
Reward Gaming in Conditional Text Generation

Anonymous ACL submission

Abstract

To align conditional text generation model out-001
puts with desired behaviors, there has been002
an increasing focus on training the model us-003
ing reinforcement learning (RL) with reward004
functions learned from human annotations. Un-005
der this framework, we identify three common006
cases where high rewards are incorrectly as-007
signed to undesirable patterns: noise-induced008
spurious correlation, naturally occurring spuri-009
ous correlation, and covariate shift. We show010
that even though learned metrics achieve high011
performance on the distribution of the data used012
to train the reward function, the undesirable pat-013
terns may be amplified during RL training of014
the text generation model. While there has been015
discussion about reward gaming in the RL or016
safety community, in this discussion piece, we017
would like to highlight reward gaming in the018
natural language generation (NLG) community019
using concrete conditional text generation ex-020
amples and discuss potential fixes and areas for021
future work.022

1 Introduction023

Natural language generation aims to automatically024

produce text that is fluent, relevant, and factual.025

To train text generators such that the outputs are026

aligned with desired behaviors, recent work has027

used rewards learned from human annotations,028

such as improving the quality of generated sum-029

maries by using learned saliency and faithfulness030

metrics (Pasunuru and Bansal, 2018) and by us-031

ing rewards based on learned question answering032

systems (Gunasekara et al., 2021); the recent Chat-033

GPT model also uses an approach in the same class.034

In general, this class of methods (1) collects a hu-035

man annotation dataset Dreward consisting of, e.g.,036

direct ratings of generations (Sellam et al., 2020;037

Nakatani et al., 2022; Ramamurthy et al., 2022),038

labels of error spans in the generations (Freitag039

et al., 2020; Amrhein and Sennrich, 2022), or pair-040

wise comparison of generations usually given the041

same source sequence (Stiennon et al., 2020; Wu 042

et al., 2021; Bai et al., 2022); (2) learns a proxy re- 043

ward function (as opposed to a true reward function 044

which may not be accessible in practice) that scores 045

generations using Dreward; and then (3) learns the 046

text generator on a dataset Dtask, using RL with the 047

learned reward function. 048

What could go wrong when we obtain the reward 049

signal from humans? The rewards would rarely be 050

robust. When training the text generator, the dis- 051

tribution induced by the policy (i.e., the generator) 052

changes because we frequently update it, which 053

opens up opportunities for exploiting errors in the 054

reward. Thus, even if the reward function performs 055

well as an evaluator on the dev/test split of Dreward, 056

the reward can still be gamed during RL training 057

of the generator. Reward gaming commonly refers 058

to the issue that when the proxy reward increases, 059

the true reward decreases or stays stable (Amodei 060

et al., 2016; Skalse et al., 2022). In this discussion 061

and in the context of NLP, we use “reward gaming” 062

to broadly refer to the phenomenon that as training 063

progresses, models produce incorrect generations 064

that exhibit undesirable patterns while converging 065

to high rewards. 066

Reward gaming can happen when an undesir- 067

able pattern is associated with a high reward in the 068

learned metric. We identify three ways this phe- 069

nomenon can happen. (1) A group of examples 070

is misannotated systematically. For instance, sup- 071

pose we train a model to do effective negotiation 072

and annotators carelessly label all long paragraphs 073

as effective, then the reward model would assign 074

high scores on long generations even if they are 075

nonsensical, and the generator would subsequently 076

exploit this pattern. (2) Dreward contains some bias 077

due to the data we select to annotate, or due to the 078

people we select to be annotators. An example in 079

the former case is that suppose every translation 080

that contains “united nations” happens to have 081

high quality/reward, possibly due to the way we 082

1



collect Dreward; then the neural machine translation083

model may end up almost always generating the084

phrase surrounded by some gibberish. An example085

in the latter case is that due to the selection bias086

of annotators, certain language varieties may be087

rated higher (or lower) by annotators, even if the088

language variety itself is not an indicator of qual-089

ity (Plank, 2016; Sap et al., 2019); subsequently,090

the generator could learn to favor generating sen-091

tences of certain language varieties over others. (3)092

Dreward does not cover certain groups of sentences.093

A quick example is that a dialogue agent trained094

to negotiate generates incomprehensible sentences,095

because those sentences are underspecified by the096

reward function (Lewis et al., 2017).097

In short, among these three cases, the first two098

cases induce spurious correlations between the un-099

desirable pattern and the reward, and the third case100

induces underspecified behavior on uncovered ex-101

amples.102

We use synthetic and real-world examples to il-103

lustrate the above three cases: even if the learned104

reward achieves a good performance on Dreward,105

high rewards can still be assigned to undesirable106

patterns, and these patterns get amplified during107

RL training of the generators. For instance, an ex-108

periment discussed later (§4.1) shows that even a109

reward function that gives the correct reward on110

99.3% of the test split of Dreward can lead to gener-111

ation failure.112

We also review potential fixes (§5), including re-113

stricting the policy – e.g., maximum likelihood reg-114

ularization which is commonly used in recent work115

including Stiennon et al. (2020) and Ramamurthy116

et al. (2022) – and fixing the reward itself like it-117

eratively collecting human annotations. In light of118

these observations, we would like to bring more119

attention to reward gaming in the natural language120

generation community. Leveraging learned met-121

rics during RL is a promising approach to training122

aligned text generation systems. But given that the123

rewards can only reliably improve generators if the124

sampled texts are within the distribution of Dreward,125

extra caution is needed when interpreting the re-126

sults when training text generators using learned127

rewards – quality control or manual inspection is128

required to ensure good generation quality.129

2 Related Work130

Reward gaming or similar ideas have been dis-131

cussed since Goodhart (1975). More recently, it is132

extensively discussed in Amodei et al. (2016). In 133

this discussion, we avoid the term “reward hacking” 134

because reward tampering (Everitt et al., 2021) – 135

actively changing the reward (e.g., by execution 136

of reward-modifying code under certain circum- 137

stances in a video game) is also reward hacking, 138

but it is not the topic of our discussion. 139

Many examples have demonstrated the reward 140

gaming behavior, usually in gameplay or au- 141

tonomous driving. For example, in a boat racing 142

game in Amodei et al., the boat would hit objects 143

in circles mid-way in the race instead of complet- 144

ing the race, because the reward increases faster 145

by hitting a certain set of objects than completing 146

the race; Baker et al. (2020) find that the reward 147

is gamed in a hide-and-seek game – one behav- 148

ior is that hiders can trap themselves using walls 149

and boxes so the seeker never reaches them; the re- 150

ward can be gamed in a tic-tac-toe game by making 151

specific moves to cause opponents’ out-of-memory 152

crash and lead them to forfeit (Lehman et al., 2020). 153

Similar reward gaming behaviors have been ob- 154

served in Atari games (Ibarz et al., 2018; Toro- 155

manoff et al., 2019), in code/program generation 156

(Lehman et al., 2020), in a football simulator (Ku- 157

rach et al., 2020), in a neuromusculoskeletal envi- 158

ronment where an agent learns to run (Kidziński 159

et al., 2018), and so on. 160

Reward gaming is rarely concretely discussed in 161

conditional text generation. A quick example by 162

Lewis et al. (2017) and Kenton et al. (2021) is that a 163

dialogue agent trained to do successful negotiation 164

ends up generating nonsensical sentences, because 165

those nonsensical generations are underspecified by 166

the reward function that is used to train the dialogue 167

model. 168

Recently, there have been two findings that indi- 169

cate the seriousness of reward gaming, albeit not 170

in the context of NLP. First, more capable models 171

may exacerbate reward gaming: Pan et al. (2022) 172

study the reward gaming problem using traffic con- 173

trol, COVID response, blood glucose monitoring, 174

and the River Raid game, by designing misaligned 175

proxy reward functions; they find that if an agent is 176

more capable (depending on, e.g., model size, the 177

number of training steps), then it is better at exploit- 178

ing loopholes in the reward function, and therefore 179

ends up with a lower true reward compared to a 180

less capable model. 181

More recently, Skalse et al. (2022) has suggested 182

a strict definition of the hackability of a pair of 183

2



reward functions, where “a pair” can be understood184

as an original reward and a proxy reward.1 They185

find that the pair of non-trivial unhackable reward186

functions does not exist theoretically. The question187

then becomes whether it is safe to use a proxy188

reward function empirically.189

In this discussion, we aim to demonstrate the190

effect of reward gaming in text generation using191

concrete examples. Here are the two main differ-192

ences of our discussion from the aforementioned193

examples: we focus on conditional text genera-194

tion, and we aim to investigate the reward gaming195

categories when the reward signal is learned from196

human annotations.197

3 Background198

Conditional text generation systems usually model199

p(y | x) where x = (x1, . . . , xTs) is a source200

sequence and y = (y1, . . . , yT ) is a target se-201

quence. Most models use an autoregressive factor-202

ization: log p(y | x) =
∑T

t=1 log pθ(yt | y<t,x),203

where y<t = (y1, . . . , yt−1), and pθ is parameter-204

ized with a neural network. Maximum likelihood205

estimation (MLE) leads to mismatched train/test206

history and objectives during sequence generation207

(Bengio et al., 2015; Huszár, 2015; Ranzato et al.,208

2016; Schmidt, 2019; Pang and He, 2021; Arora209

et al., 2022). In addition, recent work aims to bet-210

ter align training objectives with human-annotated211

quality of generated texts (e.g., translation qual-212

ity judgments, summarization faithfulness, human213

preference of generations).214

The generation process can be considered a se-215

quential decision making process suitable for RL.216

Given state st = (x,y<t), the policy πθ (i.e., pθ)217

takes action at (a token in the vocabulary), tran-218

sits to the next state st+1, and receives a reward219

rt ∈ R learned from human annotations. Assume220

discount factor γ = 1. To maximize the objec-221

tive J(θ) = Eτ∼πθ
R(x,y), where R(x,y) =222 ∑T

t=1 rt, one way is to use policy gradient (RE-223

INFORCE; Williams, 1992; Sutton et al., 1999):224

∇θJ(θ) = Eτ∼πθ

∑
t∇θ log πθ(at | st)Q̂(st, at),225

where Q̂(st, at) =
∑T

t′=t rt′ is the estimated re-226

turn. Our work uses REINFORCE with tricks of227

advantage estimation and value function fitting, in-228

troduced in the appendix. Recently, proximal pol-229

1In short, reward functions r1, r2 are hackable w.r.t. a
policy set and an environment, if there exist policies π, π′

such that J1(π) < J1(π
′) but J2(π) > J2(π

′) where Ji

denotes the expected return corresponding to reward function
ri. See Definition 1 in Skalse et al. (2022) for details.

icy optimization (PPO; Schulman et al., 2017) has 230

also been widely used. It aims to avoid reward 231

performance collapse, but we argue that the choice 232

of algorithm that makes generations achieve high 233

rewards is orthogonal to the issue that high rewards 234

can correspond to undesirable generations. 235

To stabilize RL training, in each RL training run, 236

we first initialize the model using an MLE-trained 237

model to ensure a good starting point for RL op- 238

timization. In addition, we also use KL regular- 239

ization which helps RL optimization (Jaques et al., 240

2019; Stiennon et al., 2020; Ramamurthy et al., 241

2022), so J(θ) = Eτ∼πθ
[R(x,y) − β[log πθ(y | 242

x) − log pMLE(y | x)]] where pMLE is the model 243

trained using standard MLE. To demonstrate re- 244

ward gaming behaviors, we tune β to achieve the 245

highest validation reward, unless explicitly men- 246

tioned. Larger β, but not too large, likely leads to 247

higher true reward (Gao et al., 2022), but β is hard- 248

to-tune. But in some examples (e.g., §4.3), even 249

large β does not eliminate undesirable behaviors. 250

We’ll discuss using ML regularization as a remedy 251

in §5. 252

4 Examples of Reward Gaming in 253

Conditional Text Generation 254

As a reminder, we consider the class of conditional 255

text generation learning algorithms where we: 256

(1) have a human annotation dataset Dreward; 257

(2) use this dataset to train a reward function fϕ 258

that scores generations; 259

(3) learn the text generator on a dataset Dtask, us- 260

ing RL with the learned reward function. 261

Reward gaming happens when some undesirable 262

pattern is associated with a high reward. We iden- 263

tify three such scenarios: 264

(1) spurious correlation due to annotation errors; 265

(2) naturally occurring spurious correlation; 266

(3) underspecified behavior in the reward function 267

due to covariate shift. 268

We use both synthetic and real-world tasks to 269

demonstrate the reward gaming behavior. The full 270

experimental details can be found in the appendix. 271

For synthetic tasks, we simulate all three set- 272

tings using the following framework. We adapt Su- 273

doku as a conditional text generation task. A valid 274

3



Sudoku is a 9x9 grid with each cell containing a275

number from 1 to 9, such that no rows/columns276

and none of each of the nine non-overlapping 3x3277

regions contains duplicates. For this task, let the278

input be the first k (k randomly chosen from 36 to279

80) cells in a valid Sudoku after flattening it row by280

row. Let the reference output be the rest of the cells281

(i.e., the last 81− k cells). The goal is to generate282

the continuation to form a valid Sudoku, given the283

prefix (i.e., first k cells). To measure generation284

quality, we define success rate to be the percentage285

of generations that result in valid Sudokus.286

While the sequence generator can be rule-based287

without using neural nets in this synthetic setting,288

to illustrate reward gaming, we consider learning289

the generator from a learned reward function.290

4.1 Noise-Induced Spurious Patterns291

We want to study settings where there is noise in292

human annotations. If we inject a small amount of293

high-reward but low-quality examples in Dreward,294

the reward function could put a high reward incor-295

rectly on these examples.296

Synthetic example: modified Sudoku. Dreward297

is a balanced dataset containing 500k positive and298

500k negative examples. Out of the 500k positive299

examples, 0.5k (0.05% of all examples) are false300

positives, i.e., invalid Sudokus. We simulate sys-301

tematic misannotation by enforcing all false pos-302

itives to end with 7, and no other examples end303

in 7.2 This design is intended to simulate system-304

atic errors in human annotation; e.g., a group of305

sentences on rare topics getting mislabeled.306

The reward is the probability of the Sudoku be-307

ing valid, estimated by classifier fϕ. fϕ, based on a308

tiny RoBERTa (§B.1), achieves 99.3% accuracy on309

the i.i.d. test split of Dreward. But it incorrectly pre-310

dicts all 1000 randomly sampled invalid Sudokus311

ending with 7 to be valid. This phenomenon is312

because the reward makes the wrong prediction on313

those examples, but they represent a small portion314

of the dataset used to train the reward.315

As a sanity check, a baseline generator trained316

by MLE on the 500k positive examples achieves a317

74.7% success rate in spite of the noise. However,318

the RL-trained generator produces a larger fraction319

(∼80%) of invalid generations that end in 7 despite320

2For positive examples, we first create a set of 2M valid
Sudokus, and then sample from the set. Many negative exam-
ples are small modifications of positive examples (§B.1) to
ensure a high-quality fϕ.

0 20000 40000

training step

0.70

0.75

0.80

0.85

m
ea

n 
re

w
ar

d

0 20000 40000

training step

60

65

70

75

80

85

90

%
 e

nd
in

g 
by

 7

Figure 1: Left: mean reward vs. training step. Right:
mean % of sampled sequences that end with 7 vs. train-
ing step. Each point corresponds to the mean value for a
bucket of 2,000 training steps. Soon after training starts,
the vast majority of sequences would end with 7; the
% of valid continuations is always <15%. Two lines
correspond to two runs (see §A).

achieving a high reward. Figure 1 shows that the 321

reward increases to above 0.8 (a large reward given 322

the range [0, 1]), and the amount of Sudokus ending 323

with 7 oscillates around 80%; however, only 0.1% 324

of the actual correct reference generations end with 325

7. Additionally, given a reward of 0.85 in the figure, 326

we would expect around 85% of generations to 327

be valid; however, only the porportion of valid 328

generations turn out to be always smaller than 15% 329

throughout training. 330

In short, in this specific example, even 0.05% of 331

noise in Dreward could lead to generation failure. 332

Experimental details for the above example. 333

The RoBERTa-tiny-based (Liu et al., 2019) re- 334

ward function has 4 encoder layers and 2 atten- 335

tion heads; the encoder embedding dimension is 336

64, and the dimension for FFN for 256. For 337

the sequence generator, we use a smaller version 338

of the transformer_iwslt_de_en architecture in 339

fairseq (Ott et al., 2019). The encoder embedding 340

dimension and the decoder embedding dimension 341

are both 32. We use 2 attention heads in both the 342

encoder and the decoder. The dimension for FFN 343

in both the encoder and the decoder is 64. There 344

are 2 encoder layers and 2 decoder layers. Please 345

refer to the appendix for more details. 346

4.2 Naturally Occurring Spurious Patterns 347

The spurious correlation is not necessarily noise- 348

induced but can be naturally occurring. Due to 349

the selection bias of annotators, certain language 350

varieties may be preferred over others (Plank, 351

2016; Sap et al., 2019; Korbak et al., 2022), al- 352

though language varieties do not indicate quality in 353

many tasks. In addition, due to the selection bias 354

4



of examples that are annotated, some attributes355

that are irrelevant to the quality get correlated356

with the reward (Wiegreffe and Marasovic, 2021;357

Pezeshkpour et al., 2022). If high rewards are as-358

signed to these spurious patterns (e.g., generation359

length, specific proper nouns in the generation, cer-360

tain language variety over others), text generation361

models may exploit them.362

correct incorrect

repeat 0 (n/a) 13,053 (0.670)
no repeat 9,638 (0.999) 123,645 (0.983)

Table 1: Contingency table for the first 1500 training
steps. Correct: the generation is valid; repeat: there is
repetition in the last nine numbers of the output. Inside
the parentheses: average reward. Most continuations are
unrepetitive; they have high rewards but most (92.8%)
are incorrect.

Synthetic example: Sudoku revisited. Dreward363

is dataset with 200k randomly sampled valid Su-364

dokus as positive examples and 200k randomly365

sampled invalid Sudokus as negative examples. Us-366

ing this dataset, we simulate the setting where a367

simple feature (the feature that “the last nine num-368

bers of the output do not repeat”) is predictive of369

the reward (validity) on a biased Dreward. Repeti-370

tions co-occur with 99.9% of negative examples,371

and therefore the repetition is a highly predictive372

feature of the reward.373

The reward function, fϕ, achieves 99.9% accu-374

racy on the test split of Dreward. We then train the375

conditional text generation model using RL where376

fϕ is the reward.377

Table 1 shows that when training the text gener-378

ator, the model exploits the non-repetition pattern379

that leads to high reward, but the vast majority of380

such sequences (92.8%) are in fact incorrect.381

Real-world example: machine translation (MT)382

using dense reward. The WMT MQM dataset383

(Freitag et al., 2021a) is a high-quality human an-384

notation dataset on translations, where each Zh-En385

translation is annotated with ≤ 5 most serious error386

spans by expert annotators according to the MQM387

metric (Lommel et al., 2014). Each of the ≤ 5 spans388

is annotated with no error, minor error, or major389

error. For Dreward, an example annotation is as fol-390

lows: “state-owned enterprises and <major>391

advantageous </major> private enterprises392

entered the <major> revolutionary base393

0 2000

training step

2.2

2.0

1.8

m
ea

n 
re

w
ar

d

0 2000

training step

90

92

94

96

98

100

%
 ..

. w
/ r

ew
ar

d 
1

0 2000

training step

0

20

40

60

80

%
 g

en
er

at
io

ns
 w

/ '
...

'

Figure 2: Left: mean sequence reward vs. training step.
Middle: mean reward of “...” vs. training step. Right:
mean % of sampled sequences that contain “...” vs.
training step. During training, total (seq-level) reward
increases; reward for “...” is always close to one; % of
sampled generations that contain “...” increases to >3/4.

area </major> <major> of </major> <minor> 394

south ji@@ ang@@ xi </minor> .” Major er- 395

rors are between the “major” tags, and minor errors 396

are between the “minor” tags. The source sen- 397

tences of MQM annotations come from WMT Chi- 398

nese to English (Zh-En) sets newstest2020 and 399

newstest2021 (Mathur et al., 2020; Barrault et al., 400

2020; Akhbardeh et al., 2021), as well as TED talks 401

from WMT2021 (Freitag et al., 2021b). Transla- 402

tions are collected from participating systems in 403

the WMT shared tasks. Human-written references 404

are also integrated into the annotation set. 405

We aim to learn a metric that judges the quality 406

of each word and then train an MT model given the 407

learned metric. fϕ is a scorer that predicts whether 408

each token in a given translation is in a no-error 409

span. Let the reward rt be the score that fϕ outputs 410

at time-step t. Our key observation is that certain 411

tokens are spuriously correlated with no-error an- 412

notations in the dataset. The ellipses punctuation 413

(“...”) is one of them: experts annotated 98.3% of 414

the occurrences as no-error. 415

Figure 2 shows that during RL training of the 416

MT model on WMT19 Zh-En, as training goes 417

on, the percentage of translations with ellipses in- 418

creases and the ellipses achieve high rewards. Such 419

patterns, however, are undesirable. 420

In fact, in other training runs of fϕ and MT 421

model, we found other tokens that are spuriously 422

correlated with the reward (including “conduct” – 423

the token “conduct” has a high reward, but it intro- 424

duces disfluency in the sentence).3 425

3Example generation 1: the 66 countries and regions
have been able to conduct the evidence in the
dissemination of the virus in 2015 . Example gener-
ation 2: the some parents have been able to conduct
the campaign day and the some comments on this
matter and the many persons have been able to
conduct attention . The MT model integrates “conduct”

5



Experimental details on the above examples.426

For the Sudoku experiment, the hyperparameters427

are selected from the same sets as in §4.1. For428

the MT experiment, to train the classifier fϕ, the429

model is initialized by a WMT19 Zh-En MLE-430

trained model. Then, the source sentence is fed431

into the encoder, and the target sentence is fed into432

the decoder. However, we remove the attention433

mask in the decoder that prevents hidden states434

at token t from seeing future hidden states. The435

reward rt is the probability that the t-th token is436

erroneous, according to fϕ. For Dtask, our trans-437

lation task uses the WMT19 Zh-En dataset, and438

fϕ is fine-tuned from an MLE-trained MT check-439

point using the WMT19 Zh-En dataset. We use440

a transformer model with 6 encoder layers and 6441

decoder layers. The number of attention heads is442

8 in both the encoder and the decoder. The FFN443

embedding dimension is 2048 in both the encoder444

and the decoder.445

4.3 Covariate Shift446

During RL training, the policy (i.e., the genera-447

tor) may sample examples out of the support of448

the reward model. Therefore, in these examples,449

the reward model’s behavior is underspecified – it450

may (or may not) assign high rewards to these low-451

quality examples.452

Synthetic example: another Sudoku variant.453

Dreward contains 200k positive and 200k negative454

examples.4 We design Dreward in such a way that455

the model behavior would be undefined for certain456

inputs. All examples end with 1; continuations that457

end with 2–9, are not in the support on the data458

used to train the reward function fϕ.459

fϕ achieves 96.5% accuracy on the test split of460

Dreward. We sample 1000 in-support (i.e., ending461

with 1) and 1000 out-of-support (i.e., ending with462

2–9) invalid Sudokus. The model only misclassifies463

1 out of 1000 example as valid on the in-support464

set; in contrast, 659 out of 1000 examples are mis-465

classified as valid on the out-of-support set.466

During RL training of the conditional text gen-467

eration model, the reward for sampled generations468

increases above 0.8 – we expect the reward to im-469

ply that more than 80% continuations are estimated470

to be valid by the reward; however, only <10% of471

the continuations are actually valid.472

in the generations but the use of “conduct” is incorrect and
nonsensical.

4Negative examples are obtained by swapping two differ-
ent tokens of a positive example 1–20 times.

0 20000 40000

training step

0.325

0.350

0.375

0.400

0.425

0.450

m
ea

n 
B

LE
U

R
T

=0.03
=0.03
=0.05
=0.1

0 20000 40000

training step

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n 
re

p

=0.03
=0.03
=0.05
=0.1

Figure 3: Left: mean BLEURT vs. training step. Right:
mean rep vs. training step. Each point corresponds to
the mean value for a bucket of 3,000 training steps. Each
bucket contains ≥140 translations whose source sen-
tences are longer than 180 tokens. We see that BLEURT
increases during RL training; rep increases as well. rep
for reference translations (whose source length >180)
is 0.12, much smaller than achieved in our experiments.
93% of translations has rep <0.2. The two runs with
β = 0.03 use different baselines (see §A). Repetition is
a problem even for large β.

Real-world example 1: AgreeSum. One sim- 473

ple example reproduces the multi-doc AgreeSum 474

summarization (Pang et al., 2021b). The input of 475

the task is a cluster of articles, and the expected 476

output is a summary that is faithful to every article 477

in the cluster. We consider Dreward that consists of 478

faithfulness annotations on article-summary pairs 479

provided by the AgreeSum paper. The reward func- 480

tion fϕ is a summary-article faithfulness classifier. 481

fϕ achieves 79% dev accuracy, which we use as the 482

reward. However, the shortest summary in Dreward 483

is 7-token-long, so the behavior of the reward for 484

shorter summaries is underspecified. Training a 485

summarizer using the faithfulness classifier as the 486

reward leads to short summaries – most of which 487

(>90%) are ≤ 2 tokens. Even though these near- 488

empty summaries can be technically considered as 489

being entailed in the article, we have not specified 490

in Dreward that these summaries are acceptable. 491

Real-world example 2: MT using BLEURT. 492

BLEURT (Sellam et al., 2020) is a metric trained 493

on expert annotations provided by WMT metric 494

tasks. We train a text generator by RL using 495

BLEURT-20-D3, a distilled version of BLEURT- 496

20. BLEURT is trained on very few repetitive gen- 497

erations. WMT15–19 human rating data (Stanoje- 498

vić et al., 2015; Bojar et al., 2016, 2017; Ma et al., 499

2018, 2019) are used to train BLEURT. We use 500

BLEURT to train a MT model on the IWSLT14 501

De-En task (Cettolo et al., 2014). MLE-trained 502

model achieves 63.9 in BLEURT on test set and 503

6



RL-trained model achieves 65.5, so RL is success-504

ful judging by the increase in BLEURT.505

Repetitive translations are out-of-support in our506

case, where repetition is measured by rep defined507

to be the percentage of 3-grams that have appeared508

in the same translation before.5 In fact, only 0.02%509

(58/247,157) translations have rep >0.4 and 0.05%510

translations have rep > 0.3 in Dreward. In this ex-511

ample, we only analyze examples where the source512

sentence is >180 BPE-tokens.513

We find that BLEURT does not punish for exces-514

sive repetition in the samples during RL: average515

BLEURT for translations with rep >0.4 (>40% of516

3-grams are repetitions – an example is shown in517

the footnote to demonstrate that 40% is an undesir-518

ably large proportion)6 in the first 45,000 steps of519

training7 is 42.7, and average BLEURT for trans-520

lations with rep <0.2 is 42.3.8 So the reward does521

not discourage the MT model from generating rep-522

etitions.523

Next, we show in Figure 3 that as training goes524

on, translations get more and more repetitive as525

BLEURT increases. To summarize, given that526

repetitive translations are rare in Dtext, the reward527

is underspecified on them. This repetition pattern528

is not discouraged by the reward, and thus it is529

subsequently exploited by the MT model.530

Experimental details for the above examples.531

For AgreeSum, given URLs in the original dataset,532

to find the corresponding articles, we use the533

newspaper3k library. The reward function (classi-534

fier) is based on RoBERTa-large. The summarizer535

is based on BART-large (Lewis et al., 2020). For536

the MT experiment, the MT model has an embed-537

ding dimension of 512 for both the encoder and the538

decoder. The FFN embedding dimension is 1024539

for both the encoder and the decoder. Both the en-540

5We present an example of computing the metrics rep.
The sentence ‘a b c e d c e d c d’ has rep = 2/5 = 40%,
given that among ‘e d c,’ ‘d c e,’ ‘c e d,’ ‘e d c,’ ‘d c d,’ two
3-grams are the same with the existing ones.

6As an example, the following sentence has rep = 0.397:
pip was adopted from "great expectations; superman
was a foster child; and the azbeth salander," the
girl with the dragon tattoo, "was a foster child
and a pure man; lyra belacqua from philip pullman,"
and a foster child, jane eyre, adopted, and roald’s
james, and the great, and he was a parent, and a
parent, and then, "and then, you know," and then,
"and then, you know," and then, "and, you know,"
the "– and, you know," the "– and, you know," the
"the" – and "you know," the "

7Using β = 0.05 which leads to the best dev BLEURT.
80.2 is an acceptable threshold, given that 93% of transla-

tions whose source sentence length >180 have rep <0.2.

coder and the decoder have 4 attention heads and 6 541

layers. More details can be found in the appendix. 542

5 Possible Remedies 543

As discussed in §2, Skalse et al. (2022) has sug- 544

gested that a pair of unhackable nontrivial original- 545

proxy reward functions do not exist in theory. Then, 546

when is it safe to use the proxy reward function? 547

While this is still an open question, it is possible 548

to reduce the extent of generating undesirable sen- 549

tences through the following approaches. 550

The fundamental problem is that errors in the 551

reward functions, specifically the over-confident er- 552

rors where low-quality outputs have high rewards, 553

can be exploited during RL training of text genera- 554

tors. Thus, one solution is to avoid OOD states that 555

incur such errors by restricting the policy. 556

Restricting the policy by regularizing toward 557

the ML solution. A common strategy is to regu- 558

larize toward the ML solution. In practice, we can 559

interpolate RL and ML losses (Wu et al., 2016), 560

interleave RL and ML updates (Lewis et al., 2017; 561

Guo et al., 2018), or use KL-regularized RL (Jaques 562

et al., 2019; Stiennon et al., 2020; Ramamurthy 563

et al., 2022).9 564

Here are a few potential issues. First, RL ex- 565

ploration could be important in case the reference 566

dataset is small, and consequently, the ML solu- 567

tion is sub-optimal. For example, in AgreeSum, 568

there are not enough reference summaries due to 569

data collection costs, but given a decent article- 570

summary faithfulness classifier, we can discover 571

new summaries that have high rewards. Similarly, 572

in creative generation tasks like story generation 573

and textual style transfer, or in code generation, 574

there may not be a large enough high-quality ref- 575

erence dataset, but a reward function is often avail- 576

able. Second, ML solution may not be optimal 577

even with an adequately large reference dataset; 578

e.g., degeneracies like unreasonably short transla- 579

tions (Stahlberg and Byrne, 2019; Kulikov et al., 580

9Korbak et al. (2022) argue that KL-regularization is
needed, because naïve RL would result in distributional col-
lapse. They argue that RL is not the right framework for fine-
tuning language models because of this reason, and we should
look at Bayesian inference instead. But we argue that diversity
(i.e., the ability to produce many different good generations)
is not necessary in many conditional text generation tasks (as
opposed to language modeling – unconditional generation). A
perfect reward, even if resulting in less diverse generations,
would still lead to good generations for tasks like MT. Thus,
distributional collapse is not the problem, but reward gaming
(which sometimes leads to collapse on undesirable cases) is,
and the KL term is a potential remedy.

7



2021) and repetitive generations (Welleck et al.,581

2020b,a; Chiang and Chen, 2021) may often have582

high probabilities. Third, By relying on ML, we583

are optimizing toward a different objective; thus,584

we may need to find another automatic evaluator585

(instead of the proxy reward) to do hyperparameter586

tuning and model selection. Additionally, Gao et al.587

(2022) has discovered that larger coefficients for588

the KL penalty (for ML regularization) does not589

improve the frontier of the curve of the gold reward590

model score vs. KL divergence between the an591

RL-optimized model and the ML model.10592

Restricting the policy by leveraging a discrim-593

inator. Following Goodfellow et al. (2014) and594

Pang et al. (2021b), another idea similar to ML-595

regularization is to leverage a discriminator that596

distinguishes between sampled generations and the597

set of dataset-provided generations.11 During RL598

training, we force the model to produce genera-599

tions that are indistinguishable from references ac-600

cording to the discriminator. Discriminator and601

RL updates are interleaved. It is difficult to use602

GAN to train a high-quality text generator, but we603

hypothesize that the discriminator can reduce easy-604

to-identify examples during RL training.605

Fixing the reward itself. Another thread of reme-606

dies is to fix the reward itself. An effective ap-607

proach is to iteratively collect human annotations608

(Stiennon et al., 2020; Bai et al., 2022; Fan et al.,609

2022): the reward is iteratively updated with hu-610

man annotations on latest model generations; thus,611

the generations with low human preferences but612

high rewards will be corrected through this itera-613

tive process. One concern is the cost, which may614

prohibit an adequate amount of iterations or ade-615

quately frequent iterations. Krakovna et al. (2020)616

has discussed the possibility that a machine can617

learn to fool human evaluators in robotics, but it618

is unclear what the equivalence in conditional text619

generation is. So far, this approach has been suc-620

cessful, with the critical assumption that there is621

little budget/resource constraint to obtain enough622

annotations and enough iterations of annotations.623

More discussion. An additional method in the624

RL literature is conservative Q learning (Kumar625

et al., 2020); it aims to push down all high rewards626

10See Figure 9 of Gao et al. (2022).
11The discriminator predicts whether the generation is

machine-generated or comes from the set of references. This
technique is useful when there are only few parallel datapoints.

to ensure that the out-of-distribution states do not 627

achieve high Q values, but the approach requires ex- 628

tensive hyperparameter tuning (Zheng et al., 2022). 629

Another possibility to avoid the reward gaming is- 630

sue is to avoid interaction with the environment, 631

using methods like Pang and He (2021) to learn 632

from demonstrations, so the errors in the reward 633

function will be less exploited. 634

6 Conclusion 635

To conclude, we use synthetic and real-world 636

tasks to demonstrate that even if a learned reward 637

achieves high performance on Dreward, a high re- 638

ward may still get assigned to undesirable patterns 639

which get amplified during RL training of the con- 640

ditional text generation model. A critical future 641

direction is to investigate when or how easily a 642

spurious feature could be exploited, by exploring 643

the relationship among the minimum description 644

length of a spurious feature (Voita and Titov, 2020) 645

or similar statistics, the proportion of datapoints 646

that contains the spurious feature, the choice of RL 647

algorithm, and the degree of the reward gaming 648

behavior. Additionally, further research on anti- 649

gaming approaches is needed to fulfill the potential 650

of training text generators by learned rewards. 651

Limitations 652

First, off-policy algorithms like Q learning are not 653

explored in this discussion. Second, the reward 654

gaming issue is not a novel topic in the RL commu- 655

nity for tasks like gameplay or autonomous driving 656

(Amodei et al., 2016; Koch et al., 2022). However, 657

we hope to highlight issues in the NLG community 658

especially given the recent endeavors on learning 659

from learned metrics. In addition, the paper aims 660

to demonstrate the existence of reward gaming in 661

conditional text generation, not the certainty re- 662

gardless of experimental settings (hyperparameters, 663

architectures, etc.). Given that our experiments use 664

reasonable settings which lead to degenerate texts, 665

we argue that reward gaming could be a common 666

issue when learning a text generation model us- 667

ing RL based on learned rewards, and the issue 668

deserves attention from researchers and practition- 669

ers. We leave it to future work to investigate the 670

easiness of reward gaming in practice, which is 671

missing in this work. 672

8



References673

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-674
dalena Biesialska, Ondřej Bojar, Rajen Chatter-675
jee, Vishrav Chaudhary, Marta R. Costa-jussa,676
Cristina España-Bonet, Angela Fan, Christian Fe-677
dermann, Markus Freitag, Yvette Graham, Ro-678
man Grundkiewicz, Barry Haddow, Leonie Harter,679
Kenneth Heafield, Christopher Homan, Matthias680
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai,681
Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp682
Koehn, Nicholas Lourie, Christof Monz, Makoto683
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki684
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au-685
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar-686
cos Zampieri. 2021. Findings of the 2021 conference687
on machine translation (WMT21). In Proceedings of688
the Sixth Conference on Machine Translation, pages689
1–88, Online. Association for Computational Linguis-690
tics.691

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul692
Christiano, John Schulman, and Dan Mané. 2016.693
Concrete problems in AI safety. arXiv preprint694
arXiv:1606.06565.695

Chantal Amrhein and Rico Sennrich. 2022. Identifying696
weaknesses in machine translation metrics through697
minimum bayes risk decoding: A case study for698
comet. arXiv preprint arXiv:2202.05148.699

Kushal Arora, Layla El Asri, Hareesh Bahuleyan, and700
Jackie Cheung. 2022. Why exposure bias matters:701
An imitation learning perspective of error accumu-702
lation in language generation. In Findings of the703
Association for Computational Linguistics: ACL704
2022, pages 700–710, Dublin, Ireland. Association705
for Computational Linguistics.706

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda707
Askell, Anna Chen, Nova DasSarma, Dawn Drain,708
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.709
2022. Training a helpful and harmless assistant with710
reinforcement learning from human feedback. arXiv711
preprint arXiv:2204.05862.712

Bowen Baker, Ingmar Kanitscheider, Todor Markov,713
Yi Wu, Glenn Powell, Bob McGrew, and Igor Mor-714
datch. 2020. Emergent tool use from multi-agent715
autocurricula. In International Conference on Learn-716
ing Representations.717

Loïc Barrault, Magdalena Biesialska, Ondřej Bo-718
jar, Marta R. Costa-jussà, Christian Federmann,719
Yvette Graham, Roman Grundkiewicz, Barry Had-720
dow, Matthias Huck, Eric Joanis, Tom Kocmi,721
Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof722
Monz, Makoto Morishita, Masaaki Nagata, Toshi-723
aki Nakazawa, Santanu Pal, Matt Post, and Marcos724
Zampieri. 2020. Findings of the 2020 conference on725
machine translation (WMT20). In Proceedings of726
the Fifth Conference on Machine Translation, pages727
1–55, Online. Association for Computational Linguis-728
tics.729

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam 730
Shazeer. 2015. Scheduled sampling for sequence 731
prediction with recurrent neural networks. In Ad- 732
vances in Neural Information Processing Systems, 733
pages 1171–1179. 734

Ondřej Bojar, Yvette Graham, and Amir Kamran. 2017. 735
Results of the WMT17 metrics shared task. In Pro- 736
ceedings of the Second Conference on Machine Trans- 737
lation, pages 489–513, Copenhagen, Denmark. Asso- 738
ciation for Computational Linguistics. 739

Ondřej Bojar, Yvette Graham, Amir Kamran, and Miloš 740
Stanojević. 2016. Results of the WMT16 metrics 741
shared task. In Proceedings of the First Conference 742
on Machine Translation: Volume 2, Shared Task Pa- 743
pers, pages 199–231, Berlin, Germany. Association 744
for Computational Linguistics. 745

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa 746
Bentivogli, and Marcello Federico. 2014. Report 747
on the 11th IWSLT evaluation campaign. In Pro- 748
ceedings of the International Workshop on Spoken 749
Language Translation, volume 57, Hanoi, Vietnam. 750

Ting-Rui Chiang and Yun-Nung Chen. 2021. Relating 751
neural text degeneration to exposure bias. In Pro- 752
ceedings of the Fourth BlackboxNLP Workshop on 753
Analyzing and Interpreting Neural Networks for NLP, 754
pages 228–239, Punta Cana, Dominican Republic. 755
Association for Computational Linguistics. 756

Tom Everitt, Marcus Hutter, Ramana Kumar, and Victo- 757
ria Krakovna. 2021. Reward tampering problems and 758
solutions in reinforcement learning: A causal influ- 759
ence diagram perspective. Synthese, 198(27):6435– 760
6467. 761

Xiang Fan, Yiwei Lyu, Paul Pu Liang, Ruslan Salakhut- 762
dinov, and Louis-Philippe Morency. 2022. Nano: 763
Nested human-in-the-loop reward learning for few- 764
shot language model control. arXiv preprint 765
arXiv:2211.05750. 766

Markus Freitag, George Foster, David Grangier, and 767
Colin Cherry. 2020. Human-paraphrased references 768
improve neural machine translation. In Proceed- 769
ings of the Fifth Conference on Machine Translation, 770
pages 1183–1192, Online. Association for Computa- 771
tional Linguistics. 772

Markus Freitag, George Foster, David Grangier, Viresh 773
Ratnakar, Qijun Tan, and Wolfgang Macherey. 2021a. 774
Experts, errors, and context: A large-scale study of 775
human evaluation for machine translation. Transac- 776
tions of the Association for Computational Linguis- 777
tics, 9:1460–1474. 778

Markus Freitag, Ricardo Rei, Nitika Mathur, Chi-kiu Lo, 779
Craig Stewart, George Foster, Alon Lavie, and Ondřej 780
Bojar. 2021b. Results of the WMT21 metrics shared 781
task: Evaluating metrics with expert-based human 782
evaluations on TED and news domain. In Proceed- 783
ings of the Sixth Conference on Machine Translation, 784
pages 733–774, Online. Association for Computa- 785
tional Linguistics. 786

9

https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/2021.wmt-1.1
https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://doi.org/10.18653/v1/2022.findings-acl.58
https://openreview.net/forum?id=SkxpxJBKwS
https://openreview.net/forum?id=SkxpxJBKwS
https://openreview.net/forum?id=SkxpxJBKwS
https://aclanthology.org/2020.wmt-1.1
https://aclanthology.org/2020.wmt-1.1
https://aclanthology.org/2020.wmt-1.1
https://doi.org/10.18653/v1/W17-4755
https://doi.org/10.18653/v1/W16-2302
https://doi.org/10.18653/v1/W16-2302
https://doi.org/10.18653/v1/W16-2302
https://doi.org/10.18653/v1/2021.blackboxnlp-1.16
https://doi.org/10.18653/v1/2021.blackboxnlp-1.16
https://doi.org/10.18653/v1/2021.blackboxnlp-1.16
https://aclanthology.org/2020.wmt-1.140
https://aclanthology.org/2020.wmt-1.140
https://aclanthology.org/2020.wmt-1.140
https://doi.org/10.1162/tacl_a_00437
https://doi.org/10.1162/tacl_a_00437
https://doi.org/10.1162/tacl_a_00437
https://aclanthology.org/2021.wmt-1.73
https://aclanthology.org/2021.wmt-1.73
https://aclanthology.org/2021.wmt-1.73
https://aclanthology.org/2021.wmt-1.73
https://aclanthology.org/2021.wmt-1.73


Leo Gao, John Schulman, and Jacob Hilton. 2022. Scal-787
ing laws for reward model overoptimization. arXiv788
preprint arXiv:2210.10760.789

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,790
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron791
Courville, and Yoshua Bengio. 2014. Generative792
adversarial nets. Advances in Neural Information793
Processing Systems, 27.794

Charles Goodhart. 1975. Problems of monetary man-795
agement: the UK experience in papers in monetary796
economics. Monetary Economics, 1.797

Chulaka Gunasekara, Guy Feigenblat, Benjamin Sz-798
najder, Ranit Aharonov, and Sachindra Joshi. 2021.799
Using question answering rewards to improve ab-800
stractive summarization. In Findings of the Associ-801
ation for Computational Linguistics: EMNLP 2021,802
pages 518–526, Punta Cana, Dominican Republic.803
Association for Computational Linguistics.804

Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu,805
and Jun Wang. 2018. Long text generation via adver-806
sarial training with leaked information. Proceedings807
of the AAAI Conference on Artificial Intelligence,808
32(1).809

Ferenc Huszár. 2015. How (not) to train your generative810
model: Scheduled sampling, likelihood, adversary?811
arXiv preprint arXiv:1511.05101.812

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving,813
Shane Legg, and Dario Amodei. 2018. Reward learn-814
ing from human preferences and demonstrations in815
atari. Advances in Neural Information Processing816
Systems, 31.817

Natasha Jaques, Asma Ghandeharioun, Judy Hanwen818
Shen, Craig Ferguson, Agata Lapedriza, Noah Jones,819
Shixiang Gu, and Rosalind Picard. 2019. Way820
off-policy batch deep reinforcement learning of im-821
plicit human preferences in dialog. arXiv preprint822
arXiv:1907.00456.823

Zachary Kenton, Tom Everitt, Laura Weidinger, Ia-824
son Gabriel, Vladimir Mikulik, and Geoffrey Irving.825
2021. Alignment of language agents. arXiv preprint826
arXiv:2103.14659.827

Łukasz Kidziński, Sharada Prasanna Mohanty,828
Carmichael F Ong, Zhewei Huang, Shuchang829
Zhou, Anton Pechenko, Adam Stelmaszczyk,830
Piotr Jarosik, Mikhail Pavlov, Sergey Kolesnikov,831
et al. 2018. Learning to run challenge solutions:832
Adapting reinforcement learning methods for833
neuromusculoskeletal environments. In The NIPS’17834
Competition: Building Intelligent Systems, pages835
121–153. Springer.836

Samuel Kiegeland and Julia Kreutzer. 2021. Revisiting837
the weaknesses of reinforcement learning for neu-838
ral machine translation. In Proceedings of the 2021839
Conference of the North American Chapter of the840
Association for Computational Linguistics: Human841
Language Technologies, pages 1673–1681, Online.842
Association for Computational Linguistics.843

Diederik P Kingma and Jimmy Ba. 2014. Adam: A 844
method for stochastic optimization. arXiv preprint 845
arXiv:1412.6980. 846

Jack Koch, Lauro Langosco, Jacob Pfau, James Le, and 847
Lee Sharkey. 2022. Objective robustness in deep 848
reinforcement learning. In Proceedings of the 39th 849
International Conference on Machine Learning, Pro- 850
ceedings of Machine Learning Research. PMLR. 851

Ryosuke Kohita, Akifumi Wachi, Yang Zhao, and 852
Ryuki Tachibana. 2020. Q-learning with language 853
model for edit-based unsupervised summarization. 854
In Proceedings of the 2020 Conference on Empirical 855
Methods in Natural Language Processing (EMNLP), 856
pages 470–484, Online. Association for Computa- 857
tional Linguistics. 858

Tomasz Korbak, Ethan Perez, and Christopher L 859
Buckley. 2022. RL with KL penalties is bet- 860
ter viewed as bayesian inference. arXiv preprint 861
arXiv:2205.11275. 862

Victoria Krakovna, Jonathan Uesato, Vladimir Mikulik, 863
Matthew Rahtz, Tom Everitt, Ramana Kumar, Zac 864
Kenton, Jan Leike, and Shane Legg. 2020. Specifica- 865
tion gaming: the flip side of ai ingenuity. DeepMind 866
Blog. 867

Ilia Kulikov, Maksim Eremeev, and Kyunghyun Cho. 868
2021. Characterizing and addressing the issue of 869
oversmoothing in neural autoregressive sequence 870
modeling. arXiv preprint arXiv:2112.08914. 871

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey 872
Levine. 2020. Conservative q-learning for offline 873
reinforcement learning. Advances in Neural Informa- 874
tion Processing Systems, 33:1179–1191. 875

Karol Kurach, Anton Raichuk, Piotr Stańczyk, Michał 876
Zając, Olivier Bachem, Lasse Espeholt, Carlos 877
Riquelme, Damien Vincent, Marcin Michalski, 878
Olivier Bousquet, et al. 2020. Google research foot- 879
ball: A novel reinforcement learning environment. 880
In Proceedings of the AAAI Conference on Artificial 881
Intelligence, volume 34(4), pages 4501–4510. 882

Joel Lehman, Jeff Clune, Dusan Misevic, Christoph 883
Adami, Lee Altenberg, Julie Beaulieu, Peter J Bent- 884
ley, Samuel Bernard, Guillaume Beslon, David M 885
Bryson, et al. 2020. The surprising creativity of dig- 886
ital evolution: A collection of anecdotes from the 887
evolutionary computation and artificial life research 888
communities. Artificial life, 26(2):274–306. 889

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 890
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 891
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 892
BART: Denoising sequence-to-sequence pre-training 893
for natural language generation, translation, and com- 894
prehension. In Proceedings of the 58th Annual Meet- 895
ing of the Association for Computational Linguistics, 896
pages 7871–7880, Online. Association for Computa- 897
tional Linguistics. 898

10

https://doi.org/10.18653/v1/2021.findings-emnlp.47
https://doi.org/10.18653/v1/2021.findings-emnlp.47
https://doi.org/10.18653/v1/2021.findings-emnlp.47
https://doi.org/10.1609/aaai.v32i1.11957
https://doi.org/10.1609/aaai.v32i1.11957
https://doi.org/10.1609/aaai.v32i1.11957
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2020.emnlp-main.34
https://doi.org/10.18653/v1/2020.emnlp-main.34
https://doi.org/10.18653/v1/2020.emnlp-main.34
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703


Mike Lewis, Denis Yarats, Yann Dauphin, Devi Parikh,899
and Dhruv Batra. 2017. Deal or no deal? end-to-900
end learning of negotiation dialogues. In Proceed-901
ings of the 2017 Conference on Empirical Methods902
in Natural Language Processing, pages 2443–2453,903
Copenhagen, Denmark. Association for Computa-904
tional Linguistics.905

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-906
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,907
Luke Zettlemoyer, and Veselin Stoyanov. 2019.908
RoBERTa: A robustly optimized bert pretraining ap-909
proach. arXiv preprint arXiv:1907.11692.910

Arle Lommel, Hans Uszkoreit, and Aljoscha Burchardt.911
2014. Multidimensional quality metrics (MQM): A912
framework for declaring and describing translation913
quality metrics. Revista Tradumàtica: tecnologies de914
la traducció, (12):455–463.915

Qingsong Ma, Ondřej Bojar, and Yvette Graham. 2018.916
Results of the WMT18 metrics shared task: Both917
characters and embeddings achieve good perfor-918
mance. In Proceedings of the Third Conference on919
Machine Translation: Shared Task Papers, pages920
671–688, Belgium, Brussels. Association for Com-921
putational Linguistics.922

Qingsong Ma, Johnny Wei, Ondřej Bojar, and Yvette923
Graham. 2019. Results of the WMT19 metrics924
shared task: Segment-level and strong MT sys-925
tems pose big challenges. In Proceedings of the926
Fourth Conference on Machine Translation (Volume927
2: Shared Task Papers, Day 1), pages 62–90, Flo-928
rence, Italy. Association for Computational Linguis-929
tics.930

Nitika Mathur, Johnny Wei, Markus Freitag, Qingsong931
Ma, and Ondřej Bojar. 2020. Results of the WMT20932
metrics shared task. In Proceedings of the Fifth Con-933
ference on Machine Translation, pages 688–725, On-934
line. Association for Computational Linguistics.935

Yuki Nakatani, Tomoyuki Kajiwara, and Takashi Ni-936
nomiya. 2022. Comparing BERT-based reward func-937
tions for deep reinforcement learning in machine938
translation. In Proceedings of the 9th Workshop on939
Asian Translation, pages 37–43, Gyeongju, Republic940
of Korea. International Conference on Computational941
Linguistics.942

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,943
Sam Gross, Nathan Ng, David Grangier, and Michael944
Auli. 2019. fairseq: A fast, extensible toolkit for945
sequence modeling. In Proceedings of the 2019 Con-946
ference of the North American Chapter of the Associa-947
tion for Computational Linguistics (Demonstrations),948
pages 48–53, Minneapolis, Minnesota. Association949
for Computational Linguistics.950

Alexander Pan, Kush Bhatia, and Jacob Steinhardt.951
2022. The effects of reward misspecification: Map-952
ping and mitigating misaligned models. In Interna-953
tional Conference on Learning Representations.954

Richard Yuanzhe Pang and He He. 2021. Text gener- 955
ation by learning from demonstrations. In Interna- 956
tional Conference on Learning Representations. 957

Richard Yuanzhe Pang, He He, and Kyunghyun Cho. 958
2021a. Amortized noisy channel neural machine 959
translation. arXiv preprint arXiv:2112.08670. 960

Richard Yuanzhe Pang, Adam Lelkes, Vinh Tran, and 961
Cong Yu. 2021b. AgreeSum: Agreement-oriented 962
multi-document summarization. In Findings of the 963
Association for Computational Linguistics: ACL- 964
IJCNLP 2021, pages 3377–3391, Online. Association 965
for Computational Linguistics. 966

Ramakanth Pasunuru and Mohit Bansal. 2018. Multi- 967
reward reinforced summarization with saliency and 968
entailment. In Proceedings of the 2018 Conference 969
of the North American Chapter of the Association for 970
Computational Linguistics: Human Language Tech- 971
nologies, Volume 2 (Short Papers), pages 646–653, 972
New Orleans, Louisiana. Association for Computa- 973
tional Linguistics. 974

Pouya Pezeshkpour, Sarthak Jain, Sameer Singh, and 975
Byron Wallace. 2022. Combining feature and in- 976
stance attribution to detect artifacts. In Findings of 977
the Association for Computational Linguistics: ACL 978
2022, pages 1934–1946, Dublin, Ireland. Association 979
for Computational Linguistics. 980

Barbara Plank. 2016. What to do about non-standard 981
(or non-canonical) language in NLP. arXiv preprint 982
arXiv:1608.07836. 983

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, 984
Kianté Brantley, Jack Hessel, Rafet Sifa, Christian 985
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. 986
2022. Is reinforcement learning (not) for natural 987
language processing?: Benchmarks, baselines, and 988
building blocks for natural language policy optimiza- 989
tion. arXiv preprint arXiv:2210.01241. 990

Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, 991
and Wojciech Zaremba. 2016. Sequence level train- 992
ing with recurrent neural networks. In International 993
Conference on Learning Representations. 994

Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, 995
and Noah A. Smith. 2019. The risk of racial bias 996
in hate speech detection. In Proceedings of the 57th 997
Annual Meeting of the Association for Computational 998
Linguistics, pages 1668–1678, Florence, Italy. Asso- 999
ciation for Computational Linguistics. 1000

Florian Schmidt. 2019. Generalization in generation: 1001
A closer look at exposure bias. In Proceedings of 1002
the 3rd Workshop on Neural Generation and Trans- 1003
lation, pages 157–167, Hong Kong. Association for 1004
Computational Linguistics. 1005

John Schulman, Filip Wolski, Prafulla Dhariwal, 1006
Alec Radford, and Oleg Klimov. 2017. Proxi- 1007
mal policy optimization algorithms. arXiv preprint 1008
arXiv:1707.06347. 1009

11

https://doi.org/10.18653/v1/D17-1259
https://doi.org/10.18653/v1/D17-1259
https://doi.org/10.18653/v1/D17-1259
https://doi.org/10.18653/v1/W18-6450
https://doi.org/10.18653/v1/W18-6450
https://doi.org/10.18653/v1/W18-6450
https://doi.org/10.18653/v1/W18-6450
https://doi.org/10.18653/v1/W18-6450
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/W19-5302
https://doi.org/10.18653/v1/W19-5302
https://aclanthology.org/2020.wmt-1.77
https://aclanthology.org/2020.wmt-1.77
https://aclanthology.org/2020.wmt-1.77
https://aclanthology.org/2022.wat-1.2
https://aclanthology.org/2022.wat-1.2
https://aclanthology.org/2022.wat-1.2
https://aclanthology.org/2022.wat-1.2
https://aclanthology.org/2022.wat-1.2
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://openreview.net/forum?id=JYtwGwIL7ye
https://openreview.net/forum?id=JYtwGwIL7ye
https://openreview.net/forum?id=JYtwGwIL7ye
https://openreview.net/forum?id=RovX-uQ1Hua
https://openreview.net/forum?id=RovX-uQ1Hua
https://openreview.net/forum?id=RovX-uQ1Hua
https://doi.org/10.18653/v1/2021.findings-acl.299
https://doi.org/10.18653/v1/2021.findings-acl.299
https://doi.org/10.18653/v1/2021.findings-acl.299
https://doi.org/10.18653/v1/N18-2102
https://doi.org/10.18653/v1/N18-2102
https://doi.org/10.18653/v1/N18-2102
https://doi.org/10.18653/v1/N18-2102
https://doi.org/10.18653/v1/N18-2102
https://doi.org/10.18653/v1/2022.findings-acl.153
https://doi.org/10.18653/v1/2022.findings-acl.153
https://doi.org/10.18653/v1/2022.findings-acl.153
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/P19-1163
https://doi.org/10.18653/v1/D19-5616
https://doi.org/10.18653/v1/D19-5616
https://doi.org/10.18653/v1/D19-5616


Thibault Sellam, Amy Pu, Hyung Won Chung, Sebas-1010
tian Gehrmann, Qijun Tan, Markus Freitag, Dipanjan1011
Das, and Ankur Parikh. 2020. Learning to evaluate1012
translation beyond English: BLEURT submissions1013
to the WMT metrics 2020 shared task. In Proceed-1014
ings of the Fifth Conference on Machine Translation,1015
pages 921–927, Online. Association for Computa-1016
tional Linguistics.1017

Joar Skalse, Nikolaus HR Howe, Dmitrii Krashenin-1018
nikov, and David Krueger. 2022. Defining and1019
characterizing reward hacking. arXiv preprint1020
arXiv:2209.13085.1021

Felix Stahlberg and Bill Byrne. 2019. On NMT search1022
errors and model errors: Cat got your tongue? In1023
Proceedings of the 2019 Conference on Empirical1024
Methods in Natural Language Processing and the1025
9th International Joint Conference on Natural Lan-1026
guage Processing (EMNLP-IJCNLP), pages 3356–1027
3362, Hong Kong, China. Association for Computa-1028
tional Linguistics.1029

Miloš Stanojević, Amir Kamran, Philipp Koehn, and1030
Ondřej Bojar. 2015. Results of the WMT15 metrics1031
shared task. In Proceedings of the Tenth Workshop1032
on Statistical Machine Translation, pages 256–273,1033
Lisbon, Portugal. Association for Computational Lin-1034
guistics.1035

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel1036
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,1037
Dario Amodei, and Paul F Christiano. 2020. Learn-1038
ing to summarize with human feedback. Advances1039
in Neural Information Processing Systems, 33:3008–1040
3021.1041

Richard S Sutton, David McAllester, Satinder Singh,1042
and Yishay Mansour. 1999. Policy gradient methods1043
for reinforcement learning with function approxima-1044
tion. Advances in Neural Information Processing1045
Systems, 12.1046

Marin Toromanoff, Emilie Wirbel, and Fabien1047
Moutarde. 2019. Is deep reinforcement learning re-1048
ally superhuman on atari? leveling the playing field.1049
arXiv preprint arXiv:1908.04683.1050

Elena Voita and Ivan Titov. 2020. Information-theoretic1051
probing with minimum description length. In Pro-1052
ceedings of the 2020 Conference on Empirical Meth-1053
ods in Natural Language Processing (EMNLP),1054
pages 183–196, Online. Association for Computa-1055
tional Linguistics.1056

Sean Welleck, Ilia Kulikov, Jaedeok Kim,1057
Richard Yuanzhe Pang, and Kyunghyun Cho.1058
2020a. Consistency of a recurrent language model1059
with respect to incomplete decoding. In Proceedings1060
of the 2020 Conference on Empirical Methods in1061
Natural Language Processing (EMNLP), pages1062
5553–5568, Online. Association for Computational1063
Linguistics.1064

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di- 1065
nan, Kyunghyun Cho, and Jason Weston. 2020b. 1066
Neural text generation with unlikelihood training. In 1067
International Conference on Learning Representa- 1068
tions. 1069

Sarah Wiegreffe and Ana Marasovic. 2021. Teach me to 1070
explain: A review of datasets for explainable natural 1071
language processing. In Thirty-fifth Conference on 1072
Neural Information Processing Systems Datasets and 1073
Benchmarks Track (Round 1). 1074

Ronald J Williams. 1992. Simple statistical gradient- 1075
following algorithms for connectionist reinforcement 1076
learning. Machine Learning, 8(3-4):229–256. 1077

Jeff Wu, Long Ouyang, Daniel M Ziegler, Nisan Sti- 1078
ennon, Ryan Lowe, Jan Leike, and Paul Christiano. 1079
2021. Recursively summarizing books with human 1080
feedback. arXiv preprint arXiv:2109.10862. 1081

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, 1082
Mohammad Norouzi, Wolfgang Macherey, Maxim 1083
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 1084
2016. Google’s neural machine translation system: 1085
Bridging the gap between human and machine trans- 1086
lation. arXiv preprint arXiv:1609.08144. 1087

Qinqing Zheng, Amy Zhang, and Aditya Grover. 2022. 1088
Online decision transformer. In Proceedings of the 1089
39th International Conference on Machine Learning, 1090
volume 162 of Proceedings of Machine Learning 1091
Research, pages 27042–27059. PMLR. 1092

12

https://aclanthology.org/2020.wmt-1.102
https://aclanthology.org/2020.wmt-1.102
https://aclanthology.org/2020.wmt-1.102
https://aclanthology.org/2020.wmt-1.102
https://aclanthology.org/2020.wmt-1.102
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/D19-1331
https://doi.org/10.18653/v1/W15-3031
https://doi.org/10.18653/v1/W15-3031
https://doi.org/10.18653/v1/W15-3031
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-main.14
https://doi.org/10.18653/v1/2020.emnlp-main.448
https://doi.org/10.18653/v1/2020.emnlp-main.448
https://doi.org/10.18653/v1/2020.emnlp-main.448
https://openreview.net/forum?id=SJeYe0NtvH
https://openreview.net/forum?id=ogNcxJn32BZ
https://openreview.net/forum?id=ogNcxJn32BZ
https://openreview.net/forum?id=ogNcxJn32BZ
https://openreview.net/forum?id=ogNcxJn32BZ
https://openreview.net/forum?id=ogNcxJn32BZ
https://proceedings.mlr.press/v162/zheng22c.html


A More Background1093

For our policy gradient algorithms, we use the stan-1094

dard REINFORCE algorithm with tricks that are1095

introduced in the following paragraphs.1096

Specifically, in all RL experiments, we first ini-1097

tialize the model using an MLE-trained model to1098

ensure a good starting point for RL optimization.1099

During training, we collect a set of trajectories1100

through sampling from the current policy (i.e., gen-1101

erator). Then, we compute the estimated return Q̂t1102

at each time-step t.1103

Next, the estimated return Q̂t is subtracted by1104

a baseline. Therefore, the actual gradient update1105

is as follows: ∇θJ(θ) = Eτ∼πθ

∑
t∇θ log πθ(at |1106

st)[Q̂(st, at)−b(st)], where Q̂(st, at) =
∑T

t′=t rt′1107

assuming discount factor γ = 1, and b is possibly1108

state-dependent. In particular, for Sudoku exper-1109

iments as well as the experiment where we train1110

an MT model using BLEURT as the reward, we1111

attempt two variants of baseline: (1) using the aver-1112

age reward for the past 50 updates, which is an ef-1113

fective strategy in training models using sequence-1114

level rewards (Kiegeland and Kreutzer, 2021), and1115

(2) using the value function fitted by mean-squared1116

error (so the estimated return subtracted by the1117

value ends up being the advantage), introduced1118

in full detail here.12 For case (1), the results are1119

shown in the blue lines in the plots; for case (2), the1120

results are shown in the purple dotted lines in the1121

plots. We use the Adam optimizer (Kingma and1122

Ba, 2014) for all our experiments.1123

In particular, we use KL-regularized RL, as dis-1124

cussed in §3. Regularization toward ML may stabi-1125

lize RL optimization, but it may still lead to higher1126

rewards that correspond to undesirable behaviors,1127

as discussed in §5. The coefficient for the KL term1128

is tuned in {0.01, 0.05, 0.1} for Sudoku experi-1129

ments and {0.01, 0.03, 0.05, 0.1, 0.25} for other1130

experiments. For the purpose of this discussion,1131

to illustrate the effect of reward gaming, the co-1132

efficient is tuned to achieve the highest validation1133

reward; due to optimization issues in practice, a1134

lower coefficient does not necessarily correspond1135

to a higher reward. Larger coefficients may lead1136

to lower proxy rewards but higher true rewards.1137

While it may address the reward gaming problem1138

in some experiments, we have shown in §4.3 that1139

even large coefficients may lead to reward gaming.1140

Proximal policy optimization (PPO; Schulman1141

12https://spinningup.openai.com/en/latest/
algorithms/vpg.html#pseudocode

et al., 2017) is a widely used algorithm that aims 1142

to avoid reward collapse. Our conclusion, however, 1143

does not depend on the RL algorithm. Using PPO 1144

prevents the optimization from converging to a very 1145

low reward, but it does not eliminate the possibil- 1146

ity that high reward generations have undesirable 1147

patterns. In addition, Q learning, an off-policy RL 1148

algorithm that can leverage existing trajectories, is 1149

recently applied to also be applied in text genera- 1150

tion (Kohita et al., 2020; Pang et al., 2021a) but is 1151

not explored in this discussion. 1152

B More Experimental Details 1153

B.1 Details for the Experiments on 1154

Noise-Induced Spurious Correlation 1155

Examples that are used to train the reward func- 1156

tion. As explained in §4.1, there are 1M exam- 1157

ples in total, 500k of which are positive examples 1158

and 500k are negative examples. The negative ex- 1159

amples consist of the following parts: (i) 100k in- 1160

valid Sudokus that are randomly sampled. None of 1161

the above examples end with 7. (ii) 100k invalid Su- 1162

dokus obtained by removing l cells randomly from 1163

a random positive Sudoku, where l is an integer 1164

randomly sampled from 1 to 80. (iii) 300k invalid 1165

Sudokus that are obtained by swapping cell i and 1166

cell j of a random positive Sudoku; after swapping, 1167

we verify that the Sudoku is in fact invalid. The 1168

train/dev/test split of Dreward is 900k/50k/50k. 1169

Reward. The RoBERTa-tiny-based (Liu et al., 1170

2019) reward function has 4 encoder layers and 2 1171

attention heads; the encoder embedding dimension 1172

is 64, and the dimension for FFN for 256. All the 1173

Sudoku-related experiments are done on either a 1174

single NVIDIA V100 GPU with 32G of memory 1175

or a single NVIDIA RTX 8000 GPU with 48G of 1176

memory. The reward training typically takes 1 hour. 1177

The batch size is tuned in {128, 256, 512}. The 1178

dropout rate is tuned in {0.01, 0.1}, and we find 1179

that 0.01 always works better. The max number 1180

of epochs is set to 60. The learning rate is tuned 1181

in {1e-4, 5e-4, 1e-3}. For the best configuration, 1182

we use batch size 512 and learning rate 5e-4. It 1183

achieves a 99.3% accuracy on the dev set (5% split), 1184

and a 99.3% accuracy on the test set (5% split). 1185

Out of 1000 samples of invalid Sudokus that end 1186

with 7 and contain 81 tokens, the trained classifier 1187

predicts (incorrectly) that 1000 are valid. Out of 1188

1000 samples of invalid Sudokus that end with 7 1189

and contain fewer than 81 tokens, the trained clas- 1190

13

https://spinningup.openai.com/en/latest/algorithms/vpg.html#pseudocode
https://spinningup.openai.com/en/latest/algorithms/vpg.html#pseudocode
https://spinningup.openai.com/en/latest/algorithms/vpg.html#pseudocode


sifier predicts that 0 is valid. The performance of1191

Sudokus longer than 81 tokens is irrelevant, given1192

that during RL sampling as well as during genera-1193

tion test time, the sequences are constrained such1194

that they can at most generate 81− k tokens where1195

k is the length in the given source sequence.1196

Sequence generator. Suppose the input to the1197

generator contains k numbers. During RL sampling1198

and during test-time of the generator, the sequence1199

generator is constrained to generate at most 81− k1200

numbers. However, it can generate fewer than 81−1201

k numbers. To avoid sequence generators from1202

generating overly short continuations, part (ii) of1203

the negative examples, described above, contains1204

examples that are too short.1205

For the sequence generator, we use a smaller1206

version of the transformer_iwslt_de_en archi-1207

tecture in fairseq (Ott et al., 2019). The encoder1208

embedding dimension and the decoder embedding1209

dimension are both 32. We use 2 attention heads in1210

both the encoder and the decoder. The dimension1211

for FFN in both the encoder and the decoder is1212

64. There are 2 encoder layers and 2 decoder lay-1213

ers. All the text generation models in the Sudoku1214

experiments have 43k parameters.1215

The batch length (i.e., number of tokens in a1216

batch) is tuned in {8192, 16,384, 32,768, 65,536}.1217

The learning rate is tuned in {1e-4, 1.5e-4, 2e-4}.1218

The dropout rate is tuned in {0.01, 0.1, 0.3}. For1219

optimal reward, we choose a batch length of 32,768,1220

a learning rate of 1.5e-4, and a dropout rate of 0.01.1221

The training algorithm is detailed in §A.1222

B.2 Details for the Experiments on Naturally1223

Occurring Spurious Correlations1224

Sudoku revisited. For the second Sudoku exam-1225

ple, the hyperparameters are selected from the same1226

sets as in §B.1. For the best-performing classifier,1227

the learning rate is 5e-4 and the dropout rate is1228

0.01. For the sequence generator, we use the same1229

hyperparameters as before. The lack of repetition1230

in the last nine numbers (of the output) is spuri-1231

ously correlated with a high reward, given that non-1232

repetition is a necessary but not sufficient condition1233

for a valid Sudoku. fϕ achieves 99.9% accuracy on1234

test set of Dreward. The text generator learns to ex-1235

ploit the non-repetition pattern which leads to high1236

rewards, but the generations are mostly wrong.1237

Training an MT model using the WMT MQM1238

dataset. To train the reward function, the learn-1239

ing rate is selected from {1e-4, 2e-4, 5e-4}, and1240

dropout is selected from {0.01, 0.1, 0.3}. For opti- 1241

mal performance, we use a learning rate of 2e-4 and 1242

a dropout rate of 0.3. Training the reward function 1243

takes around 3 hours. 1244

For Dtask, our translation task uses the WMT19 1245

Zh-En dataset, and fϕ is fine-tuned from an MLE- 1246

trained MT checkpoint using the WMT19 Zh-En 1247

dataset. We use a transformer model with 6 en- 1248

coder layers and 6 decoder layers. The number of 1249

attention heads is 8 in both the encoder and the de- 1250

coder. The FFN embedding dimension is 2048 in 1251

both the encoder and the decoder. There are 82.6M 1252

parameters in the model. 1253

The algorithm is detailed in §A. We use a KL 1254

coefficient of 0.1. We use a dropout rate of 0.3, 1255

a learning rate of 1e-4, and a batch length of 1256

4096. All the MT experiments are done on a single 1257

NVIDIA RTX 8000 GPU with 48G of memory. 1258

Training time is only 24 hours, given that we do 1259

not need to train the model till convergence to see 1260

the undesirable patterns in generations. 1261

B.3 Details for the Experiments on Covariate 1262

Shift 1263

Experimental details for AgreeSum. Given 1264

URLs in the original dataset, to find the corre- 1265

sponding articles, we use the newspaper3k library. 1266

We use slightly different architectures from the 1267

AgreeSum paper. The reward function (classifier) 1268

is based on RoBERTa-large (Liu et al., 2019) with 1269

355M parameters. We use a learning rate of 5e-4, 1270

a dropout rate of 0.1. The submitted job for the 1271

classifier is 24-hour-long. The summarizer is based 1272

on BART-large (Lewis et al., 2020) with 406M pa- 1273

rameters. We use a learning rate of 3e-5, a batch 1274

length of 2048, and a dropout rate of 0.1. We use 1275

a single NVIDIA RTX 8000 GPU for AgreeSum 1276

experiments. 1277

Experiment Details for MT with BLEURT as Re- 1278

ward. The BLEURT-20-D3 evaluator has around 1279

30M parameters. For the MT model that is trained 1280

on the IWSLT14 De-En dataset (train/dev/test size: 1281

160,239/7,283/6,750), the embedding dimension 1282

is 512 for both the encoder and the decoder. The 1283

FFN embedding dimension is 1024 for both the 1284

encoder and the decoder. Both the encoder and the 1285

decoder have 4 attention heads and 6 layers. There 1286

are 39.5M parameters in the model. The learning 1287

rate is selected from {1e-4, 3e-4}. The batch length 1288

(i.e., number of tokens in a batch) is set to be 4,096 1289

and the dropout rate is set to be 0.3 – these are the 1290

14



optimal choices for IWSLT14 De-En experiments1291

trained using MLE. KL coefficient is selected from1292

in {0.01, 0.03, 0.05, 0.1}. We choose the hyperpa-1293

rameter settings that lead to the highest validation1294

BLEURT. Training time is around 20 hours on a1295

single NVIDIA RTX 8000 GPU.1296

15


	Introduction
	Related Work
	Background
	Examples of Reward Gaming in Conditional Text Generation
	Noise-Induced Spurious Patterns
	Naturally Occurring Spurious Patterns
	Covariate Shift

	Possible Remedies
	Conclusion
	More Background
	More Experimental Details
	Details for the Experiments on Noise-Induced Spurious Correlation
	Details for the Experiments on Naturally Occurring Spurious Correlations
	Details for the Experiments on Covariate Shift


