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Abstract
This paper studies zeroth-order optimization for
stochastic convex minimization problems. We
propose a parameter-free stochastic zeroth-order
method (POEM), which introduces a stepsize
scheme based on the distance over finite differ-
ence and an adaptive smoothing parameter. Our
theoretical analysis shows that POEM achieves
near-optimal stochastic zeroth-order oracle com-
plexity. Furthermore, numerical experiments
demonstrate that POEM outperforms existing
zeroth-order methods in practice.

1. Introduction
This paper studies the stochastic optimization problem

min
x∈X

f(x) ≜ Eξ∼Ξ[F (x; ξ)] (1)

where the domain X ⊆ Rd is a compact convex set, the ran-
dom variable ξ follows a distribution Ξ, and the stochastic
component function F (x; ξ) is convex and Lipschitz con-
tinuous in x over X for any given ξ. We focus on stochastic
zeroth-order optimization for solving Problem (1), where
the algorithm can only query stochastic function values.
This setting is particularly relevant when accessing (stochas-
tic) first-order information is expensive or infeasible. Such
scenarios arise in various applications, including bandit
optimization (Flaxman et al., 2004; Agarwal et al., 2010;
Shamir, 2017), adversarial training (Goodfellow et al., 2014;
Shaham et al., 2018), reinforcement learning (Balasubra-
manian & Ghadimi, 2018; Mania et al., 2018), and other
black-box models (Liu et al., 2016; Ilyas et al., 2018).

Finite difference methods are widely used in zeroth-order
optimization, where they estimate the first-order information
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of the objective function via random directions (Kiefer &
Wolfowitz, 1952; Ghadimi & Lan, 2013; Duchi et al., 2015;
Nesterov & Spokoiny, 2017; Nazari et al., 2020; Gasnikov
et al., 2022; Lin et al., 2022; Rando et al., 2024; Chen et al.,
2023; Kornowski & Shamir, 2024). For stochastic convex
problems with Lipschitz continuous components, Nesterov
& Spokoiny (2017) first developed random search methods
that achieve suboptimal convergence rates. Subsequently,
Duchi et al. (2015) proposed a stochastic algorithm that
constructs finite differences using two random sequences,
improving the dependence on problem dimension compared
to Nesterov & Spokoiny (2017). They also established a
lower bound, demonstrating that their algorithm achieves
near-optimal stochastic zeroth-order oracle (SZO) complex-
ity. Building on this, Shamir (2017) introduced an algorithm
using a single random sequence drawn from the uniform
distribution over the unit ball, which is optimal and easy
to implement. Finite difference methods have also been
broadly applied to smooth optimization problems (Ghadimi
& Lan, 2013; Nesterov & Spokoiny, 2017; Duchi et al.,
2012b; Balasubramanian & Ghadimi, 2018), as well as to
nonsmooth and nonconvex settings (Lin et al., 2022; Chen
et al., 2023; Kornowski & Shamir, 2024). Despite these ad-
vances, existing zeroth-order optimization methods (Kiefer
& Wolfowitz, 1952; Ghadimi & Lan, 2013; Duchi et al.,
2015; Nesterov & Spokoiny, 2017; Nazari et al., 2020; Gas-
nikov et al., 2022; Lin et al., 2022; Rando et al., 2024) face
several limitations. A key challenge is their high sensitiv-
ity to parameter settings. Achieving optimal convergence
rates typically requires carefully tuned step sizes that de-
pend on prior knowledge of problem properties (such as the
Lipschitz constant) and the iteration budget. In addition,
the smoothing parameter used in the finite difference often
depends on the target accuracy or decays rapidly, which can
lead to numerical instability in practice.

We desire to develop adaptive stochastic optimization meth-
ods that remove the need of parameter tuning. Most existing
work focus on first-order methods. For example, Rolinek &
Martius (2018); Vaswani et al. (2019); Paquette & Schein-
berg (2020) introduced line search techniques for stochastic
optimization. Tan et al. (2016); Berrada et al. (2020); Loizou
et al. (2021); Wang et al. (2023) extended the Barzilai–
Borwein (BB) step size (Barzilai & Borwein, 1988) and the
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Polyak step size (Polyak, 1987) to stochastic settings. For
training deep neural networks, adaptive algorithms such as
AdaGrad (Duchi et al., 2011), Adam (Kingma & Ba, 2014),
and their variants (Tieleman, 2012; Zeiler, 2012; Shazeer &
Stern, 2018; Wang et al., 2024; Zhang et al., 2025) exploited
the specific problem structure and have achieved success
in many applications. However, these methods still rely on
appropriately chosen initialization parameters, which can
significantly influence convergence behavior, both in theory
and in practice.

Ideally, we aim to design a parameter-free optimization
method that achieves near-optimal convergence rates while
requiring minimal knowledge of problem-specific properties
(Streeter & McMahan, 2012; Defazio & Mishchenko, 2023;
Lan et al., 2023; Li & Lan, 2023). Several parameter-free
methods for stochastic convex optimization have been de-
veloped using online learning techniques (Luo & Schapire,
2015; Orabona & Pál, 2016; Cutkosky & Orabona, 2018;
Bhaskara et al., 2020; Mhammedi & Koolen, 2020; Jacobsen
& Cutkosky, 2022), though their implementations are often
quite complex. In practice, Orabona & Tommasi (2017);
Chen et al. (2022) applied coin-betting techniques within
the classical stochastic gradient descent (SGD) framework,
achieving strong empirical performance in training neural
networks. Later, Carmon & Hinder (2022) showed that us-
ing a bisection step to adaptively determine the step size in
SGD yields a parameter-free algorithm with near-optimal
convergence rates. Building on this work, Ivgi et al. (2023a)
proposed a parameter-free step size schedule called Distance
over Gradients (DoG), which adjusts step sizes based on the
distance from the initial point and the norm of stochastic
gradients (You et al., 2017; Shazeer & Stern, 2018; Bern-
stein et al., 2020). DoG achieves near-optimal convergence
rates and performs well in practice. However, all existing
parameter-free methods are designed for first-order opti-
mization. Extending these methods to the zeroth-order set-
ting presents additional challenges, particularly the need to
eliminate tuning for both the step size and the smoothing
parameter, as well as to carefully control the dependence on
the problem dimension in the convergence rates.

In this paper, we propose a parameter-free stochastic zeroth-
order method (POEM), which introduces a stepsize scheme
based on the distance over finite difference and an adap-
tive smoothing parameter. For the stochastic convex op-
timization (1), we show that the initialization affects the
convergence rates only by a logarithmic factor. We estab-
lish high-probability convergence guarantees, demonstrat-
ing that POEM achieves near-optimal SZO complexity. A
comparison of POEM with related methods is presented
in Table 1. We also study the problems with unbounded
domains and show that an ideal parameter-free algorithm is
impossible in such settings. Finally, we conduct numerical
experiments to validate the practical effectiveness of POEM.

2. Preliminaries
In this section, we formalize the problem setting and intro-
duce the smoothing technique in zeroth-order optimization.

2.1. Notation and Assumptions

Throughout this paper, we use ∥ · ∥ to denote the Euclidean
norm. The unit ball is defined as Bd ≜ {u ∈ Rd : ∥u∥ ≤ 1}
and the unit sphere as Sd−1 ≜ {v ∈ Rd : ∥v∥ = 1}. We
denote by U(Bd) and U(Sd−1) the uniform distributions on
the unit ball and the unit sphere, respectively. Additionally,
we use the notation Õ(·) to suppress logarithmic factors.

We make the following assumptions for Problem (1).
Assumption 2.1. The domain X ⊆ Rd is compact and
convex. Furthermore, we denote the diameter of X by

DX ≜ max
x,y∈X

∥x− y∥ < ∞.

Next, we define the Euclidean projection onto the domain.
Definition 2.2. For any point x ∈ Rd, the Euclidean projec-
tion onto the compact convex set X ∈ Rd is given by

ΠX (x) ≜ argmin
y∈X

∥x− y∥.

Under Assumption 2.1, the objective function attains its
minimum over the compact set X . Hence, we define the
optimal solution to Problem (1) as follows.
Definition 2.3. Let x⋆ ∈ X be an optimal solution to Prob-
lem (1) such that f(x⋆) = minx∈X f(x).

We aim for the iterative algorithm to find an approximate
solution to Problem (1), which is defined as follows.
Definition 2.4. A point x̂ is called an ϵ-suboptimal solution
to Problem (1) if, for a given ϵ > 0, it satisfies

f(x̂)− f(x⋆) ≤ ϵ.

We also assume the stochastic component F (x; ξ) is convex
and Lipschitz continuous with respect to x.
Assumption 2.5. The stochastic component F (x; ξ) is
convex in x for each fixed ξ.
Assumption 2.6. There exists a constant L ≥ 0 such that
for all x,y ∈ Rd, and any fixed ξ, the following holds

∥F (x; ξ)− F (y; ξ)∥ ≤ L∥x− y∥.

We further assume that the algorithm for solving Problem
(1) has access to a stochastic zeroth-order oracle that returns
unbiased stochastic function value estimates at two points.
Assumption 2.7. The stochastic zeroth-order oracle returns
the stochastic evaluations F (x; ξ) and F (y; ξ) for given
points x ∈ Rd and y ∈ Rd, such that Eξ[F (x; ξ)] = f(x)
and Eξ[F (y; ξ)] = f(y), where ξ is drawn from Ξ.
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Table 1. We present the SZO complexity, step size ηt, and smoothing parameter µt for obtaining an ϵ-suboptimal solution to Problem (1),
where t denotes the iteration index, T is the total iteration budget, and r̄t and Gt are defined in Algorithm 1.

Algorithms Parameter-Free SZO Complexity ηt µt

RSNSO♯

Nesterov & Spokoiny (2017) No O
(
d2L2s20

ϵ2

)
s0

dL
√
T

s0

√
d

T

TPGE‡

Duchi et al. (2015) No Õ
(
dL2D2

X
ϵ2

)
DX

L
√

d log(2d)t

DX

t
and

DX

d2t2

TPBCO
Shamir (2017) No O

(
dL2D2

X
ϵ2

)
DX

L
√
dT

DX

√
d

T

POEM
Theorem 4.9 Yes Õ

(
dL2D2

X
ϵ2

)
r̄t√
Gt

r̄t

√
d

t+ 1

Lower bound
Duchi et al. (2015) – Ω

(
dL2D2

X
ϵ2

)
– –

♯ The RSNSO (Nesterov & Spokoiny, 2017) does not require the assumption of a bounded domain, as its complexity depends on the distance between the initial point x0

and the solution x⋆, denoted by s0 = ∥x0 − x⋆∥, rather than the diameter DX . We discuss the case without the bounded domain assumption in detail in Section 5.
‡ The TPGE method (Duchi et al., 2015) employs two sequences of stochastic finite difference, each with its own smoothing parameter.

2.2. Randomized Smoothing

Randomized smoothing is a widely used technique in zeroth-
order optimization, which constructs a smooth surrogate of
the objective function by applying perturbations along ran-
dom directions (Duchi et al., 2012a; Gasnikov et al., 2022;
Shamir, 2017; Yousefian et al., 2012; Nesterov & Spokoiny,
2017; Lin et al., 2022). In this work, we specifically focus
on randomized smoothing based on the uniform distribution
over the unit ball (Duchi et al., 2012a; Gasnikov et al., 2022;
Shamir, 2017). Formally, we define the smooth surrogate of
the objective function f(x) as

fµ(x) ≜ Eu∼U(Bd)[f(x+ µu)],

where µ > 0 is the smoothing parameter. The following
lemma establishes that the surrogate fµ(x) preserves the
convexity, and that the approximation error between f(x)
and fµ(x) can be bounded in terms of µ (Shamir, 2017).
Lemma 2.8 (Shamir (2017, Lemma 8)). Under Assump-
tions 2.5 and 2.6, the smooth surrogate fµ(x) is convex and
satisfies |fµ(x)− f(x)| ≤ Lµ for all x ∈ Rd.

The next lemma demonstrates that the surrogate fµ(x) is
differentiable, regardless of whether f(x) is differentiable.
Moreover, it shows that the gradient of fµ(x) can be ex-
pressed in the form of the finite difference.
Lemma 2.9 (Flaxman et al. (2004, Lemma 3.4)). For a
continuous function f : Rd → R, the gradient of its smooth
surrogate fµ is given by

∇fµ(x) = Ev∼U(Sd−1)

[
d

2µ
(f(x+ µv)− f(x− µv))v

]
,

where x ∈ Rd and µ > 0.

Based on Lemma 2.9, we define the stochastic finite differ-
ence as follows

g(x, µ;v, ξ) ≜
d

2µ
(F (x+ µv; ξ)− F (x− µv; ξ))v, (2)

where x ∈ X , µ > 0, v ∼ U(Sd−1) and ξ ∼ Ξ. Under
Assumption 2.7, the function evaluation F (x; ξ) returned
by the stochastic zeroth-order oracle is an unbiased estima-
tor of f(x). Consequently, the stochastic finite difference
g(x, µ;v, ξ) is an unbiased estimator of ∇fµ(x), that is,

Ev∼U(Sd−1), ξ∼Ξ[g(x, µ;v, ξ)] = ∇fµ(x).

3. Parameter-Free Stochastic Zeroth-Order
Optimization

We propose POEM, a parameter-free stochastic zeroth-order
method, as described in Algorithm 1. POEM is built on
the framework of projected SGD, following the iterative
scheme

xt+1 = ΠX (xt − ηtgt), (3)

where ηt > 0 denotes the step size, and the finite difference

gt ≜ g(xt, µt;vt, ξt) (4)

is defined as in equation (2), with the smoothing parameter
µt > 0, and random variables vt ∼ U(Sd−1) and ξt ∼ Ξ.

We aim to make both the step size ηt and the smoothing
parameter µt in equations (3) and (4) tuning-free, and still
achieve near-optimal convergence rates. This is more chal-
lenging than existing stochastic parameter-free first-order
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Algorithm 1 POEM
1: Input: x0 ∈ X , rϵ ∈ (0, DX ], T ≥ 1

2: r̄−1 = rϵ, G−1 = 0

3: for t = 0, . . . , T − 1 do
4: r̄t = max{r̄t−1, ∥xt − x0∥}

5: µt = r̄t

√
d

t+ 1

6: vt ∼ U(Sd−1), ξt ∼ Ξ

7: gt =
d

2µt
(F (xt + µtvt; ξt)− F (xt − µtvt; ξt))vt

8: Gt = Gt−1 + ∥gt∥2

9: ηt =
r̄t√
Gt

10: xt+1 = ΠX (xt − ηtgt)

11: end for

12: Output: x̄τT where τT ≜ argmax
t≤T

t−1∑
k=0

r̄k
r̄t

methods, which focus only on adapting the step size. In-
spired by the strategy of DoG (Ivgi et al., 2023a), we sched-
ule the step size ηt based on the ratio between the distance
from the initial point and the norm of the stochastic finite
difference. Specifically, we define the cumulative squared
gradient norm as Gt ≜

∑t
k=0 ∥gk∥2, the distance to the

initial point as rt ≜ ∥xt − x0∥, and the maximum distance
as r̄t ≜ maxk≤t rk ∨ rϵ, where rϵ > 0 denotes the initial
movement. We define the step size at the t-th iteration as

ηt ≜
r̄t√
Gt

. (5)

For initialization, we require the movement rϵ ∈ (0, DX ].
As we will show in Sections 4 and 6, the choice of rϵ influ-
ences the theoretical convergence rates only by a logarithmic
term and has minimal impact on practical performance.

Moreover, we define the smoothing parameter as

µt ≜ r̄t

√
d

t+ 1
, (6)

which is adaptive and generally larger than those used
in existing stochastic zeroth-order methods (Nesterov &
Spokoiny, 2017; Shamir, 2017; Duchi et al., 2015; Ghadimi
& Lan, 2013; Duchi et al., 2012b; Rando et al., 2024). For
example, Nesterov & Spokoiny (2017); Shamir (2017) set
µt = O(

√
d/T ) in their analysis, depending on the total it-

eration budget T ; Duchi et al. (2015) uses µt = O(1/(dt)2),
which may be quite small in high-dimensional settings. Re-
call that the smoothing parameter µt appears in the denomi-
nator of the stochastic finite difference in equation (2). Con-
sequently, a larger µt improves numerical stability.

4. The Complexity Analysis
In this section, we show that POEM (Algorithm 1) achieves
near-optimal SZO complexity. The detailed proofs of the
results presented here are provided in Appendix B.

Our analysis focuses on the weighted average of the iterates
generated by POEM, defined as

x̄t ≜
1∑t−1

k=0 r̄k

t−1∑
k=0

r̄kxk. (7)

Since the objective function f is convex (Assumption 2.5),
we apply Jensen’s inequality to bound the optimality gap

f(x̄t)− f(x⋆) ≤
1∑t−1

k=0 r̄k

t−1∑
k=0

r̄k(f(xk)− f(x⋆)). (8)

By combining inequality (8) with Lemma 2.8, we obtain

f(x̄t)− f(x⋆)

≤ 1∑t−1
k=0 r̄k

t−1∑
k=0

r̄k(fµk
(xk)− fµk

(x⋆) + 2Lµk)

≤ 1∑t−1
k=0 r̄k

t−1∑
k=0

r̄k(⟨∇fµk
(xk),xk − x⋆⟩+ 2Lµk),

(9)

where the last inequality follows from the convexity of fµk
.

We decompose the sum in the final line of equation (9) into
t−1∑
k=0

r̄k⟨gk,xk − x⋆⟩︸ ︷︷ ︸
the weighted regret

+

t−1∑
k=0

r̄k⟨∆k,xk − x⋆⟩︸ ︷︷ ︸
the noise from gk

+

t−1∑
k=0

2Lr̄kµk︸ ︷︷ ︸
the noise from µk

,

(10)

where ∆k ≜ ∇fµk
(xk)− gk. The regret term is a standard

component in the complexity analysis of stochastic zeroth-
order and first-order methods (Shalev-Shwartz, 2012; Duchi
et al., 2015; Balasubramanian & Ghadimi, 2018; Ivgi et al.,
2023a). In the context of POEM, this term is scaled by
the weights {r̄k}t−1

k=0, requiring careful control. The noise
from gk arises from the discrepancy between the true gradi-
ent ∇fµk

and its unbiased estimator gk. The noise from µk

reflects the approximation error between the objective func-
tion f and its smooth surrogate fµk

. Notably, this noise
doesn’t appear in the analysis of first-order methods.

We now present upper bounds for the three components in
equation (9): the weighted regret term, the noise from gk,
and the noise from µk. To facilitate the analysis, we define

st ≜ ∥xt − x⋆∥ and s̄t ≜ max
k≤t

sk.

The following lemma provides an upper bound on the
weighted regret for SGD-type iterations. Notably, this result
holds independently of the specific form of the gradient
estimator or the choice of step size, and thus applies directly
to POEM (Algorithm 1).
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Lemma 4.1 (Ivgi et al. (2023a, Lemma 3.4)). For the itera-
tion scheme (3), the weighted regret satisfies

t−1∑
k=0

r̄k⟨gk,xk − x⋆⟩ ≤ r̄t (2s̄t + r̄t)
√
Gt−1.

To analyze the noise from gk, we first establish upper
bounds for ∥gt∥ and its second moment E[∥gt∥2].
Lemma 4.2 (Shamir (2017, Lemma 10)). Under Assump-
tion 2.6, POEM (Algorithm 1) satisfies

∥gt∥ ≤ Ld and E[∥gt∥2] ≤ cL2d,

where c > 0 is a numerical constant.

Remark 4.3. This lemma provides O(d) upper bounds for
both ∥gt∥ and E[∥gt∥2], which are crucial for achieving
optimal dependence on the dimension d in the convergence
rates. Unlike the original proof in Shamir (2017, Lemma
10), our analysis is based on the Euclidean norm and offers
a more concise argument by avoiding the use of fourth-order
moments of the gradient estimator (see Appendix B.1).

Based on Lemma 4.2, we can provide an upper bound for
the term ∥∆k∥ = ∥∇fµk

(xk)−gk∥. We then use a concen-
tration inequality for martingale differences (Howard et al.,
2021; Ivgi et al., 2023b) to control the noise from gk.

Lemma 4.4. Under Assumptions 2.6 and 2.7, for any
δ ∈ (0, 1), POEM (Algorithm 1) satisfies

P
(
∃t ≤ T :

∣∣∣∣ t−1∑
k=0

r̄k⟨∆k,xk − x⋆⟩
∣∣∣∣ ≥ bt

)
≤ δ,

where we define bt ≜ 8r̄t−1s̄t−1

√
θt,δGt−1 + 4L2d2θ2t,δ ,

and θt,δ ≜ log(60 log(6t/δ)).

Next, we provide an upper bound for the noise from µk.

Lemma 4.5. POEM (Algorithm 1) satisfies

t−1∑
k=0

2Lr̄kµk ≤ 4Lr̄2t−1

√
dt ,

where log+(·) ≜ log(·) + 1.

Remark 4.6. The choice of the smoothing parameter in (6)
implies that µk = O(

√
d/k). Using this expression, we

can bound the series by approximating it with an integral,
which leads to the stated result in Lemma 4.5. A detailed
proof is provided in Appendix B.3.

By combining Lemmas 4.1, 4.4, and 4.5 with equations (9)
and (10), we obtain the following upper bound on the opti-
mality function value gap.

Proposition 4.7. Under Assumptions 2.5, 2.6 and 2.7, for
any δ ∈ (0, 1) and t ∈ N+, POEM (Algorithm 1) satisfies

f(x̄t)−f(x⋆)≤
16θt,δ(r̄t+s0)(

√
Gt−1+Ld+L

√
dt )∑t−1

k=0 r̄k/r̄t
,

with probability at least 1− δ, where θt,δ=log(60 log(t/δ)).

We then consider a lower bound for
∑t−1

k=0 r̄k/r̄t. To this
end, we introduce the following key lemma.

Lemma 4.8 (Ivgi et al. (2023a, Lemma 3.7)). Let
a0, a1, . . . , aT be a positive non-decreasing sequence, then

max
t≤T

∑
i<t

ai
at

≥ 1

e

(
T

log+(aT /a0)
− 1

)
,

where T ∈ N+.

Since the sequence {r̄t}Tt=0 is positive and non-decreasing,
we can apply Lemma 4.8 with at = r̄t. This yields

max
t≤T

t−1∑
k=0

r̄k
r̄t

=

τT−1∑
k=0

r̄k
r̄τT

≥ Ω

(
T

log+(r̄τT /rϵ)

)
, (11)

where τT ≜ argmax1≤t≤T

∑t−1
k=0 r̄k/r̄t.

Before stating the main result, we define the probability
space (Ω0,F0,P), where Ω0 denotes the sample space as-
sociated with POEM (Algorithm 1) for a given x0 and rϵ,
F0 is the sigma field generated by the random variable
sequences {vt}T−1

t=0 and {ξt}T−1
t=0 , and P is a probability

measure defined on F0. Next, we define the event

Ωδ ≜

{
ω ∈ Ω0 : ∀t ≤ T,

∣∣∣∣ t−1∑
k=0

r̄k⟨∆k,xk − x⋆⟩
∣∣∣∣ < bt

}
.

By Lemma 4.4, given δ ∈ (0, 1), we have P(Ωδ) ≥ 1− δ.
We then define the sigma field Fδ ≜ {A : A ⊂ Ωδ} ∩ F0,
which satisfies Fδ ⊂ F0. Furthermore, the Lipschitz con-
tinuity of f and the boundedness of the domain X , ensure
that E|f(x̄τT )− f(x⋆)| ≤ LDX < ∞. Therefore, the con-
ditional expectation E[f(x̄τT ) − f(x⋆) | Fδ] exists and is
unique (Durrett, 2019, Chapter 4.1).

By combining Lemma 4.2, Proposition 4.7, and equa-
tion (11), we arrive at the main result.

Theorem 4.9. Under Assumptions 2.1, 2.5, 2.6, and 2.7,
for any δ ∈ (0, 1) and T ∈ N+, POEM (Algorithm 1)
initialized with x0 ∈ X and rϵ ∈ (0, DX ] satisfies

E[f(x̄τT )− f(x⋆) | Fδ]

≤O
((

d

T
+

√
d√
T

)
θT,δLDX log+

(
DX

rϵ

))
,

with probability at least 1−δ, where θT,δ≜ log(60log(6T/δ)).
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By suppressing the logarithmic factors using the Õ(·) nota-
tion, the SZO complexity for finding a conditionally expected
ϵ-suboptimal solution with probability at least 1− δ is

Õ
(
dL2D2

X
ϵ2

)
.

The SZO complexity established in Theorem 4.9 matches
the lower bound for stochastic zeroth-order optimization
established by Duchi et al. (2015).
Remark 4.10. As δ → 0, Ωδ → Ω0 in probability and Fδ

approaches F0, which implies E[f(x̄τT )− f(x⋆) | Fδ] ap-
proaches E[f(x̄τT )− f(x⋆) | F0] = f(x̄τT )− f(x⋆).

5. Results for Unbounded Domains
In this section, we extend our method to address the stochas-
tic convex optimization problem in settings where the do-
main may be unbounded. To accommodate this, we relax
Assumption 2.1 as follows.

Assumption 5.1. The domain X ⊆ Rd is closed and convex.
Moreover, there exists a point x⋆ ∈ X such that f(x⋆) =
minx∈X f(x).

Remark 5.2. In our analysis for the bounded domain (The-
orem 4.9), the upper bound on E[f(x̄τT )− f(x⋆) | Fδ] in-
cludes the term log+(DX /rϵ), where rϵ ∈ (0, DX ]. How-
ever, this term may become invalid after relaxing Assump-
tion 2.1 to Assumption 5.1, as DX could be infinite.

In the remainder of this section, we first modify POEM
by introducing an overestimate of the Lipschitz constant L
to address the problem without assuming a bounded do-
main. We then show that such estimation is unavoidable in
the unbounded setting. The detailed proofs for the results
presented in this section are deferred to Appendix C.

We introduce the quantity

G′
t ≜ 84θT,δ log

2
+(t+ 2)(Gt−1 + 16θT,δd

2L̄2), (12)

where θT,δ = log(60 log(6T/δ)), Gt =
∑t

k=0 ∥gk∥2 as
defined in Section 3 and L̄ is an overestimate of the Lipschitz
constant L such that L̄ ≥ L.

For the unbounded domain, we modify POEM (Algorithm 1)
by updating the step size and smoothing parameter as

ηt =
r̄t√
G′

t

and µt =
dr̄t

(t+ 1)2
, (13)

where rt = ∥xt − x0∥ and r̄t = maxk≤t rk ∨ rϵ, following
the notation in Section 3. We also define G−1 = 0 for
equation (12) when t = 0. Note that the parameters T and δ
only influence the logarithmic factor in G′

t. Furthermore,
the term 16θT,δd

2L̄2 in equation (12) becomes relatively
insignificant compared to Gt−1 as t grows large.

We now provide the complexity analysis for the modified
POEM. Unlike in the bounded domain setting, the quan-
tity r̄t cannot be simply controlled via DX . Instead, our
goal is to show that r̄t = O(s0), which implies that xt re-
mains close to both x0 and x⋆. Starting from the iteration
update xk+1 = ΠX (xk − ηkgk), we obtain the inequality

∥xk+1 − x⋆∥2 ≤ ∥xk − x⋆ − ηkgk∥2.

Rewriting this inequality using the definition of sk in Sec-
tion 3, we have

s2k+1 − s2k ≤η2k∥gk∥2 + 2ηk⟨∆k,xk − x⋆⟩
− 2ηk⟨∇fµk

(xk),xk − x⋆⟩,

where ∆k = ∇fµk
(xk)− gk. Summing the above inequal-

ity over k = 0, 1, . . . , t− 1, we obtain

s2t − s20 ≤
t−1∑
k=0

η2k∥gk∥2 + 2

t−1∑
k=0

ηk⟨∆k,xk − x⋆⟩

+ 2

t−1∑
k=0

ηk⟨∇fµk
(xk),x⋆ − xk⟩.

(14)

Therefore, we can upper bound r̄t by controlling each of the
three terms on the right-hand side of inequality (14). Note
that the last term in equation (14) does not appear in the
analysis of first-order methods like DoG (Ivgi et al., 2023a).
Following the analysis in Appendix C.1, we establish the
follow upper bound for r̄t.

Proposition 5.3. For any δ ∈ (0, 1), POEM (Algorithm 1),
with settings ηt = r̄t/

√
G′

t, µt = dr̄t/(t + 1)2, and
rϵ ∈ (0, 3s0], satisfies P̃(r̄T > 3s0) ≤ δ.

We consider the probability space (Ω̃0, F̃0, P̃), where Ω̃0 is
the sample space of the Algorithm 1 under the modified set-
tings used in Proposition 5.3, F̃0 is the sigma field generated
by the random sequences {vt}T−1

t=0 and {ξt}T−1
t=0 , and P̃ is a

probability measure defined on F̃0.

Following the settings of Proposition 5.3, we define the set

Ω̃δ ≜

{
ω ∈ Ω̃0 : ∀t ≤ T,

∣∣∣∣ t−1∑
k=0

η̃k⟨∆k,xk − x⋆⟩
∣∣∣∣ ≤ s20

}
,

where η̃t ≜ ηt · I(t < ζ) and ζ ≜ min{t ∈ N | r̄t > 3s0}.

The derivation of Proposition 5.3 (see Appendix C.1) shows
that if rϵ ≤ 3s0, then r̄T ≤ 3s0 for all ω ∈ Ω̃δ. Moreover,
it holds that P̃(Ω̃δ) ≥ 1− δ.

Similar to Proposition 4.7, we can establish an upper bound
on the optimality gap for the unbounded setting as follows
(see Appendix C.2 for the proof).

Proposition 5.4. Under Assumptions 2.5, 2.6 and 2.7, for
any δ ∈ (0, 1), POEM (Algorithm 1) with the modified
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settings from Proposition 5.3 satisfies

f(x̄t)− f(x⋆) ≤
20θt,δ(r̄t + s0)(

√
G′

t−1 + Ld)∑t−1
k=0 r̄k/r̄t

, (15)

with probability at least 1− δ, where θt,δ=log(60 log(t/δ)).

Following the settings of Proposition 5.4, we define the set

Ω̂δ ≜

{
ω ∈ Ω̃0 : ∀t ≤ T,

∣∣∣∣ t−1∑
k=0

r̄k⟨∆k,xk − x⋆⟩
∣∣∣∣ < bt

}
,

where bt = 8r̄t−1s̄t−1

√
θt,δGt−1 + 4L2d2θ2t,δ. The proof

of Proposition 5.4 shows that inequality (15) holds for
all ω ∈ Ω̂δ . Moreover, we have P̃(Ω̂δ) ≥ 1− δ.

Next, we define F̃δ ≜ {A : A ⊂ Ω̃δ ∩ Ω̂δ} ∩ F̃0, which
is a sub-sigma-field of F̃0. Since the probability space is
constructed for an algorithm with finite T , we can conclude
the conditional expectation E[f(x̄τT )− f(x⋆) | F̃δ] exists
and is unique, even if the domain DX is unbounded. (Please
see Appendix C.3 for the detailed derivation.)

We now combine Propositions 5.3 and 5.4 to establish a
convergence result without a bounded domain assumption.

Theorem 5.5. Under Assumptions 2.5, 2.6, 2.7, and 5.1, for
any δ ∈ (0, 1/2), POEM (Algorithm 1) with the modified
settings used in Proposition 5.3, satisfies

E[f(x̄τT )− f(x⋆) | F̃δ]

≤O
((

d(L+ L̄)

T
+

√
dL√
T

)
αT,δs0 log+

(
s0
rϵ

))
with probability at least 1− 2δ, where s0 = ∥x0 −x⋆∥ and
αT,δ ≜ log+(T + 1) log(60 log(T/δ)).

By setting L̄ = L, the upper bound on the conditional
expectation shown in Theorem 5.5 simplifies to

O
((

d

T
+

√
d√
T

)
αT,δLs0 log+

(
s0
rϵ

))
.

This yields the SZO complexity of Õ(dL2s20/ϵ
2) for find-

ing an ϵ-suboptimal solution x̄τT , which improves upon
the O(d2L2s20/ϵ

2) complexity established by Nesterov &
Spokoiny (2017).

However, the settings in Theorem 5.5 (also Proposition 5.3)
require that rϵ ∈ (0, 3s0] , where s0 = ∥x0 − x⋆∥ is un-
known in practice. Furthermore, the first term in the upper
bound of Theorem 5.5 depends linearly on L̄. Ideally, we
would like to design an algorithm that achieves an SZO
complexity close to Õ(dL2s20/ϵ

2), with only logarithmic
dependence on uncertain problem parameters such as rϵ
and L̄. Unfortunately, we show that such an ideal, fully

parameter-free zeroth-order algorithm for stochastic con-
vex optimization without a bounded domain assumption is
provably unattainable.

We assume that the stochastic zeroth-order algorithm A
accepts valid estimates L̄, L, s̄ and s such that L ≤ L ≤ L̄
and s ≤ s0 ≤ s̄. Based on this setup, we establish the
following lower bound on the function value gap for the
stochastic convex optimization problem.
Theorem 5.6. Let θ : R4 → R be any polylogarithmic
function, let d ∈ N, and let A be a stochastic zeroth-order
algorithm satisfying Assumption 2.7, with valid estimates
L, L̄, s, and s̄. Then, there exists an L-Lipschitz convex
function f : Rd → R such that, for any initial point x0 ∈
Rd and any number of SZO calls T ≥ 2, the algorithm A
returns a point x̂ satisfying

f(x̂)− f⋆ > θ

(
L̄

L
,
s̄

s
, T, d

)
·
√
dLs0√
T

with probability at least 1/e.
Remark 5.7. In a recent work, Khaled & Jin (2024) showed
the impossibility of an ideal parameter-free algorithm for
stochastic first-order optimization by constructing a hard
instance in the one-dimensional setting. In contrast, the
lower bound for zeroth-order optimization established in
Theorem 5.6 must additionally consider the dependence on
the dimension of the problem, highlighting a key distinction
from the first-order case.

6. Numerical Experiments
This section presents numerical experiments to evaluate
the empirical performance of POEM (Algorithm 1). We
consider a stochastic optimization problem of the form

min
x∈X

f(x) ≜ E(a,b)[F (x;a, b)],

where F (x;a, b) = max{0, 1−ba⊤x}, (a, b)∈Rd×{±1}
is uniformly sampled from a binary classification dataset
{(ai, bi)}ni=1. The feasible set is defined as X = {x ∈ Rd :
∥x∥ ≤ R} with radius R = 1. We conduct experiments
on benchmark datasets from (Chang & Lin, 2011), includ-
ing “mushrooms” (d = 112, n = 8124), “a9a” (d = 123,
n = 32, 561), and “w8a” (d = 300, n = 49, 749). For com-
parison, we consider two stochastic zeroth-order algorithms:
Two-Point Gradient Estimates (TPGE) method (Duchi et al.,
2015) and Two-Point Bandit Convex Optimization (TPBCO)
method (Shamir, 2017).

Figure 1 shows the comparison of SZO complexity ver-
sus function values. For POEM, the initial movement is
set to rϵ = 10−2. Baseline methods are evaluated under
two configurations: theoretical parameter settings (TPGE-T,
TPBCO-T), and well-tuned step sizes (TPGE-E, TPBCO-
E). Results demonstrate that POEM converges faster than
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Figure 1. The comparison on the SZO complexity versus the function value during the iterations.
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Figure 2. The comparison on the parameter settings (rϵ for POEM and 1/L for other methods) against f(xT ).
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Figure 3. The change of the step size with difference rϵ for POEM.

TPGE-T and TPBCO-T, while its performance is compara-
ble to the well-tuned variants (TPGE-E, TPBCO-E).

We further study the practical impact of parameter settings.
Specifically, we present the objective function value at the fi-
nal iteration (T = 106) across all algorithms under different
configurations. Figure 2 summarizes these results, where
we tune the initial movement rϵ in POEM and the term 1/L
in baseline methods over the range {10−7, 10−6, . . . , 102}.
It is clear that POEM exhibits greater stability across param-
eter settings compared to baseline methods. More impor-
tantly, when rϵ ≤ R = 1, the choice of rϵ has negligible
impact on the function value. This supports our theoretical
analysis (Theorem 4.9), where rϵ only influences the loga-
rithmic term in the complexity bound if it does not exceed
the domain diameter. Additionally, we track the evolution
of step sizes in POEM under varying rϵ. As shown in Fig-
ure 2, the step sizes converge to similar values across all
configurations, highlighting the algorithm’s adaptive nature.

7. Conclusion
In this paper, we propose POEM, a novel zeroth-order op-
timization algorithm for stochastic convex optimization.
It can dynamically schedule both the step size and the
smoothing parameter during iterations. We show that POEM
achieves near-optimal stochastic zeroth-order oracle com-
plexity for problems with bounded domains. Notably, its
initialization only impacts convergence rates by a logarith-
mic factor. We further extend POEM to unbounded do-
mains and derive a lower bound, which reveals that an ideal
parameter-free algorithm is impossible in such settings. We
also conduct numerical experiments to confirm the practical
efficiency of POEM.

In future work, we are interested in extending the ideas
of POEM to broader applications, including zeroth-order
optimization for minimax and bilevel problems. Another
promising direction is the development of parameter-free
zeroth-order methods for finite-sum optimization.
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A. Some Basic Results
We first present some basic lemmas.

Lemma A.1 (Shamir (2017, Lemma 9)). Suppose v ∼ U(Sd−1). Then, for any function h : Rd → R hat is L-Lipschitz
with respect to the ℓ2-norm, the following concentration inequality holds

P(|h(v)− Ev∼U(Sd−1)[h(v)]| ≥ t) ≤ 2 exp

(
− cdt2

L2

)
,

where c is a numerical constant.

Lemma A.2 (Ivgi et al. (2023a, Lemma D.2)). Let S be the set of non-negative and non-decreasing sequences. Let c > 0
and let Xt be a martingale difference sequence adapted to Ft such that |Xt| ≤ c with probability 1 for all t . Then, for all
δ ∈ (0, 1) and X̂t ∈ Ft−1 such that |X̂t| ≤ c with probability 1,

P
(
∃t ≤ T, ∃{yk}∞k=0 ∈ S :

∣∣∣∣ t−1∑
k=0

ykXk

∣∣∣∣ ≥ bt

)
≤ δ,

where bt ≜ 8yt

√
θt,δ

∑t−1
k=0(Xk − X̂k)2 + c2θ2t,δ and θt,δ ≜ log(60 log(6t/δ)).

Lemma A.3 (Ivgi et al. (2023a, Lemma C.3)). Let a−1, a0, . . . , at be a nondecreasing sequence of nonnegative numbers,
then the following inequality holds

t∑
k=0

ak − ak−1

ak log
2
+(ak/a−1)

≤ 1.

Lemma A.4 (Carmon & Hinder (2022, Corollary 1)). Let c > 0 and Xt be a martingale difference sequence adapted to Ft

such that |Xt| ≤ c with probability 1 for all t. Then, for all δ ∈ (0, 1) , and X̂t ∈ Ft−1 such that |X̂t| ≤ c with probability
1, the following inequality holds

P
(
∃t ≤ T :

∣∣∣∣ t∑
k=1

Xk

∣∣∣∣ > 4

√√√√θt,δ

t∑
k=1

(Xk − X̂k)2 + c2θ2t,δ

)
≤ δ.

B. The Proofs for Section 4
We provide detailed proofs for the results under the bounded domain assumption.

B.1. Proof of Lemma 4.2

Proof of Lemma 4.2. For convenience, we omit the subscripts. Recall that the gradient estimator g is defined as

g(x, µ;v, ξ) =
d

2µ
(F (x+ µv; ξ)− F (x− µv; ξ))v, where v ∼ U(Sd−1).

By Assumption 2.6, the function F (x; ξ) is almost surely L-Lispchitz in x. Thus, we have

∥g∥ =
d

2µ
|F (x+ µv; ξ)− F (x− µv; ξ)|∥v∥ ≤ Ld∥v∥2 = Ld,

where the last equality follows from the fact that ∥v∥ = 1.

Next, using the definition of g and ∥v∥ = 1 again, we compute the second moment of g as

Ev∼U(Sd−1)[∥g∥2] =
d2

4µ2
· Ev∼U(Sd−1)[(F (x+ µv; ξ)− F (x− µv; ξ))2].

12
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For any α ∈ R, we can rewrite this as

Ev∼U(Sd−1)[∥g∥2] =
d2

4µ2
· Ev∼U(Sd−1)[((F (x+ µv; ξ)− α)− (F (x− µv; ξ)− α))2].

Applying the inequality (a− b)2 ≤ 2a2 + 2b2, we obtain

Ev∼U(Sd−1)[∥g∥2] ≤
d2

2µ2
· (Ev∼U(Sd−1)[(F (x+ µv; ξ)− α)2] + Ev∼U(Sd−1)[(F (x− µv; ξ)− α)2]).

Since the distribution v ∼ U(Sd−1) is symmetric about the origin, the two terms on the right-hand side are equal. Thus,

Ev∼U(Sd−1)[∥g∥2] ≤
d2

µ2
· Ev∼U(Sd−1)[(F (x+ µv; ξ)− α)2]. (16)

Let h(v) ≜ F (x+ µv; ξ). Since F (x; ξ) is L-Lispchitz in x, it follows that h(v) is µL-Lipschitz in v. By Lemma A.1,
the variance of h(v) is bounded as follows

Ev∼U(Sd−1)[(h(v)− Ev∼U(Sd−1)[h(v)])
2] =

∫ ∞

0

P((h(v)− Ev∼U(Sd−1)[h(v)])
2 > t) dt

=

∫ ∞

0

P(|h(v)− Ev∼U(Sd−1)[h(v)]| >
√
t) dt

≤
∫ ∞

0

2 exp
(
− cdt

µ2L2

)
dt =

2µ2L2

cd
,

where c > 0 is a numerical constant. The first equality follows from the identity (Durrett, 2019, Lemma 2.2.13), which
states that if a random variable Y ≥ 0 almost surely, then

E[Y ] =

∫ ∞

0

P(Y > y) dy.

Setting α = Ev∼U(Sd−1)[h(v)], and combining the variance bound above with the inequality (16), we have

Ev∼U(Sd−1)[∥g∥2] ≤
d2

µ2
· Ev∼U(Sd−1)[(h(v)− Ev∼U(Sd−1)[h(v)])

2] ≤ 2

c
L2d.

Finally, we apply the law of total expectation to derive E[∥g∥2] = E[Ev∼U(Sd−1)[∥g∥2]] ≤ 2L2d/c.

B.2. Proof of Lemma 4.4

Proof of Lemma 4.4. We begin by defining the filtration Fk ≜ σ(vi, ξi, 0 ≤ i ≤ k) for k ∈ N and F−1 ≜ {∅,Ω}. Next,
we introduce two stochastic processes (Xk, k ∈ N) and (X̂k, k ∈ N) defined as

Xk ≜
1

s̄k
⟨∆k,xk − x⋆⟩ ∈ Fk and X̂k ≜

1

s̄k
⟨∇fµk

(xk),xk − x⋆⟩ ∈ Fk−1, (17)

where ∆k = ∇fµk
(xk)− gk. Thus, we derive that (Xk, k ∈ N) is adapted to (Fk, k ∈ N) and (X̂k, k ∈ N) is predictable

with respect to (Fk, k ∈ N). Moreover, since gk is an unbiased estimator of ∇fµk
(xk) conditioned on Fk−1, we have

E[Xk | Fk−1] =
1

s̄k
· E[⟨∇fµk

(xk)− gk,xk − x⋆⟩ | Fk−1] = 0,

where we use the fact that s̄k ∈ Fk−1. This implies that (Xk,Fk, k ∈ N) forms a martingale difference process.

Next, applying Lemma 4.2, we know that ∥gk∥ ≤ Ld. Since gk is an unbiased estimator of ∇fµk
(xk), we obtain

∥∇fµk
(xk)∥ = ∥Evk,ξk

[gk]∥ ≤ Evk,ξk
[∥gk∥] ≤ Ld.

13
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It follows that

∥∆k∥ ≤ ∥gk∥+ ∥∇fµk
(xk)∥ ≤ 2Ld.

From equation (17), we immediately have |Xk| ≤ |∆k| ≤ 2Ld and |X̂k| ≤ |∇fµk
(xk)| ≤ Ld.

Now, define the sequence Yk := r̄ks̄k for k ∈ N, which is non-negative and non-decreasing. Using the concentration
inequality for martingale difference sequences from Lemma A.2, and letting δ ∈ (0, 1) and c = 2Ld, we obtain

P
(
∃t ≤ T :

∣∣∣∣ t−1∑
k=0

r̄k⟨∆k,xk − x⋆⟩
∣∣∣∣ ≥ bt

)
= P

(
∃t ≤ T :

∣∣∣∣ t−1∑
k=0

YkXk

∣∣∣∣)

≤ P
(
∃t ≤ T, ∃{yk}∞k=0 ∈ S :

∣∣∣∣ t−1∑
k=0

ykXk

∣∣∣∣ ≥ bt

)
≤ δ,

where bt ≜ 8r̄t−1s̄t−1

√
θt,δGt−1 + 4L2d2θ2t,δ , θt,δ ≜ log(60 log(6t/δ)) and S is the set of non-negative and non-

decreasing sequences.

B.3. Proof of Lemma 4.5

Proof of Lemma 4.5. Define the partial sum as St ≜
∑t

k=1 1/
√
k for t ∈ N+. An upper bound for St can be obtained via

the following integral

St ≤ 1 +

∫ t

1

1√
x
dx = 2

√
t− 1 ≤ 2

√
t.

Using this bound, together with the definition of µk in equation (6), we can bound the noise as follows

t−1∑
k=0

2Lr̄kµk ≤ 2Lr̄t−1

t−1∑
k=0

µk ≤ 2L
√
d · r̄2t−1St = 4Lr̄2t−1

√
dt.

B.4. Proof of Proposition 4.7

Proof of Proposition 4.7. Combining Lemma 4.1, 4.4 and 4.5 with equations (9) and (10), we obtain that, with probability
at least 1− δ, the upper bound for f(x̄t)− f(x⋆) is given by

(2s̄t + r̄t)
√

Gt−1 + 8s̄t
√
θt,δGt−1 + 4L2d2θ2t,δ + 4r̄tL

√
dt∑t−1

k=0 r̄k/r̄t
,

where we use the fact that r̄t−1 ≤ r̄t and s̄t−1 ≤ s̄t. Applying the inequality
√
a2 + b2 ≤ a+ b to the bound, we have

(2s̄t + r̄t)
√
Gt−1 + 8s̄t(θt,δ

√
Gt−1 + 2θt,δLd) + 4r̄tL

√
dt∑t−1

k=0 r̄k/r̄t
.

Finally, using the triangle inequality s̄t ≤ r̄t + s0, we obtain the bound

16 ·
θt,δ(r̄t + s0)(

√
Gt−1 + Ld+ L

√
dt )∑t−1

k=0 r̄k/r̄t
.

14
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B.5. Proof of Theorem 4.9

We begin by introducing several useful properties of conditional expectations.

Lemma B.1. Let (Ω,F0,P) be a probability space, and let X1, X2 be two random variables defined on it. Suppose F ⊂ F0

is a sub-σ-algebra, and E[· | F ] denotes the corresponding conditional expectation. If X1 ≤ X2 on a set B ∈ F , then
E[X1 | F ] ≤ E[X2 | F ] almost surely on B.

Proof of Lemma B.1. We follow the proof strategy of Durrett (2019, Theorem 4.1.2). For any ϵ > 0, define the event
A = {ω ∈ Ω : E[X1 | F ]− E[X2 | F ] ≥ ϵ}, which satisfies A ∈ F since both conditional expectations are F-measurable.
Because B ∈ F , their intersection A ∩B ∈ F . Then, by the definition of conditional expectation, we have∫

A∩B

E[X1 | F ]− E[X2 | F ] dP =

∫
A∩B

X1 −X2 dP ≤ 0,

where the inequality follows from the assumption X1 ≤ X2 on B. On the other hand, by the definition of A, we have∫
A∩B

E[X1 | F ]− E[X2 | F ] dP ≥
∫
A∩B

ϵ dP = ϵ · P(A ∩B).

Combining the two inequality, we have P(A ∩B) = 0, which implies that

P(ω ∈ B : E[X1 | F ]− E[X2 | F ] ≥ ϵ) = 0.

Since this holds for all ϵ > 0, it follows that E[X1 | F ] ≤ E[X2 | F ] almost surely on B.

Lemma B.2 (Durrett (2019, Theorem 4.1.13)). If F0 ⊂ F , then E[X | F0] = E[E[X | F ] | F0].

Lemma B.3 (Durrett (2019, Theorem 4.1.10)). Let ϕ be a convex function and X be a random variable such that E|X| < ∞
and E|ϕ(X)| < ∞. Then,

ϕ(E[X | F ]) ≤ E[ϕ(X) | F ].

We are now ready to prove Theorem 4.9.

Proof of Theorem 4.9. Recall the event

Ωδ ≜
{
ω ∈ Ω0 : ∀t ≤ T,

∣∣∣∣ t−1∑
k=0

r̄k⟨∆k,xk − x⋆⟩
∣∣∣∣ < bt

}
∈ F0,

which satisfies P(Ωδ) ≥ 1 − δ by Lemma 4.4. From Proposition 4.7, we know that for any ω ∈ Ωδ and all t ≤ T , the
following inequalty holds

f(x̄t)− f(x⋆) ≤ 16 ·
θt,δ(r̄t + s0)(

√
Gt−1 + Ld+ L

√
dt )∑t−1

k=0 r̄k/r̄t
.

Combining this with equation (11), we obtain that for all ω ∈ Ωδ ,

f(x̄τT )− f(x⋆) ≤ c0 ·
θτT ,δ(r̄τT + s0)(

√
GτT−1 + Ld+ L

√
dτT )

T
log+

(
r̄τT
rϵ

)
,

where c0 is a constant and τT = argmaxt≤T

∑t−1
k=0 r̄k/r̄t. Since θt,δ, r̄t, and Gt are non-decreasing in t and τT ≤ T , we

can simplify the bound

f(x̄τT )− f(x⋆) ≤ c0 ·
θT,δ(r̄T + s0)(

√
GT−1 + Ld+ L

√
dT )

T
log+

(
r̄T
rϵ

)
.
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Noting that the diameter is DX and rϵ ≤ DX , we have r̄T ≤ DX . Substituting this into the above bound yields

f(x̄τT )− f(x⋆) ≤ 2c0 ·
θT,δDX (

√
GT−1 + Ld+ L

√
dT )

T
log+

(
DX

rϵ

)
.

Recall that Fδ ≜ {A : A ⊂ Ωδ} ∩ F0 is a sigma field satisfying Fδ ⊂ F0. Moreover, we have Ωδ ∈ Fδ . Applying Lemma
B.1, we obtain that for any ω ∈ Ωδ ,

E[f(x̄τT )− f(x⋆) | Fδ] ≤ 2c0 ·
θT,δDX (E[

√
GT−1 | Fδ] + Ld+ L

√
dT )

T
log+

(
DX

rϵ

)
. (18)

Next, we bound the conditional expectation of GT−1 using Lemma 4.2 and Lemma B.2 as follows

E[GT−1 | Fδ] = E[E[GT−1] | Fδ] =

T−1∑
k=0

E[E[∥gk∥2] | Fδ] ≤ cL2dT.

Since the square root function is concave, applying Jensen’s inequality (Lemma B.3) gives

E[
√
GT−1 | Fδ] ≤

√
E[GT−1 | Fδ] ≤ L

√
cdT .

Substituting this back into equation (18), we conclude that , for any ω ∈ Ωδ , the following inequality holds

E[f(x̄τT )− f(x⋆) | Fδ] ≤ c1

(
d

T
+

√
d√
T

)
θT,δLDX log+

(
DX

rϵ

)
, (19)

where c1 is a constant. This implies that the upper bound (19) holds with probability at least 1− δ.

C. The Proofs for Section 5
We provide detailed proofs for the results without assuming a bounded domain.

C.1. Proof of Proposition 5.3

For simplicity, we define the following stopping time

ζ ≜ min{t ∈ N | r̄t > 3s0}.

Using this stopping time, we define a modified step size

η̃t ≜ ηt · I(t < ζ),

where the indicator function I(t < ζ) equals 1 if t < ζ, and 0 otherwise.

Before proving the proposition, we first present and prove several supporting lemmas.

Lemma C.1. Let T ∈ N+. For any t ≤ T , the following inequality holds

t∑
k=0

η̃2k∥gk∥2 ≤ s20
2
.

Proof of Lemma C.1. By the definition of η̃k and using the identity ∥gk∥2 = Gk −Gk−1, we can bound the sum as follows

t∑
k=0

η̃2k∥gk∥2 ≤
ζ−1∑
k=0

η2k∥gk∥2 =

ζ−1∑
k=0

r̄2k
G′

k

· ∥gk∥2 =

ζ−1∑
k=0

r̄2k(Gk −Gk−1)

G′
k

≤ r̄2ζ−1

ζ−1∑
k=0

Gk −Gk−1

G′
k

, (20)

where we set G−1 = 0. We now use a lower bound for G′
k

G′
k ≥ 84θT,δ(Gk−1 + 2d2L̄2) log2+

(
(k + 1)d2L̄2 + d2L̄2

d2L̄2

)
≥ 84θT,δ(Gk + d2L̄2) log2+

(
Gk + d2L̄2

d2L̄2

)
,
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where the last inequality follows from ∥gk∥ ≤ Ld ( See Lemma 4.2). Substituting this bound into (20), we obtain

t∑
k=0

η̃2k∥gk∥2 ≤
r̄2ζ−1

84θT,δ
·
ζ−1∑
k=0

Gk −Gk−1

(Gk + d2L̄2) log2+

(
Gk+d2L̄2

d2L̄2

) ≤
r̄2ζ−1

84θT,δ
≤ 9s20

84θT,δ
≤ s20

2
. (21)

The second inequality holds by applying Lemma A.3 with ak = Gk + d2L̄2.

Lemma C.2. For any δ ∈ (0, 1), the following inequality holds

P
(
∃t ≤ T :

∣∣∣∣ t−1∑
k=0

η̃k⟨∆k,xk − x⋆⟩
∣∣∣∣ > s20

)
≤ δ,

Proof of Lemma C.2. We consider the filtration Fk = σ(vi, ξi, 0 ≤ i ≤ k) for k ∈ N and F−1 = {∅,Ω0} as defined in
Appendix B.2. Note that η̃k ∈ Fk−1. Define the stochastic processes (Zk, k ∈ N) and (Ẑk, k ∈ N) as

Zk = η̃k⟨∆k,xk − x⋆⟩ ∈ Fk and Ẑk = η̃k⟨∇fµk
(xk),xk − x⋆⟩ ∈ Fk−1,

where ∆k = ∇fµk
(xk)− gk. By construction, we have

E[Zk | Fk−1] = η̃k · E[⟨∇fµk
(xk)− gk,xk − x⋆⟩ | Fk−1] = 0, where k ∈ N.

Thus, (Zk,Fk, k ∈ N) is a martingale difference process.

We now bound |Zk|. Using the fact that s̄t ≤ r̄t + s0, we obtain

|Zk| ≤ η̃ksk∥∆k∥ ≤ r̄ζ−1s̄ζ−1∥∆k∥√
G′

k

≤ 12s20∥∆k∥√
G′

k

.

From Appendix B.2, we have ∥∆k∥ ≤ 2Ld. Moreover, we have G′
k ≥ 16 · 84θ2T,δd

2L̄2. Therefore, we conclude

|Zk| ≤
6s20

82θT,δ
.

The same upper bound also applies to |Ẑk|. Now apply Lemma A.4 with c = 6s20/(8
2θT,δ). This gives

P
(
∃t ≤ T :

∣∣∣∣ t−1∑
k=0

Zk

∣∣∣∣ > 4

√√√√θt,δ

t−1∑
k=0

(Zk − Ẑk)2 + c2θ2t,δ

)
≤ δ. (22)

The upper bound for
∑t−1

k=0(Zk − Ẑk)
2 is given by

t−1∑
k=0

(Zk − Ẑk)
2 =

t−1∑
k=0

η̃2k(⟨gk,xk − x⋆⟩)2 ≤
t−1∑
k=0

η̃2ks
2
k∥gk∥2 ≤ s̄2ζ−1

t−1∑
k=0

η̃2k∥gk∥2 ≤ (4s0)
2
t−1∑
k=0

η̃2k∥gk∥2 ≤ 122s40
84θT,δ

,

(23)

where the third inequality follows from s̄k ≤ r̄k + s0 and the last follows from (21). Substituting (23) into (22), we get

4

√√√√θt,δ

t−1∑
k=0

(Zk − Ẑk)2 + c2θ2t,δ ≤ 4

√
θt,δ

122s40
84θT,δ

+ θ2t,δ
62s40
84θ2T,δ

≤ 4

√
122s40
84

+
62s40
84

≤ s20.

Thus, we have

P
(
∃t ≤ T :

∣∣∣∣ t−1∑
k=0

η̃k⟨∆k,xk − x⋆⟩
∣∣∣∣ > s20

)
≤ δ.
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Lemma C.3. Let T ∈ N+. For any t ≤ T , the following inequality holds

t∑
k=0

η̃k⟨∇fµk
(xk),x⋆ − xk⟩ ≤

s20
4
.

Proof of Lemma C.3. By Lemma 2.8, we have

⟨∇fµk
(xk),x⋆ − xk⟩ ≤ fµk

(x⋆)− fµk
(xk) ≤ f(x⋆)− f(xk) + 2Lµk ≤ 2Lµk,

where the last inequality follows from the fact that f(x⋆) = infx∈X f(x). Thus, the summation can be bounded as follows

t∑
k=0

η̃k⟨∇fµk
(xk),x⋆ − xk⟩ =

min(ζ−1,t)∑
k=0

ηk⟨∇fµk
(xk),x⋆ − xk⟩ ≤ 2L

min(ζ−1,t)∑
k=0

ηkµk.

Given that µk = dr̄k/(k + 1)2 and G′
k ≥ 16 · 84d2L̄2, it follows that

t∑
k=0

η̃k⟨∇fµk
(xk),x⋆ − xk⟩ ≤

2L

4 · 82L̄

min(ζ−1,t)∑
k=0

r̄2k
(k + 1)2

≤
r̄2ζ−1

2 · 82

min(ζ−1,t)∑
k=0

1

(k + 1)2
≤ 3π2s20

4 · 82
≤ s20

4
,

where the third inequality uses the fact that
∑∞

k=1 1/k
2 = π2/6 and r̄ζ−1 ≤ 3s0.

Based on Lemmas C.1, C.2, and C.3, we now establish Proposition 5.3.

Proof of Proposition 5.3. Fix any δ > 0, and define the event

Ω̃δ ≜

{
ω ∈ Ω0 : ∀t ≤ T,

∣∣∣∣ t−1∑
k=0

η̃k⟨∆k,xk − x⋆⟩
∣∣∣∣ ≤ s20

}
.

By Lemma C.2, it holds that P(Ω̃δ) ≥ 1− δ.

We now proceed by induction on t to show that r̄t ≤ 3s0 for all t ≤ T and any ω ∈ Ω̃δ. For the base case, we have
r̄0 = rϵ ≤ 3s0. For the induction step, we assume r̄t−1 ≤ 3s0, which implies that ζ > t− 1. From equation (14), we have

s2t − s20 ≤
t−1∑
k=0

η2k∥gk∥2 + 2

t−1∑
k=0

ηk⟨∆k,xk − x⋆⟩+ 2

t−1∑
k=0

ηk⟨∇fµk
(xk),x⋆ − xk⟩

=

t−1∑
k=0

η̃2k∥gk∥2 + 2

t−1∑
k=0

η̃k⟨∆k,xk − x⋆⟩+ 2

t−1∑
k=0

η̃k⟨∇fµk
(xk),x⋆ − xk⟩,

where the equality holds since ζ > t− 1. Now, applying Lemmas C.1, C.2, and C.3, we obtain for any ω ∈ Ω̃δ

s2t − s20 ≤ 1

2
s20 + 2s20 + 2 · 1

4
s20 = 3s20,

which implies that st ≤ 2s0. Hence, we have rt ≤ st + s0 = 3s0. By induction, it follows that r̄t = max(r̄t−1, rt) ≤ 3s0
for all t ≤ T for any ω ∈ Ω̃δ . Equivalently, we have P(r̄T > 3s0) ≤ δ.

C.2. Proof of Proposition 5.4

Proof of Proposition 5.4. Since G′
t ≥ Gt, we can apply the result of Ivgi et al. (2023a, Lemma 3.4), replacing Gt with G′

t,
which ensures that Lemma 4.1 still holds in our setting. Moreover, Lemma 4.4 remains valid. For Lemma 4.5, recall that
µt = dr̄t/(t+ 1)2 as given in equation (13). The noise from µ can be bounded as

t−1∑
k=0

2Lr̄kµk =

t−1∑
k=0

2Ldr̄2k
(k + 1)2

≤ 2Ldr̄2t−1

t−1∑
k=0

1

(k + 1)2
≤ 4Ldr̄2t−1,
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where the last inequality uses the fact that
∑∞

k=1 1/k
2 = π2/6.

Combining the modified lemmas and using equations (9) and (10), we obtain that, with probability at least 1 − δ, the
following upper bound on the optimality gap holds

(2s̄t + r̄t)
√

G′
t−1 + 8s̄t

√
θt,δGt−1 + 4L2d2θ2t,δ + 4Ldr̄t∑t−1

k=0 r̄k/r̄t
,

where we use the fact that r̄t−1 ≤ r̄t and s̄t−1 ≤ s̄t. Applying the inequality
√
a2 + b2 ≤ a+ b, the gap simplifies to

(2s̄t + r̄t)
√
G′

t−1 + 8s̄t(θt,δ
√
Gt−1 + 2θt,δLd) + 4Ldr̄t∑t−1

k=0 r̄k/r̄t
.

Finally, using the fact that G′
t ≥ Gt and the triangle inequality s̄t ≤ r̄t + s0, the gap becomes

20 ·
θt,δ(r̄t + s0)(

√
G′

t−1 + Ld)∑t−1
k=0 r̄k/r̄t

.

C.3. Proof of Theorem 5.5

We begin by establishing the existence and uniqueness of the conditional expectation E[f(x̄τT )− f(x⋆) | F̃δ]. According
to Durrett (2019, Chapter 4.1), it suffices to verify that F̃δ ⊂ F̃0 and E|f(x̄τT ) − f(x⋆)| < ∞. By definition, we recall
that F̃δ = {A : A ⊂ Ω̃δ ∩ Ω̂δ} ∩ F̃0, which implies that F̃δ ⊂ F̃0. To verify the integrability condition, we start from
inequality (14), which states

s2t − s20 ≤
t−1∑
k=0

η2k∥gk∥2 + 2

t−1∑
k=0

ηk⟨∆k,xk − x⋆⟩+ 2

t−1∑
k=0

ηk⟨∇fµk
(xk),x⋆ − xk⟩,

for t = 1, 2, . . . , T . Applying the upper bounds ∥gk∥ ≤ Ld (Lemma 4.2), ∥∇fµk
(xk)∥ ≤ Ld and ∥∆k∥ ≤ 2Ld

(Appendix B.2), we obtain

s2t − s20 ≤
t−1∑
k=0

η2k∥gk∥2 + 2

t−1∑
k=0

ηk∥∆k∥∥xk − x⋆∥+ 2

t−1∑
k=0

ηk∥∇fµk
(xk)∥∥x⋆ − xk∥

≤ L2d2
t−1∑
k=0

η2k + 6Lds̄t−1

t−1∑
k=0

ηk.

Since ηk = r̄k/
√
G′

k with G′
k ≥ d2L2, it follows that

s2t − s20 ≤ T (r̄2t−1 + 6r̄t−1s̄t−1).

Given that r̄0 = rϵ ≤ 3s0 < ∞, it follows by induction that s̄t < ∞ and r̄t < ∞ for all t ≤ T . Finally, by the Lipschitz
continuity of f(·), we obtain

|f(x̄τT )− f(x⋆)| ≤ L∥x̄τT − x⋆∥ ≤ Ls̄T < ∞.

Hence, E|f(x̄τT )− f(x⋆)| < ∞. Therefore, we conclude that the conditional expectation E[f(x̄τT )− f(x⋆) | F̃δ] exists
and is unique.

Now, we provide the proof of Theorem 5.5.

Proof of Theorem 5.5. Recall the definitions

Ω̃δ =

{
ω ∈ Ω0 : ∀t ≤ T,

∣∣∣∣ t−1∑
k=0

η̃k⟨∆k,xk − x⋆⟩
∣∣∣∣ ≤ s20

}
,
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Ω̂δ =

{
ω ∈ Ω0 : ∀t ≤ T,

∣∣∣∣ t−1∑
k=0

r̄k⟨∆k,xk − x⋆⟩
∣∣∣∣ < bt

}
,

with P̃(Ω̃δ) ≥ 1− δ and P̃(Ω̂δ) ≥ 1− δ. By Proposition 5.4, for any ω ∈ Ω̃δ ∩ Ω̂δ , we have

f(x̄t)− f(x⋆) ≤ 20 ·
θt,δ(r̄t + s0)(

√
G′

t−1 + Ld)∑t−1
k=0 r̄k/r̄t

, t ≤ T.

Combining this with equation (11), we obtain that for any ω ∈ Ω̃δ ∩ Ω̂δ , the following inequality holds

f(x̄τT )− f(x⋆) ≤ c0 ·
θτT ,δ(r̄τT + s0)(

√
G′

τT−1 + Ld)

T
log+

(
r̄τT
rϵ

)
,

where c0 is a constant and τT = argmaxt≤T

∑t−1
k=0 r̄k/r̄t. Since θt,δ, r̄t and G′

t are non-deceasing in t and τT ≤ T , we
derive

f(x̄τT )− f(x⋆) ≤ c0 ·
θT,δ(r̄T + s0)

(√
G′

T−1 + Ld
)

T
log+

(
r̄T
rϵ

)
.

Moreover, from Proposition 5.3, we know that r̄T ≤ 3s0 for any ω ∈ Ω̃δ ∩ Ω̂δ . Substituting this yields

f(x̄τT )− f(x⋆) ≤ 4c0 ·
θT,δs0

(√
G′

T−1 + Ld
)

T
log+

(
3s0
rϵ

)
.

Recall that F̃δ = {A : A ⊂ Ω̃δ ∩ Ω̂δ} ∩ F̃0 is a sigma field satisfying F̃δ ⊂ F̃0 and Ω̃δ ∩ Ω̂δ ∈ F̃δ . Then, applying Lemma
B.1, for any ω ∈ Ω̃δ ∩ Ω̂δ , we have

E[f(x̄τT )− f(x⋆) | F̃δ] ≤ 4c0 ·
θT,δs0

(
E
[√

G′
T−1

∣∣∣ F̃δ

]
+ Ld

)
T

log+

(
3s0
rϵ

)
. (24)

Using Lemma 4.2 and Lemma B.2, we can bound the conditional expectation of G′
T−1 as follows

E[G′
T−1 | F̃δ] = E[E[G′

T−1] | F̃δ] =84θT,δ log
2
+(T + 1)

( T−1∑
k=0

E[E[∥gk∥2] | F̃δ] + 16θT,δd
2L̄2

)
≤84θ2T,δ log

2
+(T + 1)(cL2dT + 16d2L̄2).

Since the square root function is concave, applying Jensen’s inequality in Lemma B.3 gives

E[
√

G′
T−1 | F̃δ] ≤

√
E[G′

T−1 | F̃δ] ≤ 82θT,δ log+(T + 1)
√

cL2dT + 16d2L̄2 ≤ 82θT,δ log+(T + 1)(
√
cL

√
dT + 4dL̄).

Substituting this back into equation (24), for any ω ∈ Ω̃δ ∩ Ω̂δ , we have

E[f(x̄τT )− f(x⋆) | F̃δ] ≤ c1

(
d

T
· (L+ L̄) +

√
d√
T

· L
)
αT,δs0 log+

(
s0
rϵ

)
, (25)

where c1 is a constant and αT,δ = θT,δ log+(T + 1). Moreover, we have

P̃(Ω̃δ ∩ Ω̂δ) ≥ P̃(Ω̃δ) + P̃(Ω̂δ)− 1 ≥ 1− 2δ.
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C.4. Proof of Theorem 5.6

Proof. For a given T ≥ 2, let ξ ∼ Ξ, where Ξ is a Bernoulli distribution defined by

P(ξ = 0) = 1− 1

T
and P(ξ = 1) =

1

T
.

We first define the function f1 : Rd → R as

f1(x) = L∥x∥1,

where ∥ · ∥1 is the ℓ1-norm. The SZO for function f1 is constructed such that for any x ∈ Rd and y ∈ Rd, the oracle returns
evaluations F1(x; ξ) and F1(y; ξ) satisfying F1(x; ξ) = L∥x∥1 and F2(y; ξ) = L∥y∥1 for all ξ drawn from Ξ. This oracle
clearly satisfies Assumption 2.7. Moreover, the function F1(· ; ξ) is convex and Lipschitz continuous with L1 = L for all ξ.

Next, we define another function f2 : Rd → R as

f2(x) = L∥x− u∥1,

where u = (1− 1/T )1d ∈ Rd. The SZO for function f2 is constructed such that for any x ∈ Rd and y ∈ Rd, it returns the
evaluations F2(x; ξ) and F2(y; ξ) satisfying

F2(x; 0) = L∥x∥1, F2(x; 1) = TL∥x− u∥1 − (T − 1)L∥x∥1,
F2(y; 0) = L∥y∥1, F2(x; 1) = TL∥y − u∥1 − (T − 1)L∥y∥1.

Thus, we have Eξ∼Ξ[F2(z; ξ)] = f2(z) for all z ∈ Rd, which satisfies Assumption 2.7. Moreover, we can verify that both
F2(z; 0) and F2(z; 1) are convex and Lipschitz continuous on R, with the Lipschitz constant L2 = 2TL.

We initialize the algorithm at x0 = 1d. The probability of obtaining the identical information from both oracles F1 and F2

with T oracle calls is given by

p =

(
1− 1

T

)T

≥ 1

e

for all T ≥ 2. This implies that any SZO algorithm cannot distinguish f1(·) and f2(·) in T SZO calls with probability at
least 1/e. Therefore, a near-optimal SZO algorithm A must achieve the nearly tight function value gaps for both functions
with probability 1/e. In other words, algorithm A must output x̂ satisfying

f1(x̂)− f⋆
1 ≤ θ1

(
L̄

L
,
s̄

s
, T, d

)
·
√
dL1∥x0 − x1,∗∥2√

T
and f2(x̂)− f⋆

2 ≤ θ2

(
L̄

L
,
s̄

s
, T, d

)
·
√
dL2∥x0 − x2,∗∥2√

T
,

where x1,⋆ ≜ argminx∈Rd f1(x) = 0, x2,⋆ ≜ argminx∈Rd f2(x) = u, and θ1, θ2 : R4 → R are two polylogarithmic
functions. Substituting L1 = L and L2 = 2TL, the corresponding bounds become

∥x̂∥1 ≤ θ1

(
L̄

L
,
s̄

s
, T, d

)
· d√

T
and ∥x̂− u∥1 ≤ θ2

(
L̄

L
,
s̄

s
, T, d

)
·
√
d∥1d − u∥2

√
T .

Since u = (1− 1/T )1d, then the point x̂ must satisfy

∥x̂∥1 ≤ θ1

(
L̄

L
,
s̄

s
, T, d

)
· d√

T
and ∥x̂∥1 ≥ d− d

T
− θ2

(
L̄

L
,
s̄

s
, T, d

)
· d√

T
.

Since the functions θ1 and θ2 are poly-logarithmic, there exist a sufficient large T such that

θ1

(
L̄

L
,
s̄

s
, T, d

)
· d√

T
< d− d

T
− θ2

(
L̄

L
,
s̄

s
, T, d

)
· d√

T
,

which leads to contradiction. Hence, we conclude that achieving an ideal parameter-free stochastic zeroth-order algorithm
described in the theorem is impossible.
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