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ABSTRACT

We present augmented counterfactual ordinary differential equations (ACODEs),
a new approach to counterfactual inference on time series data with a focus on
healthcare applications. ACODEs model interventions in continuous time with
differential equations, augmented by auxiliary confounding variables to reduce
inference bias. Experiments on tumor growth simulation and sepsis patient treat-
ment response show that ACODEs outperform other methods like counterfactual
Gaussian processes, recurrent marginal structural networks, and time series de-
confounders in the accuracy of counterfactual inference. The learned auxiliary
variables also reveal new insights into causal interventions and hidden confounders.

1 INTRODUCTION

Decision makers want to know how to produce desired outcomes and act accordingly, which requires
causal understanding of cause and effect. In this paper, we consider applications in healthcare, where
time series data on past features and outcomes are now widely available. Causality in time series have
been long studied in statistics (Box et al.| 2008)), and allows more powerful analysis than methods
on time-independent data, like instrumental variable regression (Stock & Trebbi, 2003). However,
temporal causality in statistics and econometrics focuses mainly on passively discovering time lag
structure (Eichler, 2012). In contrast, decision-making applications need concrete interventions,
which is more amenable to an interventionist approach to causality (Woodward, 2005} [Pearl, 2009).
To give one example, electronic health records (EHR) in healthcare provide an accessible history of a
patient’s disease progression over time, together with their treatment records and their results. To
identify effective treatments, a doctor may want to ask counterfactual questions (Johansson et al.|
2016)), like “Would this patient have lower blood sugar had she received a different medication?”
Through such counterfactual analysis, medical professionals may hope to discover new cures and
improve existing treatments. Similar situations arise in other use cases. For example, a user interface
designer may want to ask “Would the user have clicked on this ad had it been in a different color?”,
substantiating their answer from counterfactual inference on clickstream data or other user behaviors.

Counterfactual inference in time series has studied, assuming that all possible causal variables are
observed (Soleimani et al., 2017; Schulam & Saria, 2017} Lim, 2018). In practice, however, this
assumption of perfect observability is not testable and too strong for many real-world scenarios (Bica
et al.| 2020). For example, there are many ways in general to treat cancer, but each patient requires
their own bespoke treatment plan based on unique characteristics of each case such as drug resistance
and toxic response (Vlachostergios & Faltas, |2018}; |Kroschinsky et al., 2017; [Bica et al., |2020).
However, these factors are also likely to be unmeasurable in practice, or otherwise not recorded
in EHRs. Detecting these hidden confounding variables is therefore crucial to avoid bias in the
estimation of treatment effects.

The challenge introduced by confounders in counterfactual inference was first studied in the static
setting. 'Wang & Blei| (2019) developed a two-step method that estimates confounders with latent
factor models, then infers potential outcomes with bias adjustment. However, confounders in time
series can have their own dynamics, and can themselves be affected by the history of interventions.
Subsequently, Bica et al.| (2020) introducing recurrent neural networks (RNNs) into the factor model
to estimate the dynamics of confounders. However, this method only works in discrete time setting
with a fixed time step, due to how RNNs are structured. In this paper, we consider the continuous-time
setting, which is more flexible in practice and provides more insights of the underlying mechanisms
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(Chen et al.| [2018; Rubanova et al.|[2019). The continuous-time setting is particularly important for
healthcare, where there are many time-varying treatments, irregularly-sampled or partially observed
time series (Soleimani et al., [2017)).

The classical modeling approach to dynamics uses ordinary differential equations (ODEs)
d(x(t))/dt = f(x(t)), encoding domain expertise of underlying mechanisms in the explicit specifi-
cation of f. In contrast, Chen et al.|(2018)) introduced the concept of neural ODEs by parameterizing
f with neural networks, thus allowing dynamics to be described by arbitrarily complicated func-
tions. Several extensions handle even more complicated issues like irregular sampling or switching
dynamics (Jia & Benson, [2019; [Kidger et al., 2020). However, these methods cannot be directly
applied to time series counterfactual inference, as they focus on initial value problems, which cannot
describe interventions without explicit modification of f (Kidger et al.,[2020)). Furthermore, these
existing methods can only handle hidden variables by explicitly describing their dynamics and
interdependency with interventions, thus limiting their utility when confounders exist.

Our contributions. We propose augmented counterfactual ODEs (ACODE:s) to predict how a
continuous-time time series will evolve under a sequence of interventions. Our method augments the
observed time series with additional dimensions to represent confounders. We then construct counter-
factual ODEs based on the neural ODE framework to model the effects of incoming interventions.
The ACODE model has three key features. First, it allows for the presence of confounders that can
reduce the prediction bias. Second, the ACODE can continuously incorporate incoming interventions
using neural ODEs and support irregularly-sampled time series. Third, it demonstrates state-of-the-art
performance against competitive baselines for counterfactual inference in both simulation of tumor
growth and real-world time series of sepsis patients treatment response. Moreover, the ACODE
provides an interface between machine learning and dominant modelling paradigm described in
differential equations, which allows for well-understood domain knowledge to be applied to time
series counterfactual inference. To the best of our knowledge, this represents the first method for
counterfactual inference with confounders in the continuous-time setting.

2 RELATED WORK

Time series counterfactual inference stems from causal inference (Pearl, 2009} Eichler, 2012). A large
body of pioneering work in causal inference focus on causal relations such as structural causal models
(Pearl, 2019) and Granger causality (Eichler, [2007). Counterfactual inference, on the other hand,
focus on estimating the effects of actionable interventions, which is a pervasive problem in healthcare
(Hoover, |2018). In literature, the difference between the counterfactual outcomes if an intervention
had been taken or not is defined as the causal effect of the intervention (Pearl, 2009). Originated from
the literature on observational studies (Shadish et al.,[2002), Rubin’s potential outcome framework
has been a popular language to formalize counterfactuals and intervention effect estimate (Rubin,
2005; Imbens & Rubin, [2015)).

The problem of hidden confounders in counterfactual inference was first studied in the static setting.
Wang & Blei| (2019) developed theory for adjusting the bias introduced by the presence of hidden
confounders in the observational data. They found out that the dependencies in these multiple
confounders can be used to infer latent variables and act as substitutes for the hidden confounders.
In this paper, we are interested in considering hidden confounders in time series setting which is
much more complicated than in the static setting. Not only because the hidden confounders may
evolve over time, but also because they might be affected by previous interventions. On the other
hand, most existing work on time series counterfactual inference including counterfactual Gaussian
processes (CGP) (Schulam & Saria, |2017) and recurrent marginal structural networks (RMSN5s) (Lim)
2018) assume there is no hidden confounders, i.e. all variables affecting the intervention plan and
the potential outcomes are observed, which is not testable in practice and not true in many cases.
Recently, [Bica et al.|(2020) applied the idea of latent factor models from [Wang & Blei|(2019) to the
deconfounding of time series. However, their proposed method is based on recurrent neural networks,
which works only with discrete and regularly-spaced time series.

Differential equations have been introduced into causal and counterfactual inference in previous
studies. Rubenstein et al.| (2018) showed that equilibrium states of a first-order ODE system can be
described with a deterministic structural causal model, even with non-constant interventions. This
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line of literature is centering around casual relations, which is a different focus from this work. On
the other hand, differential equations with incoming information is a well-studied mathematical
problem in the field of rough analysis, which is referred as controlled differential equations or rough
differential equations. These approaches directly integrate with respect to incoming processes (Friz
& Victoir, |2010; |Lyons et al., [2007)).

Neural Ordinary Differential Equations Neural ODEs (Chen et all 2018) are a family of
continuous-time models. Starting from an initial state z(¢y), it evolves following a neural net-
work based differential equations. The state at any time ¢; is given by integrating an ODE forward in
time:

dz(t)

. _ b dz(t)

dt (1)

where f is a neural network parametrized by 6. Given the initial state, states at any desired time
stamps can be evaluated with a numerical ODE solver:

20, 21, ..., 2y = ODESolve( fg, 2(to), (to, t1, ..., tN)) 2)

More importantly, (Chen et al.|(2018)) proposed to use the adjoint method to compute the gradient with
respect to the parameters 6 as long as f is uniformly Lipschitz continuous in z(t) and continuous in
t. This allows ODE solvers to be used as a black box building block in large models.

3 PROBLEM FORMULATION

Consider a multivariate time series x(¢) and continuous-time time-dependent interventions a(t). The
observational data consists of multiple realizations of above mentioned time series and interventions.
Given that realizations are independent to each other, we only consider one realization in following
part for simplicity. In a realization up to time ¢, we observe NN time series data points and their
timestamps {z;,t;} Y, along with continuous-time interventions {a(s) : s < t}. We would like
to infer the potential outcome under future interventions given all historical information for any
potential intervention plan {a(s) : s > t}. We will abuse the notation of a~, and {a(s) : s > t} in
following sections. Our goal is to infer the following distribution:

p(x(asy)|a<y, {zi, t7 1Y) 3)

where x(a~;) denotes the potential outcome of future time series & under future intervention
a~;. Although we cannot directly model this objective distribution, we can instead fit a re-
gression model to estimate p(T~|a~, a<t, {zi, t;}Y;) from observational data (Rubin, |1978).
For cases without hidden confounders, this lead to unbiased estimation of potential outcome
p(x(asi)|a<e, {xi, ti} Y1) = p(x=i|ase, a<s, {x;, t;}Y) under certain assumptions, including
sequential strong ignorability (Fitzmaurice et al., [2008)):

z(a>y) WL a(t)|acy, x<, for Vas, )

This condition holds if there are no hidden confounders, which cannot be tested in practice since
counterfactual outcomes are never observed in practice. With the presence of hidden confounders,
the above assumption is no longer valid and

p(@(ast)|a<e, {zi ti}ily) # p(Tstlass, a<e, {Ti ti}ir,) )

Consequently, existing methods which infer conditional distribution p(@~|as, a<q, {x;, t¥ 1Y)
from observed data would result in biased estimation of potential outcome.

4 AUGMENTED COUNTERFACTUAL ORDINARY DIFFERENTIAL EQUATIONS

To address the problem, the key is to reduce inference bias caused by the presence of hidden
confounders and capture underlying temporal dynamics and the intervention effects. We propose a
two-step method, called augmented counterfactual ordinary differential equations (ACODEs), which
first lifts the time series into an augmented space with additional dimensions and then models the
augmented time series with neural network parameterized counterfactual differential equations.
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Figure 1: The ACODE model with CDE-RNN encoder and CDE decoder. The CDE-RNN en-
coder first runs backwards-in-time to produce an approximate posterior over the initial latent state
q(zol{z:, t;}},, a<;). Given a sample of z( and intervention process a(t), we can generate latent
state at any point of interest, and further generate augmented time series observations.

Augmented time series The proposed method first lifts the time series observations by introducing
k auxiliary variables uw, € RF into x;, resulting in augmented time series &; = {Zji } In this

augmented space, we can safely assume

p(x(ase)|a<, (@i, ti} i) = p(xsilass, a<e, {Ti ti} ) 6)

The insights of introducing auxiliary variables u; come from two aspects. The first one is centered
around bias-variance trade off. Basically, modeling in the augmented space can reduce estimation
bias at the cost of higher variance (Robins et al., 2000). The second one is about the dimensionality
of the space where underlying temporal dynamics work. Basically, we want to approximate the
underlying temporal dynamics with learnable mappings. Given the presence of hidden confounders,
the true temporal dynamics work in a space with higher dimensionality comparing with the space of
time series observations. Therefore, additional dimensions could make it easier to approximate the
true temporal dynamics (Dupont et al.,[2019).

In general, auxiliary variables u, serve purely as mathematical component without interpretable
mechanistic meaning and are initialized with all zero vectors. However, in some cases, the learned
auxiliary variables u, can provide interpretable insights about hidden confounders. We will show
this later in the experiment on tumor growth simulation. Further, we may also leverage the domain
knowledge on hidden confounders and initialize hidden confounders based on their dependency with
observed covariates and interventions. This is especially useful in fields where we have mechanistic
understanding of hidden confounders thought they cannot be directly measured. For example, a
patient’s cardiac contractility (the heart’s ability to squeeze blood), stroke volume, or systemic
vascular resistance are not unobserved, but can be inferred with domain knowledge.

Latent Counterfactual Differential Equations Starting from augmented time series, the proposed
method models the intervention effects with latent counterfactual differential equations. Specifically,
we assume there are latent states z; representing the state of time series. Latent states evolves
controlled by both the baseline progress and intervention effects.

t t
z(t) = z(to) —|—/ f2(2(8);0.)ds+ | fa(z(s),a(s);0,)ds (7
to to
Baseline progress Intervention effects
z(t) ~ p(x(t)|(t)) (8)

eq. represents counterfactual differential equations (CDEs), where both f, and f, are neural
networks parameterized by 6, and 6, respectively. Unlike previous methods such as (Rubanova
et al.l 2019), the proposed counterfactual differential equations continuously incorporate incoming
interventions, without interrupting the differential equation. Therefore, we can solve the CDEs using
the same techniques as for Neural ODEs. Given an initial latent state 2o, the generation process for
continuous value time series is summarized in Algorithm [T}
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Algorithm 1 Generation process of the latent CDE model.

Input: A distribution of initial latent state p(2); timestamps of interest {¢;}~ ;; continuous-time
intervention process a<;.
Output: Time series observations and their timestamps {(z;,#;)}X;; corresponding latent states
{(zi ta) HEy
1: Sample zp ~ p(zp).
2: Compute z1, ..., zy = ODESlove(f,, fa, 20, a<t, {t: }} ;)
3: fori=1, ..., Ndo
4:  Compute py,;, Xy, = ful(zi;0:)
5: Sample x; ~ N (o, Xy,)
6: end for
7: return {z;, z; }¥

Algorithm 2 The CDE-RNN encoder for general cases.

Input: Time series observations and their timestamps {(x;, ;) }}_,, the continuous-time interventions
process a<;.
Output: Hidden states and their timestamps {(h;, t;)} Y,
: Sethg =0
:fori=1,..,Ndo
Update h; = ODESlove(gp, gq, (ti—1,ti), hi—1,{a(s) : ti-1 < s < 1;})
Update h; = RNNCell(h}, x;)
end for
return {h;} Y

A A

We use variational autoencoder framework for model training and counterfactual inference. This
requires estimating the approximate posterior ¢(zo|{x;,t;}~ o, a<;). Inspired by Rubanova et al.
(2019), we use RNN together with CDE and propose the CDE-RNN model to incorporate time series
observations {x;, t; }}, during encoding. The proposed CDE-RNN, summarized in Algorithm
would be an effective way to handle irregularly-sampled time series. To get the approximate posterior
of initial latent state 2z, at time point ¢y, we run the CDE-RNN encoder backwrads-in-time from ¢
to to. Then we represent the approximate posterior with Gaussian random variables depending on the
final hidden state of an CDE-RNN:

q(z0|{wi7ti}£\;17a§t) :N(HZ()vEZO) (9)
where p.,, 3., = g.(CDE-RNNy({z;, t;}1L 1, a<t)) (10)

Here g, is a neural network mapping the final hidden state of the CDE-RNN encoder into the mean
and variance of the approximate posterior of zj. Following autoencoders framework, we jointly learn
both the CDE-RNN encoder and CDE decoder by maximizing the evidence lower bound (ELBO):

Lergo(0,9) =E gzl (w1}, .azr) 108 Do (1, .. )]
- DKL[q(Zoni,ti}fip a<)||p(z0)] (1)

Although with incoming interventions, the whole model is still a ODE-based sequence-to-sequence
model. Therefore, we use the adjoint-based backpropagation described in (Chen et al.| (2018) for
training. The overall learning procedure of ACODE is summarized in Algorithm 3]

5 EXPERIMENTS

We evaluate the proposed method with two experiments, including a realistic tumor growth simulation
(Geng et al., 2017) and a real-world large scale dataset of ICU patients with sepsis, which is extracted
from MIMIC-III dataset (Johnson et al. 2016). Through experiments, we answer the following
questions: (1) How is the performance of the proposed model for time series counterfactual inference
in the presence of hidden confounders, compared to existing state-of-the-art methods? (2) How would
the number of auxiliary variables affect the performance in the presence of hidden confounders? (3)
Do the learned auxiliary variables provide any insight of hidden confounders?
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Algorithm 3 Learning process of ACODE with variational inference.

Input: A set of time series along with continuous-time intervention process D; initial value of
parameter (6, ¢).
1: while not converged do
2:  Choose a time series with timestamps {(z;,¢;)}X_, € D and continuous-time intervention
process a<; € D.
Initialize auxiliary variables u; with all zero vectors fori = 1,2, ..., N.

Augment time series &; = [Tw] fori=1,2,...,N.

3
4
5:  Initialize hidden state h with all zero vectors.
6 fori=N-1,...,0do

7 Update h; = ODES]OVC(gh, Ja, (ti, tt+1)7 hi+1, {a(s) 1t <s< ti—i—l})
8: Update h; = RNNCell(h}, Z;)

9: end for

10:  Compute ti,, X2, = g.(ho; ¢2)

11:  Sample zy ~ p(zp).

12:  Compute 21, ..., zy = ODESlove(f., fa, 20, a<s, {t: }Y1)

13:  fori=1,.., Ndo

14: Compute g, , Xy, = f2(24;02)
15: Sample &; ~ N (ptg;, Xs;)
16:  end for

17:  Compute the gradient of Lo (6, ¢) as shown in Equation (1))
18:  Update (0, ¢) with Adam optimizer.
19: end while

Baselines We compared the proposed method with 3 competitive baselines in the time series
counterfactual inference task, including Counterfactual Gaussian Process (CGP) (Schulam & Saria,
2017), Recurrent Marginal Structural Network (RMSN) (Lim, |2018)) and Time Series Deconfounder
with RMSN (TSD-RMSN) (Bica et al., 2020). To demonstrate the effectiveness of augmented space
in ACODE, we remove all auxiliary variables (k=0) from ACODE for ablation comparisons.

Performance Criterion We compute root mean square error (RMSE) and normalized root mean
square error (NRMSE) for each time series averaging across inference time horizon. For each
experiment setting, we repeat 10 times and compute the standard deviation as a measure of inference
variance.

Implementation Details For baselines only work with discrete-time interventions, we discretize
the continuous-time intervention process with the same timestamps as time series observations
{(zi,t:)}¥,,ie. {a; : a; = a(t;)}}L,. For baselines designed for regularly-spaced time series, like
RMSN, TSD-RMSN, we use linear interpolation as the bridge to transfer irregularly-sampled time
series to its regularly-spaced counterpart, and vice versa. We use Gaussian distribution with diagonal
covariance for the distribution of latent state z and time series observation x. All neural network
mappings are parametrized with 3-layer MLPs ans ReLU activation. For all neural network based
methods, we use a similar amount of parameters for fair comparison. We randomly split each dataset
into the training/validation/test set, and choose hyperparameters e.g. the number of hidden factors of
TSD-RNN based on the validation set.

5.1 TUMOR GROWTH SIMULATION

To show the effectiveness of the proposed method, we first evaluate it on a simulated environment
with fully control on the hidden confounders - the pharmacokinetic—pharmacodynamic (PK-PD)
model of tumor growth under the effects of chemotherapy and radiotherapy proposed by (Geng et al.
(2017). The tumor volume after ¢ days since diagnosis is modeled as follows:

K
V(t) = (1+plog(7) — BO(t) — (ard(t) + Brd(t)*) + e )V(t— 1) (12)
Vit-1 ——
\—u Chemotherapy Radiotherapy R);s:

Tumor growth
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Figure 2: Normalized RMSE curve of coun- Figure 3: Visualization of learned auxiliary
terfactual inference for treatment response on variables sequence u; for all three types of
tumor growth. patients.

where parameter set { K, p, ¢, ar, By, e} are sampled as described in |Geng et al|(2017). Radio-
therapy and chemotherapy prescriptions are modeled as Bernoulli random variables which depend
on the tumor size V' (t). Specifically, we assume the chemotherapy prescriptions and radiotherapy
prescriptions have probabilities p.(t) and p4(t) respectively that are a functions of the tumor diameter:

pelt) = o(F—(D(1) = 0.))  palt) = o (57— (D(1) ~ 0u) (13)

where D(t) is the average tumor diameter over the past 15 days, o(-) is the sigmoid activation
function, 6. and 6, are constant parameters, and -y controls the degree of time-dependent confounding.
In the previous study on the tumor growth (Liml [2018)), the prior means of 3. and «,. are adjusted
according to three patient types accounting for patient heterogeneity due to genetic features. The
patient group corresponds to different parameter setting and thus affects the tumor growth and
subsequently the treatment plan. In this experiment, we treat the tumor size as time series observation
x(t), patient types as the hidden confounder, treatment plan of chemotherapy and radiotherapy as
the intervention a(t). Our task is to predict tumor growth progress under various treatment plans,
without any information about patient types.

Following experimental set-up in |Lim| (2018), we simulated data with 10000 patients for training,
1000 for validation, and 1000 for testing. We set the number of auxiliary variables in the augmented
space k € {0, 1,3, 5}, and evaluate treatment response inference on tumor size with normalized root
mean square errors (NRMSE) and standard deviations.

Figure 2] shows the counterfactual inference accuracy on tumor size across time horizon of 5 days.
We observe that, methods considering hidden confounders including the proposed ACODE (k > 0)
and TSD-RMSN outperform other baselines that assume all confounders are observed such as
CGP, RMSN and ACODE (k = 0). Further, with the representation power of neural networks and
differential equations, ACODE excels all other competitive baselines in term of inference accuracy,
especially for long-term inference. Although, auxiliary variables in the ACODE can effectively
reduce the inference bias caused by hidden confounders, too many auxiliary variables may introduce
unnecessary variance without much help on inference accuracy. As we can see ACODE (k = 5) has
similar accuracy comparing with ACODE (k = 3), but suffers from a higher variance.

So far we have been treating the auxiliary variables u; as mathematical auxiliary component. Since
we force the model to learn the system mechanism in the augmented space T, = [ﬁi ], we would like
to know whether there is insight learned by auxiliary variables u;. Therefore, we randomly choose
1500 patients and project time series of auxiliary variables {u;}Y ; learned by ACODE (k = 3)
on the two dimensional plane using t-SNE (Maaten & Hintonl 2008)), as shown in Figure@ As we
can see, the learned auxiliary variables can be clustered into three groups corresponding to three
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Table 1: Average RMSE x 102 and standard error with 10 runs for the inference of sepsis patients.

Methods White blood cell count Blood pressure Oxygen saturation
CGP 2.53 £0.05 9.31 £ 0.06 1.21 £ 0.04
RMSN 291 £0.05 10.29 £+ 0.05 1.74 £ 0.03
TSD-RMSN 2.48 + 0.06 9.20 £ 0.12 1.17 + 0.08
ACODE (k=0) 2.57 £0.04 9.42 £ 0.06 1.27 £0.05
ACODE (k=1) 2.47 £ 0.05 9.35 £ 0.07 1.15 £ 0.05
ACODE (k =5) 2.36 = 0.07 8.94 + 0.08 1.09 £ 0.06
ACODE (k = 10) 243 +0.11 9.18 £0.13 1.06 £ 0.09

different patient types. This pattern demonstrates the potential of ACODE to provide insights of
hidden confounders via learned auxiliary variables u,.

5.2 INTENSIVE CARE OF PATIENTS WITH SEPSIS

Next, we evaluate the proposed method in a real-world scenario without full understanding of
hidden confounders - electronic health records of sepsis patients in ICU with three treatment options:
antibiotics, vasopressors, and mechanical ventilator. We use the electronic health records extracted
from Medical Information Mart for Intensive Care (MIMIC III) database (Johnson et al., [2016]).
Follow the same pipeline in Bica et al.| (2020), we extracted 25 patient covariates consisting of
lab tests and vital signs for each patient. In this experiment, we would like to infer the effects of
antibiotics, vasopressors, and mechanical ventilator on three patient covariates: white blood cell
count, blood pressure, oxygen saturation. Specifically, we extract patient records up to 50 days from
MIMIC III database for training and testing, and infer treatment response in 24 hours. The hidden
confounders include comorbidities and lab test that are recorded in MIMIC III database but not used
by counterfactual inference models. In fact, there might be other hidden confounders, given that it is
a real-world scenario.

As we can see in Table[I} the proposed ACODE model outperforms other competitive baselines. Also,
there is a clear performance gap between methods considering hidden confounders like ACODE
(k > 0) and TSD-RMSN, and methods ignoring them like CGP and RMSN. Among all ACODE
baselines, with the increasing amount of auxiliary variables, ACODE gets lower RMSE at the cost of
higher variance. This pattern is consistent with what we observed in the tumor growth simulation.
The proper number of auxiliary variables k* varies for individual applications and need to be tuned
as a hyperparameter.

6 SUMMARY

We proposed the augmented controlled ordinary differential equations (ACODEs) — a novel neural
network based model for time series counterfactual inference with the presence of hidden confounders.
The proposed method introduces auxiliary variables and lifts time series into an augmented space to
reduce the inference bias caused by the hidden confounder. With the representation power of neural
networks and differential equations, it can effectively capture underlying temporal dynamics and
intervention effects from observational data. Empirically, we show that ACODEs outperform existing
methods on inference accuracy in both simulations and real-world applications, and showed its
potential to provide insight of hidden confounders via auxiliary variables. With the increasing amount
of data we collect everyday, ACODE would empower us to answer “what if”” questions regarding time
series and discover insights of underlying mechanisms behind time series observations and possible
interventions. For the future work, it would be worth to explore using the ACODE as the interface
between machine learning and dominant modelling paradigm described in differential equations, and
incorporate well-understood domain knowledge into time series counterfactual inference.
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