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Abstract
Medical question answering fundamentally re-001
lies on accurate clinical knowledge. The domi-002
nant paradigm, Retrieval-Augmented Gener-003
ation (RAG), acquires expertise conceptual004
knowledge from large-scale medical corpus005
to guide general-purpose large language mod-006
els (LLMs) in generating trustworthy answers.007
However, existing retrieval approaches often008
overlook the patient-specific factual knowl-009
edge embedded in Electronic Health Records010
(EHRs), which limits the contextual relevance011
of retrieved conceptual knowledge and hin-012
ders its effectiveness in vital clinical decision-013
making. This paper introduces RGAR, a re-014
currence generation-augmented retrieval frame-015
work that synergistically retrieves both fac-016
tual and conceptual knowledge from dual017
sources (i.e., EHRs and the corpus), allow-018
ing mutual refinement through iterative inter-019
action. Across three factual-aware medical020
QA benchmarks, RGAR establishes new state-021
of-the-art performance among medical RAG022
systems. Notably, RGAR enables the Llama-023
3.1-8B-Instruct model to surpass the consider-024
ably larger GPT-3.5 augmented with traditional025
RAG. Our findings demonstrate the benefit of026
explicitly mining patient-specific factual knowl-027
edge during retrieval, consistently improving028
generation quality and clinical relevance.029

1 Introduction030

Large Language Models (LLMs) have demon-031

strated remarkable capabilities in general question032

answering (QA) tasks, achieving impressive per-033

formance across diverse scenarios (Achiam et al.,034

2023). However, when facing domain-specific035

questions that require specialized expertise, from036

medical diagnosis (Jin et al., 2021) to legal charge037

prediction (Wei et al., 2024), these models face038

significant challenges, often generating unreliable039

conclusions due to both hallucinations (Ji et al.,040

2023) and potentially stale knowledge embedded041

in their parameters (Wang et al., 2024a).042

Factual-aware Task

Question: Is the affinity column-mediated immunoassay method suitable as 

an alternative to the microparticle enzyme immunoassay method as a blood 

tacrolimus assay?
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EHR: Clinical presentation includes fever, hypotension… Physical 

examination reveals mucopurulent cervical discharge …Laboratory studies 

show Platelet count 14,200/mm3…

Question: When phenol is applied to a sample of the patient's blood…A 

blood culture is most likely to show which of the following?

Figure 1: a) Two Types of Medical Question Answering
Tasks. b) Medical AI Systems from the Perspective of
Bloom’s Taxonomy.

Retrieval-Augmented Generation (RAG) 043

(Lewis et al., 2020) has emerged as a promising 044

approach to address these challenges by leveraging 045

extensive, trustworthy knowledge bases to support 046

LLM reasoning. The effectiveness of this approach, 047

however, heavily depends on the relevance of 048

retrieved documents. 049

In the medical domain, current RAG approaches 050

concatenate all available contextual information 051

from a given example into a single basic query for 052

retrieval, aiming to provide comprehensive con- 053

text for model reasoning (Xiong et al., 2024a). 054

While this method has demonstrated substantial im- 055

provements on early knowledge-intensive medical 056

QA datasets such as PubMedQA (Jin et al., 2019), 057

its limitations have become increasingly apparent 058

with the emergence of EHR-integrated datasets that 059

better reflect real-world clinical practices (Kweon 060

et al., 2024). 061

As shown in Figure 1 a), Electronic Health 062
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Records (EHRs) typically contain extensive patient063

data, including diagnostic test results, medical his-064

tories, and other longitudinal information (Pang065

et al., 2021; Johnson et al., 2023; Lovon-Melgarejo066

et al., 2024). However, for any specific medical067

query, only a small subset of this information is068

typically relevant (Sackett, 1997; D’Alessandro069

et al., 2004). Incorporating all available EHRs into070

retrieval queries often introduces substantial irrele-071

vant information, which degrades the performance072

of LLM- and RAG-based QA systems (Fang et al.,073

2024; Shi et al., 2023). Despite ongoing efforts to074

improve retrieval through query expansion and gen-075

eration, such as Generation-Augmented Retrieval076

(GAR) (Mao et al., 2021a), how to effectively ex-077

tract and utilize query-relevant factual knowledge078

from noisy and large-scale EHRs remains an open079

problem.080

As shown in Figure 1 b), inspired by Bloom’s081

taxonomy (Forehand, 2010; Markus, 2001), we082

categorize the knowledge required to address real-083

world medical QA problems into four types: Fac-084

tual Knowledge, Conceptual Knowledge, Proce-085

dural Knowledge, and Metacognitive Knowledge.086

The latter two represent higher-order knowledge087

commonly integrated into advanced RAG systems.088

Procedural and Metacognitive Knowledge capture089

reasoning strategies and self-assessment capabili-090

ties, respectively, and have been explored in recent091

studies (Wei et al., 2022; Zhou et al., 2023; Kim092

et al., 2023; Wang et al., 2023b).093

Factual Knowledge, such as patient-specific in-094

formation from EHRs, and Conceptual Knowledge,095

such as general medical understanding from cor-096

pora, together form the complete context inputs097

required for answering medical questions. Pro-098

cessing both types of knowledge requires navigat-099

ing long contexts filled with irrelevant information.100

Unfortunately, current RAG systems do not dif-101

ferentiate between these types of retrieval targets,102

overlooking the necessity of retrieval from EHRs.103

To overcome this limitation, we propose RGAR,104

a system designed to simultaneously retrieve105

Factual Knowledge and Conceptual Knowledge106

through a recurrent query generation and interac-107

tion mechanism. This approach iteratively refines108

queries to enhance the relevance of retrieved profes-109

sional and factual knowledge, thereby improving110

performance on knowledge-intensive and factual-111

aware medical QA tasks.112

Our key contributions are listed as follows:113

• We are the first to analyze RAG systems 114

through the lens of Bloom’s taxonomy, ad- 115

dressing the current underrepresentation of 116

Factual Knowledge in existing frameworks. 117

• We introduce RGAR, a dual-end retrieval sys- 118

tem that facilitates recurrent interactions be- 119

tween Factual and Conceptual Knowledge, 120

bridging the gap between LLMs and real- 121

world clinical applications. 122

• Through extensive experiments on three medi- 123

cal QA datasets involving Factual Knowledge, 124

we demonstrate that RGAR achieves superior 125

average performance compared to state-of-the- 126

art (SOTA) methods, enabling Llama-3.1-8B- 127

Instruct model to outperform the considerably 128

larger RAG-based GPT-3.5-turbo. 129

2 Related Work 130

RAG Systems. RAG systems are characterized 131

as a "Retrieve-then-Read" framework (Gao et al., 132

2023). The development of Naive RAG has primar- 133

ily focused on retriever optimization, evolving from 134

discrete retrievers such as BM25 (Friedman et al., 135

1977) to more sophisticated and domain-specific 136

dense retrievers, including DPR (Karpukhin et al., 137

2020) and MedCPT (Jin et al., 2023), which demon- 138

strate superior performance. 139

In recent years, numerous advanced RAG sys- 140

tems have emerged. Advanced RAG systems fo- 141

cus on designing multi-round retrieval structures, 142

including iterative retrieval (Sun et al., 2019), re- 143

cursive retrieval (Sarthi et al., 2024), and adap- 144

tive retrieval (Jeong et al., 2024). A notable work 145

in medical QA is MedRAG (Xiong et al., 2024a), 146

which analyzes retrievers, corpora, and LLMs, of- 147

fering practical guidelines. Follow-up work, i- 148

MedRAG (Xiong et al., 2024b), improved perfor- 149

mance through multi-round decomposition and it- 150

eration, albeit with significant computational costs. 151

These approaches focus solely on optimizing the 152

retrieval process, overlooking the retrievability of 153

factual knowledge. In contrast, RGAR introduces a 154

recurrent structure, enabling continuous query opti- 155

mization through dual-end retrieval and extraction 156

from EHRs and professional knowledge corpora, 157

thereby enhancing access to both knowledge types. 158

Query Optimization. As the core interface 159

in human-AI interaction, query optimization (also 160

known as prompt optimization) is the key to im- 161

proving AI system performance. It is widely ap- 162
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plied in tasks such as text-to-image generation (Liu163

et al., 2022; Wu et al., 2024b) and code generation164

(Nazzal et al., 2024).165

In the era of large language models, query op-166

timization for retrieval tasks has gained increas-167

ing attention. Representative work includes GAR168

(Mao et al., 2021a), which improves retrieval per-169

formance through query expansion using fine-tuned170

BERT models (Devlin et al., 2019). GENREAD171

(Yu et al., 2023) further explored whether LLM-172

generated contexts could replace retrieved profes-173

sional documents as reasoning evidence. MedGE-174

NIE (Frisoni et al., 2024) extended this approach175

to medical QA.176

Another line of work focuses on query transfor-177

mation and decomposition, breaking down orig-178

inal queries into multiple sub-queries tailored to179

specific tasks, enhancing retrieval alignment with180

model needs (Dhuliawala et al., 2023). Subsequent181

work has reinforced the effectiveness of query de-182

composition through fine-tuning (Ma et al., 2023).183

Using expanded queries directly as reasoning ev-184

idence lacks the transparency of RAG, as RAG re-185

lies on retrievable documents that provide traceable186

and trustworthy reasoning, which is crucial in the187

medical field. Besides, the effectiveness of query188

expansion and query decomposition approaches189

is heavily dependent on fine-tuning LLMs, which190

limits scalability.191

In contrast, our work focuses on query optimiza-192

tion without fine-tuning LLMs. Specifically, re-193

trieval from EHRs can be seen as query filtering194

that eliminates irrelevant information, thereby ob-195

taining pertinent factual knowledge. Extracting196

factual knowledge enhances the effectiveness of197

retrieval from the corpus.198

3 Methodology199

In this section, we introduce RGAR framework, as200

illustrated in Figure 2. It begins by prompting a201

general-purpose LLM to generate multiple queries202

from an initial basic query. These multiple queries203

are then used to retrieve conceptual knowledge204

from the corpus (§ 3.2). Then retrieved conceptual205

knowledge is subsequently used to extract fac-206

tual knowledge from the electronic health records207

(EHRs) and transform it into retrieval-optimized208

representations (§ 3.3). The recurrence pipeline209

continuously updates the basic query and iteratively210

executes the two aforementioned components. This211

process optimizes the retrieved results, ultimately212

improving the quality of responses.(§ 3.4). 213

3.1 Task Formulation 214

In factual-aware medical QA, each data sample 215

comprises the following elements: a patient’s natu- 216

ral language query Q, the electronic health record 217

(EHR) as factual knowledge F , and a set of candi- 218

date answers A = {a1, ..., a|A|}. The overall goal 219

is to identify the correct answer â from A. 220

A non-retrieval approach directly prompts an 221

LLM to act as a reader, processing the entire con- 222

text and generating an answer, formulated as: 223

â = LLM(F ,Q,A|Tr) (1) 224

where Tr is the prompts. However, this approach 225

relies exclusively on the conceptual knowledge en- 226

coded within LLM, without leveraging external, 227

trustworthy medical knowledge sources. 228

To overcome this limitation, recent studies have 229

explored retrieval-based approaches, which en- 230

hance the model’s knowledge by retrieving a 231

specified number N of chunks, denoted as C = 232

{c1, ..., cN}, from a chunked corpus (knowledge 233

base) K. This answering process is expressed as: 234

â = LLM(F ,Q,A, C|Tr). (2) 235

3.2 Conceptual Knowledge Retrieval (CKR) 236

To maintain consistency with the option-free re- 237

trieval approach proposed by (Xiong et al., 2024a), 238

we do not incorporate the answer options A dur- 239

ing retrieval. This design is in line with real-world 240

medical quality assurance scenarios, where answer 241

choices are typically not available in advance. 242

Following their method, we construct the basic 243

query by concatenating the EHR and the patient’s 244

query, formally defined as qb = Q⊕ F , where ⊕ 245

denotes text concatenation. 246

Traditional dense retrievers, such as Dense Pas- 247

sage Retrieval (DPR) (Karpukhin et al., 2020), iden- 248

tify the top-N relevant chunks C from the knowl- 249

edge base K by computing similarity scores using 250

an encoder E: 251

sim(qb, ci) = E(qb)
⊤E(ci),

C = top-N({sim(qb, ci)}).
(3) 252

Vanilla GAR (Mao et al., 2021a) expands qb 253

using a fine-tuned BERT (Devlin et al., 2019) to 254

produce three types of content that enhance re- 255

trieval: potential answers qae , contexts qce, and titles 256
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Figure 2: The Overall Framework of RGAR. a) The Recurrence Pipeline in § 3.4; b) Conceptual Knowledge
Retrieval in § 3.2; c) Factual Knowledge Extraction in § 3.3; d) Response Template in § 3.4.

qte. With the growing zero-shot generation capa-257

bilities of LLMs (Kojima et al., 2022), a common258

practice is to prompt LLMs to serve as train-free259

query generators, producing expanded content q̃e260

using prompt templates Tg (Frisoni et al., 2024).261

The three types of content generation process can262

be formulated as:263

q̃ae = LLM(qb|T a
g ),

q̃ce = LLM(qb|T c
g ),

q̃te = LLM(qb|T t
g ).

(4)264

The final score Sc for retrieving C is then com-265

puted by normalizing and averaging the similarities266

of these expanded queries:267

Sc(ci) =
∑

q̃e∈{q̃ae ,q̃ce,q̃te}

exp(sim(q̃e, ci))∑
cj
exp(sim(q̃e, cj))

. (5)268

3.3 Factual Knowledge Extraction (FKE)269

In EHR, only a small portion of necessary infor-270

mation constitutes problem-relevant factual knowl-271

edge (D’Alessandro et al., 2004). Direct input of272

lengthy EHR content containing substantial irrele-273

vant information into dense retrievers can degrade274

retrieval performance (Ren et al., 2023). While a275

straightforward approach would be to retrieve EHR276

content based on question Q (Lu et al., 2023), this277

fails to fully utilize conceptual knowledge obtained278

from the previous Conceptual Knowledge Retrieval 279

Stage. Furthermore, the necessary chunking of 280

EHR for retrieval introduces content discontinuity 281

(Luo et al., 2024). 282

Given that EHRs more closely resemble long 283

passages from the Needle in a Haystack task (Kam- 284

radt) rather than necessarily chunked corpus, and 285

inspired by large language models’ capability to 286

precisely locate answer spans in reading compre- 287

hension tasks (Cheng et al., 2024), we propose 288

leveraging LLMs for text span tasks (Rajpurkar 289

et al., 2016) on EHR to filter relevant factual knowl- 290

edge efficiently and effectively using conceptual 291

knowledge. We define this filtered factual knowl- 292

edge as Fs, with prompts Ts, expressed as: 293

Fs = LLM(F ,Q, C|Ts). (6) 294

In addition, EHRs often contain numerical re- 295

port results (Lovon-Melgarejo et al., 2024) that 296

require conceptual knowledge to interpret their 297

significance. Furthermore, medical QA involves 298

multi-hop questions (Pal et al., 2022), where re- 299

trieved conceptual knowledge can generate explain- 300

able new factual knowledge conducive to reason- 301

ing. Drawing from LLM zero-shot summarization 302

prompting strategies (Wu et al., 2025), we analyze 303

and summarize the filtered EHR Fs with prompts 304

Te, yielding an enriched representation Fe: 305

Fe = LLM(Fs,Q, C|Te). (7) 306
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This process, which we refer to as the LLM307

Extractor, completes the extraction of original308

EHR information. In practice, RGAR implements309

these two phases using single-stage prompting to310

reduce time overhead.311

3.4 The Recurrence Pipeline and Response312

Building on the Fe, we update the basic query for313

Conceptual Knowledge Retrieval as qb = Q⊕Fe.314

This establishes a recurrence interaction between315

factual and conceptual knowledge, guiding next316

retrieval toward more relevant content. Iterative317

execution enhances the stability of both retrieval318

and extraction. The entire pipeline recurs for a319

predefined number of iterations, ultimately yielding320

the final retrieved conceptual knowledge C∗.321

During the response phase, we follow the ap-322

proach in Equation 2 to generate answers. Notably,323

the Fe are restricted to the retrieval phase and are324

not used in the response phase. The sole difference325

lies in the retrieved chunks, highlighting the impact326

of retrieval quality on the responses.327

4 Experimental Setup328

4.1 Benchmark Datasets329

We evaluated RGAR on three factual-aware medi-330

cal QA benchmarks featuring multiple-choice ques-331

tions that require human-level reading comprehen-332

sion and expert reasoning to analyze patients’ clini-333

cal conditions.334

MedQA-US (Jin et al., 2021) and MedMCQA335

(Pal et al., 2022) consist of questions derived from336

professional medical exams, evaluating specialized337

expertise such as disease symptom diagnosis and338

medication dosage requirements. The problems fre-339

quently involve patient histories, vital signs (e.g.,340

blood pressure, temperature), and final diagnostic341

evaluations (e.g., CT scans), making it necessary342

to retrieve relevant medical knowledge tailored to343

the patient’s specific circumstances. However, due344

to their exam-oriented format, the provided infor-345

mation has already been filtered, reducing the diffi-346

culty of extracting factual knowledge from EHR.347

EHRNoteQA (Kweon et al., 2024) is a re-348

cently introduced benchmark that provides authen-349

tic, complex EHR data derived from MIMIC-IV350

(Johnson et al., 2023). This dataset encompasses351

a wide range of topics and demands that models352

emulate genuine clinical consultations, ultimately353

generating accurate discharge recommendations.354

Consequently, EHRNoteQA challenges models to355

Table 1: Medical QA Benchmark Statistics.

Benchmarks Max. Len Avg. Len Min. Len

Non-EHR QA Benchmarks

BioASQ-Y/N (Tsatsaronis et al., 2015) 52 17 9
PubMedQA (Jin et al., 2019) 57 23 10
MMLU-Med (Hendrycks et al., 2021) 961 87 17

EHR QA Benchmarks

MedMCQA (Pal et al., 2022) 207 41 11
MedQA-US (Jin et al., 2021) 872 197 50
EHRNoteQA (Kweon et al., 2024). 5782 3061 667

identify which factual details within the EHR are 356

relevant to the questions at hand and apply domain- 357

specific knowledge to address them. 358

Table 1 highlights that the chosen datasets, 359

which include EHR information, tend to have sig- 360

nificantly longer content compared to datasets 361

without EHRs. Notably, the EHRNoteQA dataset 362

has a maximum length exceeding 4,000 tokens. 363

This raises concerns about the reasonableness of 364

directly employing these EHRs for retrieval. While 365

the MMLU-Med dataset contains relatively long 366

questions, it is still categorized as a Non-EHR QA 367

Benchmark, as its content does not derive from fac- 368

tual information. Representative question samples 369

are provided in the Appendix E.2. 370

4.2 Retriever and Corpus 371

To ensure a fair comparison, we adopt the same 372

retriever, corpus, and parameter settings as previ- 373

ous work (Xiong et al., 2024a). We use MedCPT 374

(Jin et al., 2023), a dense retriever specialized for 375

the biomedical domain, configured to retrieve 32 376

chunks by default. For the corpus, we employ the 377

Textbooks corpus(Jin et al., 2019), a lightweight 378

collection of 125.8k chunks. Results on a much 379

larger-scale corpus are presented in Appendix B.4. 380

4.3 LLMs and Baselines 381

We focus on the effect of RGAR on general- 382

purpose LLMs without domain-specific knowledge. 383

Therefore, we exclude LLMs fine-tuned on the 384

medical domain, such as PMC-Llama (Wu et al., 385

2024a). Our primary experiments utilize Llama- 386

3.2-3B-Instruct, while ablation studies include a 387

range of models from the Llama-3.1/3.2 (Dubey 388

et al., 2024) and Qwen-2.5 (Yang et al., 2024a) 389

families, ranging from 1.5B to 8B parameters. All 390

selected models feature a context length of approx- 391

imately 128K tokens. Temperatures are set to zero 392

to ensure reproducibility through greedy decoding. 393

For non-retrieval methods, we consider a zero- 394

shot approach Custom (Kojima et al., 2022) as a 395
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Table 2: Comparison of RGAR with SOTA Methods on Three Factual-Aware Datasets and MMLU-Med. ∆
Indicates Improvement Over Custom, Bold Represents the Best, and Underline Indicates the Second-Best.

Method
MedQA-US (# 1273) MedMCQA(# 4183) EHRNoteQA(# 962) Average(↓) MMLU-Med(# 1089)

Acc. ∆ Acc. ∆ Acc. ∆ Acc. ∆ Avg.Rank Acc. ∆

w/o Retrieval
Custom 50.20 0.00 50.01 0.00 47.19 0.00 49.13 0.00 6.00 64.46 0.00
CoT 51.45 1.25 44.53 -5.48 62.89 15.70 52.96 3.82 5.67 62.99 -1.47

w/ Retrieval

RAG 53.50 3.30 50.54 0.53 61.12 13.93 55.05 5.92 4.00 65.47 1.01
MedRAG 50.27 0.07 47.53 -2.48 70.58 23.39 56.13 6.99 4.67 63.91 -0.55
GAR 57.97 7.77 50.42 0.41 65.48 18.29 57.96 8.82 3.00 66.12 1.66
i-MedRAG 56.24 6.04 44.94 -5.07 74.22 27.03 58.47 9.33 3.33 64.74 0.28
RGAR 58.83 8.63 51.02 1.01 73.28 26.09 61.04 11.91 1.33 66.48 2.02

baseline and evaluate improvements relative to it.396

To fully exploit the reasoning capabilities of the397

LLMs, we incorporate chain-of-thought (CoT) rea-398

soning (Wei et al., 2022). For retrieval-based meth-399

ods, we evaluate the classic RAG model (Lewis400

et al., 2020), the domain-adapted MedRAG (Xiong401

et al., 2024a), and i-MedRAG (Xiong et al., 2024b),402

a medical-domain RAG system designed to decom-403

pose questions and iteratively provide answers.404

We adopt GAR (Mao et al., 2021a) as a represen-405

tative query-optimized RAG method, implemented406

train-free in accordance with § 3.2. RGAR defaults407

to 2 rounds of recurrence.408

4.4 Evaluation Settings409

Following MIRAGE (Xiong et al., 2024a), we410

adopt the following evaluation framework. In411

Option-Free Retrieval, no answer options are pro-412

vided for retrieval (§3.2), ensuring a more realistic413

medical QA scenario. In Zero-Shot Learning,414

RAG systems are evaluated without in-context few-415

shot learning, reflecting the lack of similar exem-416

plars in real-world medical questions. For Metrics,417

we employ Accuracy, defined as the proportion of418

correctly answered questions, and we extract model419

outputs by applying regular expression matching to420

the entire generated responses (Wang et al., 2024b).421

5 Experimental Analysis422

5.1 Cross-Dataset Performance Improvement423

We evaluate RGAR using the LLaMA-3.2-3B-424

Instruct model on three factual-aware medical QA425

datasets, comparing it against several competitive426

baselines. The results, presented in Table 2, include427

the absolute performance of each method as well428

as their relative improvements over the Custom429

baseline. RGAR achieves the highest average430

performance across all three datasets, outper-431

forming the second-best method, i-MedRAG, by432

2%. Retrieval-based methods—despite variability433

in quality—consistently surpass non-retrieval base- 434

lines (Custom and CoT), underscoring the impor- 435

tance of incorporating specialized medical knowl- 436

edge when leveraging general-purpose LLMs to 437

answer professional medical queries. 438

Among the retrieval-based approaches, GAR 439

outperforms vanilla RAG by approximately 3% 440

on average, with a maximum gain of 4.37% across 441

datasets. This demonstrates the effectiveness of 442

multi-query generation in improving retrieval qual- 443

ity. However, MedRAG, while performing well on 444

EHRNoteQA, exhibits degraded performance on 445

the other two datasets compared to vanilla RAG, 446

highlighting its limited robustness. 447

A key advantage of our proposed RGAR 448

framework lies in its stable and consistent per- 449

formance improvements—an essential property 450

for medical applications. As shown in Table 2, 451

RGAR ranks among the top two methods across all 452

datasets, delivering reliable gains over both RAG 453

and GAR. In contrast, i-MedRAG, despite incur- 454

ring substantial time overhead, performs poorly on 455

MedMCQA and ranks near the bottom, which sig- 456

nificantly undermines its suitability for real-world 457

deployment. 458

Notably, the performance improvements of 459

RGAR over GAR exhibit a positive correlation 460

with the average context length in each dataset. 461

For example, in EHRNoteQA, which has an aver- 462

age context length exceeding 3000 tokens, RGAR 463

achieves a 7.8% improvement, validating the ben- 464

efit of our Factual Knowledge Extraction module 465

in enhancing retrieval effectiveness. This suggests 466

that RGAR is particularly well-suited to practical 467

clinical scenarios where complete electronic health 468

records must be analyzed to generate accurate med- 469

ical recommendations. 470

To further assess generalizability, we evaluated 471

the models on Conceptual Knowledge-Intensive 472

Tasks, where factual knowledge extraction is ex- 473
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Figure 3: Accuracy with Different Numbers of Retrieved Chunks on EHRNoteQA Dataset.

Table 3: Comparison of LLMs on MedQA-US.

Model Custom RAG GAR RGAR

Llama-3.2-1B-Instruct 38.96 29.30 30.79 29.85
Llama-3.2-3B-Instruct 50.20 53.50 57.97 58.83
Llama-3.1-8B-Instruct 60.80 62.14 67.39 69.52

Qwen2.5-1.5B-Instruct 43.99 41.48 43.42 42.58
Qwen2.5-3B-Instruct 48.23 49.96 53.50 54.28
Qwen2.5-7B-Instruct 59.46 58.83 63.39 63.86

Average 50.27 49.20 52.74 53.15

pected to have less impact. On the MMLU-Med474

dataset, RGAR continues to outperform GAR and475

also surpasses i-MedRAG, demonstrating its ro-476

bustness across diverse task scenarios.477

5.2 Base LLMs with Different Sizes and478

Model Families479

To further assess the versatility of RGAR, we con-480

duct evaluations on MedQA-US, a widely used481

medical dataset, by utilizing base LLMs of various482

sizes and model families, specifically from Llama483

and Qwen. The results in Table 3 show that RGAR484

consistently achieves the best average performance.485

When considering model size, we find that486

retrieval-based approaches fall short of the non-487

retrieval Custom baseline for smaller models,488

such as Llama-3.2-1B-Instruct and Qwen2.5-1.5B-489

Instruct. These smaller models, constrained by490

their weaker performance, are not well-suited491

to leverage retrieval-enhanced information. As492

the model size increases, however, all retrieval-493

enhanced approaches exhibit notable performance494

gains, with RGAR yielding the most significant im-495

provements. This trend becomes particularly pro-496

nounced for larger models. For example, RGAR497

achieves a 7.38% improvement over RAG on498

Llama-8B, 5.33% on Llama-3B, 5.03% on Qwen-499

8B, and 4.32% on Qwen-3B.500

Moreover, we find that under the same ex-501

perimental conditions, Llama-3.1-8B-Instruct 502

achieves a performance of 69.52% with RGAR, 503

surpassing the 66.22% reported by MedRAG 504

for GPT-3.5-16k-0613 (Achiam et al., 2023). This 505

significant improvement underscores the practical- 506

ity of using well-optimized retrieval methods with 507

smaller models, enabling performance rivals those 508

of proprietary large-scale foundational models in 509

real-world medical recommendation tasks. 510

5.3 Ablation Study 511

Due to the absence of ground-truth retrieval chunks, 512

we evaluate retrieval effectiveness through QA per- 513

formance, systematically varying the number of re- 514

trieved chunks N from 4 to 32. A reduced retrieval 515

number serves as a more stringent assessment of re- 516

trieval quality. We investigate three primary factors 517

in Figure 3: the effect of options generated by GAR 518

versus those originally provided by the dataset, the 519

contributions of CKR and FKE components, and 520

the impact of RGAR’s recurrence rounds. 521

We first compare the retrieval performance be- 522

tween LLM-generated options and original dataset 523

options. Figure 3a shows how RGAR and GAR per- 524

form across different values of N . Both approaches 525

maintain stable performance across different N , 526

indicating reliable retrieval quality. While using 527

original options shows slightly higher average Ac- 528

curacy, the difference is minimal. This suggests 529

that even when GAR generates options that dif- 530

fer from the originals, it achieves similar retrieval 531

results as long as the core topics align. 532

We then examine the impact of RGAR’s two 533

main components—CKR and FKE—as shown in 534

Figure 3b. When we remove the conceptual knowl- 535

edge interaction from the FKE phase, the system 536

shows only moderate improvements when extract- 537

ing factual knowledge from EHR without concep- 538

tual knowledge, demonstrating the importance of 539

integrating both types of knowledge. Removing the 540
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Figure 4: Fine-Grained Accuracy of EHRNoteQA After
Sorting by Length and Dividing into Four Equal Parts.

multi-query generation step from CKR causes per-541

formance to degrade as N increases, indicating that542

multiple queries are necessary to maintain stable543

retrieval.544

Finally, we analyze the effect of rounds in RGAR545

(Round 0 means GAR), as illustrated in Figure546

3c. Our results show that even a single iteration547

significantly improves performance by enabling548

interaction between factual and conceptual knowl-549

edge. Multiple rounds work similarly to a rerank-550

ing mechanism (Mao et al., 2021b), improving551

the ranking of important chunks and showing sub-552

stantial gains even with relatively small N . With553

N = 8 , the default two-round setup achieves a per-554

formance of 75.78%, almost 1% better than using a555

single round. However, adding more rounds shows556

no clear benefits, as they tend to generate multi-hop557

factual knowledge during the FKE phase, leading558

CKR to retrieve multi-hop conceptual knowledge,559

which may cause LLMs to over-infer (Yang et al.,560

2024b). Given that each round involves one rea-561

soning step from both the LLM extractor and LLM562

query generator, two rounds sufficiently support563

multi-hop reasoning needs (Lv et al., 2021).564

5.4 Fine-Grained Performance Analysis565

While the previous sections examined overall566

dataset performance and established preliminary567

findings, this section provides a detailed analysis of568

specific aspects of our results. In § 5.1, we showed569

that RGAR performs better on real-world medical570

recommendation tasks involving comprehensive571

EHRs. To verify this finding, we conduct a detailed572

analysis of EHRNoteQA by grouping questions573

based on context length and dividing them into574

four bins. Within each bin, we compare the perfor-575

mance of RGAR, GAR, and Custom. As shown in576

Figure 4, Custom shows decreasing accuracy with577

increasing context length. GAR improves accuracy578

across all bins, with RGAR achieving further per-579

formance gains. Notably, the improvements are580
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Figure 5: t-SNE Visualization of Different Queries and
the Retrieved Chunks.

more significant in the three bins with longer con- 581

texts compared to the first bin. The results show 582

that RGAR maintains consistent average perfor- 583

mance across different context length. 584

It is also important to note that generating mul- 585

tiple queries from different aspects within RGAR 586

helps stabilize retrieval. Figure 5 presents a t-SNE 587

visualization of different queries and their individu- 588

ally retrieved chunks for a sample question (details 589

provided in Appendix C). The basic query shows 590

limited suitability for retrieval, as its coverage area 591

differs from that of the three queries generated by 592

RGAR. RGAR clearly introduces some variation 593

in retrieval content. Although the regions corre- 594

sponding to the three generated queries overlap, 595

the specific chunks retrieved do not overlap sig- 596

nificantly. This underscores the need to average 597

the retrieval similarities of these three queries to 598

achieve more stable retrieval results. 599

6 Conclusion 600

In this work, we propose RGAR, a novel RAG 601

system that distinguishes two types of retrievable 602

knowledge. Through comprehensive evaluation 603

across three factual-aware medical benchmarks, 604

RGAR demonstrates substantial improvements 605

over existing methods, emphasizing the signifi- 606

cant impact of in-depth factual knowledge extrac- 607

tion and its interaction with conceptual knowledge 608

on enhancing retrieval performance. Notably, our 609

RGAR enables the Llama-3.1-8B-Instruct model 610

to outperform the considerably larger, RAG-based 611

proprietary GPT-3.5. From a broader perspective, 612

RGAR offers a promising approach for enhancing 613

general-purpose LLMs in clinical diagnostic sce- 614

narios where extensive factual knowledge is crucial, 615

with potential for extension to other professional 616

domains demanding precise factual awareness. 617
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Limitations618

Despite RGAR achieving superior average perfor-619

mance, several limitations warrant discussion. Our620

RGAR requires corpus retrieval, and its time com-621

plexity scales proportionally with the size of the622

corpus, which is an inherent issue within the RAG623

paradigm. Approaches that generate reasoning evi-624

dence directly through domain-specific LLMs (Yu625

et al., 2023; Frisoni et al., 2024) avoid the computa-626

tional challenges at inference time. However, they627

face difficulties in updating LLMs to incorporate628

new medical knowledge, which results in frequent629

updates and training costs.630

Comparative approaches such as MedRAG631

(Xiong et al., 2024a) and i-MedRAG (Xiong632

et al., 2024b) explore integration possibilities with633

prompting techniques like Chain-of-Thought (Wei634

et al., 2022) and Self-Consistency (Wang et al.,635

2023a) to enhance reasoning capabilities. Our in-636

vestigation focused specifically on validating how637

additional factual knowledge processing improves638

retrieval performance, without examining the im-639

pact of these prompting strategies. Furthermore,640

unlike multi-round methods such as i-MedRAG641

(Xiong et al., 2024b) that implement LLM-based642

early stopping to reduce computational costs, our643

system operates with fixed time complexity. How-644

ever, it is noteworthy that, because i-MedRAG re-645

quires multiple rounds of query decomposition, re-646

trieval, and answer aggregation, the actual time647

overhead of RGAR is significantly smaller than648

that of i-MedRAG.649

Our EHR extraction approach assumes LLMs650

can process complete EHR contextual input, justi-651

fied by current mainstream LLMs exceeding 128K652

context windows with anticipated growth. How-653

ever, in extreme cases where EHR content exceeds654

LLM context limits, integration with chunk-free655

approaches may be necessary (Luo et al., 2024;656

Qian et al., 2024). Finally, as RGAR operates in a657

zero-shot setting without instruction fine-tuning, its658

effectiveness is partially contingent on the model’s659

instruction-following capabilities—which we can-660

not fully mitigate.661

Ethical Statement662

This research adheres to the ACL Code of Ethics.663

All medical datasets utilized in this study are ei-664

ther open access or obtained through credentialed665

access protocols. To ensure patient privacy protec-666

tion, all datasets have undergone comprehensive667

anonymization procedures. While Large Language 668

Models (LLMs) present considerable societal ben- 669

efits, particularly in healthcare applications, they 670

also introduce potential risks that warrant careful 671

consideration. Although our work advances the rel- 672

evance of retrieved content for medical queries, we 673

acknowledge that LLM-generated responses based 674

on retrieved information may still be susceptible to 675

errors or perpetuate existing biases. Given the criti- 676

cal nature of medical information and its potential 677

impact on healthcare decisions, we strongly advo- 678

cate for a conservative implementation approach. 679

Specifically, we recommend that all system outputs 680

undergo rigorous validation by qualified medical 681

professionals before any practical application. This 682

stringent verification process is essential to main- 683

tain the integrity of clinical and scientific discourse 684

and prevent the propagation of inaccurate or po- 685

tentially harmful information in healthcare settings. 686

These ethical safeguards reflect our commitment to 687

responsible AI development in the medical domain, 688

where the stakes of misinformation are particularly 689

high and the need for reliability is paramount. 690
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A Implementation Details 1111

A.1 Code and Results 1112

The core implementation of the RGAR framework 1113

and the output json files can be accessed via the 1114

Anonymous Repository: https://anonymous. 1115

4open.science/r/RGAR-C613 1116

A.2 Hardware Configuration 1117

All experiments were conducted on an in-house 1118

workstation equipped with dual NVIDIA GeForce 1119

RTX 4090 GPUs and an Intel® Core i9-13900K 1120

CPU. 1121

B Additional Experimental Results 1122

B.1 Additional Evaluation Metric 1123

This work and all compared methods rely solely on 1124

accuracy as the evaluation metric. This is because 1125

the corpora used for retrieval lack pre-annotated 1126

ground truth chunks specific to each question (if 1127

such ground truth were available, metrics like re- 1128

call and precision for retrieved chunks could be 1129

calculated). The absence of pre-annotated ground 1130

truth more accurately reflects real-world medical 1131

advisory scenarios. 1132

Inspired by a recent study from 2025 (Griot 1133

et al., 2025), we introduce an additional met- 1134

ric—model confidence in its answers—to provide 1135

a finer-grained assessment of whether the results 1136

are sufficiently ”reliable”. We extract the logits for 1137

the four answer options at the position of the gen- 1138

erated answer in the format { "answer_choice": 1139

"X" } and use the probability of the most likely 1140

option as the model’s confidence in its answer. No- 1141

tably, Methods using CoT cannot be evaluated in 1142

this manner because their output options are not 1143

position-specific, making logit extraction infeasi- 1144

ble. The changes in accuracy and average confi- 1145

dence on MedQA-US are presented in Table 4: 1146

Table 4: Accuracy and Model Confidence of Different
Methods.

Custom RAG GAR RGAR

Accuracy 50.20% 53.50% 57.97% 58.83%
Average Confidence 0.6632 0.6524 0.6811 0.7116

It is evident that average confidence generally 1147

correlates positively with actual accuracy, with the 1148

exception of non-retrieval-based methods, which 1149

tend to produce overly confident probability esti- 1150

mates. 1151
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First, we categorize results based on actual con-1152

fidence values. The accuracy and corresponding1153

sample counts for different confidence thresholds1154

are in Table 5:1155

Table 5: Accuracy of Methods Across Confidence
Ranges.

Confidence Custom RAG GAR RGAR

>0.85 61.60% 76.09% 81.93% 83.60%
<0.85 46.10% 45.84% 47.70% 46.07%
>0.9 65.46% 80.60% 83.50% 86.78%
<0.9 46.48% 47.45% 50.61% 47.69%

Nums Custom RAG GAR RGAR

>0.85 336 322 382 433
<0.85 937 951 891 840
>0.9 249 232 285 363
<0.9 1024 1041 988 910

These results show that RGAR has a higher num-1156

ber of samples with higher confidence (e.g., >0.851157

and >0.9), and these samples exhibit significantly1158

higher accuracy. This indicates that RGAR’s re-1159

sults are sufficiently reliable, allowing users to de-1160

cide whether further verification of the answer’s1161

correctness is needed based on confidence levels.1162

Furthermore, to calibrate for potential biases in1163

confidence estimates (e.g., some methods being1164

overly confident or conservative), we rank samples1165

within each method by confidence and compute1166

their respective accuracies. The results are in Table1167

6:1168

Table 6: Accuracy by Relative Model Confidence Lev-
els.

Confidence Ranking Custom RAG GAR RGAR

top 25% 74.21% 76.42% 82.70% 87.11%
25%-50% 55.35% 59.43% 66.67% 63.52%
50%-75% 40.88% 44.03% 49.37% 49.06%
75%-100% 30.41% 34.17% 33.23% 35.74%

Notably, in the top 25% confidence ranking,1169

RGAR achieves a substantial improvement of1170

approximately 4% over the second-best method,1171

GAR. In contrast, GAR’s correctly answered sam-1172

ples are more likely to fall into lower confidence1173

regions, suggesting a ”lack of essential metacogni-1174

tion” in its responses.1175

B.2 Additional Analysis of Time Cost1176

Time cost across all methods on EHRNoteQA are1177

shown in Table 7.1178

Table 7: Comparison of different methods in terms of
execution time (hours).

Method Custom CoT RAG MedRAG GAR i-MedRAG RGAR

Time/h 0.13 0.96 0.47 1.26 1.52 19.03 4.49

Balancing time overhead and performance is cru- 1179

cial, and our approach achieves this balance. As 1180

shown in Tables 2 and 7, RGAR’s time overhead 1181

is less than 0.3 × that of i-MedRAG while main- 1182

taining comparable or superior performance. On 1183

average, RGAR requires about 20 seconds per sam- 1184

ple, whereas i-MedRAG exceeds 60 seconds, mak- 1185

ing its overhead impractical. Although RGAR’s 1186

per-round overhead is 1.5× that of GAR, Figure 3 1187

shows a clear performance gain. For real-time ap- 1188

plications, a single-round RGAR offers an optimal 1189

trade-off. Other methods lag significantly behind 1190

both i-MedRAG and RGAR, making them unsuit- 1191

able for medical applications where reliability is 1192

critical. 1193

We further analyze the overhead of different 1194

pipeline components in all methods: 1195

(1) Corpus retrieval: Since embedded vectors are 1196

pre-saved, retrieval overhead is in the second range, 1197

making multiple retrievals negligible. Custom and 1198

RAG methods have similar costs. 1199

(2) LLM generation: The CoT method has un- 1200

stable token lengths (110–4096, avg. 2,433), mak- 1201

ing its overhead only 0.6 × to GAR’s. GAR in- 1202

volves three generations, each under 1,000 tokens. 1203

GAR’s three queries share input except for prompts 1204

(see Equation 4), and existing methods (Pope et al., 1205

2023) suggest that sharing KV cache could poten- 1206

tially make it more efficient. 1207

(3) i-MedRAG: Its LLM generation’s overhead 1208

in each round includes query decomposition, CoT- 1209

based answering of each query, and summarization, 1210

leading to a 4.2× higher cost than RGAR, even with 1211

early stopping. 1212

In summary, RGAR significantly improves upon 1213

GAR in just one round, enabling flexible time- 1214

performance trade-offs. GAR-like methods may 1215

further reduce overhead via shared KV cache tech- 1216

niques. 1217

B.3 Advantages Over i-MedRAG 1218

(1) The average performance improvement of 1219

RGAR compared to i-MedRAG is relatively mod- 1220

est, largely because i-MedRAG is an extremely 1221

complex approach, with a time overhead three 1222

times that of RGAR. The focus of RGAR is to 1223

14



demonstrate the importance of extracting factual1224

knowledge from EHRs and the interaction between1225

factual and conceptual knowledge. This is con-1226

vincingly supported by the comparisons with RAG1227

and GAR in Section 5.1 and the ablation study in1228

Section 5.3.1229

(2) A key advantage of RGAR is its stable and1230

consistent performance improvement, which is crit-1231

ical for the requirements in medical applications.1232

As shown in Table 2, RGAR ranks among the top1233

two across all three datasets, demonstrating a stable1234

enhancement over both RAG and GAR. In contrast,1235

i-MedRAG, despite its substantial time overhead,1236

performs poorly on MedmcQA, ranking near the1237

bottom. This significantly limits its potential for1238

real-world deployment.1239

(3) An additional advantage of RGAR is its1240

flexibility. Its two main components—factual1241

knowledge extraction and conceptual knowledge1242

retrieval—can be easily integrated into various ex-1243

isting RAG frameworks. For instance, we exper-1244

imented by adding the factual knowledge extrac-1245

tion module to the initial cycle of i-MedRAG. On1246

the MedQA-US dataset, this improved its perfor-1247

mance from 56.24% to 58.13%, surpassing GAR’s1248

57.97% and coming close to RGAR’s 58.83%. This1249

highlights the extensibility and effectiveness of the1250

factual knowledge extraction module. However,1251

due to the prohibitive time overhead—i-MedRAG1252

generates m queries, and combining these with1253

the n queries from conceptual knowledge retrieval1254

would result in m ∗ n queries—we did not pursue1255

further combinations. The focus of this paper is to1256

validate the effectiveness of the RGAR approach.1257

Future work will aim to integrate RGAR’s method-1258

ology with existing RAG techniques, reduce time1259

overhead, and develop systems that offer a better1260

trade-off between performance and efficiency.1261

B.4 Additional Corpus1262

While our main experiments are conducted using1263

corpus Textbooks, we acknowledge that corpus size1264

and coverage may influence absolute performance.1265

However, our objective is not to optimize the cor-1266

pus itself, but rather to investigate how explicit fac-1267

tual knowledge extraction can enhance the architec-1268

ture of RAG systems. As demonstrated in our main1269

results, the proposed method consistently outper-1270

forms strong baselines—including GAR—under1271

the same corpus conditions. This validates the ef-1272

fectiveness of our approach independent of corpus1273

scale.1274

It is important to note that prior work, such as 1275

the MIRAGE benchmark (Xiong et al., 2024a), has 1276

shown that while a larger corpus may improve over- 1277

all accuracy, it does not fundamentally alter the 1278

relative advantages among RAG architectures. 1279

In our study, we focus on the practical sce- 1280

nario of deploying a personal health assistant (Qiu 1281

et al., 2024) on a consumer-grade GPU (e.g., 24GB 1282

VRAM) and a standard desktop system. From 1283

this perspective, extremely large corpora such as 1284

MedCorp present significant resource challenges. 1285

Specifically, the complete storage requirement for 1286

MedCorp—including the raw documents and Med- 1287

CPT embeddings—amounts to 336 GB, and its 1288

deployment requires a minimum of 256 GB RAM 1289

to load the retrieval index, which poses substan- 1290

tial overhead for individual users or lightweight 1291

healthcare applications. 1292

To further support the generality of our findings, 1293

we include additional experiments on a mid-sized 1294

corpus (StatPearls) and a large-scale evaluation on 1295

MedCorp in Table 8. These results reaffirm the ef- 1296

fectiveness of our architecture, demonstrating that 1297

it remains beneficial across different corpus scales, 1298

without relying on massive storage or compute re- 1299

sources.

Table 8: Performance of Different Methods with Vary-
ing Corpus Sizes on MedQA-US.

Corpora Custom RAG GAR RGAR

TextBooks(#125.8k) 50.20% 53.50% 56.24% 58.83%
StatPearls(#301.2k) 50.20% 54.83% 56.48% 58.99%
MedCorp(#65.3M) 50.20% 55.77% 58.20% 60.64%

1300

Specifically, all retrieval-based methods benefit 1301

from a larger corpus on the MedQA-US dataset. 1302

However, even when using the much larger Med- 1303

Corp corpus, GAR does not outperform RGAR 1304

evaluated on the smaller textbook corpus. This 1305

indicates that the performance gains of RGAR 1306

over GAR remain stable across corpora of different 1307

sizes. 1308

In terms of runtime, as shown in Figure 6, all 1309

multi-stage retrieval methods experience a signifi- 1310

cant increase in latency on MedCorp, primarily due 1311

to the cost of retrieval rather than generation—each 1312

retrieval step incurs an average delay of approxi- 1313

mately 10 seconds. This further highlights RGAR’s 1314

suitability for deployment on consumer-grade sys- 1315

tems, where both memory and latency are limited. 1316
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Figure 6: Time Overhead of Different Methods with
Varying Corpus Sizes.

B.5 Fine-grained Analysis of Performance on1317

Different Datasets1318

When analyzing performance across different1319

datasets, we find that retrieval-based methods1320

perform significantly better on MedQA-US and1321

EHRNoteQA, while MedMCQA shows a nega-1322

tive effect—consistent with results reported by1323

MedRAG (Xiong et al., 2024a). A closer analy-1324

sis reveals that MedMCQA incorporates arithmetic1325

reasoning questions (roughly 7% of the total), and1326

the addition of extensive retrieved contexts dimin-1327

ishes the model’s numerical reasoning capabilities,1328

which could potentially be fixed with larger base1329

LLMs (Mirzadeh et al., 2025). Nonetheless, among1330

retrieval-based methods, our RGAR stands out as1331

the only approach that outperforms vanilla RAG1332

on this dataset, delivering an improvement of more1333

than 1% over Custom.1334

C Prompt Template and Case Study1335

For simplicity, we merged EHR and question in the1336

prompt words of the answer and treated them as1337

question in the prompt words. Table 9 shows the1338

prompts template of RGAR and compared work1339

(Using CoT ones). Table 10 shows the input of a1340

sample, Table 11 shows the final output of RGAR.1341

C.1 Simple Case Study1342

Given that our method operates with a retrieval bud-1343

get of only 32 documents—and that medical ques-1344

tion answering inherently requires domain-specific1345

reasoning—we include a simplified case study to1346

illustrate why traditional approaches may fall short1347

under such constraints. This example highlights the1348

challenges faced by earlier methods in capturing1349

and integrating critical patient-specific risk factors1350

with external medical knowledge, and contrasts1351

them with the advantages of our proposed frame- 1352

work. 1353

Case. A 60-year-old male patient presents with 1354

persistent cough, fever, and mild dyspnea. The 1355

hospital’s EHR includes not only symptom descrip- 1356

tions but also chest X-ray results, blood oxygen 1357

levels, prior diagnoses (e.g., diabetes, COPD), al- 1358

lergy history, and lab findings. In addition, external 1359

medical literature provides authoritative guidelines 1360

on pulmonary infections, comorbidity considera- 1361

tions, and evidence-based treatment strategies. 1362

Limitations of Traditional Methods. Basic 1363

retrieval-based methods tend to issue dispersed 1364

queries over all surface-level mentions in the 1365

EHR, retrieving fragmented conceptual knowledge 1366

loosely related to individual symptoms. This makes 1367

it difficult to focus on high-risk factors specific to 1368

the current condition—such as comorbid diabetes 1369

or COPD. Query decomposition further fragments 1370

retrieval results, lacking coherence or clinical focus. 1371

These methods heavily depend on a sufficiently 1372

strong language model to accurately identify crit- 1373

ical information from a large and often noisy tex- 1374

tual input after retrieval—whether it be high-risk 1375

factors embedded in the original EHR or appropri- 1376

ate treatment strategies extracted from retrieved 1377

documents. This reliance becomes particularly 1378

problematic when deploying LLMs on resource- 1379

constrained environments, such as consumer-grade 1380

GPUs, where inference capabilities and context 1381

handling are limited. 1382

Generative retrieval approaches like GAR allow 1383

the model to generate an intermediate answer and 1384

use it to retrieve supporting content. While this 1385

enables partial recognition of high-risk factors and 1386

relevant treatments, it heavily relies on the model’s 1387

internal conceptual knowledge. As a result, its 1388

effectiveness declines in complex cases requiring 1389

deeper medical understanding. 1390

Advantages of RGAR. Our method explicitly 1391

encourages the integration of conceptual and fac- 1392

tual knowledge. In the first retrieval stage, exter- 1393

nal conceptual knowledge (e.g., clinical guidelines 1394

on comorbidities) is retrieved and provided to the 1395

model. This serves as guidance for iterative rea- 1396

soning, allowing the model to focus on identify- 1397

ing patient-specific high-risk factors—such as the 1398

interaction between diabetes, COPD, and current 1399

symptoms. 1400

Through multiple rounds of reasoning, the model 1401

captures critical factual elements from the EHR 1402

(e.g., allergy history, abnormal blood oxygen lev- 1403
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els) and aligns them with relevant conceptual in-1404

sights (e.g., recommended antibiotic choices for1405

diabetic patients). This integrated process results1406

in more accurate and interpretable treatment sug-1407

gestions, grounded in both structured medical evi-1408

dence and patient-specific context.1409

D Framework Insight1410

D.1 the Rationality of Bloom’s Taxonomy1411

We recognize that there may be concerns regarding1412

the use of Bloom’s Taxonomy in our framework,1413

particularly the potential implication that it imposes1414

a rigid dichotomy between factual and conceptual1415

knowledge. However, both the original taxonomy1416

and our application through the RGAR framework1417

emphasize the integration—rather than the sepa-1418

ration—of these two forms of knowledge. Our1419

work does not advocate for treating factual and1420

conceptual knowledge as disjoint entities; rather, it1421

highlights their complementary roles in effective1422

problem-solving, a view that is explicitly articu-1423

lated in our abstract and substantiated through em-1424

pirical analyses, including targeted ablation studies.1425

In Section D.2, we further clarified that factual1426

and conceptual knowledge originate from funda-1427

mentally different sources, and this distinction nat-1428

urally aligns with the two types of knowledge de-1429

fined in Bloom’s Taxonomy. Traditional RAG se-1430

tups often fail to recognize the distinction between1431

factual and conceptual knowledge, which leads to a1432

lack of dedicated extraction for factual knowledge1433

and makes it impossible to facilitate interaction1434

between the two types of knowledge. In contrast,1435

our method is specifically designed to handle these1436

two forms of knowledge separately and enables1437

meaningful interaction between them.1438

If the concern is that using separate modules en-1439

forces an artificial separation, then by this logic1440

all RAG systems are inherently “bifurcated”, since1441

they embed a query including factual knowledge to1442

retrieve conceptual knowledge. The key distinction1443

of our work lies in foregrounding factual knowl-1444

edge extraction and promoting its interaction with1445

conceptual retrieval, which stands in contrast to1446

the rigid separation in existing systems. Our ap-1447

proach, RGAR, does not divide knowledge more1448

but integrates it more effectively.1449

D.2 Organization of early datasets1450

Early RAG-based methods were shaped by the1451

structure of existing QA datasets. For instance,1452

early benchmarks like PubMedQA provided only 1453

the question as input for retrieval. Subsequent 1454

datasets, such as MedQA-US, introduced associ- 1455

ated factual knowledge but presented it concate- 1456

nated with the question, effectively treating the two 1457

as a single input. It was not until the introduc- 1458

tion of EHRNoteQA that EHRs and questions were 1459

explicitly provided as separate components. As 1460

a result, existing retrieval methods were naturally 1461

designed to operate on unified question–context 1462

inputs, without explicitly distinguishing factual 1463

knowledge from the query itself. 1464

D.3 Another View of the Recurrence Pipeline 1465

We conceptualize the Recurrence Pipeline as an 1466

exploration-exploitation process within the rein- 1467

forcement learning framework (Auer et al., 2002). 1468

In GAR, even when generated content is only par- 1469

tially accurate (or potentially inaccurate), it re- 1470

mains valuable for retrieval if it correlates with 1471

passages containing correct information (e.g., co- 1472

occurrence with correct answers), thus representing 1473

an exploratory phase. Conversely, EHR extraction 1474

serves as an exploitation phase, thoroughly utiliz- 1475

ing explored knowledge by selecting relevant com- 1476

ponents and synthesizing new evidence (factual 1477

knowledge). Based on this newly derived evidence, 1478

subsequent iterations can initiate fresh exploration- 1479

exploitation cycles, creating a continuous knowl- 1480

edge transmission process (Zhu et al., 2024). 1481

In scenarios where additional factual knowledge 1482

is not required, the retrieved content tends to re- 1483

main relatively constant, and utilizing this content 1484

under identical prompting conditions would likely 1485

yield similar factual knowledge through extraction 1486

and summarization. However, when conceptual 1487

knowledge is needed to derive new factual knowl- 1488

edge through reasoning from existing factual in- 1489

formation, the updated basic query facilitates eas- 1490

ier retrieval of conceptual knowledge supporting 1491

current reasoned factual knowledge, thereby main- 1492

taining the integrity of reasoning chains. Further- 1493

more, leveraging current factual knowledge for re- 1494

trieval enables the exploration and discovery of 1495

novel knowledge domains. 1496

D.4 Why No Flexible Stopping Criteria 1497

Similar multiround RAG systems have adopted 1498

more flexible stopping criteria. For instance, Adap- 1499

tive RAG (Jeong et al., 2024) determines whether 1500

to retrieve further by consulting the model itself. 1501

i-MedRAG (Xiong et al., 2024b), while setting a 1502
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maximum number of retrieval iterations, also sup-1503

ports early stopping.1504

In our RGAR framework, we do not adopt such1505

settings. On the one hand, we focus on evaluating1506

how additional processing of factual knowledge1507

enhances retrieval performance, raising awareness1508

of this often-overlooked type of knowledge in pre-1509

vious RAG systems, while flexible stopping cri-1510

teria mainly showcase procedural knowledge and1511

metacognitive knowledge. On the other hand, the1512

metacognitive capabilities of current LLMs remain1513

under question, as a model’s self-evaluation of the1514

need for additional retrieval information often does1515

not match actual requirements (Kumar et al., 2024).1516

D.5 Generalizability of the Framework1517

Since RGAR maintains the same input-output struc-1518

ture as standard RAG systems, it is well-suited for1519

any retrieval scenario, regardless of the presence of1520

Electronic Health Records (EHRs). Its advantages1521

become particularly evident when handling long1522

EHR texts. The framework accepts a string input,1523

which undergoes additional partitioning to extract1524

EHRs and questions. In scenarios where EHRs are1525

unavailable, the factual knowledge extraction mod-1526

ule is not executed; instead, the question is rewrit-1527

ten with retrieved conceptual knowledge. The out-1528

put is formatted as a JSON object, facilitating the1529

inclusion of intermediate system outputs.1530

From the perspective of future scalability, the1531

evolution of LLM agents suggests that private LLM1532

health assistants will gain access to more exten-1533

sive historical health data from owners (patients),1534

including EHRs, enabling more comprehensive1535

question answering (Qiu et al., 2024). This an-1536

ticipated expansion emphasizes the importance of1537

distinguishing inputs beyond the question, partic-1538

ularly factual information, thereby validating the1539

rationale behind our framework.1540

To demonstrate the framework’s generalizability,1541

we evaluated its performance on the MMLU-Med1542

dataset (Hendrycks et al., 2021) in Table 2, which1543

lacks EHRs. Our experimental results, indicate1544

that RGAR consistently outperformed GAR, albeit1545

with a relatively modest improvement compared to1546

datasets containing EHRs.1547

D.6 Future Work1548

Our RGAR framework leverages retrieved medi-1549

cal domain knowledge to deliver exceptional an-1550

swer quality. However, we are concerned that such1551

powerful generative capabilities, if maliciously ex-1552

ploited, could pose security risks. For instance, 1553

when the retrieved corpus contains private or copy- 1554

righted information, malicious users could exploit 1555

the LLM’s responses to extract and disclose sensi- 1556

tive data from the corpus (Carlini et al., 2021). Ad- 1557

ditionally, malicious users might attempt to repli- 1558

cate our base LLM (Tramèr et al., 2016) by collect- 1559

ing large volumes of question-answer pairs or infer 1560

internal details of our retrieval-based generation 1561

framework (Carlini et al.). We will make every 1562

effort to mitigate these risks, such as verifying the 1563

legitimacy of queries (Inan et al., 2023), ensuring 1564

that RGAR is used responsibly and legally. 1565

E Dataset Description and Analysis 1566

E.1 Dataset Coverage Overview 1567

The datasets used in our study collectively span a 1568

broad range of medical domains: 1569

• MedQA-US focuses on general clinical 1570

medicine within the scope of the USMLE ex- 1571

amination. 1572

• MedMCQA encompasses 21 medical special- 1573

ties, including cardiology, oncology, derma- 1574

tology, and more. 1575

• EHRNoteQA covers real-world scenarios 1576

such as inpatient management, emergency 1577

medicine, and intensive care. 1578

• MMLU-Med targets basic medical sciences 1579

and related fields, including anatomy, genet- 1580

ics, medical ethics, and public health. 1581

The Textbooks corpus utilized in our study com- 1582

prises content from 18 widely recognized med- 1583

ical textbooks, extensively used by medical stu- 1584

dents and USMLE candidates. This corpus encom- 1585

passes a broad spectrum of medical disciplines, 1586

including internal medicine, pediatrics, surgery, 1587

obstetrics and gynecology, psychiatry, pharmacol- 1588

ogy, pathology, and foundational sciences such as 1589

anatomy, physiology, and biochemistry. Given this 1590

extensive coverage, the Textbooks corpus aligns 1591

well with the domains addressed in our evaluated 1592

datasets—MedQA-US, MedMCQA, EHRNoteQA, 1593

and MMLU-Med—thereby serving as a represen- 1594

tative and appropriate retrieval corpus for our ex- 1595

periments. 1596

Regarding question types, multiple-choice QA 1597

is the most commonly used format and is the type 1598
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employed in all comparative analyses in this pa-1599

per. Open-ended (generative) QA datasets, which1600

primarily evaluate the quality of generated text sum-1601

maries rather than the ability to solve medical prob-1602

lems (Savery et al., 2020), are beyond the scope1603

of this study. However, addressing such datasets is1604

indeed a necessary step toward real-world applica-1605

tions.1606

E.2 Representative Examples of different1607

datasets1608

Figure 1 and Table 1 in the main text illustrate the1609

distinctions among datasets with respect to the in-1610

volvement of factual knowledge, specifically elec-1611

tronic health records (EHRs) in the case of medical1612

questions. In this section, we present representative1613

samples from all the datasets referenced throughout1614

the paper.1615

From the example of MMLU-Med in Table 15,1616

it can be observed that the length of the input1617

primarily stems from the inclusion of extensive1618

references to literature viewpoints and empirical1619

findings, which are used to support complex rea-1620

soning. This characteristic contributes to its sta-1621

tus as a representative and challenging medical1622

QA dataset. However, in comparison to the three1623

datasets discussed above, MMLU-Med still con-1624

tains little to no factual knowledge specific to in-1625

dividual patients; that is, it lacks detailed depic-1626

tions of patient-specific information. As shown1627

in Table 2, RGAR continues to exhibit strong per-1628

formance on this type of dataset. To some extent,1629

this highlights the generalizability of our approach:1630

the FKE module remains effective in scenarios in-1631

volving lengthy inputs that require distillation and1632

extraction of key information.1633

E.3 Comparative Analysis of Dataset Length1634

Distributions1635

In this section, we present additional visualizations1636

comparing the two categories of datasets we de-1637

scribed, and explain our rationale for excluding1638

the MMLU-Med dataset (Hendrycks et al., 2021).1639

We plotted smoothed Kernel Density Estimation1640

(KDE) curves for these datasets, as shown in Fig-1641

ure 7. Our analysis confirms that datasets contain-1642

ing Electronic Health Records (EHR) consistently1643

demonstrate greater length compared to those with-1644

out EHR content. However, certain datasets exhibit1645

complex question sources and types. For instance,1646

while the MMLU-Med dataset exhibits a consid-1647

erable mean length of 84 tokens and a maximum1648

length of up to 961 tokens, the primary source of 1649

this length is not factual knowledge such as EHRs. 1650

Moreover, its length distribution is highly skewed: 1651

the majority of samples are relatively short, with 1652

only a small fraction being significantly longer. 1653

This distribution differs substantially from that of 1654

medical QA datasets involving EHRs, where longer 1655

inputs are more consistently present. As a result, 1656

we exclude MMLU-Med from our main experimen- 1657

tal evaluation. Nevertheless, we still report results 1658

on this dataset, given its prominence and represen- 1659

tativeness in the current landscape of medical QA 1660

benchmarks. 1661
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Figure 7: Length Distribution Analysis of Medical QA Datasets with and without EHR.
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System prompts for Non-CoT

You are a helpful medical expert, and your task is to answer a multi-choice medical question using the
relevant documents. Organize your output in a json formatted as Dict {"answer_choice": Str{A/B/C/...}}.
Your responses will be used for research purposes only, so please have a definite answer. Please just give
me the json of the answer.

System prompts for using CoT

You are a helpful medical expert, and your task is to answer a multi-choice medical question. Please first
think step-by-step and then choose the answer from the provided options. Organize your output in a json
formatted as Dict{"step_by_step_thinking": Str(explanation), "answer_choice": Str{A/B/C/...}}. Your
responses will be used for research purposes only, so please have a definite answer. Please just give me
the json of the answer.

Answer prompts for Non-CoT

Here are the relevant documents: {{context}}
Here is the question: {{question}}
Here are the potential choices: {{options}}
Please just give me the json of the answer. Generate your output in json:

Answer prompts for Using CoT

Here are the relevant documents: {{context}}
Here is the question: {{question}}
Here are the potential choices: {{options}}
Please think step-by-step and generate your output in one json:

Extracting EHR prompts

Here are the relevant knowledge sources: {{context}}
Here are the electronic health records: {{ehr}}
Here is the question: {{question}}
Please analyze and extract the key factual information in the electronic health records relevant to solving
this question and present it as a Python list. Use concise descriptions for each item, formatted as ["key
detail 1", ..., "key detail N"]. Please only give me the list. Here is the list:

Generating Possible Answer prompts

Please give 4 options for the question. Each option should be a concise description of a key detail,
formatted as: A. "key detail 1" B. "key detail 2" C. "key detail 3" D. "key detail 4

Generating Possible Title prompts

Please generate some titles of references that might address the above question. Please give me only the
titles, formatted as: ["title 1", "title 2", ..., "title N"]. Please be careful not to give specific content and
analysis, just the title.

Generating Possible Contexts prompts

Please generate some knowledge that might address the above question. please give me only the knowl-
edge.

Table 9: Prompt templates used in RGAR and Compared Methods.
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EHR

A 39-year-old woman is brought to the emergency department because of fevers, chills, and left lower
quadrant pain. Her temperature is 39.1°C (102.3°F), pulse is 126/min, respirations are 28/min, and blood
pressure is 80/50 mm Hg. There is blood oozing around the site of a peripheral intravenous line. Pelvic
examination shows mucopurulent discharge from the cervical os and left adnexal tenderness. Laboratory
studies show: Platelet count 14,200/mm3 Fibrinogen 83 mg/mL (N = 200–430 mg/dL) D-dimer 965
ng/mL (N < 500 ng/mL)

Questions

When phenol is applied to a sample of the patient’s blood at 90°C, a phosphorylated N-acetylglucosamine
dimer with 6 fatty acids attached to a polysaccharide side chain is identified. A blood culture is most
likely to show which of the following?

Options

A. Coagulase-positive, gram-positive cocci forming mauve-colored colonies on methicillin-containing
agar
B. Encapsulated, gram-negative coccobacilli forming grey-colored colonies on charcoal blood agar
C. Spore-forming, gram-positive bacilli forming yellow colonies on casein agar
D. Lactose-fermenting, gram-negative rods forming pink colonies on MacConkey agar

Table 10: Case Study of a Sample Input.
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Generated Title

"Identification of Streptococcus pneumoniae in Clinical Specimens",
"Phosphorylcholine-Binding Protein A of Staphylococcus aureus",
"D-Dimer Assay for Diagnosing Deep Vein Thrombosis",
"The Role of Fibrin Degradation Products in Hemostasis",
"Infection Control Measures for Hospital-Acquired Bloodstream Infections"

Generate Context

The description suggests Neisseria gonorrhoeae infection. Neisseria gonorrhoeae produces lipopolysac-
charides in its outer membrane, specifically LPS or endotoxin. When heated, these lipopolysaccharides
undergo cross-linking reactions resulting in the formation of phosphorylcholine-attached oligomers such
as those described in the question stem. These structures can be detected by ELISA using antibodies
against specific epitopes on the surface of N. gonorrhoeae cells. The presence of this structure would
suggest an active infection due to N. gonorrhoeae. Blood cultures for N. gonorrhoeae typically require
specialized media containing antibiotics like vancomycin, colistin, and nystatin to inhibit competing
bacteria

Generate Answer

Option 1: Streptococcus pneumoniae The presence of a high fever, tachycardia, hypotension, and
low platelets suggests sepsis or severe infection. The laboratory findings also indicate disseminated
intravascular coagulation (DIC). The identification of a phosphorylated N-acetylglucosane dimer with 6
fatty acid chains attached to a polysaccharide side chain after applying phenol at 90°C is consistent with
pneumococcal capsular polysacarcharides.
Option 2: Staphylococcus aureus Staphylococci can cause various infections but do not typically produce
this type of capsule structure when exposed to heat.
Option 3: Escherichia coli E. coli does have capsules that may be detected by certain methods such as
latex agglutination tests; however, they don’t match the description given in the prompt.
Option 4: Neisseria meningitidis Neisseria species like N. meningitidis would more commonly present
with symptoms related to central nervous system involvement rather than pelvic signs described in the
scenario.

Extract EHR

Patient age: 39 years
Symptoms: fever, chills, left lower quadrant pain
Vital signs: high temperature (39.1°C), tachycardia (126/min), tachypnea (28/min), hypotension (80/50
mmHg)
Physical exam findings: mucopurulent discharge from cervix, left adnexal tenderness
Laboratory results: low platelet count (14,200/mm3), elevated D-dimer (965 ng/mL)
Phenol test result: phosphorylated N-acetylglucosamine dimer with 6 fatty acids attached to a polysaccha-
ride side chain

Output Json

{"answer_choice": "D"}

Table 11: Case Study of output in RGAR.
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Representative sample from the MedQA-US dataset

A junior orthopaedic surgery resident is completing a carpal tunnel repair with the department chairman
as the attending physician. During the case, the resident inadvertently cuts a flexor tendon. The tendon is
repaired without complication. The attending tells the resident that the patient will do fine, and there is no
need to report this minor complication that will not harm the patient, as he does not want to make the
patient worry unnecessarily. He tells the resident to leave this complication out of the operative report.
Which of the following is the correct next action for the resident to take?
A. Disclose the error to the patient and put it in the operative report
B. Tell the attending that he cannot fail to disclose this mistake
C. Report the physician to the ethics committee
D. Refuse to dictate the operative report

Table 12: Case study of a representative sample from the MedQA-US dataset.

Representative sample from the MedMCQA dataset

29 yrs old woman with a pregnancy of 17 week has a 10 years old boy with down syndrome. She does not
want another down syndrome kid; best advice to her is
A. No test is required now as her age is below 35 years
B. Ultra sound at this point of time will definitely tell her that next baby will be down syndromic or not
C. Amniotic fluid samples plus chromosomal analysis will definitely tell her that next baby will be down
syndromic or not
D. blood screening at this point of time will clear the exact picture

Table 13: Case study of a representative sample from the MedMCQA dataset.
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Representative sample from the EHRNoteQA dataset

Patient ID: 15455707\nAdmission ID: 24016271\nChartdate: 2172-06-17\nName: ___ Unit No: ___\nAd-
mission Date:___ Discharge Date:___\nDate of Birth:___ Sex: M\nService: PLASTIC\nAllergies:\nNo
Known Allergies / Adverse Drug Reactions\nAttending:___.\nChief Complaint:\nCrush injury to bilateral
index fingers consistent with a flexor\ntendon laceration\nMajor Surgical or Invasive Procedure:\n___
Bilateral IF flexor tendon repairs\nHistory of Present Illness:\n___ otherwise healthy male s/p work
accident on ___ when his\nhands were pulled into conveyor belt. He is here today for\nrepair of bilateral
index finger crush injuries.\nPast Medical History:\nNone\nSocial History:\n___\nFamily History:\nNon-
contributory\nPhysical Exam:\nPre-procedure physical exam as documented in Dr.___: He is well
appearing.\nCARDIAC: He has palpable pulses without arrhythmia.\nLUNGS: He is breathing room air
without shortness breath or\ncough.\nMUSCULOSKELETAL: Focused of upper extremity examination,
hands\nare well perfused bilaterally with palpable radial artery with\ngood cap refill in all five digits
including lacerated digits\nwith volar lacerations overlying the P2 of the left index finger\nand as well as
the P2 and P3 of the right index finger with\nsegmental lacerations transversely. He denies paresthesias
in\nthe radial and ulnar border of the index, middle, ring, small or\nthumb bilaterally. He is unable to make
a composite fist with\nno active motion demonstrated at the PIP of either index finger\nor DIP of either
index finger.\nBrief Hospital Course:\nThe patient was admitted to the plastic surgery service on\n___
and had operative repair of bilateral index finger\ncrush injuries. Please see operative note for further
details\nof procedure. The patient tolerated the procedure well.\n.\nNeuro: Post-operatively, the patient
received IV pain medication\nwith good effect and adequate pain control. When tolerating oral\nintake,
the patient was transitioned to oral pain medications.\n.\nCV: The patient was stable from a cardiovas-
cular standpoint;\nvital signs were routinely monitored.\n.\nPulmonary: The patient was stable from a
pulmonary standpoint;\nvital signs were routinely monitored.\n.\nGI/GU: Post-operatively, the patient
was given IV fluids until\ntolerating oral intake. His diet was advanced when appropriate,\nwhich was
tolerated well. He was also started on a bowel regimen\nto encourage bowel movement. Intake and output
were closely\nmonitored.\n.\nAt the time of discharge on POD#1, the patient was doing well,\nafebrile
with stable vital signs, tolerating a regular diet,\nambulating, voiding without assistance, and pain was
well\ncontrolled. Patient had bilateral splints in place.\nMedications on Admission:\nNone\nDischarge
Medications:\n1. Acetaminophen 650 mg PO Q6H:PRN pain\n2. OxycoDONE (Immediate Release) ___
mg PO Q4H:PRN pain\nDischarge Disposition:\nHome\nDischarge Diagnosis:\nbilateral index fingers
crush injury consistent with bilateral\nflexor tendon lacerations\nDischarge Condition:\nMental Status:
Clear and coherent. ___Speaking)\nLevel of Consciousness: Alert and interactive.\nActivity Status: Am-
bulatory - Independent.\nDischarge Instructions:\nFollowup Instructions: ___\nQuestion: What was the
patient’s condition like at the time of discharge, particularly focused on his vital signs, pain management
and mobility?
A. The patient was fairly stabilized, with pain under control, consuming a regular diet, and able to walk
and relieve himself without assistance
B. The patient was on a repetitive intake of IV fluids and required IV painkillers.
C. Patient was experiencing altered states of consciousness, still in distress due to pain, and not able to
ambulate
D. The patient was responding well to the oral pain medications and was capable of consistent motion at
the PIP of index fingers
E. Patient still required high-dependency care with heart rate and blood pressure under constant monitoring

Table 14: Case study of a representative sample from the EHRNoteQA dataset.
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Representative sample from the MMLU-Med dataset

Sauna use, sometimes referred to as s̈auna bathing,ïs characterized by short-term passive exposure to
extreme heat. This exposure elicits mild hyperthermia \u2013 an increase in the body’s core temperature
\u2013 that induces a thermoregulatory response involving neuroendocrine, cardiovascular, and cyto-
protective mechanisms that work together to restore homeostasis and condition the body for future heat
stressors\u2026 In recent decades, sauna bathing has emerged as a means to increase lifespan and improve
overall health, based on compelling data from observational, interventional, and mechanistic studies. Of
particular interest are the findings from studies of participants in the Kuopio Ischemic Heart Disease Risk
Factor (KIHD) Study, an ongoing prospective population-based cohort study of health outcomes in more
than 2,300 middle-aged men from eastern Finland, which identified strong links between sauna use and
reduced death and disease\u2026 The KIHD findings showed that men who used the sauna two to three
times per week were 27 percent less likely to die from cardiovascular-related causes than men who didn’t
use the sauna. [2] Furthermore, the benefits they experienced were found to be dose-dependent: Men
who used the sauna roughly twice as often, about four to seven times per week, experienced roughly
twice the benefits \u2013 and were 50 percent less likely to die from cardiovascular-related causes. [2] In
addition, frequent sauna users were found to be 40 percent less likely to die from all causes of premature
death. These findings held true even when considering age, activity levels, and lifestyle factors that might
have influenced the men’s health. [2]... The KIHD also revealed that frequent sauna use reduced the
risk of developing dementia and Alzheimer’s disease in a dose-dependent manner. Men who used the
sauna two to three times per week had a 66 percent lower risk of developing dementia and a 65 percent
lower risk of developing Alzheimer’s disease, compared to men who used the sauna only one time per
week\u2026 The health benefits associated with sauna use extended to other aspects of mental health, as
well. Men participating in the KIHD study who used the sauna four to seven times per week were 77
percent less likely to develop psychotic disorders, regardless of the men’s dietary habits, socioeconomic
status, physical activity, and inflammatory status (as measured by C-reactive protein)\u2026Exposure to
high temperature stresses the body, eliciting a rapid, robust response. The skin and core body temperatures
increase markedly, and sweating ensues. The skin heats first, rising to 40\u00b0C (104\u00b0F), and
then changes in core body temperature occur, rising slowly from 37\u00b0C (98.6\u00b0F, or normal)
to 38\u00b0C (100.4\u00b0F) and then rapidly increasing to 39\u00b0C (102.2\u00b0F)\u2026 Cardiac
output, a measure of the amount of work the heart performs in response to the body’s need for oxygen,
increases by 60 to 70 percent, while the heart rate (the number of beats per minute) increases and the
stroke volume (the amount of blood pumped) remains unchanged. [5] During this time, approximately 50
to 70 percent of the body’s blood flow is redistributed from the core to the skin to facilitate sweating. The
average person loses approximately 0.5 kg of sweat while sauna bathing. [11] Acute heat exposure also
induces a transient increase in overall plasma volume to mitigate the decrease in core blood volume. This
increase in plasma volume not only provides a reserve source of fluid for sweating, but it also acts like
the water in a car’s radiator, cooling the body to prevent rapid increases in core body temperature and
promoting heat tolerance\u2026 Repeated sauna use acclimates the body to heat and optimizes the body’s
response to future exposures, likely due to a biological phenomenon known as hormesis, a compensatory
defense response following exposure to a mild stressor that is disproportionate to the magnitude of the
stressor. Hormesis triggers a vast array of protective mechanisms that not only repair cell damage but
also provide protection from subsequent exposures to more devastating stressors\u2026 The physiological
responses to sauna use are remarkably similar to those experienced during moderate- to vigorous-intensity
exercise. In fact, sauna use has been proposed as an alternative to exercise for people who are unable to
engage in physical activity due to chronic disease or physical limitations. [13]\n \nBased on the article,
which of the following statements is the author likely to agree with?
A. Heart surgery patients who cannot run on treadmills may benefit from sauna use.
B. Patients on a diet would benefit from sauna use.
C. Salt restriction would be equal to sauna use for hypertensive patients.
D. Patients with skin conditions may be cured with sauna use.

Table 15: Case study of a representative sample from the MMLU-Med dataset.

26



Representative sample from the BioASQ-Y/N dataset

Can losartan reduce brain atrophy in Alzheimer’s disease?
A. Yes
B. No

Table 16: Case study of a representative sample from the BioASQ-Y/N dataset.

Representative sample from the PubMedQA dataset

Is anorectal endosonography valuable in dyschesia?
A. Yes
B. No
C. Maybe

Table 17: Case study of a representative sample from the PubMedQA dataset.
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