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Abstract

Point cloud completion is an active research topic for 3D vision and has been widely
studied in recent years. Instead of directly predicting the missing point cloud from
the partial input, we introduce a Semantic-Prototype Variational Transformer
(SPoVT) in this work, which takes both partial point cloud and their semantic
labels as the inputs for semantic point cloud object completion. By observing
and attending to geometry and semantic information as input features, our SPoVT
would derive point cloud features and their semantic prototypes for completion
purposes. As a result, our SPoVT not only performs point cloud completion with
varying resolution, it also allows manipulation of different semantic parts of an
object. Experiments on benchmark datasets would quantitatively and qualitatively
verify the effectiveness and practicality of our proposed model.

1 Introduction

3D computer vision has been a popular research topic throughout recent years, related to various
extensive applications such as autonomous vehicles, augmented reality, and graphical rendering.
As one of the most commonly used data representations, point clouds can be easily acquired by
3D sensors. However, these 3D scans are often incomplete and sparse due to self-occlusion or far
distance from sensors, leading to undesirable results for further applications (e.g., 3D object detection
for LiDAR point clouds often fails when target objects are far from the sensor). Therefore, recovering
full point cloud data from partial observations becomes an important task.

As pioneers of object-level point cloud completion, Yuan et al. [1] propose PCN, combining a
PointNet encoder [2] and a folding-based decoder [3]. Since PCN and the subsequent folding-based
methods [4, 5, 6, 7, 8] only adopt shared multi-layer perceptron (MLP) for point-wise decoding,
detailed geometry information might not be properly recovered. To alleviate this problem, [9, 10]
voxelize the partial point cloud so that 3D CNN can be directly used for local feature propagation.
To better refine local geometry, [11, 12, 13, 14] use Transformer [15]-based frameworks and apply
attention between neighboring points. Nevertheless, these approaches simply rely on 3D coordinates
as input features for the point cloud, and thus how to preserve the geometry and the associated
semantic information for each part of the output point cloud would be a challenge.

Different from object-level completion approaches, recent scene-level completion methods [16, 17,
18, 19, 20, 21] show that point cloud completion and semantic segmentation can be jointly performed
by sharing semantic and geometrical information. With additional ground truth for 3D segmentation
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Table 1: Comparisons between different point cloud completion methods.

Methods Setting Input Capability

xyz Sem. Label Completion Sem. Label Global / Part manipulation Varying resolution

PoinTr [14] Object ✓ - ✓ - -/- -
VRC-Net [12] Object ✓ - ✓ - ✓/ - -
PCSSC-Net [20] Scene ✓ ✓ ✓ ✓ -/- -
Ours Object ✓ ✓ ✓ ✓ ✓/✓ ✓

labels as supervision, these approaches enforce 3D input data to capture geometries of individual
objects in a scene. However, it is not clear how such techniques can be easily extended to object-level
point cloud completion with semantics properly preserved or manipulated.

In this paper, we propose a Semantic-Prototype Variational Transformer (SPoVT) for semantics-
preserving point cloud completion. Given a partial point cloud of an object with semantic labels
observed for each point, our SPoVT is able to derive point cloud features and their semantic prototypes.
With feature distributions for each semantic part properly observed, point cloud completion and
semantic segmentation can be jointly achieved. Our SPoVT can be viewed as an encoder-decoder-
based transformer, whose encoding process is to derive the semantic prototypes for each object part
and their point-wise geometry features, while the decoding part is to recover the complete point cloud
via sampling from the derived semantic-specific point cloud distribution. The proposed framework,
as we discuss later, is not limited to the completion of point clouds at a particular resolution (i.e.,
varying numbers of point cloud outputs). In addition, we show that the semantic prototypes allow us
not only to recover but also to manipulate object parts for diverse completion outputs.

We now summarize the contributions of this work as follows:

• We propose a Transformer-based network, Semantic-Prototype Variational Transformer
(SPoVT), taking partial point cloud and the associated part labels for point cloud completion.

• By taking the above inputs, our proposed network learns point cloud distributions for each
semantic part, allowing us to resample point features for decoding and to generate point
clouds with varying resolutions.

• A ratio predictor is deployed in SPoVT for predicting point number distributions for each
segment part, which serves and guidance for point cloud completion and alleviates potentially
dense or sparse completion for particular object parts.

• By learning prototypes and feature distributions for object parts, our model is able to perform
point cloud completion and manipulate at instance or part levels.

2 Related work

2.1 Object completion

With the recent development of point cloud analysis [2, 22, 23], point cloud shape completion
becomes a popular topic. As a pioneer, Yuan et al. [1] propose PCN, a simple encoder-decoder
network based on FoldingNet [3]. By concatenating global features obtained from PointNet [2] with
2D points and passing through MLPs, PCN simulates the process of “folding” a 2D plane into the 3D
surface of an object. Tchapmi et al. [4] further introduce a tree-structured folding approach, while
Wang et al.repeat the folding process multiple times to iteratively grow and refine their prediction in
CRN [5] and SCRN [6]. On the other hand, ASFM-Net [7] adapts feature matching between latent
codes obtained from the complete and the partial point clouds for improved point cloud completion.
Since these folding-based approaches directly apply shared MLPs to the concatenations of global
features and predefined 2D points during decoding, interactions between neighboring points are not
considered, leading to possible coarse outputs without preserving local geometries.

To tackle the above issue, recent methods [10, 9, 12, 11, 13, 24, 14, 25] develop different approaches
to achieve geometry-aware point cloud completion. VE-PCN [10] and GRNet [9] voxelize point
cloud features via aggregating point features within voxel grids, directly apply 3D CNN for encoding
and decoding and then regenerate point cloud by inverse gridding. VRCNet [12], PMP-Net++ [11]
and PoinTr [14], on the other hand, introduce variants of Transformer [15] for point cloud completion.
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Figure 1: Architecture of our proposed Semantic-Prototype Variational Transformer (SPoVT), which
contains Encoder θE , Ratio Predictor θP , Decoder θD, and Refiner θR. Note that Semantic VAE is
introduced for learning prototypes and feature distributions for each object parts during completion.

In order to focus on local geometry and to reduce computation, they only consider features from
neighboring points when implementing attention modules. Although very promising results have
been presented, using only 3D coordinates of partial inputs and relying on derived global features
might not be sufficient due to the lack of semantic cues during completion.

2.2 Scene completion

SSCNet [26] proposes to complete both a scene and the corresponding semantic segmentation from a
single 3D scan via 3D CNN. To perform more realistic completion by taking semantics as inputs,
recent approaches [16, 17, 18, 19, 20, 21] make use of additional semantic related input and show
that 3D partial observations and semantic information are complementary to each other by exhibiting
impressive results. For example, AIC-Net [16] combines multi-scale 2D and 3D features to make
sure objects of different sizes are completed correctly. And, SPAwN [17] directly fuses voxelized 3D
features with 2D priors obtained from a segmentation map to generate a detailed indoor scene.

Nevertheless, the above methods are not easily applied to complete and manipulate 3D object point
clouds. This is the reason why our work focuses on taking both point cloud geometry and semantic
information as inputs for deriving the associated part prototypes and distributions. In Table 1, we
compare the characteristics of recent point cloud completion models with our SPoVT.

3 Proposed method

3.1 Problem formulation and model overview

For the sake of completeness, we first determine the setting and notations used in this paper. We
have an input partial point cloud Xin, containing a total of N points in 3D along with the associated
semantic label. That is, we have Xin = {(pn, sn) | n = 1, 2, . . . , N}, where pn ∈ R3 denotes
the n-th point with its attributes describing coordinates (xn, yn, zn), and sn is the corresponding
semantic label (i.e., sn ∈ {1, 2, . . . ,M}, where M is the total number of part classes). Our goal is to
predict a complete point cloud Xout with Nout points, given the ground truth XGT with N in points
during training.
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To achieve this goal, we propose a Semantic-Prototype Variational Transformer (SPoVT) in
this paper. As depicted in Fig. 1, our SPoVT has an Encoder θE that learns the point fea-
tures fp1:pN

= {fp1
, . . . ,fpN

} for input point cloud and the prototypes of each semantic part
f1:M = {f1, . . . ,fM}. In particular, a learning scheme of Semantic VAE is presented during
encoding, which learns point cloud distribution for each semantic part given the above features.
Another unique characteristic is that a Ratio Predictor θP is introduced for predicting the point
number distribution across semantic parts, with output rout as an M -dimensional vector. As for the
decoding process, we deploy a coarse Decoder θD and a Refiner θR, aiming to recover a coarse
point cloud Xc and the refined output Xout, respectively.

It is worth repeating that, by taking both partial point cloud and the associate part labels, our SPoVT
is learned to jointly perform point cloud completion and semantic segmentation. Due to the ability to
derive semantic prototypes for each part and to describe their feature distributions, instance/part-based
point cloud synthesis and manipulation can be further achieved. We now detail our SPoVT in the
following subsections.

3.2 Semantic-Prototype Variational Transformer

3.2.1 Encoding

Given the partial input Xin, our Encoder θE in Figure 1 is designed to derive features for each
point fp1:pN

and semantic prototypes for each part f1:M . In order to preserve both semantic and
geometrical information during encoding, θE is designed to take a sequential input with length M+N .
The first M inputs are viewed as the tokens for semantic prototypes, i.e., e1:M = {e1, . . . , eM},
each em contains the 3D coordinates (initialized by (0, 0, 0)) and the semantic label m. The latter
N inputs denote the partial point cloud, i.e., ep1:pN

= {ep1
, . . . , epN

}, with each epn
described by

the 4D representation of (pn, sn). And, the encoded outputs would be f1:M and fp1:pN
, describing

the embeddings derived for each prototype and input point cloud. It is worth noting that, instead
of performing standard self-attention during encoding, we replace the last encoder layer with a
Label-wise Transformer Layer, attending point cloud and the semantic parts with the same labels.

Semantic VAE. In order to better describe each semantic part and its feature distribution so that the
output point cloud can be properly completed, we introduce the learning scheme of Semantic VAE in
our SPoVT. Given the point features fp1:pN

and the semantic prototypes f1:M , we take the point
features associated with label m and map its posterior distribution qθm(fpi

| Xin) to a predefined
prior distribution N (0, I). Note that each of these distributions is parameterized by θm via the
reparameterization trick introduced in [27], and N (0, I) denotes the standard normal distribution.

Thus, the objective function for this process is defined as:

LKL =
M∑

m=1

1

Nm

Nm∑
i=1

KL[qθm(fpi
| Xin)∥ N (0, I)], (1)

where Nm is the number of points with label m, and KL[·] denotes the KL-divergence. Note that the
point feature fpi

in Eqn. 1 is normalized by fm, and we keep the same notation for simplicity. With
this Semantic VAE scheme, our SPoVT is able to perform instance/part-based point cloud synthesis
and manipulation, as verified later in experiments.

Ratio predictor. Without the guidance of semantic labels, point cloud completion might produce
dense or sparse point clouds for particular parts, which would be undesirable. Given both partial point
cloud and their semantic labels, we additionally introduce a Ratio Predictor θP , which takes both the
derived semantic prototypes f1:M and partial point cloud Xin as inputs to predict rout, which as an
M -dimensional vector indicating the point number distribution under the supervision of XGT . Thus,
the ratio loss for this ratio predictor is determined as Lratio = D(rGT , rout), where rGT denotes the
ground truth point ratio and D(·) is a distance function. For simplicity, here we consider L2 distance
as D(·). With this additional guidance, the decoding process can be performed accordingly.
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3.2.2 Decoding

The decoding process of SPoVT is composed of a coarse Decoder θD and a Refiner θR. The former
outputs a coarse completion with N c points from the complete point features sampled from the
learned point distributions, while the latter predicts Nout point-wise displacements by considering
both the partial input and the coarse output to refine the results.

In order to select proper inputs to θD, our encoder design allows us to sample point features for
each semantic part with predicted point number distribution. In other words, we simply sample N c

D-dimensional random noise vectors z1:Nc = {zn | n = 1, 2, . . . , N c} from the Normal distribution
for each part. The part labels sc1:Nc = {scn | n = 1, 2, . . . , N c} are assigned to each sample according
to the predicted rout, leading to N c

m points for each label m, where N c
m = r′m ×N c and r′m denotes

the m-th entry of rout. Finally, we recover these input noise vectors z1:Nc into the complete point
features z1:Nc by denormalizing them according to the corresponding semantic prototypes.

Coarse completion. The coarse Decoder θD takes the recovered point features z1:Nc as the inputs
and predicts a coarse point cloud output Xc, where Xc = {(pc

n, s
c
n) | n = 1, 2, . . . , N c}. Inspired

by [15], we use a cross-attention layer as the second layer of θD to preserve point-wise structure
from the partial input, with the last layer replaced by a Label-wise Transformer Layer for preserving
semantics. The objective for coarse completion is the L2-Chamfer Distance:

LCD(X
c, XGT ) =

1

N c

Nc∑
i=1

CD(pc
i , X

GT ) +
1

NGT

NGT∑
j=1

CD(pGT
j , Xc), (2)

where the point-to-set Chamfer Distance CD(pc
i , X

GT ) of the i-th coarse predict point pc
i to the

ground truth point cloud XGT is defined as:

CD(pc
i , X

GT ) = min
(pGT ,sGT )∈XGT

∥ pc
i − pGT ∥ 2, (3)

and the point-to-set Chamfer Distance CD(pGT
j , Xc) of the j-th ground truth point pGT

j to the coarse
prediction Xc is defined similarly.

Refinement. For the task of point cloud completion, it is necessary to preserve geometrical details
for the given partial point cloud. Thus, we deploy a Refiner θR which takes the concatenation of
partial input X and coarse output Xc as the inputs Xcat for refined decoding. To be more precise,
we have Xcat = {(pcat

n , scatn ) | n = 1, 2, . . . , Nout}, where Nout = N + N c, (pcat
n , scatn ) =

(pn, sn)∀n ∈ (1, . . . , N), and (pcat
n , scatn ) = (pc

n, s
c
n)∀n ∈ (N + 1, . . . , Nout). Our θR then

takes concatenation of the coordinates of each pcat
n and the corresponding fm as the inputs for

predicting the coordinate displacement dn. As a result, our final completion result Xout is obtained
as Xout = {(pout

n , soutn ) | n = 1, 2, . . . , Nout}, where pout
n = pcat

n + dn,∀n ∈ (1, . . . , Nout).

However, despite the above refiner, the use of standard L2 Chamfer Distance might still lead to noisy
results [8]. Thus, we propose a Gated Chamfer Distance as a novel objective, which regularizes
outlier output points and favors the inliers with small displacements. More specifically, the Gated
Chamfer Distance is defined as:

LGCD(X
out, XGT ) =

1

Nout

Nout∑
i=1

Lpred(p
out
i , XGT ) +

1

NGT

NGT∑
j=1

CD(pGT
i , Xout),

Lpred(p
out
i , XGT ) =

{
CD(pout

i , XGT ), if CD(pcat
i , XGT ) ≥ T,

∥ di∥ 2, otherwise,

(4)

where the threshold T is calculated as: T = 1
Nout

∑Nout

i=1 CD(pout
i , XGT ). As shown in (4), if the

coordinate of a point pcat
i before refinement is sufficiently close to the ground truth, we consider it

as an inlier and suppress the magnitude of its displacement di. Oppositely, for an outlier point, we
apply the standard Chamfer Distance term to penalize it. Finally, the overall loss for the decoding
process is Ldecode = LCD + LGCD.
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Table 2: Quantitative evaluation on PCN in terms of L2-Chamfer Distance (CD×104) and mIoU
(%). Note that NGT = 16384 for all methods across different categories.

Method Airplane Car Chair Lamp Table Avg.
CD mIoU CD mIoU CD mIoU CD mIoU CD mIoU CD mIoU

PCN [1] 1.26 67.4 10.8 38.1 5.77 79.3 11.4 62.1 5.22 76.6 6.88 64.7
PMP-Net++ [11] 1.80 70.3 3.82 48.6 3.42 75.3 7.93 66.3 7.87 59.3 4.97 64.0
VRC-Net [12] 0.84 69.7 3.15 60.6 3.50 82.2 4.90 75.5 4.76 74.1 3.43 72.4
PoinTr [14] 1.88 53.6 3.73 50.8 3.01 79.2 4.55 60.5 2.97 76.1 3.23 64.0
SPoVT∗ 0.75 82.1 2.99 76.9 2.97 77.0 4.50 86.1 3.04 84.1 2.85 81.2
SPoVT (Ours) 0.73 82.6 2.86 82.5 2.36 85.2 4.12 91.5 2.50 86.5 2.51 85.7

3.3 Training and Inference

Training. Since the part labels sc1:Nc for the coarse output are assigned during decoding according to
rout without being predicted by another segmentation model, we do not need any additional objective
for the segmentation results. Instead, to make sure θD is able to preserve the correct semantics, we pre-
train θE and θD with the reconstruction branch before starting the completion task, i.e., taking fp1:pN

as inputs of θD and predicting the reconstructed point cloud Xr = {(pr
n, s

r
n) | n = 1, 2, . . . , N},

where srn = sn,∀n ∈ (1, . . . , N). The loss function for the reconstruction is defined as:

Lrecon = Lmse(X
r, Xin) + λKLLKL, (5)

where Lmse(X
r, Xin) is the Mean Square Error between the coordinates of Xr and Xin, and λKL

indicates the regularization weight of KL-divergence. Finally, we jointly optimize the reconstruction
branch and completion branch by summing up the reconstruction loss Lrecon, the ratio loss Lratio,
and the decoding loss Ldecode.

Inference with varying resolution. One unique feature of our SPoVT for point cloud completion
is its ability to produce output point clouds with varying resolutions. Due to the design of Semantic
VAE, our SPoVT learns a complete point distribution for each semantic part, allowing us to achieve
varying resolution output by repeating the decoding process multiple times depending on the target
resolution. Thus, if a total number of Nout × k points is required, we conduct the decoding process k
times with noises z̄1:Nc resampled and Nout points generated during each time. We then concatenate
all the k outputs together to obtain kNout points in total.

Another feature of our SPoVT is its ability to manipulate point cloud at instance and part levels. Due
to Semantic VAE, the produced prototype and point features across different parts or objects can be
manipulated with different point number distributions. We will verify this in our experiments and
confirm its effectiveness.

4 Experiments

4.1 Dataset and Implementation Details

Dataset. We conduct our experiments on the PCN dataset [1], following the training and testing
split provided. To obtain semantic part labels for each object, we combine the PCN dataset and a part
segmentation dataset ShapeNetPart [28], both as subsets of ShapeNet [29]. As a result, we have a
total number of 11262 different objects with five categories (i.e., airplane, car, chair, lamp, and table),
where up to 4 part categories are available for each object. Each object is sampled with 16384 points
as point cloud ground truth and has corresponding partial inputs rendered from 8 different virtual
camera views. Please refer to Supplementary for more details and examples.

Implementation details. We set both the input point number N and the coarse output point number
N c to 512, leading to the total output points Nout = 1024. In all our experiments, we train one
model for each object category, using a single NVIDIA TESLA V100 GPU (32G) or NVIDIA RTX
3090 GPU (24G) for training, with batch size = 16, and learning rate = 10−4 using the Adam [30]
optimizer with an untuned linear warmup strategy [31]. We apply cyclical annealing [32] to λKL
to avoid the potential collapse problem. After two cycles, λKL is set to 10−5. We implement our
model with PyTorch [33] and PyTorch3D [34] libraries. We also use the official implementation of
[12, 14, 11] and the PyTorch implementation of [1] provided by [14] for comparison.
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4.2 Semantic Point Cloud Completion

We now compare our SPoVT with a number of state-of-the-art approaches, including PCN [1],
PMPNet++ [11], PoinTr [14], and VRCNet [12] in both the completion and the part segmentation
tasks. We train the model for each category separately for fair comparisons. Note that since the
previous methods are all designed for completion tasks only, we follow prior semantic instance
completion methods such as RFD-Net [35] and RevealNet [36] when performing comparisons. That
is, we adopt DGCNN [23] as the part segmentation model, which is pre-trained on the above dataset
to predict the part labels for the above methods.

Quantitative evaluation. We evaluate the completion and part segmentation results with the L2-
Chamfer Distance and mean intersection over union (mIoU), respectively. For the L2-Chamfer
Distance, we follow VRCNet [12] and set NGT = 16384. As for the part segmentation, the mIoU
evaluates the average IoU of each part type in that object category. Note that the average scores
are calculated by averaging over the score of five categories. The quantitative comparisons are
summarized in Table 2. It shows that the proposed SPoVT achieves the best score on both the
Chamfer Distance and mIoU among all methods. This verifies the design of encoding semantic
information and learning point distribution of each part, where the sampled point features indeed
represent the geometry of complete parts. To verify that our SPoVT is applicable for cases where
ground truth segmentation labels are not observed, we conduct an additional experiment in which
segmentation labels predicted by pre-trained DGCNN are used for training SPoVT, denoted as
SPoVT∗ in Table 2. From this table, we see that while SPoVT∗ is not able to achieve comparable
results as the full-version does, it still performs against SOTA methods for both completion and
segmentation tasks. This suggests that our proposed model is able to utilize pre-trained segmenters
to assign point cloud labels for completion and segmentation purposes. Thus, the effectiveness and
practicality of our proposed model can be verified.

Qualitative evaluation. The qualitative completion results are shown in Figure 2. From this figure,
we observe that although existing methods complete global shapes of the desired ground truth objects,
such methods do not sufficiently recover geometrical details which are not presented in the partial
inputs. On the other hand, our SPoVT not only preserves details from the input but also recovers the
fine geometry of the missing parts. This verifies that the design of our Semantic VAE really captures
the feature distribution of each semantic part, and the sampled point features are recovered properly
by the semantic prototypes. Moreover, our completion results are also the most visually uniformed
among others, which shows that our Ratio Predictor indeed arranges the suitable sparsity of each part
by predicting rout precisely.

4.3 Further Analysis and Ablation Study

Manipulation. With the design of encoding semantic prototypes, we are able to conduct part-wise
manipulation to create new objects by interpolating between specific semantic prototypes and the
corresponding point ratios. Selected results are shown in Figure 3. For each row, we have a pair of
the source and the target objects. We then choose one part of the source object to interpolate with the
same part of the target, while the rest remain the same as the source. We can observe that the selected
part of each source object gradually deforms into that of the target object. Note that if the selected
part is not contained in the target, as shown in the second row in Figure 3, then the corresponding
part in the source object would disappear accordingly. This verifies the design of encoding semantic
prototypes, which successfully preserve both semantic and geometric information of each part.

Similarly, we demonstrate the results of instance-wise interpolation in Figure 4, which shows that our
SPoVT is also capable of instance-level deformation.

Varying resolution. We demonstrate the capability of varying resolution in Sec. 3.3, where our
SPoVT is capable of producing varying numbers of point cloud output by repeating the decoding
process multiple times. To show the benefit of this property, we compare the surface reconstruc-
tion results of our SPoVT with VRCNet [12], PoinTr [14], and the ground truth point cloud in
Figure 5. While VRCNet and PoinTr are restricted to the resolution of 16384 points due to relatively
deterministic predictions, our SPoVT easily achieves about 300k points and shows more details.
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Partial PCN PMPNet++ PoinTr VRCNet Ours GT

Figure 2: Qualitative evaluation. We compare the results produced by PCN [1], PMPNet++ [11],
PoinTr [14] and VRCNet [12]. Note GT represents the ground truth point cloud with NGT = 16384.

Source 0.2 0.4 0.6 0.8 1.0 Target

Figure 3: Part-level point cloud manipulation. For each row, we select one semantic part (in red)
of the source object to interpolate with the same part of the target, with the interpolation step as 0.2.

Ablation study. To further analyze the effectiveness of our designed modules, learning schemes,
and loss functions, we now conduct ablation studies on chair objects in Table 3. The baseline model
A is composed only of the θE , θD, and θR in Figure 1 without applying the reconstruction pre-train
introduced in Sec. 3.3. We then conduct the reconstruction pre-train (B) to help preserve semantic
information. Next, by adding back θP (C), we correctly arrange the point number of each part to
further raise the mIoU by 18.5%. In model D, benefitting from finding the point distribution of each
part, our completion result improves with a 32% lower Chamfer Distance. Finally, our full model
(model E) using LGCD achieves the best result. Thus, the proposed modules, learning schemes, and
loss function can be successfully verified.

Point cloud completion across object categories. In the above experiments, we train SPoVT to
perform point cloud completion for each object category. It is worth noting that, one can also train
SPoVT across multiple object categories by increasing the total number of semantic parts M . As
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Source 0.2 0.4 0.6 0.8 Target

Figure 4: Instance-level interpolation. Given the source and target objects, we perform instance-
level interpolation by interpolating between the corresponding semantic prototypes of the two objects,
with the interpolation step as 0.2.

VRCNet (16k) PoinTr (16k) Ours (16k) Ours (300k) GT (16k)

Figure 5: Surface reconstruction with varying resolution. The completed point cloud outputs (with
numbers shown in each parenthesis) are converted to mesh outputs using the Alpha Shape method in
Open3D [37]. Note that GT denotes the mesh obtained from the ground truth point cloud.

shown in Table 4, we conduct a new experiment, in which we train a single SPoVT model on both
“Airplane” and “Car” categories. From the results listed in this table, we observe that a unified SPoVT
exhibits slightly degraded completion and segmentation performances when compared to the original
SPoVT, which is expected. Nevertheless, both SPoVT models still performs favorably against SOTA
methods listed in Table 2, in which SOTA methods are trained for each object category.

5 Limitations

We need to point out the potential concern of applying SPoVT when performing high-resolution point
cloud completion. During the inference stage, the computation time grows linearly with the output
point cloud resolution, since the completion output is produced by repeating the inference process
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Table 3: Ablation studies on SPoVT. Note the the category of Chair is utilized for evaluation.

Model Reconstruction Pretrain θP Semantic VAE LGCD CD mIoU
A 5.23 43.07
B ✓ 5.01 62.83
C ✓ ✓ 4.40 81.33
D ✓ ✓ ✓ 2.99 84.81
E ✓ ✓ ✓ ✓ 2.36 85.22

Table 4: Comparison of unified trained model and original results. We show the results that our
SPoVT is trained on both “Airplane” and “Car” categories together in a unified model.

Method Airplane Car
CD mIoU CD mIoU

Ours (Original) 0.73 82.6 2.86 82.5
Ours (Unified) 0.84 84.6 3.39 80.6

Table 5: Inference time and memory usage with different output point cloud resolution.
Number of points Inference time (ms) Memory usage (GB)

2048 50.0 1.923
8196 145.6 1.923
16384 277.2 1.923

multiple times. In Table 5, we list the inference time and memory usage for different point cloud
resolutions. Another potential issue is the slight degradation when training one single SPoVT for
performing completion across multiple categories, as discussed in Sect. 4. The above are potential
challenges, which are among the research topics for us to pursue in the future.

6 Conclusion

In this paper, we proposed a Transformer-based network of Semantic-Prototype Variational Trans-
former (SPoVT), which can be applied for semantic point cloud completion. By taking partial point
cloud and their semantic part labels as the inputs, our SPoVT is able to derive point cloud features
and the associated semantic prototypes. With the deployed Semantic VAE scheme, the point feature
distributions for each semantic part can be jointly observed, which allows resampling of point features
from each part for completion and manipulation. With the proposed architecture, our SPoVT is able
to perform completion across resolution, with the ability to preserve the point number distribution
across different semantic parts, which alleviates possible dense or sparse completion for each object
part. From the experiments, we quantitatively and qualitatively confirm that our SPoVT performs
favorably against state-of-the-art models in point cloud completion. We also verify its use for point
cloud interpolation and manipulation between different object instances or their parts, which cannot
be easily handled by most existing methods.
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