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Abstract

We propose a novel encoding method called “Structure Token” to unify the pro-1

cessing and generation of both graphs and texts with a single transformer-based2

model. This method allows graphs with text labels to be generated by a series3

of tokens, enabling both graph and text data to be handled interchangeably. By4

utilizing structure tokens, our model learns a unified representation, enhancing5

the ability to process diverse data without requiring extra modules or models.6

Additionally, the model can be trained like most transformer models with simply7

cross-entropy loss. To demonstrate the effectiveness of our method, we introduce a8

pre-training scheme inspired by mBART but adapted to leverage structure tokens.9

Our model, named TextGraphBART, uses the same architecture as normal Trans-10

former Encoder-Decoder models with small modifications on the input and output11

to accommodate structure tokens. The evaluations show that this approach achieves12

comparable results against baseline models of similar sizes on both text-to-graph13

and graph-to-text generation tasks, without needing specialized loss functions or14

sampling techniques. These findings suggest that our approach can effectively15

bridge the gap between textual and structural data representations, and the design16

of encoding method could offer a new direction for future improvement.17

1 Introduction18

Transformer layers have been proven to work well in several domains beyond text, like audio, image,19

and even multi-modal data. Some research has also shown that with careful design, transformer layers20

can extract features from graph data[30, 16]. Graph is a common data structure for representing21

concepts and relationships. In this work, we focus on a specific type, named text graph, where22

the concepts and relationships are expressed as texts, such as knowledge graphs and parsing trees.23

Learning vector representations and generating new text graphs are two essential aspects of text24

graphs in machine learning. Since texts can be viewed as a chain of words or characters, the text25

graph then becomes a nested graph. The complexity of handling such a nested graph leads to two26

major approaches for generating text graphs.27

The first strand is the multi-stage approach which generates concepts, relationships, and texts in28

different steps [22, 12]. The process usually involves multiple models that generate different parts29

of the text graph. For example, Grapher [22] uses the T5 [24] pre-trained model to generate all the30

concepts and then uses a relation extraction model to predict the relationships between every two31

concepts. This approach requires the models to generate a complete graph despite the edge sparsity32

of the target text graph. Therefore, the model includes a special “no-relation" relationship and turns33

every graph into a complete graph thus requiring extra predictions. Since the relation extraction is34

1code available at: https://github.com

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

https://github.com


Transformer Encoder Transformer Decoder

...

... ...

id

Structure Predictor

x N x N

unmodified Transformer
Encoder-Decoder

autoregressive
token decoding

...

structure encode / decode

structure embed

input projection

structure encode / decode

structure embed

input projection

(a) Model with structure token

...

Transformer Encoder

Akron, Ohio is located ....

encode & embed

input projection

Iteration 0

Decoder & Predictor
[graph]

Iteration 1

country[graph]

country

{ }

Iteration 2

{ }[graph] country

Decoder & Predictor Akron

Akron

Iteration 3

{ }Akron

Decoder & Predictor

[graph] country

Ohio

Ohio

... Iteration 4

{ } encode
&

embed

encode
&

embed

encode
&

embed

(b) Autoregressive decoding

Figure 1: Overview of the proposed structure token approach. (1a) The model takes the input text
graph (left) and the partially generated sub-graph (right) and then generates a new structure token.
Each structure token contains a (sub-)word token with the locational information of that word token
in the text graph. (1b) An example of autoregressive decoding with structure token. The procedure is
mostly the same as normal text decoding with Transformer model.

done on every two concepts, the model does not consider multi-hop relations. Moreover, the model35

cannot handle the case where two concepts have more than one relation. The second method is the36

graph linearization approach that fuses the hierarchy in text graph into chain of tokens [1, 10]. This37

approach treats the text graph as a special text sequence and enables the direct adoption of Language38

Model (LM) for text graph generation. The idea can also be applied to learning vector representations39

of text graphs. For example, BT5 [1] convert the text graph into sequence of (subject, relation,40

object) triples and train T5 to translate between sentence and sequence of triples. Since sequence41

generation with LM is done in an autoregressive manner, the generation is conditioned on the42

already generated triples. This behavior allows the model to handle multi-hop relations and the43

multi-relational case. Meanwhile, the model does not suffer from generating complete graphs because44

the model can learn to terminate when the generated triples match the target text graph. However,45

using sequence of triples also introduces extra complexity to the LM. Since the format requires46

matching the concepts in triples to reconstruct the text graph, there will be duplications of subject47

or object in the sequence. Thus, the model generates duplicated texts and cannot handle the case48

where two concepts are represented by the same text but refer to different things. Also, it relies on49

the model to implicitly learn the connection between two triples with duplication. Furthermore, LM50

is neither permutation invariance nor equivariance, which means the prediction alters if the generated51

triples are being shuffled.52

The goal of this work is to design a new approach that preserves some of the advantages while53

avoiding the drawbacks of previous approaches. This sets a few desired properties of the new54

approach. First, the method should be suitable for both representation and generation. It should also55

consider the cases that cannot be handled by multi-stage and graph linearization approach. Second,56

the model should be permutation equivariance and perform generation in an autoregressive manner.57

Last, the method should avoid extra computation, such as the duplication of concepts. To achieve58

the desired characteristics, we propose the structure token approach, as illustrated in 1. Our method59

employs a concept we call “Structure Token" which losslessly encodes the text graph into a set of60

tokens. The token contains a word and a few identifiers for the precise location of that (sub-)word61

in the text graph. Our model incorporates an unmodified Transformer Encoder-Decoder model [26]62

with structure token embeddings and a structure predictor for predicting new structure tokens. The63

text graph is generated autoregressively like regular text generation and the generated structure tokens64

form a subgraph. Once the generation stops, we can decode the set of structure tokens into the65

target text graph. A notable difference between our approach and previous approaches is that our66

Transformer model operates on sets instead of sequences and we view text graphs as nested graphs.67

To our knowledge, our structure token approach is the first method that can autoregressively generate68

sub-graphs with multi-token labels without modifying transformers.69
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We validate our structure token approach on text-to-graph (T2G) generation and graph-to-text (G2T)70

generation tasks. By treating sentence as a special text graph without any edges, the generation71

tasks become a text-graph-to-text-graph translation problem. Therefore, we present TextGraphBART,72

a Transformer Encoder-Decoder model pre-trained on text-graph-to-text-graph translation with73

our structure token approach. The model is evaluated on two publicly available parallel datasets,74

EventNarrative [8] and WebNLG (2020) [5], and achieves comparable results using fewer parameters75

and pre-training data.76

2 Related Work77

Recent works for text graph generation primarily focus on reusing pre-trained LMs. BT5 [1] applies78

the graph linearization approach with T5 [24] pre-trained model. ReGen [10] further proposes a79

Reinforcement Learning (RL) objective to improve the performance. On the other hand, Grapher [22]80

uses T5 as an entity extraction model and jointly trains another relation extraction model. It provides81

two types of implementation: Grapher (Text) and Grapher (Query). The Grapher (Text), which is the82

state-of-the-art method on WebNLG (2020) [5] dataset, generates entities as a flat sequence, while83

Grapher (Query) feeds a set of query embeddings to T5 decoder and apply another model to fully84

decode the outputs to entities. Other works target on the problem of lacking paired datasets for T2G85

generation. CycleGT [12] apply the cycle-training framework on a G2T model and a multi-stage86

T2G model. INFINITY [29] apply the cycle-training framework on a single T5 model with graph87

linearization approach.88

Most of the works for learning vector representations only focus on G2T generation. GAP [9]89

proposes a graph-aware attention that first uses the pooling operator to get the features of each text90

label and then applies a modified attention operator on those features. KGPT [6] provides two types91

of encoder: graph encoder and sequence encoder. The graph encoder is based on graph attention92

network [27] that also operates on the pooled text features. On the other hand, the sequence encoder93

infuses the structure information into the text tokens and feeds them into a transformer model. This94

approach resembles our structure token approach upon learning vector representations. However,95

they convert the graph into a dictionary-like format which suffers from a similar duplication problem96

as graph linearization approach.97

Our method is essentially derived from the design of TokenGT [16], which also converts graphs98

into sets of tokens containing labels and identifiers. However, their idea does not directly fit in our99

scenario of text graph for two reasons. First, a single graph element (node or edge) in TokenGT needs100

to be representable by a single token. On the contrary, it would require multiple tokens for an element101

of text graph because the label is a multi-token text. Second, TokenGT only focuses on representing102

the graph, while we are interested in graph generation as well.103

3 Method104

3.1 Structure Token105

The proposed structure token is a data representation that can losslessly encode all data in a text106

graph as a set of tokens. Given a text graph G = (N ,A) containing a node set N and an arc set A.107

Each arc is a triple of a head node, an edge, and a tail node. Each graph element (node and edge)108

is a unique text label S identifiable with an integer ID. This allows different nodes or edges to have109

the same text label. The full formal definitions can be found in Appendix A.1. In order to convert110

text graph to structure tokens, we express the node set and arc set into one unified structure of graph111

elements. Each graph element will be represented by multiple structure tokens. A structure token112

consists of seven parts: 1. Label: The (sub-)word token of a graph element. 2. Type: A binary113

indicator specifying whether this graph element is a node or an edge. 3. Token ID: An unique ID for114

this token. 4. Previous ID: The token ID of previous token. 5. Segment ID: An unique ID for the115

graph element. 6. Head ID: The segment ID of the head node. 7. Tail ID: The segment ID of the116

tail node. If the token is part of a node, the head ID and tail ID will just be the segment ID of itself.117

With these information, we are able to differentiate between structure tokens that are from different118

parts of the graph. The text graph is converted into a set of structure tokens. Since the IDs can point119

to a graph element directly, there is no need for duplications like graph linearization approach. We120

provide the formal definition of structure token in the Appendix A.2. A real example of text graph121
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Figure 2: Structure token and embedding. (2a) Each column is a structure token and each token has a
unique token ID. The IDs can be used to locate the (sub-)word in the text graph. (2b) Both OneHot
and Orth convert the ID or word into a vector and those vectors would be concatenated together to
form the embeddings of the structure token

and corresponding structure tokens can be found in Figure 2a. The idea of type, head ID, and tail ID122

are inherited from TokenGT [16], which uses identifiers to indicate the connections. We modify their123

definition and introduce extra identifiers for our text components. The token ID and previous ID are124

text-level identifiers. The text order is determined by the token ID and previous ID for reconstructing125

the text label. On the other hand, the segment ID, head ID, and tail ID are graph-level identifiers. For126

tokens of a specific graph element, the graph-level identifiers of each token will be the same.127

Furthermore, We add an extra “domain token” to the structure tokens of a text graph to indicate the128

domain of the graph, like the special language token used in multi-lingual translation [15, 21]. With129

the domain token, we can specify what kind of data the text graph is holding. For example, since text130

is treated as a text graph without any edges, we use a “[text]” domain token to indicate that this text131

graph represents a text. Besides, we use the domain token as the first token of every text label, so the132

previous ID of the first token of all labels are pointing to the domain token.133

3.2 Structure Embedding134

The structure tokens are transformed into fixed-size high-dimensional vector representations. Each135

part of the structure token is converted into a vector and concatenated together. Then the vectorized136

result will be fed to a trainable projection layer for getting the token embedding, as illustrated in137

Figure 2b. Label and type are converted with one-hot encoding, denoted as OneHot. On the other138

hand, the IDs need to be handled differently. In order to preserve the graph structure in the tokens139

with the Transformer model, each ID needs to be converted into orthonormal vectors as proved by140

TokenGT [16]. We loose the requirement of orthonormality and use a set of orthonormal-like vectors.141

The dot product value of two different orthonormal-like vector is close to zero or less than some142

thresholds. These vectors of identifiers enable the attention operation in the Transformer model to be143

able to aggregate corresponding information through dot product. Each ID would be converted into an144

orthonormal-like vector through a transform function Orth. We use this transform function to convert145

the graph-level identifiers directly. On the other hand, we add the vectors of the text-level identifiers146

together, which allows the attention to aggregate information from neighbor tokens like the absolute147

position embedding [26]. Details and definitions can be found in Appendix A.3. Unlike position148

embedding which depends on the location of the tokens in a sequence, the text-level identifiers149

directly point to the neighbor token no matter their location in the sequence. Meanwhile, sequence150

orders are defined by IDs and the IDs can be randomly assigned. Therefore, applying any permutation151

of the input embeddings is equivalent to applying the same permutation on the output hidden states.152

3.3 Generation153

Text Generation After converting the structure tokens into embeddings, those embeddings are154

fed into the unmodified Transformer Encoder-Decoder model. Conceptually, our model generates a155

structure token at each step which contains seven objects. However, we do not really need to generate156

seven objects at every step. The token ID is unique for every token and we can randomly pick any ID157

sequence beforehand. Notably, the structure token representation is a set, while the autoregressive158
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generation manner makes the generated tokens resemble a sequence. Although the design of structure159

tokens enables the possibility of non-monotonic order of text generation, we slightly restrict the160

generation order of the structure tokens from the same graph element to be ordered and contiguous.161

With this restriction, we do not need to predict the token ID and previous ID. We can use the same162

generation scheme of other text generation Transformer model that simply generates the next text163

token until we are done with this element. Meanwhile, since the graph-level identifiers are the same164

within a graph element, we only need to predict the graph-level identifiers for the first token of labels.165

The generation can be further simplified for a single sentence since the graph-level identifiers are166

merely the token ID of the first token. Thus, text generation with our structure token approach is167

almost the same as other Transformer-based text generation models.168

Text Graph Generation For text graph generation, the same methodology applies. We use a169

structure predictor for predicting the identifiers. The graph-level identifiers are the same within a170

graph element. The prediction of graph-level identifiers can be done only one time per graph element.171

Moreover, the type and segment ID can also be omitted because we can tell the values once we get172

the head ID and tail ID. As a result, our structure predictor only needs to predict the head ID and tail173

ID. For predicting the IDs, we employ a single causal Transformer layer (a layer of the Transformer174

decoder), as illustrated in Figure 3. The causal Transformer layer takes the output of the Transformer175

model plus the transformed segment ID to produce a hidden vector. The hidden vector will be fed176

into two projection layers to get a prediction of the head ID and tail ID. To get the ID, we multiply177

the final hidden vectors with a list of our orthonormal-like vectors, and perform softmax on the178

multiplication result to get the predictions. With this setup, we can apply the same teacher forcing179

technique as other Transformer decoders, so the training process is also parallelized.180

3.4 Pre-Training181

We introduce a pre-training method for our model based on the mBART pre-trained model for182

multilingual text generation [21]. The pre-training method contains two types of training objectives:183

the self-supervised objective and translation-like objective, as illustrated in Figure 4. The translation-184

like objective forces the model to generate tokens depending on the domain token. The self-supervised185

objective allows us to utilize more datasets without paired data (e.g. plain text datasets or sample186

subgraphs from a large graph database). By using both kinds of objectives, the effective training data187

are doubled. Meanwhile, the model is encouraged to learn a more unified representation. With these188

objectives, we could utilize many different datasets to improve our model.189
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Table 1: Datasets statistics.
Size

(# samples / uncompressed disk space /
# tokens in texts / # tokens in graphs)

TEKGEN 6.3 M / 1.5 GB / 218 M / 99 M
GenWiki 750 K / 1.1 GB / 27 M / 11 M
EventNarrative 180 K / 135 MB / 12 M / 4 M
WebNLG (2020) 13 K / 16 MB / 399 K / 301 K

Table 2: Performance of Graph-to-Text on
EventNarrative.

# Params BLEU / METEOR / BERTScore
T5-Base 220 M 12.80 / 22.77 / 89.59
T5-Large 770 M 34.31 / 26.84 / 93.02
BART-Base 140 M 31.38 / 26.68 / 93.12
GAP 153 M 35.08 / 27.50 / 93.38
TextGraphBART 75 M 33.06 / 27.17 / 94.23

Table 3: Performance of Text-to-Graph on
WebNLG (2020). The Grapher-small∗ is ob-
tained by running the officially released source
code of Grapher with T5-small weights. The #
Params of CycleGT is not disclosed [5].

# Params F1
(Strict / Exact / Partial)

CycleGT N/A 0.309 / 0.342 / 0.360
BT5 770 M 0.675 / 0.682 / 0.713
Grapher (Query) 770+ M 0.289 / 0.395 / 0.325
Grapher (Text) 809 M 0.681 / 0.683 / 0.713
Grapher-small∗ (Text) 95 M 0.561 / 0.569 / 0.592
TextGraphBART 75 M 0.555 / 0.570 / 0.602

4 Experiments and Results190

Datasets We use four parallel datasets containing both text and text graph for our experiments,191

as presented in Table 1. The model is pre-trained on TEKGEN [2] and GenWiki [14], and then192

we fine-tune the pre-trained model on EventNarrative [8] and WebNLG (2020) [5] for evaluating193

our model on G2T and T2G generation, respectively. The datasets are automatically generated by194

aligning texts with existing databases, except WebNLG (2020). TEKGEN is a large-scale dataset195

curated by aligning a subset of the Wikipedia text with Wikidata [28]. GenWiki is another large-scale196

dataset built on Wikipedia text. The text graphs are collected from DBpedia [3]. EventNarrative is an197

event-centric dataset that contains text graphs from the EventKG [11] and Wikidata. The text is also198

a subset of Wikipedia text. WebNLG (2020) is crowd-sourced dataset crafted by human annotators.199

The text graphs are collected from DBpedia, while the texts are manually written by annotators. It200

contains 16 categories in the training set and 19 categories (3 extra categories) in the test set. We201

use the official data split for all the datasets. As for the metrics, we used BLEU [23], METEOR [4],202

and BERTScore [31] to evaluate the G2T performance, and we use the official evaluation script of203

WebNLG (2020) to evaluate the T2G performance.204

Setups Our model is trained in two phases: pre-training and fine-tuning. We initialize our model205

from scratch and perform the pre-training method. For pre-training, We use the RAdam optimizer206

[20] with a learning rate of 0.0001. The model is updated with an effective batch size of 256 and207

being trained for 5 epochs on a single A100 40GB GPU. All fine-tuning experiments are done on a208

single RTX 3090 24GB GPU. For fine-tuning on EventNarrative, we use the Lion optimizer [7] with209

a learning rate of 0.00001. The model is updated with an effective batch size of 128 and trained for210

20 epochs. For fine-tuning on WebNLG (2020), we use the Adam optimizer [17] with a learning rate211

of 0.0001. The model is updated with an effective batch size of 128 and trained for 100 epochs.212

We use an overall hidden size of 512 for our model. The unmodified Transformer encoder and decoder213

both have 6 layers. Each attention has 16 heads, and we use a hidden size of 32 for self attentions and214

64 for cross attentions. The feed-forward layer in Transformer has an input and output hidden size of215

512, and the intermediate hidden size is 2048. We use these numbers for the structure predictor as216

well. For the activation functions, we use the GELU activation function [13] for Transformers and217

hyperbolic tangent function for the projection layers of structure predictor. During pre-training, we218

apply the dropout [25] on the attention weights and the residual connections with a dropout rate of219

0.1. The model weights are randomly initialized with a mean of 0 and a standard deviation of 0.02.220

For data processing, we use the same subword tokenizer as T5 which uses the Unigram tokenization221

method [24, 18]. The tokenizer has a vocabulary of 32100 text tokens, which contain 32000 subword222

text tokens and 100 reserved special tokens. We use the reserved special tokens for our domain tokens.223

Each dataset is assigned with a corresponding domain token for the graph data, while all text data224

from different datasets share the same text domain token. The samples in each dataset are truncated225

with a maximum length of 128 or 256 text tokens depending on the training stage. A random unique226

ID sequence is determined for each sample at every epoch. During the pre-training, we randomly227
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Table 4: Performance of our model on each category of WebNLG (2020) test set comparing to
Grapher-small. The ∗ denotes the unseen categories.

Category # Samples TextGraphBART Grapher-small (Text)
(train / test) (Strict / Exact / Partial) (Strict / Exact / Partial)

Total 13211 / 2155 0.555 / 0.570 / 0.602 0.561 / 0.569 / 0.592
Airport 1085 / 111 0.798 / 0.799 / 0.801 0.831 / 0.831 / 0.833
Artist 1222 / 129 0.636 / 0.650 / 0.666 0.696 / 0.709 / 0.727

Astronaut 529 / 102 0.797 / 0.805 / 0.809 0.847 / 0.847 / 0.848
Athlete 903 / 68 0.632 / 0.635 / 0.641 0.732 / 0.732 / 0.734

Building 972 / 53 0.811 / 0.812 / 0.817 0.889 / 0.889 / 0.890
CelestialBody 634 / 63 0.713 / 0.716 / 0.716 0.664 / 0.664 / 0.669

City 1110 / 104 0.565 / 0.580 / 0.588 0.387 / 0.390 / 0.395
ComicsCharacter 285 / 35 0.781 / 0.781 / 0.787 0.917 / 0.917 / 0.919

Company 351 / 93 0.878 / 0.878 / 0.880 0.919 / 0.919 / 0.919
Film∗ 0 / 333 0.338 / 0.391 / 0.439 0.260 / 0.284 / 0.323
Food 1406 / 51 0.756 / 0.761 / 0.761 0.908 / 0.908 / 0.908

MeanOfTransportation 1132 / 65 0.623 / 0.628 / 0.647 0.585 / 0.587 / 0.590
Monument 263 / 53 0.848 / 0.848 / 0.848 0.915 / 0.915 / 0.916

MusicalWork∗ 0 / 355 0.244 / 0.257 / 0.354 0.163 / 0.174 / 0.247
Politician 1194 / 34 0.805 / 0.805 / 0.807 0.810 / 0.810 / 0.811
Scientist∗ 0 / 302 0.499 / 0.510 / 0.538 0.483 / 0.490 / 0.516

SportsTeam 782 / 51 0.689 / 0.691 / 0.696 0.856 / 0.856 / 0.862
University 406 / 107 0.636 / 0.640 / 0.674 0.627 / 0.629 / 0.659

WrittenWork 937 / 46 0.400 / 0.405 / 0.526 0.297 / 0.308 / 0.384

assign a unique ID sequence with a maximum value of 512. For the encoder input, we randomly drop228

15% of graph elements or tokens depending on the domain.229

G2T Results We compared our model with T5 [24], BART [19], and GAP [9]. Both T5 and230

BART are Transformer Encoder-Decoder models pre-trained on text data and fine-tuned with graph231

linearization [8], while GAP modifies the encoder of Transformer Encoder-Decoder model with232

graph-aware modules for extracting graph features [9]. It is noteworthy that all these models use a233

similar Transformer decoder. The main difference among TextGraphBART and these models is the234

way we represent and handle the text graph input.235

The result is shown in Table 2. In comparison to T5 and BART, our structure token method achieves236

better score with fewer parameters than graph linearization approach. Meanwhile, our model is237

comparable with GAP without modifying the Transformer model. As a conclusion, our structure238

token representations enabled the Transformer model to capture better features from the text graph239

than the graph linearization approach.240

T2G Results We compare our model with CycleGT [12, 5], BT5 [1], and Grapher [22]. BT5241

is T5 pre-trained and fine-tuned with graph linearization. On the other hand, both CycleGT and242

Grapher adopt the multi-stage approach. The CycleGT is a well-known multi-stage approach for243

text-to-graph generation using cycle training [12], while Grapher performs supervised learning with244

a special loss function [22]. Meanwhile, we use the officially released source code of Grapher1to245

train a Grapher-small (Text) which has a similar model size (95M) with our model (75M). Both246

Grapher-small and our TextGraphBART are trained for 100 epochs with the same learning rate and247

effective batch size.248

The result is shown in Table 3. In comparison to CycleGT and Grapher (Query), our simple generation249

method with structure tokens outperforms models with special training methods. Although our model250

does not directly match the performance of the large models like BT5 or Grapher (Text), our model is251

comparable with Grapher-small that has similar model size. Furthermore, we analyze the result by252

measuring the performance on each category of the WebNLG (2020) test set comparing to Grapher-253

small. The result is shown in Table 4. Even though Grapher-small is based on the T5-small pre-trained254

model, which is trained on an extremely large dataset of 750 GB: the Colossal Clean Crawled Corpus255

1https://github.com/IBM/Grapher

7

https://github.com/IBM/Grapher


Table 5: Ablation results of our structure embedding on WebNLG (2020) test set.
F1

(Strict / Exact / Partial)
TextGraphBART 0.555 / 0.570 / 0.602

w/o segment ID 0.547 / 0.562 / 0.595
w/o type 0.544 / 0.561 / 0.594
w/o head ID & tail ID 0.489 / 0.507 / 0.539
w/o token ID & previous ID 0.365 / 0.378 / 0.404

(C4) [24], we can see that our model performs slightly better than Grapher-small on unseen categories256

(0 samples in training set). In conclusion, our structure token approach can achieve comparable257

performance on text-to-graph generation under similar model size without using special training258

methods or loss functions.259

Ablation Study To investigate the performance contribution of the components of structure tokens,260

we conducted the ablation study on our structure embedding by fine-tuning our model with the261

removal of some parts of the embeddings. The model is trained on the WebNLG (2020) with the262

same setup. The results are shown in Table 5. In all ablations, the model performance was attenuated263

as expected. First, the ablation of the token ID and previous ID removes the text order information in264

the text labels hence the degeneration of performance. Similarly, the head ID and tail ID provide the265

connectivities of the graph. Removal of this embedding decreases the performance, indicating the266

importance of the connectivities. On the other hand, the ablation of type and segment ID are not as267

detrimental as others because the type and segment ID may be inferred from other IDs. Thus, our268

model is still able to perform albeit less performant. In conclusion, the ablation study showed that all269

of our structure embedding is important for good model performance.270

5 Discussion271

The primary objective of this work is to demonstrate the effectiveness of the proposed structure token272

approach. Due to resource constraints, there are numerous aspects remain unexplored.273

Scaling Up We believe that TextGraphBART has the potential to achieve better results when scaled274

up. The backbone of our model is simply the transformer model, like most of the other baselines.275

Meanwhile, we observed a clear improvement on other baselines when scaling up (e.g. comparing276

T5-Base and T5-Large for G2T in 2 and Grapher-small and Grapher for T2G in 3). Therefore, we277

anticipate that transformers on T2G and G2T follow the scaling laws.278

Model Architecture While we use The Transformer Encoder-Decoder model in our experiments,279

there are no strict restrictions on the model architecture as long as there are dot product attention280

operations. The same approach can be applied to encoder or decoder-only model.281

Data and Objective for Pre-Training In the experiments, we only use parallel datasets for pre-282

training. Since our pre-training scheme contains a T2T path, it’s possible to pre-train the model283

merely with plain-text datasets. On the other hand, we can also incorporate programming language284

datasets and use syntax parsers to generate the Abstract Syntax Tree (AST) as the text graph for285

pre-training. However, it is unclear how much the self-supervised objective and translation-like286

objective affect the downstream performances.287

6 Conclusions288

We present a novel approach to the problem of text graph generation leveraging the strength of289

Transformer models. Our exploration has led to an effective method for structured data representation290

and generation via structure tokens. In the structure token, we use several identifiers to indicate the291

connectivities of the graphs and the order of the texts. Then an embedding method for structure292

token is proposed, allowing the Transformer model to utilize the structural information. We show293

that the structure token approach can be used to represent and generate both texts and text graphs.294
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The experiment results demonstrated the effectiveness of our method with less data and parameters.295

Meanwhile, the ablation study further confirmed the importance of various elements of the structure296

tokens.297
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A Formal Definitions423

A.1 Preliminaries424

Let T be the set of all possible text tokens. A text label is defined as a set of pairs containing the text425

token and positions. We generalize this definition by replacing the position with a contiguous sequence426

of unique ID. Given an infinite unique ID sequence: I = (idi)
∞
i=0 where idi ∈ Z+∧idi ̸= idj if i ̸= j.427

Each idi is a positive integer. We also define id(i) = idi for simplicity. By picking a corresponding428

ID sequence, we can use any positive integer sequence as the positions. Then a text label S of429

length l is a set of token-ID pairs defined as: S = {(ti, idj+i) | 1 ≤ i ≤ l, ti ∈ T } ⊆ T × Z+.430

We can conditionally specify the start point j ∈ N with Sj . Let S be the set of all possible text431

labels and Sj for a specific start point. With the ID sequence I, the positions (p)lp=1 can be432

replaced with (idj+k)
l
k=1. Then we can union text labels without missing information by picking433

non-overlapped ID sequences, which is a desired property for the attention operation. A text434

graph G = (N ,A) is composed of a node set N with q nodes and an arc set A with r arcs.435

The node set N is a set of node labels paired with unique IDs of the nodes, defined as: N =436

{(Ni, ni) | 1 ≤ i ≤ q, ni ∈ Z+, Ni ∈ S} ⊆ S × Z+ where Ni is the node label and ni is the437

corresponding node ID. Similarly, an edge set E is a set of edge labels paired with unique IDs,438

defined as: E = {(Ei, ei) | 1 ≤ i ≤ r, ei ∈ Z+, Ei ∈ S} ⊆ S × Z+ where Ei is the edge label439

and ei is the edge ID. Notably, the ID used in N and E are disjoint. Then the arc set is defined as:440

A = {(Nh
i ,Ei,N

t
i) | 1 ≤ i ≤ r,Nh

i ,N
t
i ∈ N ,Ei ∈ E} ⊆ N × E × N where Ei is the edge and441

Nh
i , Nt

i is the head node and tail node, respectively.442
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A.2 Structure Tokens443

With the setup in A.1, the formal definition of the structure token representation is defined as a set444

of septuples (tuples with 7 elements). Given a text graph G = (N ,A) and its components: node445

Ni = (Ni, ni) ∈ N , 1 ≤ i ≤ |N |, arc Aj = ((Nh
j , n

h
j ), (Ej , ej), (N

t
j , n

t
j)) ∈ A, 1 ≤ j ≤ |A|,446

edge Ej ∈ E = {(Ej , ej) | 1 ≤ j ≤ |A|}, and the length of the text labels lNi = |Ni|, lEj = |Ej |,447

we define two sequences:448

LN = (LN
k )

|N|
k=1 where LN

k =

{
0, if k = 1

lNk−1 + LN
k−1, if k ̸= 1

LE = (LE
k )

|A|
k=1 where LE

k =

{∑|N|
k=1 l

N
k , if k = 1

lEk−1 + LE
k−1, if k ̸= 1

We assign ni = id(LN
i + 1), ej = id(LE

j + 1) and specify the start point of each text label such that449

Ni ∈ SLN
i , Ej ∈ SLE

j . By doing so, we can get the node (or edge) ID from the token IDs of its text450

label. For each node Ni and edge Ej , we define the corresponding structure token representation451

XN
i and XE

j as:452

XN
i = {(tk, 1, uidk, uidk−1, ni, ni, ni) |

1 ≤ k ≤ lNi , (tk, uidk) ∈ Ni, uid0 = id0}

XE
j = {(tk, 0, uidk, uidk−1, ej , n

h
j , n

t
j) |

1 ≤ k ≤ lEj , (tk, uidk) ∈ Ej , uid0 = id0}

(1)

Then the corresponding structure token representation G′ of the text graph G is defined as:453

G′ =

|N |⋃
k=1

XN
k ∪

|A|⋃
k=1

XE
k ∪XD

⊆ T × {0, 1} × Z+ × Z+ × Z+ × Z+ × Z+

(2)

where tD ∈ T , id0 is the ID of domain token and XD = {(tD, 1, id0, id0, id0, id0, id0)} is the454

domain token. Each septuple X ∈ G′ is a structure token containing the label, type, token ID,455

previous ID, segment ID, head ID, and tail ID. With this definition, we can represent every possible456

token ID assignment by specifying the unique ID sequence I. On the other hand, since the graph457

element can be randomly permuted, every possible ordering is also representable with our set G′ by458

picking the corresponding unique ID sequence.459

A.3 Structure Embedding460

To convert the structure tokens into embeddings, we use 3 kinds of transform functions. For label461

and type, we use the one-hot encoding, denoted as OneHotn : A → En where A is a set with n462

elements and En is the standard basis of Rn. On the other hand, each ID would first be converted463

into a d-dimensional orthonormal-like vector with a function Orthd. To get the orthonormal-like464

vectors, we modify and normalize the sinusoidal position encoding of Transformer [26] with different465

frequencies. The d-dimensional sinusoidal position encoding PEd at position i is defined as:466

PEd(i) =

d/2

∥
k=1

pe(i, k) ∈ Rd

pe(i, k) = sin(
i

10000k/d
)∥ cos( i

10000k/d
) ∈ R2

(3)

where ∥ denotes the vector concatenation. We generalize the definition of PEd with a frequency467

function f :468

PE∗
d{f}(i) =

d/2

∥
k=1

pe∗{f}(i, k) ∈ Rd

pe∗{f}(i, k) = sin(i ∗ f(k))∥ cos(i ∗ f(k)) ∈ R2

(4)

Then by taking f ′(k) = 10000−k/d, the original PEd can be defined with PEd = PE∗
d{f ′}. We469

use this generalized position encoding to define the function Orthd : Z+ → Rd of the IDs for our470
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Figure 5: Histogram of cos-similarities of 1024 vectors with different frequency functions. The
orange line is our Orth, while the blue line is the normalized sinusoidal position embedding. A
dimensionality of 512 is used in this figure.

orthonormal-like vectors as:471

Orthd = norm2 ◦ PE∗
d{− log(k)} (5)

where norm2 is the L2 normalization and ◦ denote the function composition. We find that by picking472

the frequency function − log(k), the generated vectors satisfied the desired properties. In Figure 5,473

we generate 1024 vectors by applying Orth on 1 ≤ i ≤ 1024 and compute the cosine similarity of474

every possible pair. We can see that the similarity values are mostly close to zero.475

Once we can convert the IDs into orthonormal-like vectors, we use Orthd directly as the transform476

functions for the graph-level identifiers. For text-level identifiers, we add the vector of token ID and477

previous ID together. Given two non-domain token a and b with token ID ta, tb and previous ID478

pa, pb, we have Orth(ta) · Orth(tb) ≈ 0 since token ID is unique and Orth is orthonormal-like.479

Meanwhile, we have pa ̸= pb for most tokens. The dot product value of a and b become:480

(Orth(ta) +Orth(pa)) · (Orth(tb) +Orth(pb))

= Orth(ta) ·Orth(tb) +Orth(ta) ·Orth(pb) +Orth(pa) ·Orth(tb) +Orth(pa) ·Orth(pb)

= Orth(ta) ·Orth(pb) +Orth(pa) ·Orth(tb) +Orth(pa) ·Orth(pb) + ε

=


Orth(ta) ·Orth(pb) + ε = 1 + ε, if a is the previous token of b
Orth(pa) ·Orth(tb) + ε = 1 + ε, if b is the previous token of a
Orth(id0) ·Orth(id0) + ε = 1 + ε, if both a and b are the first token of text label
ε, otherwise

(6)

where ε is a small value around 0. The value will only be meaningful in the dot product if one token481

is the previous token of the other. The case of first tokens is set to allow exchanging information with482

the domain token. This can be suppressed by making Orth(id0) = 0.483

With these designs, we define our structure token vectorize function V ec as:484

V ec(X) =

OneHot|T |(π1(X)) ∥ OneHot2(π2(X)) ∥ (Orthn(π3(X)) +Orthnπ4(X)))

∥ Orthn(π5(X)) ∥ Orthn(π6(X)) ∥ Orthn(π7(X)) ∈ R4n+|T |+2

(7)

where πi(X) denote the i-th element of the septuple X . The vectorized result will be fed into a train-485

able projection layer Emb : R4n+|T |+2 → Rd to get the structure embedding with d dimensions.486
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Question: Do the main claims made in the abstract and introduction accurately reflect the489

paper’s contributions and scope?490

Answer: [Yes]491

Justification: The proposed methods and results are described in the Method Section (Section492

3) and the Experiments and Results Section (Section 4).493

Guidelines:494

• The answer NA means that the abstract and introduction do not include the claims495

made in the paper.496

• The abstract and/or introduction should clearly state the claims made, including the497

contributions made in the paper and important assumptions and limitations. A No or498

NA answer to this question will not be perceived well by the reviewers.499
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals502

are not attained by the paper.503

2. Limitations504

Question: Does the paper discuss the limitations of the work performed by the authors?505

Answer: [Yes]506
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• The answer NA means that the paper has no limitation while the answer No means that509
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• The authors should reflect on the scope of the claims made, e.g., if the approach was517

only tested on a few datasets or with a few runs. In general, empirical results often518

depend on implicit assumptions, which should be articulated.519

• The authors should reflect on the factors that influence the performance of the approach.520

For example, a facial recognition algorithm may perform poorly when image resolution521

is low or images are taken in low lighting. Or a speech-to-text system might not be522

used reliably to provide closed captions for online lectures because it fails to handle523

technical jargon.524

• The authors should discuss the computational efficiency of the proposed algorithms525

and how they scale with dataset size.526

• If applicable, the authors should discuss possible limitations of their approach to527

address problems of privacy and fairness.528

• While the authors might fear that complete honesty about limitations might be used by529

reviewers as grounds for rejection, a worse outcome might be that reviewers discover530

limitations that aren’t acknowledged in the paper. The authors should use their best531

judgment and recognize that individual actions in favor of transparency play an impor-532

tant role in developing norms that preserve the integrity of the community. Reviewers533

will be specifically instructed to not penalize honesty concerning limitations.534

3. Theory Assumptions and Proofs535

Question: For each theoretical result, does the paper provide the full set of assumptions and536

a complete (and correct) proof?537

Answer: [NA]538
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Justification: This work does not introduce any new theoretical results539

Guidelines:540

• The answer NA means that the paper does not include theoretical results.541

• All the theorems, formulas, and proofs in the paper should be numbered and cross-542

referenced.543

• All assumptions should be clearly stated or referenced in the statement of any theorems.544

• The proofs can either appear in the main paper or the supplemental material, but if545

they appear in the supplemental material, the authors are encouraged to provide a short546

proof sketch to provide intuition.547

• Inversely, any informal proof provided in the core of the paper should be complemented548

by formal proofs provided in appendix or supplemental material.549

• Theorems and Lemmas that the proof relies upon should be properly referenced.550

4. Experimental Result Reproducibility551

Question: Does the paper fully disclose all the information needed to reproduce the main ex-552

perimental results of the paper to the extent that it affects the main claims and/or conclusions553

of the paper (regardless of whether the code and data are provided or not)?554

Answer: [Yes]555

Justification: The experiment setups are described in the Experiments and Results Section556

(Section 4) and code is also provided.557

Guidelines:558

• The answer NA means that the paper does not include experiments.559

• If the paper includes experiments, a No answer to this question will not be perceived560

well by the reviewers: Making the paper reproducible is important, regardless of561

whether the code and data are provided or not.562

• If the contribution is a dataset and/or model, the authors should describe the steps taken563

to make their results reproducible or verifiable.564

• Depending on the contribution, reproducibility can be accomplished in various ways.565

For example, if the contribution is a novel architecture, describing the architecture fully566

might suffice, or if the contribution is a specific model and empirical evaluation, it may567

be necessary to either make it possible for others to replicate the model with the same568

dataset, or provide access to the model. In general. releasing code and data is often569

one good way to accomplish this, but reproducibility can also be provided via detailed570

instructions for how to replicate the results, access to a hosted model (e.g., in the case571

of a large language model), releasing of a model checkpoint, or other means that are572

appropriate to the research performed.573

• While NeurIPS does not require releasing code, the conference does require all submis-574

sions to provide some reasonable avenue for reproducibility, which may depend on the575

nature of the contribution. For example576

(a) If the contribution is primarily a new algorithm, the paper should make it clear how577

to reproduce that algorithm.578

(b) If the contribution is primarily a new model architecture, the paper should describe579

the architecture clearly and fully.580

(c) If the contribution is a new model (e.g., a large language model), then there should581

either be a way to access this model for reproducing the results or a way to reproduce582

the model (e.g., with an open-source dataset or instructions for how to construct583

the dataset).584

(d) We recognize that reproducibility may be tricky in some cases, in which case585

authors are welcome to describe the particular way they provide for reproducibility.586

In the case of closed-source models, it may be that access to the model is limited in587

some way (e.g., to registered users), but it should be possible for other researchers588

to have some path to reproducing or verifying the results.589

5. Open access to data and code590

Question: Does the paper provide open access to the data and code, with sufficient instruc-591

tions to faithfully reproduce the main experimental results, as described in supplemental592

material?593
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Answer: [Yes]594

Justification: code is provided595

Guidelines:596

• The answer NA means that paper does not include experiments requiring code.597

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/598

public/guides/CodeSubmissionPolicy) for more details.599

• While we encourage the release of code and data, we understand that this might not be600

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not601

including code, unless this is central to the contribution (e.g., for a new open-source602

benchmark).603

• The instructions should contain the exact command and environment needed to run to604

reproduce the results. See the NeurIPS code and data submission guidelines (https:605

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.606

• The authors should provide instructions on data access and preparation, including how607

to access the raw data, preprocessed data, intermediate data, and generated data, etc.608

• The authors should provide scripts to reproduce all experimental results for the new609

proposed method and baselines. If only a subset of experiments are reproducible, they610

should state which ones are omitted from the script and why.611

• At submission time, to preserve anonymity, the authors should release anonymized612

versions (if applicable).613

• Providing as much information as possible in supplemental material (appended to the614

paper) is recommended, but including URLs to data and code is permitted.615

6. Experimental Setting/Details616

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-617

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the618

results?619

Answer: [Yes]620

Justification: The experiment setups are described in the Experiments and Results Section621

(Section 4)622

Guidelines:623

• The answer NA means that the paper does not include experiments.624

• The experimental setting should be presented in the core of the paper to a level of detail625

that is necessary to appreciate the results and make sense of them.626

• The full details can be provided either with the code, in appendix, or as supplemental627

material.628

7. Experiment Statistical Significance629

Question: Does the paper report error bars suitably and correctly defined or other appropriate630

information about the statistical significance of the experiments?631

Answer: [No]632

Justification: Due to resource constraints, we are unable to perform significance tests.633

Guidelines:634

• The answer NA means that the paper does not include experiments.635

• The authors should answer "Yes" if the results are accompanied by error bars, confi-636

dence intervals, or statistical significance tests, at least for the experiments that support637

the main claims of the paper.638

• The factors of variability that the error bars are capturing should be clearly stated (for639

example, train/test split, initialization, random drawing of some parameter, or overall640

run with given experimental conditions).641

• The method for calculating the error bars should be explained (closed form formula,642

call to a library function, bootstrap, etc.)643

• The assumptions made should be given (e.g., Normally distributed errors).644
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• It should be clear whether the error bar is the standard deviation or the standard error645

of the mean.646

• It is OK to report 1-sigma error bars, but one should state it. The authors should647

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis648

of Normality of errors is not verified.649

• For asymmetric distributions, the authors should be careful not to show in tables or650

figures symmetric error bars that would yield results that are out of range (e.g. negative651

error rates).652

• If error bars are reported in tables or plots, The authors should explain in the text how653

they were calculated and reference the corresponding figures or tables in the text.654

8. Experiments Compute Resources655

Question: For each experiment, does the paper provide sufficient information on the com-656

puter resources (type of compute workers, memory, time of execution) needed to reproduce657

the experiments?658

Answer: [Yes]659

Justification: The experiment setups are described in the Experiments and Results Section660

(Section 4)661

Guidelines:662

• The answer NA means that the paper does not include experiments.663

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,664

or cloud provider, including relevant memory and storage.665

• The paper should provide the amount of compute required for each of the individual666

experimental runs as well as estimate the total compute.667

• The paper should disclose whether the full research project required more compute668

than the experiments reported in the paper (e.g., preliminary or failed experiments that669

didn’t make it into the paper).670

9. Code Of Ethics671

Question: Does the research conducted in the paper conform, in every respect, with the672

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?673

Answer: [Yes]674

Justification: The content does not violate NeurIPS Code of Ethics675

Guidelines:676

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.677

• If the authors answer No, they should explain the special circumstances that require a678

deviation from the Code of Ethics.679

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-680

eration due to laws or regulations in their jurisdiction).681

10. Broader Impacts682

Question: Does the paper discuss both potential positive societal impacts and negative683

societal impacts of the work performed?684

Answer: [NA]685

Justification: The main result of this work is a new encoding method, which has no societal686

impact687

Guidelines:688

• The answer NA means that there is no societal impact of the work performed.689

• If the authors answer NA or No, they should explain why their work has no societal690

impact or why the paper does not address societal impact.691

• Examples of negative societal impacts include potential malicious or unintended uses692

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations693

(e.g., deployment of technologies that could make decisions that unfairly impact specific694

groups), privacy considerations, and security considerations.695
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• The conference expects that many papers will be foundational research and not tied696

to particular applications, let alone deployments. However, if there is a direct path to697

any negative applications, the authors should point it out. For example, it is legitimate698

to point out that an improvement in the quality of generative models could be used to699

generate deepfakes for disinformation. On the other hand, it is not needed to point out700

that a generic algorithm for optimizing neural networks could enable people to train701

models that generate Deepfakes faster.702

• The authors should consider possible harms that could arise when the technology is703

being used as intended and functioning correctly, harms that could arise when the704

technology is being used as intended but gives incorrect results, and harms following705

from (intentional or unintentional) misuse of the technology.706

• If there are negative societal impacts, the authors could also discuss possible mitigation707

strategies (e.g., gated release of models, providing defenses in addition to attacks,708

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from709

feedback over time, improving the efficiency and accessibility of ML).710

11. Safeguards711

Question: Does the paper describe safeguards that have been put in place for responsible712

release of data or models that have a high risk for misuse (e.g., pretrained language models,713

image generators, or scraped datasets)?714

Answer: [NA]715

Justification: All datasets used are publicly available open datasets.716

Guidelines:717

• The answer NA means that the paper poses no such risks.718

• Released models that have a high risk for misuse or dual-use should be released with719

necessary safeguards to allow for controlled use of the model, for example by requiring720

that users adhere to usage guidelines or restrictions to access the model or implementing721

safety filters.722

• Datasets that have been scraped from the Internet could pose safety risks. The authors723

should describe how they avoided releasing unsafe images.724

• We recognize that providing effective safeguards is challenging, and many papers do725

not require this, but we encourage authors to take this into account and make a best726

faith effort.727

12. Licenses for existing assets728

Question: Are the creators or original owners of assets (e.g., code, data, models), used in729

the paper, properly credited and are the license and terms of use explicitly mentioned and730

properly respected?731

Answer: [Yes]732

Justification: All dataset and code used are publicly available and cited.733

Guidelines:734

• The answer NA means that the paper does not use existing assets.735

• The authors should cite the original paper that produced the code package or dataset.736

• The authors should state which version of the asset is used and, if possible, include a737

URL.738

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.739

• For scraped data from a particular source (e.g., website), the copyright and terms of740

service of that source should be provided.741

• If assets are released, the license, copyright information, and terms of use in the742

package should be provided. For popular datasets, paperswithcode.com/datasets743

has curated licenses for some datasets. Their licensing guide can help determine the744

license of a dataset.745

• For existing datasets that are re-packaged, both the original license and the license of746

the derived asset (if it has changed) should be provided.747
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• If this information is not available online, the authors are encouraged to reach out to748

the asset’s creators.749

13. New Assets750

Question: Are new assets introduced in the paper well documented and is the documentation751

provided alongside the assets?752

Answer: [NA]753

Justification: This work does not release new assets754

Guidelines:755

• The answer NA means that the paper does not release new assets.756

• Researchers should communicate the details of the dataset/code/model as part of their757

submissions via structured templates. This includes details about training, license,758

limitations, etc.759

• The paper should discuss whether and how consent was obtained from people whose760

asset is used.761

• At submission time, remember to anonymize your assets (if applicable). You can either762

create an anonymized URL or include an anonymized zip file.763

14. Crowdsourcing and Research with Human Subjects764

Question: For crowdsourcing experiments and research with human subjects, does the paper765

include the full text of instructions given to participants and screenshots, if applicable, as766

well as details about compensation (if any)?767

Answer: [NA]768

Justification: This work does not involve crowdsourcing nor research with human subjects.769

Guidelines:770

• The answer NA means that the paper does not involve crowdsourcing nor research with771

human subjects.772

• Including this information in the supplemental material is fine, but if the main contribu-773

tion of the paper involves human subjects, then as much detail as possible should be774

included in the main paper.775

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,776

or other labor should be paid at least the minimum wage in the country of the data777

collector.778

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human779

Subjects780

Question: Does the paper describe potential risks incurred by study participants, whether781

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)782

approvals (or an equivalent approval/review based on the requirements of your country or783

institution) were obtained?784

Answer: [NA]785

Justification: This work does not involve crowdsourcing nor research with human subjects.786

Guidelines:787

• The answer NA means that the paper does not involve crowdsourcing nor research with788

human subjects.789

• Depending on the country in which research is conducted, IRB approval (or equivalent)790

may be required for any human subjects research. If you obtained IRB approval, you791

should clearly state this in the paper.792

• We recognize that the procedures for this may vary significantly between institutions793

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the794

guidelines for their institution.795

• For initial submissions, do not include any information that would break anonymity (if796

applicable), such as the institution conducting the review.797
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