
Oracle Inequalities for Model Selection
in Offline Reinforcement Learning

Jonathan N. Lee
Stanford University
jnl@stanford.edu

George Tucker
Google Research
gjt@google.com

Ofir Nachum
Google Research

ofirnachum@google.com

Bo Dai
Google Research

bodai@google.com

Emma Brunskill
Stanford University

ebrun@cs.stanford.edu

Abstract

In offline reinforcement learning (RL), a learner leverages prior logged data to
learn a good policy without interacting with the environment. A major challenge
in applying such methods in practice is the lack of both theoretically principled and
practical tools for model selection and evaluation. To address this, we study the
problem of model selection in offline RL with value function approximation. The
learner is given a nested sequence of model classes to minimize squared Bellman
error and must select among these to achieve a balance between approximation and
estimation error of the classes. We propose the first model selection algorithm for
offline RL that achieves minimax rate-optimal oracle inequalities up to logarithmic
factors. The algorithm, MODBE, takes as input a collection of candidate model
classes and a generic base offline RL algorithm. By successively eliminating
model classes using a novel one-sided generalization test, MODBE returns a policy
with regret scaling with the complexity of the minimally complete model class. In
addition to its theoretical guarantees, it is conceptually simple and computationally
efficient, amounting to solving a series of square loss regression problems and then
comparing relative square loss between classes. We conclude with several numerical
simulations showing it is capable of reliably selecting a good model class.1

1 Introduction

Model selection is a fundamental task in supervised learning and statistical learning theory. Given
a sequence of model classes, the goal is to optimally balance the approximation error (bias) and
estimation error (variance) offered by the potential model class choices, even though the best model
class is not known in advance. Model selection algorithms are extremely well-studied in learning
theory (Massart, 2007; Lugosi and Nobel, 1999; Bartlett et al., 2002; Bartlett, 2008), and methods
like cross-validation have become essential steps for practitioners.

In recent years, interest has turned to model selection in decision-making problems like bandits and rein-
forcement learning. A number of theoretical works have studied the online setting (Agarwal et al., 2017;
Foster et al., 2019; Pacchiano et al., 2020; Lee et al., 2021a; Modi et al., 2020; Chatterji et al., 2020;
Muthukumar and Krishnamurthy, 2021). Similar to the bias-variance balance in supervised learning,
these algorithms typically aim to select the model class with smallest statistical complexity that contains
the true model. Despite these recent efforts, the current understanding of model selection in offline
(or batch) reinforcement learning (RL) is comparatively nascent. Offline RL is a paradigm where the

1Supplementary material is available at: https://sites.google.com/stanford.edu/offline-model-selection.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://sites.google.com/stanford.edu/offline-model-selection


learner leverages prior datasets of logged interactions with the environment (Lange et al., 2012; Levine
et al., 2020). The learner is tasked with returning a good policy without further environment interaction.
As has been acknowledged in several recent papers (Xie and Jiang, 2021; Mandlekar et al., 2021; Kumar
et al., 2021), one of the major challenges preventing widespread deployment of offline RL algorithms
in the real world is the lack of algorithmic tools for model selection, evaluation, and hyperparameter
tuning. In experimental settings, researchers typically evaluate candidate learned models by using
online rollouts of the policies after learning with offline data. However, such approaches are not feasible
in many real world settings where the entire process of producing a single policy must be conducted
only on the offline dataset, due to complications such as logistics, safety, or performance requirements.

In recent years, this problem has been recognized as a major deficiency in the field and a number
of efforts have been made to remedy it. On the empirical side, several researchers have proposed
workflows and general heuristics specifically addressing this problem (Kumar et al., 2021; Tang
and Wiens, 2021; Paine et al., 2020). However, all have noted that solutions designed to evaluate
or select models typically have their own hyperparameters and modeling choices. Consider, for
example, applying off-the-shelf offline policy evaluation (OPE) methods (Precup, 2000; Thomas and
Brunskill, 2016). These typically require some function approximation of their own. Thus, rather than
solving the problem, naively using OPE just shifts the burden of model selection to the OPE estimator.
Similarly, recent efforts to solve model selection in online bandits and RL are inapplicable as they
almost universally require interaction with the environment (Foster et al., 2019; Pacchiano et al., 2020;
Lee et al., 2021a). The solution to the offline problem seems to require new ideas.

On the theoretical side, there is also significant motivation for devising model selection algorithms
as there is growing evidence suggesting that strong conditions on the function class2 are necessary to
achieve non-trivial guarantees in offline RL in the worst case (Foster et al., 2021; Zanette, 2021; Wang
et al., 2020). Perhaps the most widely used and recognized condition is completeness (Munos and
Szepesvári, 2008; Antos et al., 2008; Chen and Jiang, 2019) which essentially says that T f 2F for any
f 2F , where T is the Bellman operator and F is the model class.3 Unsurprisingly, completeness plays
an important role in the proofs of many value-based offline RL algorithms since sample efficient results
are provably impossible without it (in the absence of additional assumptions – see Xie and Jiang (2021);
Zhang and Jiang (2021)). Despite the growing realization of the importance of these conditions, there
seems to be comparatively little work addressing the problems of identifying complete model classes or
certifying sufficient conditions for sample efficient offline RL. Lee et al. (2021b) considered the problem
of model selection in the offline setting with the intent of addressing some of the aforementioned issues.
It was shown that full model selection (competitive with an oracle that has knowledge of the best model
class) is impossible in general in offline reinforcement learning. They proposed several relaxations
to achieve weaker oracle inequalities, but these were limited to contextual bandits with linear model
classes where there is no issue of completeness. The question of whether any similar results are possible
for full offline reinforcement learning with general function classes has remained open.

1.1 Contributions

Theoretical Guarantees In this paper, we give the first rate-optimal model selection algorithm
for offline RL with value function approximation. We begin by summarizing known results for
a single model class using value-based methods. For any individual model class F that satisfies
completeness and an offline dataset of n samples with sufficient coverage, the gold-standard regret
bound is Õ

⇣p
COMP(F)/n

⌘
4 where COMP(F) denotes the statistical complexity of F . This is

achieved, for example, by Fitted Q-Iteration (FQI) (Chen and Jiang, 2019). Clearly, one would like
COMP(F) be as small as possible to achieve a tighter bound.

We consider the model selection problem where we are given an offline dataset of n samples and
a nested sequence of M model classes F1✓ ...✓FM . We investigate the following question: Can

2That is, conditions sufficient for supervised learning, like realizability, tend not to be sufficient on their own
for offline RL.

3
F is a model class meant to estimate Q-functions. It consists of functions mapping state-action pairs

to value predictions. The Bellman operator applied to f 2 F pointwise is defined as T f(x,a) = r(x,a) +
maxa0Ex0|x,af(x

0
,a

0).
4For clarity, Õ omits dependence on certain parameters such as the horizon H , distribution mismatch factors,

number of classes M , failure probability �, log factors, and constants.
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we achieve a model selection guarantee for offline RL with regret scaling with the complexity of the
smallest complete model class?

We present a novel and conceptually simple algorithm, MODBE, that achieves regret scaling with
the complexity of the smallest class satisfying completeness without knowledge of this class a priori.
Theorem 1. (informal version of Corollary 1) Given an offline dataset of n samples and nested
model classes F1✓ ...✓FM , MODBE outputs ⇡̂ such that Reg(⇡̂)= Õ

⇣p
COMP(Fk⇤)/n

⌘
where

k⇤=min{k2 [M ] : Fk is complete } .

A guarantee of this nature is typically known as an oracle inequality since an oracle with knowledge
of the "best" model class ahead of time could simply choose it. We remark that this oracle inequality
is rate-optimal in COMP(Fk⇤) and n, showing that we do not have to sacrifice efficiency for adaptivity.
This is in contrast to some other works in model selection for decision-making where this unfortunate
efficiency-adaptivity trade-off has been observed (Foster et al., 2019; Pacchiano et al., 2020; Xie and
Jiang, 2021). In Appendix A, we discuss how the nestedness condition is necessary.

We also provide a robustness result for model selection (Theorem 3): if no models are Bellman complete
(that is, k⇤ does not exist), MODBE obtains Reg(⇡̂)Õ

⇣
mink2[M ]

p
⇠k+COMP(Fk)/n

⌘
where ⇠k

is a measure of the global completeness error ofFk.5 Our results show that, while some model selection
problems remain elusive without further assumptions, strong rate-optimal oracle inequalities are still
possible under standard offline RL assumptions even without knowledge of the best classes in advance.

Technical Highlights. The key to achieving the near optimal regret rate is to achieve the near optimal
excess risk rate of the squared Bellman error (which is of order Õ (COMP(Fk⇤)/n)). To do this,
MODBE iteratively compares the relative effectiveness of two candidate model classes by employing a
hypothesis test that compares the difference of their estimated risks to a one-sided generalization bound.
The fact that the test leverages only the one-sided generalization bound is crucial: using easier two-sided
bounds (e.g. from uniform deviation bounds on risk estimators) leads to a squared Bellman error rate of
Õ

⇣p
COMP(Fk⇤)/n

⌘
, which translates to a slow Õ((COMP(Fk⇤)/n)

1/4) regret rate. Instead the one-

sided generalization error allows us to ultimately obtain the optimal Õ
⇣p

COMP(Fk⇤)/n
⌘

regret rate.

Practical Results. In practice, MODBE can be instantiated with any base offline RL algorithm
that attempts to minimize squared Bellman error, including but not limited to FQI. MODBE is also
computationally efficient, requiring O(Hk⇤M) calls to an empirical squared loss minimization oracle
and O(k⇤) calls to the base offline RL algorithm. In Section 5, we demonstrate the effectiveness
of MODBE on several simulated experimental domains. We use neural network-based offline RL
algorithms as baselines and show that MODBE is able to reliably select a good model class.

1.2 Additional Closely Related Work

Several prior works have specifically set out to address the model selection problem from a theoretical
perspective, as we do here. Lee et al. (2021b) formalized the end-to-end model selection problem for
offline RL where, given nested model classes, the goal is to produce a regret bound competitive with
an oracle that has knowledge of the optimal model class. Their positive results, however, were limited
only to linear model classes for contextual bandits; ours apply to sequential settings. An earlier work
by Farahmand and Szepesvári (2011) had partially addressed our problem but made several restrictive
assumptions such as a known generalization bound that underestimates the approximation error (which
is generally unknown); our algorithm only relies on commonly known quantities. Another notable
work is the BVFT algorithm of Xie and Jiang (2021). While initially designed for general policy
optimization, BVFT can be applied to model selection (Zhang and Jiang, 2021) but it incurs a slow
1/n1/4 regret rate in theory (compared to our 1/n1/2) and requires a stronger data coverage assumption.
One advantage of BVFT is that it can be used more generally to tune hyperparameters beyond the
selection of model classes. However, the specialization of our algorithm to model selection enables
the stronger guarantees. Thus, we view the two algorithms as complementary. Jiang et al. (2015)
studied abstraction selection between nested state abstractions of increasing granularity; however,

5See Section 3.1 for a precise definition.
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this eschews problems specific to value function approximation setting. Hallak et al. (2013) studied a
similar abstraction problem, giving only asymptotic guarantees. In Section 3.2, we will discuss in more
detail why several seemingly natural approaches to model selection do not produce satisfactory results.

2 Preliminaries

Notation For any n2N, we let [n] = {1,...,n}. The notation a. b implies that aCb for some
absolute constant C > 0. We will use C,C1,C2 ... > 0 to denote absolute constants (independent of
problem parameters). For a set A, �(A) denotes the set of distributions over A.

We consider the finite-horizon Markov decision process M(X ,A,H,P,r,⇢) where X is the (potentially
infinite) state-space, A is the action space, H is the length of the horizon, P :X ⇥A!�(X ) is the
transition kernel, r :X⇥A! [0,1] is a deterministic reward function, and ⇢2�(X ) is an initial state
distribution. A learner interacts with the MDP by proposing an H-step policy ⇡=(⇡h)h2[H] where
each ⇡h :x 7!⇡h(·|x) maps x2X to a distribution over actions in �(A).6 At step h=1, x1 is drawn
according to ⇢. Then at step h2 [H], the agent observes xh, draws ah according to ⇡h(·|xh) observes
reward r(xh,ah) and the MDP transitions to xh+1 according to P(·|xh,ah). For a policy ⇡, we let
P

⇡

h
(x,a) and P

⇡

h
(x) denote the marginal state-action and state densities of ⇡ respectively at step h.

Following standard definitions, we let V ⇡

h
: X ! R denote the value function of ⇡ at step h 2 [H]

which is given by V
⇡

h
(x)=E⇡

hP
s�h

r(xs,as) xs=x

i
. Here, the expectation E⇡ is over trajectories

under ⇡ with ah ⇠ ⇡h(·|xh). Similarly, the action-value function Q
⇡

h
: X ⇥A! R is defined as

Q
⇡

h
(x,a)=E⇡

hP
s�h

r(xs,as) xs=x,as=a

i
.The optimal policy (which exists under mild conditions

when H is finite (Sutton and Barto, 2018)) is denoted by ⇡
⇤ and this maximizes V

⇡

h
(x) for all x

and h. The average value of a policy ⇡ is given by v(⇡) := Ex⇠⇢ [V ⇡

1 (x)]. Finally, we define
the Bellman operators: T⇡

h
Q(x,a)= r(x,a)+Ex0⇠P (·|x,a),a0⇠⇡h+1(·|x0)[Q(x0

,a
0)] and T

⇤
h
Q(x,a)=

r(x,a)+Ex0⇠P (·|x,a)[maxa02AQ(x0
,a

0)].Note that the values of v(⇡),V ⇡

h
, andQ⇡

h
are always in [0,H]

due to the constraint on r. For convenience, we denote theQ function of the optimal policy asQ⇤=Q
⇡
⇤
.

We consider the setting where the learner is provided with a model class F ✓ (X ⇥A! [0,H]) to
estimate action value functions at each step. For exposition, we assume this model class is finite;
however, it is straightforward to extend to infinite settings with appropriate complexity measures. For
simplicity, we will assume that the learner uses the same F for each timestep h2 [H] but this is trivially
extended. We assume that 02F and we always write fH+1=0. For any function f 2X⇥A! [0,H],
we define the argmax policy ⇡f (x)=argmax

a2Af(x,a). We will also write f(x)=maxa2Af(x,a).

2.1 Offline Reinforcement Learning

The distinguishing feature of the offline (or batch) RL is that we assume that the learner is provided
with a dataset D of example transitions in the MDP. The learner itself is not permitted to interact in
the environment. The objective is to produce a good policy ⇡̂ using only data from the dataset D.

Formally, the dataset decomposes as D = (Dh)h2[H] for each timestep where Dh = {(x,a,r,x0)}
consists of tuples of transitions and incurred rewards. We assume Dh contains n datapoints that are
sampled i.i.d from a fixed marginal distribution µh2�(X⇥A) and the data are independent across
timesteps h. That is, there are Hn datapoints total. For example, the data could be generated from
h-step state-action distribution of a behavior policy ⇡

b so that µh(x,a)=P
⇡
b

h
(x,a)=⇡

b

h
(a|x)P⇡b

h
(x).

For f,g 2 (X ⇥A! R), we use the notation kf � gk
2
µh

= Eµh

⇥
(f(x,a)�g(x,a))2

⇤
. The average

squared Bellman error under µ at state h with respect to f,g is kf �T
⇤
h
gk

2
µh

. Following classical
conventions (Munos and Szepesvári, 2008; Duan et al., 2021), we make a concentrability assumption
that the data distribution µ has good coverage over the MDP for all reachable state-actions.
Assumption 1. There exists a constant C(µ)>0 such that sup

h,x,a,⇡
P

⇡

h
(x,a)/µh(x,a)C(µ).

Concentrability is a structural assumption and it is widely regarded as perhaps the most standard
assumption when studying offline RL problems (Foster et al., 2021). We remark that recent theoretical

6With some abuse of notation, for deterministic ⇡h we write a=⇡h(x) to denote its highest-probability action.
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works have striven to weaken this condition via pessimistic methods (Liu et al., 2020; Jin et al., 2021;
Xie et al., 2021; Uehara and Sun, 2021). However, Theorem 2 of Lee et al. (2021b) shows that model
selection bounds of this type are not possible even in contextual bandits and even though the single
model class bounds are possible. As a result, we will not consider this refinement in the present paper.

In this offline setting, the learner aims to use D and F to produce a policy ⇡̂ so as to minimize the
regret, which measures the difference in average value between the optimal policy ⇡

⇤ and ⇡̂:

Reg(⇡̂) :=v(⇡⇤)�v(⇡̂). (1)

The following variant of the performance difference lemma will be used throughout the paper (Duan
et al., 2021). It shows that it is sufficient to control the squared Bellman error to bound regret.

Lemma 1. For f1,...,fH , let ⇡ :=(⇡fh)h2[H]. Then, Reg(⇡)2
q
C(µ)

P
h2[H]kfh�T

⇤
h
fh+1k

2
µh

.

3 Model Selection Objectives

In this section, we state our primary model selection objectives and discuss their significance as well
as challenges associated with solving them.

3.1 The Model Selection Problem

For a finite function class F that we consider here, the gold-standard regret guarantee for offline
algorithms with value function approximation is

Reg(⇡̂)=Õ

✓p
C(µ)APPROX(F)+

q
C(µ)log|F|

n

◆
, (2)

where APPROX(F) :=maxh2[H],f 02Fminf2Fkf�T
⇤
h
f
0
k
2
µ

is the completeness error of the class F
(Chen and Jiang, 2019). This is achieved, for example, by the Fitted Q-Iteration (FQI) algorithm. If
we were using infinite classes, we would replace log|F| with a suitable notion of complexity such
as pseudodimension. Such bounds naturally exhibit a trade-off: larger classes may have a better chance
of keeping APPROX(F) close to zero7 but require more data to minimize the estimation error. Small
classes face the opposite problem.
Definition 1. A class F is complete if APPROX(F) :=maxh2[H],f 02Fminf2Fkf�T

⇤
h
f
0
k
2
µ
=0.

The objective of model selection is to achieve refined regret bounds that balance approximation and
estimation error. To this end, we assume that the learner is presented with not just a single model class
F , but rather a nested sequence of M classes F1✓ ...✓FM . Nested model classes are common in both
supervised learning and offline RL. For example, one often starts with an extremely large class F and
then considers restrictions of F to an increasing sequence F1✓ ...✓FM =F . In a linear setting, this
could correspond to trying to find a subset of candidate features that are sufficient to solve the problem.

Since the approximation error is typically unknown a priori, we aim to design an algorithm capable of
selecting a good class in a data-dependent manner. In particular, we would like to achieve oracle inequal-
ities reflecting that we can compete with the performance of an oracle that has this knowledge in advance.

Our primary objective is to compete with the minimally complete model class.

Problem 1. Let k⇤=min{k2 [M ] : Fk is complete}. Find ⇡̂ with Reg(⇡̂)=Õ(
p
C(µ)log(|Fk⇤ |)/n).

Here, Fk⇤ is the smallest class that satisfies completeness on the data distribution. Such oracle
inequalities are common in model selection for online bandits and RL (Foster et al., 2019) – albeit
they are generally not rate-optimal in that literature. In particular, Problem 1 states the regret bound
should achieve the same dependence on log|Fk⇤ | and n, as would an optimal offline algorithm using
a single class with k=k⇤. In other words, we do not tolerate any worse dependence on either quantity
such as Õ(1/n1/4) rates and other lower order terms.

We are also interested in a robustness when k⇤ may not exist, i.e. all Fk have some approximation error.
7In contrast to realizability, this intuition of monotonicity of APPROX(F) is not universally true for complete-

ness. Adding functions to the class F might actually increase APPROX(F). However, it remains a useful heuristic.
In Appendix A, we discuss how model selection in this setting is not possible without nestedness.
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Problem 2. Define the global completeness error as ⇠k :=maxh2[H],f 02FM
minf2Fkkf�T

⇤
h
f
0
k
2
µh

.

Find ⇡̂ so that Reg(⇡̂)=Õ

⇣
mink2[M ]

np
C(µ)⇠k+

p
C(µ)log(|Fk|)/n

o⌘

Note that ⇠k�APPROX(Fk) by definition. For the estimation error, however, the guarantee remains
rate-optimal. We remark that a solution to one of the above problems does not immediately imply
a solution to the other. For example, a class Fk may be complete, but ⇠k can still be large. Perhaps
surprisingly, our proposed algorithm will be able to handle both problems simultaneously without
knowledge of whether k⇤ exists, thus achieving the min of both oracle inequalities.

3.2 Limitations of Prior Approaches

We now review some of the core challenges involved in solving the above problems. There are a
number of seemingly natural approaches to model selection in RL that are surprisingly unable to
produce satisfactory results, at least off-the-shelf.

Adaptive offline policy evaluation The most natural approach, to which we have alluded in the
introduction, is to first compute ⇡̂k with a base algorithm using function class Fk, for each k2 [M ].
Then, one can estimate v(⇡̂k) using an off-the-shelf offline policy evaluation approach such as fitted
Q-evaluation (Munos and Szepesvári, 2008; Duan et al., 2020), DICE methods (Nachum et al., 2019;
Dai et al., 2020; Zhan et al., 2022), marginalized importance estimators (Xie et al., 2019), or doubly
robust estimators (Jiang and Li, 2016; Thomas and Brunskill, 2016). Then one simply picks the ⇡̂k

with the best estimated value. The main drawback of this approach is that nearly all of the above
methods require selecting a model class to perform the estimation,8 and it is unclear how to balance the
estimation and approximation error optimally to compete with the oracle. One possible solution is to
employ the adaptive estimator of Su et al. (2020), which takes as inputs a sequence of offline estimators
and known upper bounds on their deviations and returns an estimator that competes with the best one.
This is precisely the approach taken by Lee et al. (2021b) for linear contextual bandits. However, for
general function classes in RL, there is no obvious way to compute the analogous deviation bounds,
which oftentimes depend on the unknown quantity C(µ). Since these bounds are required by the
adaptive estimator as inputs, we are yet again left with unknown hyperparameters to tune.

Bellman error estimators Recall we are focusing on base offline RL algorithms that attempt to mini-
mize the squared Bellman error of objective. Therefore, one might ask whether it is possible to estimate
the Bellman errors (e.g. with the validation dataset) and compare the model classes using the Bellman
error as a proxy. Consider, for example, FQI which iteratively minimizes the squared Bellman error:

f̂h=argmin
f2Fk

ÊDh

⇣
f(x,a)�r�max

a0
f̂h+1(x

0
,a

0)
⌘2

�
,

where we use ÊDh to denote the empirical mean calculated with samples from the dataset Dh.
Presumably, we could simply choose the model class Fk that has the smallest cumulative squared
error. The main issue with this approach is the classic double-sampling problem (Baird, 1995; Duan
et al., 2021): the standard estimator of the Bellman error is biased because of the empirical version of
the Bellman operator T ⇤. With this selection criterion, we will end up favoring model classes that also
induce low variance of the regression targets, given by r+f̂h+1(x0) at step h because the expectation is

Eµh

⇣
f̂h(x,a)�r�f̂h+1(x

0)
⌘2

�
=kf̂h�T

⇤
f̂h+1k

2
µh

+Eµh


var

x0⇠P(·|x,a)

⇣
f̂h+1(x

0)
⌘�

.

We want to choose a class Fk to minimize only the first term on the right-hand side, summed over
h2 [H], following Lemma 1. However, the second term is generally unknown. One could assume there
is a sufficiently powerful class G such that T ⇤

f 2G for all f 2F (Chang et al., 2022). But there remains
a question of how to select the class G to trade off approximation error and estimation error, creating
another unsolved model selection problem. In the same vein, another approach we might consider is
the BVFT algorithm of Xie and Jiang (2021) to select among the fk learned by the base algorithm. This
solves the model selection problem but BVFT has a slow O(1/n1/4) dependence. It also, in theory,
requires that a discretization parameter is set based on a concentrability coefficient stronger than C(µ),

8For marginalized importance sampling, the guarantee is not strong enough to compete with the oracle.
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which is typically unknown. Perhaps most conceptually related is past work which compares Bellman
errors of finer-grained state abstraction functions on the Q-function computed on coarser-grain state
abstraction (Jiang et al., 2015). This work provided regret bounds on in the discrete state and action
setting where the models are varying levels of state abstractions. However, this critically depends
on the discrete state and action setting. Our work shows how a similar idea can be used in the value
function approximation setting, with substantially different tools and analysis techniques.

Representation Learning Model selection resembles objectives in representation learning for RL
(Agarwal et al., 2020; Modi et al., 2021). However, we cannot simply adapt such algorithms since
they are either insensitive to the class complexities or they require stronger realizability assumptions.
Understanding the connections of these problems would be interesting for future work.

4 MODBE Algorithm
Having introduced the model selection objectives, we now present our main result, a novel model
selection algorithm for offline RL that provably achieves the aforementioned oracle inequalities. We
first give an intuitive sketch of the approach. As a thought experiment, we will consider the case when
M =2 and a minimally complete class Fk⇤ exists.9 We will also ignore logarithmic factors and H

dependence for now. A key algorithmic idea is that we will first start optimistically by guessing that
k⇤=1. Running a base algorithm like FQI with F1 on training data returns the functions f1,...,fH ,
which, with high probability, satisfy

P
h
kfh�T

⇤
h
fh+1k

2
µ
= Õ

⇣
C(µ)log(|F1|)

n

⌘
if k⇤ equals 1. Given

these functions, we can pose a square loss regression problem where the regression targets (i.e., the
"y’s" of the regression problem) are given by the empirical Bellman updates:

L̂h(g,fh+1)=
1
n

P
(x,a,r,x0)2Dh

(g(x,a)�r�fh+1(x0))2.

Let Lh(f,g) := Eµh

h
L̂h(f,g)

i
. Solving this regression problem for each h over the class F2 will

generate g1,...,gH ✓ F2. The key insight is that the sequences (fh)h and (gh)h are both trying to
minimize the same empirical square loss function with the same regression targets: r+ fh+1(x0).
Unlike the Bellman error estimators from the previous section that incur biases, the lossesLh(fh,fh+1)
and Lh(gh,fh+1) are comparable and estimable from a validation set. By nestedness of F1 ✓ F2,
F2 cannot have more approximation error on this regression problem. Provided we can get a good
estimate of generalization errors Lh(fh,fh+1) and Lh(gh,fh+1) with validation data, this naturally
brings forth the following generalization test: if

Lh(gh,fh+1)<Lh(fh,fh+1)�Õ
⇣

log(|F1|)
n

⌘
(3)

reject F1 and pick F2. Otherwise pick F1. That is, a switch will occur not when F2 performs only
marginally better than F1, but when it performs substantially better as measured by the generalization
error that we see for bothfh and gh on this regression problem. If (3) holds, then there is reason to believe
that F1 is not complete, making F2 the right choice. Crucially, the test only checks for generalization
error, so the tolerance term on the right side goes as Õ(log(|F1|)/n), which is the correct rate for this
problem. Thus, if the test turns out to be wrong, we will only lose additive factors of the correct rate.

4.1 Full Algorithm

The full algorithm, MODBE (Model Selection via Bellman Error), is presented in Algorithm 1. While
the underlying principle described just above is similar, MODBE must handle a number extensions
that complicate the algorithm such as dealing with general M , accounting for proper estimation errors,
and being robust to the case when k⇤ does not exist. Interestingly, the fundamental algorithmic idea
remains the same – only the tolerances change and it loops over the model classes.

MODBE takes as input a base offline RL algorithm (such as FQI), the model classes F1✓ ...✓FM ,
and the offline dataset D2 [H]. The dataset is split randomly into a training set Dtrain and a validation
set Dvalid. The algorithm begins optimistically, starting with the candidate model class k = 1 and
running the base algorithm with Fk on the training dataset to generate the candidate functions f . We

9While the full algorithm requires minimal changes beyond this intuition there are challenges in the proof. For
general M , we cannot guarantee the class returned will be the correct – but it may have controllable approximation
error. When k⇤ does not exist, there is a chance to "skip" the best model class.
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Algorithm 1 Model Selection via Bellman Error (MODBE)

1: Input: Offline datasetD=(Dh) of n samples for each h2 [H], Base algorithmB, function classes
F1✓ ...✓FM , failure probability �1/e, and estimation error function ! for B.

2: Let ntrain = d0.8·ne and nvalid = b0.2·nc and split the dataset D randomly into Dtrain =(Dtrain,h)
of ntrain samples and Dvalid=(Dvalid,h) of nvalid samples for each h2 [H].

3: Set ⇣⇣⇣ := 96H2log(16M2
H/�)

nvalid

4: Initialize k 1.
5: while k<M do
6: (fh)h2[H] B(Dtrain,Fk,�/4M)
7: for k0 k+1,...,M do
8: Set↵↵↵ :=max

n
!ntrain,�/4M (Fk0), 200H

2log(8M2
H|Fk0 |/�)

ntrain

o

9: Set TOL :=2↵↵↵+2⇣⇣⇣+!ntrain,�/4M (Fk)
10: Minimize squared loss on training set for all h2 [H] with regression targets from class k:

gh argmin
g2Fk0

L̂h(g,fh+1) :=
1

ntrain

X

(x,a,r,x0)2Dtrain,h

(g(x,a)�r�fh+1(x
0))

2 (4)

11: Compute squared loss using the validation set for all h2 [H] as a function of f :

L̃h(f,fh+1)=
1

nvalid

X

(x,a,r,x0)2Dvalid,h

(f(xh,ah)�rh�fh+1(x
0))

2 (5)

12: if L̃h(gh,fh+1)<L̃h(fh,fh+1)�TOL for any h2 [H] then
13: k k+1
14: goto Line 5.
15: end if
16: end for
17: goto Line 19
18: end while
19: return ⇡̂=(⇡fh)h2[H]

retrain on the empirical square loss using a class k0 >k by regressing to target values r+fh+1(x0).
This amounts to solving a sequence of H least squares regression problems using class k0, yielding
the functions gh. Since fh and gh are attempting to solve the same regression problem (with the
same target values), we can compare their performance on this shared squared loss objective L̃ with
validation data. We use a generalization error test in Line 12 to decide whether to keep using class k. If
the test fails and it is discovered that the larger model class Fk0 is able to achieve substantially smaller
loss than Fk, then we move to a larger model class k k+1. The process is repeated until all classes
are exhausted or no model class k0 offers a big enough improvement over k to cause the test to fail.

4.2 Rate-Optimal Oracle Inequalities

We show that MODBE is able to achieve both Problems 1 and 2 simultaneously. We start with a generic
version of the theorem stated in terms of an assumed performance bound ! on the base algorithm.
We will presently instantiate the base algorithm with FQI, showing that it precisely achieves the oracle
inequalities with the correct rates.
Definition 2. Let B be a base offline RL algorithm for value function approximation that takes as
input a model class F , an offline dataset D of n samples for each h2 [H], and a failure probability
�. For �>0 and a function !, we say that B is (�,!)-regular if (1) ! is a known real-valued function
of n2N, �2R, and Fk, and it satisfies !n,�(Fk)!n,�(Fk0) for all k0�k; (2) B(D,Fk,�) returns
(fh)h2[H]✓Fk such that fh+1 is independent of Dh and

P

✓
max
h2[H]

kfh�T
⇤
h
fh+1k

2
µh
� ·APPROX(Fk)+!n,�(Fk)

◆
�1��. (6)

Here, � scales the approximation error and ! represents the estimation error. Generally, we will have
!n,�(F)=Õ(log(|F|/�)/n) (see Lemma 2 for FQI). We hope to achieve a bound that matches what the
base algorithm would achieve had k⇤ been known in advance, up to additive terms of

p
log(|Fk⇤ |)/n.
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Our primary theorem addresses Problem 1 using an arbitrary base algorithm.
Theorem 2. Let B be an (�,!)-regular algorithm and suppose that k⇤ (defined in Problem 1)
exists. Let ◆=log(M2

H/�). Then, for some absolute constant C>0, Algorithm 1 with inputs D, B,
F1✓ ...✓FM , !, and �1/e outputs ⇡̂ such that, with probability at least 1��,

Reg(⇡̂)C ·

s

C(µ)H

✓
!ntrain,�/4M (Fk⇤)+

H2(log|Fk⇤ |+◆)

n

◆
(7)

The above theorem shows a regret bound scaling with the square root of the error term ! of the base
algorithmB plus a Õ(log(|Fk⇤ |)/n) estimation error. Importantly, as stated in Problem 1, the statistical
complexity depends only on Fk⇤ and not any of the larger classes. For concreteness, we now instantiate
Theorem 2 with a standard finite-horizon FQI (Duan et al., 2020) base algorithm, which satisfies Defini-
tion 2 with!n(F)=Ô(log|F|/n). This in turn translates to the desired rate-optimal oracle inequalities.
Lemma 2. Consider the FQI algorithm (stated in Appendix C for completeness). For a model class
F , FQI is a (3,!)-regular base algorithm with !n,�(F)=O

⇣
H

2log(H|F|/�)
n

⌘
.

By plugging this classic result in Theorem 2 as the base algorithm, we arrive at a solution to Problem 1.
Corollary 1. Let B be instantiated with FQI (Algorithm 3 in Appendix C). Define ◆=log(M2

H/�).
Then, under the same conditions as Theorem 2, there is an absolute constant C > 0 such that, with
probability at least 1��, Algorithm 1 outputs ⇡̂ satisfying

Reg(⇡̂)C ·

q
C(µ)H3(log|Fk⇤ |+◆)

n
. (8)

The proof of Theorem 2 (Corollary 1) follows the intuition from the start of this section. The proof shows
(1) MODBE will never return a value of k that exceeds k⇤ and (2) if MODBE returns k<k⇤, then the
approximation error must be small. A key novelty is recognizing that the generalization test in Line 12,
which compares the errors classes on the same regression problem, can be used to prove both (1) and (2).

Robustness We show that the same Algorithm 1 simultaneously achieves the desired robustness
result of Problem 2 when k⇤ does not exist without any modification.
Theorem 3. Under the same conditions as Theorem 2, if k⇤ does not exist, there exists an absolute
constant C>0 such that, with probability at least 1��, Algorithm 1 outputs ⇡̂ satisfying

Reg(⇡̂)C · min
k2[M ]

(s

C(µ)H

✓
� ·⇠k+!ntrain,�/4M (Fk)+

H2(log|Fk|+◆)

n

◆)
. (9)

We can use Lemma 2 to see a solution to Problem 2 with an instantiation of FQI.
Corollary 2. Under the same conditions as Corollary 1, there is an absolute constant C > 0 such
that, with probability at least 1��, Algorithm 1 outputs ⇡̂ satisfying

Reg(⇡̂)C ·mink2[M ]

⇢p
C(µ)H⇠k+

q
C(µ)H3(log|Fk|+◆)

n

�
(10)

The guarantees that solve Problems 1 and 2 are achieved simultaneously, meaning that we do not
require knowledge of whether k⇤ exists and we can automatically get the best of both. The proof of
Theorem 3 (Corollary 2) is more involved, but still crucially leverages the generalization test in Line 12.
Here, we allow k to exceed the minimal index sometimes. We then use the fact that class (k�1) must
have failed the generalization test to argue that the estimation error of the larger class can be bounded
by the unknown ⇠k�1, which is small since k exceeds the index of the minimal class.

Computational Complexity MODBE is computationally efficient given a squared loss regression
oracle. Within inner and outer loops over the model classes, a squared loss minimizer is computed
on the training dataset and then functions are evaluated on the validation set. MODBE requires
only O(Hk⇤M) calls to the computational oracle when k⇤ exists (a consequence of Theorem 2) or
O(HM

2) in the worst case. Note that algorithms for optimizing squared loss regression problems
are ubiquitous in machine learning (Simchi-Levi and Xu, 2021).
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Figure 1: MODBE is evaluated on several simulated domains: a contextual bandit (left), CartPole (middle), and MountainCar (right). In CB,
MODBE and Hold-out outperform SLOPE and match performance of the best model class in regret. In CartPole, both match the performance of
the best model class. In MountainCar, both struggle to match the best model class, but MODBE maintains superior performance. In CB, error
bands are standard error over 10 random trials. In RL, error bands are standard error over 20 random trials.

5 Empirical Results
The previous sections outlined the strong theoretical properties of MODBE. In this section, we ask:
what practical insights can be gleaned from MODBE and its theoretical guarantees? We would like
to understand if the core selection method of MODBE can be applied out-of-the-box on existing offline
RL algorithms with minimal effort. We evaluated MODBE in three simulated environments with
discrete actions: (1) synthetic contextual bandits (CB), (2) Gym CartPole, (3) Gym MountainCar.
See Appendix D for specific details about the setups. All training and validation sets were split 80/20.

Contextual Bandit As a basic validation experiment, we started with the CB setting of Lee et al.
(2021b) which considers a nested sequence of linear model classes with increasing dimension d.
Without any tuning, we simply set the tolerance of MODBE to TOL(Fk,Fk0)= dk0

n
. Figure 1 shows

the results in terms of the log-regret as a function of the dataset size. We observe that both MODBE and
Hold-Out (choosing the model class with the smallest error) are able to easily match the performance
of the best model class while SLOPE (Lee et al., 2021b) ends up being fooled by nearby classes.

RL Discrete Control Our setup for the RL problems in Gym (Brockman et al., 2016) builds on top of
the open-source d3rlpy framework (Seno and Imai, 2021). We used DQN (Mnih et al., 2015), which is
closest to FQI. We considered model classes that were two-layer neural networks with ReLU activations
and d nodes in the hidden layer and varied the parameter d. Again, we simply set the tolerance of
MODBE to dk/n motivated by pseudodimension bounds (Bartlett et al., 2019). For simplicity, we
modified MODBE to work in the discounted infinite horizon setting, which can trivially be done (see
Appendix D). We compared MODBE to Hold-Out, which is a seemingly sensible baseline that chooses
the model class with lowest estimated Bellman error on a validation set. For deterministic settings only,
this is theoretically justified. Figure 1 shows the reward as a function of the dataset size (in episodes).
On CartPole, MODBE marginally outperforms Hold-Out. On MountainCar, we find that Hold-Out does
surprisingly poorly while MODBE is successfully able to reject the poor model classes. We conjecture
that the empirical failure of Hold-Out is possibly due to sensitivity to optimization error making the
Bellman error misleading. In contrast, the generalization test of MODBE seems to be more robust.

6 Discussion
In this paper, we introduced a new algorithm, MODBE, for model selection in offline RL: to our
knowledge it is the first to achieve rate-optimal oracle inequalities in n and COMP(Fk⇤). A number of
interesting open questions remain. (1) Are there rate-optimal procedures that can be used to select hy-
perparameters beyond model complexity such as learning rates, batch sizes, et cetera? (2) Can the ideas
of MODBE be extended to more general algorithms that do not rely on Bellman error minimization? (3)
For the robustness guarantee, the global completeness ⇠ is potentially much worse than APPROX(F).
Is it possible to achieve a robust oracle inequality of the form O(mink

p
APPROX(Fk)+log|Fk|/n)

when k⇤ does not exist? We believe these questions are of great practical and theoretical importance
for understanding how to effectively evaluate and select models in offline RL.
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