using Lemma F.6, we have that for all r ∈ [m]

〈w(t,J)
1,r ,ν〉 ≤ 2 max

{
log(d)0.1, Jγ

}
= 2Jγ .

Then by a direct calculation using Condition D.1, we get

−`′(t,J)
k,i ≥ −`′

(
mO(1)Jγ +O(1)

)
= ω(d−1/8) .

Remark F.17. The−1/8 factor on d can be replaced by any c < 0. We choose−1/8 for convenience
in the later proof.

Proof of Claim F.11. Consider T (2) ≤ t ≤ T
(3)
1 . Let Ξ̃

(t)
1 = max

{
Ξ̃

(t)
k,i : (k, i) ∈ Ψ+

}
. By

Eq. (F.8) and the definition of Ξ̃
(t)
k,i, we have that for any (k, i) ∈ Ψ+,

σ′(〈w(t,J)
1,r , ξk,i〉) ≤ O(1)Ξ̃

(t)
k,i ≤ O(1)Ξ̃

(t)
1 . (F.23)

And if (k, i) ∈ Ψ−,

σ′(〈w(t,J)
1,r , ξk,i〉) ≤ O(1)Γ̃

(t)
k,i = o(1)Ξ̃

(t)
1 , (F.24)

where we note the second inequality in Remark F.12. It is convenient to define

`
′(t,J)
1 =

∑
(k,i)∈Ψ+

`
′(t,J)
k,i

/∣∣Ψ+

∣∣ ,
47

Published as a conference paper at ICLR 2023

because by Lemma F.15, `′(t,J)
k,i = Θ(1)`

′(t,J)
1 for all (k, i) ∈ Ψ+. Then by our assumption that

t ≤ T
(3)
1 and Lemma F.16 we have that −`′(t,J)

1 = ω(d−1/8). By Eq. (C.9) we have that for any
r ∈ [m], and (k, i) ∈ Ψ+

〈w(t+1,0)
1,r , ξk,i〉 ≤ 〈w(t,0)

1,r , ξk,i〉 −
η

Kn2

∑
(k′,i′)∈Ψ

`
′(t,J)
k′,i′ σ

′(〈w(t,J)
1,r , ξk′,i′〉)Θ(σ2

ξ

√
d
√

log(Kn))

− η

Kn2
Θ(1)`

′(t,J)
1 σ′(〈w(t,J)

1,r , ξk,i〉)Θ(σ2
ξd)

≤ Ξ̃
(t)
1 −Θ

(ησ2
ξ

√
d

Kn2

) ∑
(k′,i′)∈Ψ

`
′(t,J)
k′,i′ σ

′(〈w(t,J)
1,r , ξk′,i′〉)−Θ

(ησ2
ξd

Kn2

)
`
′(t,J)
1 Ξ̃

(t)
1

≤ Ξ̃
(t)
1 −Θ

(ησ2
ξ

√
d

Kn2

) ∑
(k′,i′)∈Ψ+

`
′(t,J)
k′,i′ σ

′(〈w(t,J)
1,r , ξk′,i′〉)

−Θ
(ησ2

ξ

√
d

Kn2

) ∑
(k′,i′)∈Ψ−

`
′(t,J)
k′,i′ σ

′(〈w(t,J)
1,r , ξk′,i′〉)−Θ

(ησ2
ξd

Kn2

)
`
′(t,J)
1 Ξ̃

(t)
1

≤ Ξ̃
(t)
1 −Θ

(ησ2
ξ

√
d

Kn2

) ∑
(k′,i′)∈Ψ+

`
′(t,J)
1 Ξ̃

(t)
1

+ Θ
(ησ2

ξ

√
d

Kn2

) ∑
(k′,i′)∈Ψ−

o(1)Ξ̃
(t)
1 −Θ

(ησ2
ξd

Kn2

)
`
′(t,J)
1 Ξ̃

(t)
1

≤ Ξ̃
(t)
1 −

(
Θ̃(d−1/2) + Θ

(ησ2
ξd

Kn2

))
`
′(t,J)
1 Ξ̃

(t)
1 + o(d−1/2)Ξ̃

(t)
1

= Ξ̃
(t)
1

(
1−Θ

(ησ2
ξd

Kn2

)
`
′(t,J)
1 + o(d−1/2)

)
= Ξ̃

(t)
1

(
1−Θ

(ησ2
ξd

Kn2

)
`
′(t,J)
1

)
,

where we used Eq. (F.23) to get the second inequality. We used Eq. (F.23) and Eq. (F.24) to get

the fourth inequality. The last equality is because −Θ
(
ησ2
ξd

Kn2

)
`
′(t,J)
1 = Θ̃(1)ω(d−1/8)� o(d−1/2).

And maximizing the left hand side over r ∈ [m] and (k, i) ∈ Ψ+ we get

Ξ̃
(t+1)
1 ≤ Ξ̃

(t)
1

(
1−Θ

(ησ2
ξd

Kn2

)
`
′(t,J)
1

)
. (F.25)

By Theorem F.9, we have that Ξ̃
(T (2))
1 = d−1/3. Let T ′ be the first iteration such that Ξ̃

(T ′)
1 ≥ d−1/4.

Then, using Eq. (F.25) we get

Ξ̃
(T ′)
1 ≤ Ξ̃

(T ′−1)
1

(
1−Θ

(ησ2
ξd

Kn2

)
`
′(T ′−1,J)
1

)
≤ d−1/4

(
1−Θ

(ησ2
ξd

Kn2

)
`
′(T ′−1,J)
1

)
≤ d−1/4

(
1 + Θ

(ησ2
ξd

Kn2

))
= Θ̃(d−1/4) ,

where the second inequality is by definition of T ′. The third inequality is due to −`′(·) ≤ 1. We
have

d−1/4 ≤ Ξ̃
(T ′)
1 ≤ Ξ̃

(T (2))
1

T ′−1∏
t=T (2)

(
1−Θ

(ησ2
ξd

Kn2

)
`
′(t,J)
1

)
,

48

Published as a conference paper at ICLR 2023

d−1/4/d−1/3 ≤
T ′−1∏
t=T (2)

(
1−Θ

(ησ2
ξd

Kn2

)
`
′(t,J)
1

)
,

Ω(log(d)) ≤
T ′−1∑
t=T (2)

log
(

1−Θ
(ησ2

ξd

Kn2

)
`
′(t,J)
1

)

≤
T ′−1∑
t=T (2)

−O(1)
(ησ2

ξd

Kn2

)
`
′(t,J)
1 ,

Ω
(log(d)Kn2

ησ2
ξd

)
≤

T ′−1∑
t=T (2)

−`′(t,J)
1 , (F.26)

where we get the third inequality by taking the logarithm of the second inequality. In the fourth
inequality, we used log(1 + x) ≤ O(1)x for x ∈ [0, 1). By the second line of Eq. (F.9) we have

Λ
(t+1)
1 ≥ Λ

(t)
1 −

η

Kn2

∑
(k,i)∈Ψ+

`
′(t,J)
k,i Ω(m−1/2)

≥ Λ
(t)
1 − η`

′(t,J)
1 Ω(m−1/2) .

To get the second inequality, we use Lemma F.15 and absorb all the constants into Ω(m−1/2).
Summing over t, we obtain

log(d)0.1 ≥ Λ(T
(3)
1 −1) ≥ Λ(T (2)) −

T
(3)
1 −2∑
t=T (2)

η`
′(t,J)
1 Ω(m−1/2) ,

log(d)0.1 ≥ −
T

(3)
1 −2∑
t=T (2)

η`
′(t,J)
1 Ω(m−1/2) ,

O
(log(d)0.1

√
m

η

)
≥
T

(3)
1 −2∑
t=T (2)

−`′(t,J)
1 ,

O
(log(d)0.1

√
m+ η

η

)
≥
T

(3)
1 −1∑
t=T (2)

−`′(t,J)
1 . (F.27)

We used −`′(·) ≤ 1 to get the last inequality. By a direct computation, we have

log(d)0.1
√
m+ η

η
=

log(d)0.2 + η

η
= o(1)

log(d)Kn2

ησ2
ξd

= o(1)
log(d)0.5

η
.

Combining this fact with Eq. (F.26) and Eq. (F.27) we conclude that T (3)
1 − 1 < T ′ − 1 and hence

T
(3)
1 < T ′. Now let Ξ̃

(t)
−1 = max

{
Ξ̃

(t)
k,i : (k, i) ∈ Ψ−

}
. If we redefine T ′ to be the first iteration

such that Ξ̃
(T ′)
−1 ≥ d−1/4, then using the exactly same argument, we obtain T (3)

−1 < T ′. This proves
our Claim.

Theorem F.18 (Restatement of Lemma 6.5). Under Claim F.10, we have T (3) < T .

Proof. We will only prove T (3)
1 < T , since the proof of T (3)

−1 < T will be the same. For the sake of
contradiction, let us assume that T (3)

1 ≥ T . Then, for t ≤ T , we have that Λ
(t)
1 ≤ log(d)0.1. From

the proof of Lemma F.16, we have

−`′(t,J)
k,i ≥ −`′

(
mO(1)γJ +O(1)

)
≥ Ω(1) exp(−O(log(d)0.6)) ,

for all (k, i) ∈ Ψ+. By the second line of Eq. (F.9)

Λ
(t+1)
1 ≥ Λ

(t)
1 −

η

Kn2

∑
(k,i)∈Ψ+

`
′(t,J)
k,i Θ(1)Ω(m−1/2)

49

Published as a conference paper at ICLR 2023

≥ Λ
(t)
1 +

η

Kn2

∑
(k,i)∈Ψ+

Ω(1) exp(−O(log(d)0.6))Θ(1)Ω(m−1/2)

= Λ
(t)
1 + Ω(1)η exp(−O(log(d)0.6))m−1/2 .

This implies

Λ
(T)
1 ≥ Λ

(T (2))
1 +

T−1∑
t=T (2)

Ω(1)η exp(−O(log(d)0.6))m−1/2

≥ Θ̃(1) + (T − 1− T (2))Ω(1)η exp(−O(log(d)0.6))m−1/2

≥ poly(d)Ω(1) exp(−O(log(d)0.6))/polylog(d)

= Ω(poly(d)) ,

where the second inequality is by definition of T (2). The third inequality is because
T = poly(d), T (2) = polylog(d), η = (polylog(d))−1, and m = polylog(d). And
poly(d) exp(−O(log(d)0.6)) = Ω(poly(d)). But this is a contradiction since we assumed T ≤ T (3)

1

which means Λ
(T)
1 ≤ log(d)0.1. Thus, we must have T > T

(3)
1 . And the proof of T > T

(3)
−1 is the

same. This proves our theorem. This will be useful for our convergence result later.

Theorem F.18 implies that before training ends, feature will be memorized by the neurons with an
inner product of size at least log(d)0.1. As we shall see later, this already guarantees a small test
loss. Our next theorem makes sure that the feature inner product will not grow too big by the end of
the training.

Theorem F.19. Under Claim F.10, we have Λ
(T)
j ≤ log(d)1.2 for j ∈ {−1, 1}.

Proof. Without loss of generality, let j = 1. Let t′ be the first iteration such that Λ
(t)
1 ≥ log(d)1.1.

Let r(t) = arg maxr∈[m]

{
〈w(t,0)

1,r ,ν〉
}

. Using Eq. (C.11) we have

〈w(t+1,0)
1,r(t+1),ν〉 = 〈w(t,0)

1,r(t+1),ν〉 −
η

Kn2

∑
(k,i)∈Ψ

`
′(t,J)
k,i σ′(〈w(t,J)

1,r(t+1),νk〉yk,i)

≤ 〈w(t,0)
1,r(t),ν〉 −

η

Kn2

∑
(k,i)∈Ψ

`
′(t,J)
k,i σ′(〈w(t,J)

1,r(t),νk〉yk,i)

= 〈w(t,0)
1,r(t),ν〉 −

η

Kn2

∑
(k,i)∈Ψ+

`
′(t,J)
k,i σ′(〈w(t,J)

1,r(t),νk〉)

≤ 〈w(t,0)
1,r(t),ν〉 −

η

Kn2

∑
(k,i)∈Ψ+

`
′(t,J)
k,i ,

where the second line is by definition of r(t). We get the third line using the second line of Eq. (F.9).
We have used σ′(·) ≤ 1 to get the last line. By definition of r(t), this means

Λ
(t+1)
1 ≤ Λ

(t)
1 −

η

Kn2

∑
(k,i)∈Ψ+

`
′(t,J)
k,i .

And by definition of t′, we have

Λ
(t′)
1 ≤ Λ

(t′−1)
1 − η

Kn2

∑
(k,i)∈Ψ+

`
′(t′−1,J)
k,i

≤ log(d)1.1 + η

≤ O(1) log(d)1.1 ,

where we have used −`′(·) ≤ 1 to get the second inequality. Hence if T ≤ t′, then we are done.
So let us suppose that T > t′. Since Λ

(t)
1 is increasing in t, we know that for all t ≥ t′, Λ

(t)
1 ≥

50

Published as a conference paper at ICLR 2023

Λ
(t′)
1 ≥ log(d)1.1. By Corollary F.5, we have that 〈w(t,0)

1,r(t),νk〉 = Θ(1)〈w(t,0)
1,r(t),ν〉 for any k ∈ [K].

Moreover, for t ≥ t′

〈w(t,J)
1,r(t),νk〉 ≥ 〈w

(t,0)
1,r(t),νk〉 = Θ(1)〈w(t,0)

1,r(t),ν〉 = Θ(1)Λ
(t)
1 ≥ Θ(1) log(d)1.1 .

By Eq. (C.7), for (k, i) ∈ Ψ+ we have

−`′(t,J)
k,i ≤ −`′

(
σ(〈w(t,J)

1,r(t),νk〉 −
m∑
r=1

(
σ(〈w(t,J)

−1,r , ξk,i〉) + σ(〈w(t,J)
−1,r ,νk〉)

))
≤ −`′

(
Θ(1) log(d)1.1 − o(1)

)
= −`′

(
Θ(1) log(d)1.1

)
≤ O(1) exp

(
−Θ(1) log(d)1.1

)
,

where the second inequality is due to Eq. (F.19). The last inequality is by property of the function
`′(·). This implies

Λ
(T)
1 ≤ Λ

(t′)
1 − η

Kn2

T−1∑
t=t′

∑
(k,i)∈Ψ+

`
′(t,J)
k,i

≤ O(1) log(d)1.1 + ηTO(1) exp
(
−Θ(1) log(d)1.1

)
≤ O(1) log(d)1.1 + o(1)

= O(1) log(d)1.1 ,

where the second last inequality is because ηT = O(poly(d)/polylog(d)) = O(poly(d)) and
O(poly(d)) exp

(
−Θ(1) log(d)1.1

)
= o(1). This proves our theorem.

Proof of Claim F.10. Suppose our claim holds for all t ∈ [T (2), T ′ − 1] where T ′ ≤ T . Then
by Theorem F.19, we have that Λ

(T ′)
j ≤ log(d)1.2 for j ∈ {−1, 1}. Let (k, i) ∈ Ψ−. Denote

r(t) = arg maxr∈[m]〈w
(t,0)
1,r , ξk,i〉. From Eq. (C.9), we get that

〈w(t+1,0)
1,r , ξk,i〉 ≤ 〈w(t,0)

1,r , ξk,i〉 −
η

Kn2

∑
(k′,i′)∈Ψ\{(k,i)}

`
′(t,J)
k′,i′ Θ(σ2

ξ

√
d
√

log(Kn))

≤ 〈w(t,0)
1,r , ξk,i〉 −

η

Kn2

∑
(k′,i′)∈Ψ

`
′(t,J)
k′,i′ Θ(σ2

ξ

√
d
√

log(Kn))

= 〈w(t,0)
1,r , ξk,i〉+ Θ̃(d−1/2)η

∑
(k′,i′)∈Ψ

`
′(t,J)
k′,i′ , (F.28)

where we also used Lemma D.2 in the first line. The third line is a direct calculation using Condition
D.1. We have for t ≥ T (2)

Λ
(t+1)
1 ≥ Λ

(t)
1 −

η

Kn2

∑
(k,i)∈Ψ+

`
′(t,J)
k,i Θ(1)Θ̃(1)

= Λ
(t)
1 − Θ̃(1)η

∑
(k,i)∈Ψ+

`
′(t,J)
k,i ,

where the first inequality is by definition of T (2) and the monotonicity of Λ
(t)
1 . And similarly

Λ
(t+1)
−1 ≥ Λ

(t)
−1 − Θ̃(1)η

∑
(k,i)∈Ψ−

`
′(t,J)
k,i .

Summing them up we obtain

Λ
(t+1)
1 + Λ

(t+1)
−1 ≥ Λ

(t)
1 + Λ

(t)
−1 − Θ̃(1)η

∑
(k,i)∈Ψ

`
′(t,J)
k,i .

51

Published as a conference paper at ICLR 2023

Summing over t we get

2 log(d)1.2 ≥ Λ
(T ′)
1 + Λ

(T ′)
−1 ≥ Λ

(T (2))
1 + Λ

(T (2))
−1 − Θ̃(1)η

T ′−1∑
t=T (2)

∑
(k,i)∈Ψ

`
′(t,J)
k,i ,

2 log(d)1.2 ≥ −Θ̃(1)η

T ′−1∑
t=T (2)

∑
(k,i)∈Ψ

`
′(t,J)
k,i ,

Θ̃(1) ≥ −η
T ′−1∑
t=T (2)

∑
(k,i)∈Ψ

`
′(t,J)
k,i . (F.29)

Plugging Eq. (F.29) into Eq. (F.28) we have

〈w(T ′,0)
1,r , ξk,i〉 ≤ 〈w(T (2),0)

1,r , ξk,i〉 − Θ̃(d−1/2)η

T ′−1∑
t=T (2)

∑
(k′,i′)∈Ψ

`
′(t,J)
k′,i′

≤ 〈w(T (2),0)
1,r , ξk,i〉+ Θ̃(d−1/2)Θ̃(1)

≤ Θ̃(d−1/2) + Θ̃(d−1/2)

= Θ̃(d−1/2) ,

where the third inequality is by Theorem F.9. Since this relation holds for all r ∈ [m], we get that
maxr∈[m]〈w

(T ′,0)
1,r , ξk,i〉 ≤ Θ̃(d−1/2). And hence Γ̃

(T ′)
k,i ≤ Θ̃(d−1/2). This proves our claim.

Lemma F.20 (Restatement of Lemma 6.4). Let T = poly(d) be the total number of iterations.
Under Condition D.1 and Condition 4.1, we have

min
t∈[T (2),T−1]

∑
(k,i)∈Ψ

−`′(t,J)
k,i ≤ Õ

(
1

Tη

)
.

Proof. By Theorem F.19, we have Λ
(T)
j ≤ log(d)1.2 for j ∈ {−1, 1}. Using the same derivation of

Eq. (F.29), we have

−
T−1∑
t=T (2)

∑
(k,i)∈Ψ

η`
′(t,J)
k,i ≤ Θ̃(1) .

And we can bound the minimum over t by

min
t∈[T (2),T−1]

∑
(k,i)∈Ψ

−`′(t,J)
k,i ≤ Õ

(
1

(T − T (2))η

)
= Õ

(
1

Tη

)
,

where the second equality is because T (2) = polylog(d) = o(1)T , and hence T − T (2) = Ω(1)T .

Lastly, we have the following theorem for the convergence of training similar to Theorem E.10.
Theorem F.21 (Restatement of Theorem 4.5 (1)). Let T = poly(d) be the total number of iterations.
Under Condition D.1 and Condition 4.1, we have

min
t∈[T]

L̂tr-val(W(t)) ≤ Θ̃(T−1η−1) .

Proof. Denote −`′(t,J)
k,i = −`′(α(t, J, k, i)), i.e. the argument of −`′(t,J)

k,i is some function

α(t, J, k, i). Then the training loss at time t is related to −`′(t,J)
k,i by

L̂tr-val(W(t)) =
∑

(k,i)∈Ψ

`
(
α(t, J, k, i)

)
.

52

Published as a conference paper at ICLR 2023

Let t′ = arg minT−1
t∈[T (2)

∑
(k,i)∈Ψ−`

′(t,J)
k,i . By definition of `′(·) and `(·) we can bound −`′(x) ≥

exp(−x)/2 ≥ `(x)/2 for x > 0. This can be used to bound our loss by

min
t∈[T]

L̂tr-val(W(t)) ≤ L̂tr-val(W(t′))

=
∑

(k,i)∈Ψ

`
(
α(t′, J, k, i)

)
≤ −2

∑
(k,i)∈Ψ

`′
(
α(t′, J, k, i)

)
≤ Õ

(
1

Tη

)
,

where the last inequality is by Lemma F.20. This proves our theorem.

Theorem F.22 (Restatement of Theorem 4.5 (2)). Let W = W(T) be our trained weights using the
train-validation method. Then the test loss is small

Ltest(W) = o
(
1/polylog(d)

)
.

Proof. Sample a new example x from the distribution, since we use the convolutional structure,
we can assume that the first patch x(1) = y · (ν + z) and the second patch x(2) = ξ. Clearly
〈ξk,i, ξ〉 follows the Gaussian distribution with mean zero and standard deviation σξ · ‖ξk,i‖2. By
Lemma D.2, we further know that ‖ξk,i‖2 ≤ 2σξ

√
d. Therefore

P
(
|〈ξk,i, ξ〉| ≥ d−1/4

)
≤ 2 exp

(
− 1

8σ4
ξd

3/2

)
≤ 2 exp(−d1/4) . (F.30)

Similarly we have that

P
(
|〈w(0,0)

j,r , ξ〉| ≥ d3/2
)
≤ 2 exp

(
− 1

8σ2
0σ

2
ξd

3/2

)
≤ 2 exp(−d1/4) . (F.31)

Denote E to be the event that |〈ξk,i, ξ〉| ≤ d−1/4 and |〈w(0,0)
j,r , ξ〉| ≤ d3/2 for all k ∈ [K], i ∈ [n], r ∈

[m] and j ∈ {−1, 1}. Applying union bound, we have that the P(E) ≥ 1−2(nK+m) exp(−d1/4).
We can divide Ltest(W) into two parts:

Ltest(W) = E
[
`
(
yf(W, x)

)]
= E[1(E)`

(
yf(W, x)

)
]︸ ︷︷ ︸

I1

+E[1(Ec)`
(
yf(W, x)

)
]︸ ︷︷ ︸

I2

. (F.32)

In the following, we bound I1 and I2 respectively.

Bounding I1: When event E holds, for any j ∈ {−1, 1}, we have

〈w(T,0)
j,r , ξ〉 = 〈w(0,0)

j,r , ξ〉 − η

Kn2

T−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i σ′(〈w(t,J)

j,r , ξk,i〉)〈ξ, ξk,i〉

≤ 〈w(0,0)
j,r , ξ〉 − η

Kn2

T−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i σ′(〈w(t,J)

j,r , ξk,i〉)d−1/4

≤ 〈w(0,0)
j,r , ξ〉 − η

Kn2

T−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i d−1/4

≤ 〈w(0,0)
j,r , ξ〉 − ηd−1/4

Kn2

T (2)−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i − ηd−1/4

Kn2

T−1∑
t=T (2)

∑
(k,i)∈Ψ

`
′(t,J)
k,i

≤ 〈w(0,0)
j,r , ξ〉+ ηd−1/4T (2) +

ηd−1/4

Kn2
Õ(1)

53

Published as a conference paper at ICLR 2023

≤ 〈w(0,0)
j,r , ξ〉+ Õ(d−1/4) + Õ(d−1/4)

= Õ(d−1/4) , (F.33)

where the second line is by Eq. (F.30). The third line is by 0 ≤ σ′(·) ≤ 1. The third last line is due
to −`′(·) ≤ 1, T (2) = polylog(d) and

∑T−1
t=T (2)

∑
(k,i)∈Ψ `

′(t,J)
k,i = Õ(1) (recall Eq. (F.29)). The

second last line is by Eq. (F.31). We note that Eq. (F.33) holds for all j ∈ {−1, 1}, r ∈ [m], and
y ∈ {−1, 1}. Now without loss of generality we assume y = 1. Then,

F−1(W−1, x) =

m∑
r=1

σ(〈w(T,0)
−1,r ,ν + z〉) + σ(〈w(T,0)

−1,r , ξ〉)

≤
m∑
r=1

σ(〈w(T,0)
−1,r ,ν + z〉) +mσ(Õ(d−1/4))

≤
m∑
r=1

σ(〈w(0,0)
−1,r,ν + z〉) +mσ(Õ(d−1/4))

≤
m∑
r=1

σ(Õ(d−1/4)) +mσ(Õ(d−1/4))

≤ log 2 ,

where the second line is by Lemma Eq. (F.33), the third line is by monotonicity of j〈w(t,0)
j,r ,ν〉 and

j〈w(t,0)
j,r , z〉 in t, the fourth line is by Lemma D.2. Thus

`
(
yf(W, x)

)
= `

(
F+1(W+1, x)− F−1(W−1, x)

)
≤ `
(m∑
r=1

σ(〈w(T,0)
1,r ,ν + z〉)− F−1(W−1, x)

)
≤ `
(
σ
(
Λ

(T)
1

)
− F−1(W−1, x)

)
≤ `
(
σ
(
Λ

(T (3))
1

)
− F−1(W−1, x)

)
≤ `
(

log(d)0.1 − log 2

)
≤ 2 exp

(
− log(d)0.1

)
,

where the second and the third line are due to the fact that σ(·) ≥ 0, the fourth line is by Theorem
F.18, the fifth line is by definition of T (3), the last line is by log(1 + x) ≤ x,∀x ≥ 0. Therefore we
have that

I1 ≤ 2 exp
(
− log(d)0.1

)
. (F.34)

Bounding I2: Next we bound the second term I2. When event E holds, for any j ∈ {−1, 1}, we
have

〈w(T,0)
j,r , ξ〉 = 〈w(0,0)

j,r , ξ〉 − η

Kn2

T−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i σ′(〈w(t,J)

j,r , ξk,i〉)〈ξ, ξk,i〉

≤ 〈w(0,0)
j,r , ξ〉 − η

Kn2

T−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i σ′(〈w(t,J)

j,r , ξk,i〉)Õ(‖ξ‖2)

≤ 〈w(0,0)
j,r , ξ〉 − η

Kn2

T−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i Õ(‖ξ‖2)

54

Published as a conference paper at ICLR 2023

≤ 〈w(0,0)
j,r , ξ〉 − ηÕ(‖ξ‖2)

Kn2

T (2)−1∑
t=0

∑
(k,i)∈Ψ

`
′(t,J)
k,i − ηÕ(‖ξ‖2)

Kn2

T−1∑
t=T (2)

∑
(k,i)∈Ψ

`
′(t,J)
k,i

≤ 〈w(0,0)
j,r , ξ〉+ ηÕ(‖ξ‖2)T (2) +

ηÕ(‖ξ‖2)

Kn2

≤ 〈w(0,0)
j,r , ξ〉+ Õ(‖ξ‖2) + Õ(‖ξ‖2)

= Õ(‖ξ‖2) , (F.35)

where the second line is by |〈ξ, ξk,i〉| ≤ ‖ξk,i‖2‖ξ‖2 = Õ(‖ξ‖2). The third line is by 0 ≤ σ′(·) ≤
1. The third last line is due to−`′(·) ≤ 1, T (2) = polylog(d) and

∑T−1
t=T (2)

∑
(k,i)∈Ψ `

′(t,J)
k,i = Õ(1)

(recall Eq. (F.29)). The second last line is by |〈w(0,0)
j,r , ξ〉| ≤ ‖w(0,0)

j,r ‖2‖ξ‖2 = Õ(‖ξ‖2). We note
that Eq. (F.33) holds for all j ∈ {−1, 1}, r ∈ [m], and y ∈ {−1, 1}. Now again without loss of
generality we assume y = 1 and have that

F−1(W−1, x) =

m∑
r=1

σ(〈w(T,0)
−1,r ,ν + z〉) + σ(〈w(T,0)

−1,r , ξ〉)

≤
m∑
r=1

σ(〈w(T,0)
−1,r ,ν + z〉) +mσ(Õ(‖ξ‖2))

≤
m∑
r=1

σ(〈w(0,0)
−1,r,ν + z〉) +mσ(Õ(‖ξ‖2))

≤
m∑
r=1

σ(Õ(d−1/2)) +mσ(Õ(‖ξ‖2))

≤ 1 + Õ(‖ξ‖2) ,

where the second line is by Eq. (F.35). The third line is by monotonicity of j〈w(t,0)
j,r ,ν〉 and

j〈w(t,0)
j,r , z〉 in t. The fourth line is by Lemma D.2. Thus

`
(
yf(W, x)

)
= `

(
F+1(W+1, x)− F−1(W−1, x)

)
≤ `
(
− F−1(W−1, x)

)
= log(1 + exp(F−1(W−1, x)))

≤ 1 + F−1(W−1, x)

≤ 2 + Õ(‖ξ‖2) , (F.36)
where the second line is due to the fact that σ(·) ≥ 0, the fourth line is by by the property of
cross-entropy loss, i.e., log(1 + exp(x)) ≤ 1 + x for all x ≥ 0. Then we further have that

I2 ≤
√
E[1(Ec)] ·

√
E
[
`
(
yf(W, x)

)2]
≤
√
P(Ec) ·

√
8 + Õ(1)E[‖ξ‖22]

≤
√
O(poly(d)) exp(−d1/4)

= O(poly(d)) exp(−0.5d1/4) ,

where the first inequality is by Cauchy-Schwartz inequality. The second inequality is by Eq. (F.36).

The third inequality is by the fact that
√

8 + Õ(1)E[‖ξ‖22] ≤ O(poly(d)). Plugging the bounds of
I1, I2 into Eq. (F.32) gives that
Ltest(W) ≤ 2 exp

(
− log(d)0.1

)
+O(poly(d)) exp(−0.5d1/4) = O

(
exp

(
− log(d)0.1

))
,

which completes the proof.

55

Published as a conference paper at ICLR 2023

G AUXILIARY LEMMA

Lemma G.1 (Restatement of Lemma B.2 from Cao et al. (2022)). Suppose that δ > 0 and d =
Ω
(

log(4Kn/δ)
)
. Then with probability at least 1− δ

1

2
σ2
ξd ≤ ‖ξk,i‖

2
2 ≤

3

2
σ2
ξd ,

|〈ξk,i, ξk′,i′〉| ≤ 2σ2
ξ

√
d
√

log
(
4(Kn)2/δ

)
,

for all k, k′ ∈ [K] and i, i′ ∈ [n] with (k, i) 6= (k′, i′).

Lemma G.2 (Restatement of Lemma B.3 from Cao et al. (2022)). Suppose that δ > 0, d =
Ω(log(mKn/δ)) and m = Ω(log(1/δ)). Then with probability at least 1− δ

|〈w(0,0)
j,r ,ν〉| ≤

√
2 log(8m/δ)σ0 ,

|〈w(0,0)
j,r , ξk,i〉| ≤

√
2 log(8mKn/δ)σ0σξ

√
d ,

for all r ∈ [m], j ∈ {−1, 1}, k ∈ [K] and i ∈ [n]. Moreover,
σ0

2
≤ max
r∈[m]

j〈w(0,0)
j,r ,ν〉 ≤

√
2 log(8m/δ)σ0 ,

σ0σξ
√
d

4
≤ max
r∈[m]

〈w(0,0)
j,r , ξk,i〉 ≤

√
2 log(8mKn/δ)σ0σξ

√
d ,

for all j ∈ {−1, 1}, k ∈ [K] and i ∈ [n].

56

	Introduction
	Additional Related Work
	Problem Setup
	Main Results
	Experiment
	Experimental Setups
	Results

	Overview of proof techniques
	Conclusion and Future work
	Comparison with bai2021important
	Regularizer in inner-loop
	Experiment algorithms

	Additional Experiments
	Comparison with Reptile nichol2018first
	Time evolution of test loss of FOMAML
	FOMAML with different neural networks
	Effect of the number of samples per task

	Preliminary calculations
	Preliminary Lemmas
	Train-Train Method
	Phase I
	Phase II

	Train-Validation Method
	Phase I
	Phase II

	Auxiliary lemma

