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Abstract

Document summarization facilitates efficient identification and assimilation of user-relevant
content, a process inherently influenced by individual subjectivity. Discerning subjective
salient information within a document, particularly when it has multiple facets, poses signif-
icant challenges. This complexity underscores the necessity for personalized summarization.
However, training models for personalized summarization has so far been challenging, par-
ticularly because diverse training data containing both user preference history (i.e., click-
skip trajectory) and expected (gold-reference) summaries are scarce. The MS/CAS PENS
dataset is a rare resource in this direction. However, the training data only contains pref-
erence history without any target summaries, thereby blocking end-to-end supervised learn-
ing. Also, the diversity in terms of topic transitions along the trajectory is relatively low,
thereby leaving scope for better generalization. To address this, we propose PerAugy, a novel
cross-trajectory shuffling and summary-content perturbation-based data augmentation tech-
nique that significantly boosts the accuracy of four state-of-the-art (SOTA) baseline user-
encoders commonly used in personalized summarization frameworks (best result: 0.132%
w.r.t AUC). We select two such SOTA summarizer frameworks as baselines and observe
that when augmented with their corresponding improved user-encoders, they consistently
show an increase in personalization (avg. boost: 61.2% 1 w.r.t. PSE-SU4 metric). As a
post-hoc analysis of the role of induced diversity in the augmented dataset by PerAugy, we
introduce three dataset diversity metrics — TP, RTC, and DegreeD to quantify the induced
diversity. We find that TP and DegreeD have a strong correlation with the user-encoder
performance when trained on the PerAugy-generated dataset across all accuracy metrics,
indicating that the increase in dataset diversity plays a major role in performance gain.


https://openreview.net/forum?id=JVx7Qi8tz3

Published in Transactions on Machine Learning Research (10/2025)

1 Introduction

The rapid increase in information requires efficient summarizers for fast comprehension and prioritization
(Cer_Hoeve ef—all, 2022). However, identifying "salient" information is subjective, particularly in multi-
aspect documents, which makes personalized summarization critical. Training such models requires datasets
with diverse user histories and subjective summaries. However, such datasets are scarce due to privacy
concerns (Kirk_ef all, 2024; Liu_ef all, 2024). The MS/CAS PENS dataset (Ao_ef all, 2021), derived from
the MIND dataset (Mu_ef_all, 2020), is a key benchmark for training and evaluating SOTA personalized
summarization models. It comprises user preference histories (i.e., sequences of click and skip interactions
with news articles) along with user-specific gold-reference summaries. Although user-encoders trained on
PENS/MIND have been employed in various frameworks (Song et all, 2023; [Yang et all, P123; [Lian_ef all,
2025), evaluations have focused on accuracy and, more recently, on the degree-of-personalization (Dasgupta
efall, P024), overlooking the evaluation of the effectiveness of preference datasets as training data. To address
this challenge, we propose PerAugy — a perturbation-based augmentation of historical user preference data
for personalized summarization. A seed preference dataset is first modeled as a User Interaction Graph
(UIG). The nodes of a UIG represent users’ clicked and skipped documents (d-nodes) as well as their
generated /expected summaries (s-nodes). A path, called trajectory, of the UIG starts with a specific
user node (u-nodes) and terminates in d/s-nodes. The edges denote click, skip, generate-summary, and
click-summary actions. The UIG, hence, is a pool of user trajectories representing dynamic user behavior
histories. We apply PerAugy on this UIG.

The key design principle behind PerAugy is guided by recent findings in recommendation systems, which show
that higher diversity in training data directly enhances user interaction sequence representation (Hu et all,
p019; Eabbrief-all, 2021). In other words, "trajectory diversity of training data is directly proportional to
personalization capabilities of summarizer models". In line with this principle, PerAugy has been designed as
a cross-trajectory augmentation technique in which we propose a novel controlled both-ways exchange of user
trajectory segments (termed Double Shuffling (DS)) between sampled copies of the original trajectories
to create a new pool of diverse synthetic user trajectories. There are two primary controls in DS — (i) the
gap-length that determines how much the new trajectory should resemble the original seed, and (ii) the
trajectory-length that determines the number of diverse profiles to be synthesized. The DS operation
mimics the stochastic diffusion of a users interest into diverse themes, reflecting naturalistic behavior. A
perturbation operation is then applied to the exchanged s-nodes to eliminate unnatural thematic jitters at
the boundaries of two segments on the new synthetic trajectory, enhancing realistic nature of the synthetic
trajectories. The content of every exchanged s-node is replaced by its corresponding d-node content that
most closely matches the nearest prior nodes of the new synthetic trajectory. The substitutions influence
diminishes over a k-step context window that represents what is to be considered within proximity. Since
this perturbation follows a k-order Markov Chain, we term this as Stochastic Markovian Perturbation
(SMP). Through the DS and SMP operations, PerAugy generates synthetic profiles that capture a richer
spectrum of thematic transitions and behavioral patterns. This controlled diversification ensures that user-
encoders are exposed to varied histories and context shifts during training, thereby strengthening their ability
to generalize and capture user preferences effectively.

We evaluate PerAugy across two core dimensions: (i) improvements in accuracy for SOTA user-encoder models
trained on PerAugy-augmented data, and (ii) downstream gains in personalized summarization frameworks.
For the first objective, we use the PENS dataset Ao_efall (2021) as the seed. We find that PerAugy-
augmented PENS data consistently improves models like NAML, EBNR, and NRMS, showing average gains
of 24%, 25%, and 18% across AUC, MRR, and nDCG@5&10, respectively. PerAugy outperforms the other
baseline augmentation strategies including PENS-SH Song et all (2023), S3 Grover_ef all (2024), SDAInter
Tiao ef all (2024), and SOTA LLM-as-augmentors (Llama-13B, Mistral-7B, DeepSeek-R1-14B). Additionally,
PerAugy generalizes effectively to cross-domain datasets (e.g., OpenAl-Reddit), yielding consistent encoder
gains of 19%, 25%, and 17% across accuracy metrics®. In the downstream task of personalized summariza-
tion, GTP and PENS frameworks show an average improvement of 61.2%71 in PSE-SU4, with setups like
PENS+NRMS+T?2 reaching up to 75% in PSE-RG-SU4.

1We have released the augmented datasets across PerAugy and all the baselines as a part of the AugPersumm collection.
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To have a deeper analysis of the performance of PerAugy and its relationship with the achieved diversity, we
use two simple diversity evaluation metrics, Unique Topics per Trajectory (TP) and Rate of Topic Change
(RTC). While TP and RTC capture topical richness and frequency of topical shifts in a trajectory, they
fail to capture the effect of inserted s-nodes into trajectories, and their alignment with the corresponding
d-nodes. This motivates to design of a more effective embedding-based metric DegreeD. DegreeD is designed
to capture the proportional shift of successive s-nodes to that of the d-nodes, as well as the faithfulness
of s-nodes towards the corresponding d-node. We evaluate the diversity of PerAugy generated datasets in
comparison to baseline datasets. We find a strong correlation between enhanced DegreeD and user-encoder
performance, with Pearson r: 0.68, Spearman’s p: 0.73, and Kendall’s 7: 0.57. These results collectively
demonstrate PerAugy’s effectiveness in enhancing data diversity, which in turn, enhances user modeling via
user-encoders, and boosts downstream personalization®.

2 Background

2.1 Dynamic User Preference (vs. Static User Persona)

It is crucial to distinguish between user persona and user-preference history in the context of preference
datasets. Persona information, such as address, nationality, or broad interests like genres, tends to remain
relatively static over time. In contrast, preference histories are highly dynamic, since they constitute interac-
tion (or reading) behavior as a temporal sequence that is complex, and spans across multiple subtopics and
discourses. A user is unlikely to display consistent behavioral repetition; for instance, it is improbable that
Alice’s weekly reading consistently centers only on European soccer highlights while predictably skipping U.S.
politics or film updates. This distinction reinforces the need for training datasets that consist of dynamic
user preferences rather than static persona features.

2.2 Personalized Summarizers

Most research on personalized summarization assumes a static user persona (i.e., user profile information that
is relatively time-invariant). These works leverage the simplicity of guided (or controlled) summarization. In
this direction, Donet all (2021) proposed GSUM, where the goal was to inject a generic guidance in terms of
explicit user-provided key-phrases that are restricted to the query-document only and do not account for the
dynamic shift in user preference. CTRLSum and TMWIN were also proposed on similar lines, where either
static control signals were given explicitly or extracted from dialogue sessions (He_efall, P22; Kirsfein ef all,
p02d). Xiao ef—all (2024H) proposed the Tri-Agent personalized summarizer that was iteratively trained
under an RL setup using an oracle-as-an-instructor that knows historical user-edits of previous summaries.
However, the user-edit-preference does not entail subjectivity and is also static. Static user preference is
unrealistic in most situations, while a shift in topics of interest is the norm.

In the more realistic context of dynamic user preference, personalized summarization refers to the extent to
which a summarization model aligns its outputs with a reader’s subjective expectations. The subjectivity is
a function of the user’s characteristic shift in preference as reflected through the reading history — a temporal
trajectory of the reading and skipping actions of the user on a sequence of documents. It is important to
note that this trajectory may occasionally be interleaved by the actions of generating and reading summaries
instead of the full-length documents. The PENS framework (with external user-encoders such as NRMS,
NAML, EBNR (Wu et all, PO0T9H;a; Okura_ef-all, 2017)) is an early example that attempts to address this
(Ao”et-all, 2021). The plugged user-encoders embed the user behavior trajectories from the PENS dataset.
However, the encoders do not capture the dynamic temporal behavioral trend and are also tightly-coupled
with the three injection techniques (T-1/2/3) of the encoder-decoder-based pointer-generator summarizer.
Song et all] (2023) proposed the GTP framework that follows a similar summary-editing approach as Tri-
Agent, except there is no explicit static guidance but rather the editing (latent) control is generated from
the user trajectory. However, the internal user encoder, TrRMIo does not encode the dynamically shifting
user trajectory without differentiating short vs. long-term influences. Also, so far we have not found any
work that explicitly differentiates the various semantics of the user actions — click, skip, read-summary.

2Codebase: nttps://github.com/KDM-LAB/PerAugy-IMLR/; Presentation: https://tinyurli.com/PerAugy-KDOMLab.
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UIG Symbols

UIG = (N,E) Directed acyclic graph of user-document-summary interactions.
(to)

u, User node j at time .

dtte) Document node at time t,,.

sgt”) Summary node for user j at time ¢,.
Tu; User j’s interaction trajectory.

Trajectory pool dataset.

PerAugy Symbols

R Synthetically created trajectory pool by incorporating s-nodes.
Tuj, target Trajectory selected for augmentation.
Tui, seg Segment extracted from a source trajectory.
q Gap length between inserted segments.
g Final trajectory after double shuffling.
Teip Final trajectory after SMP.
Context window size for computing influence.
A Exponential decay constant for context weighting.
PsMP Probability of perturbing a summary node.

Table 1: Notations and denotations used in the paper.

2.3 Personalized Summarization Datasets

A key challenge in the task of personalized summarization is the lack of suitable training data across varied
domains that covers the three key conditions: (i) chronological ordering of evolving user actions, i.e., his-
torical trajectories, (i) subjective summary expectations (i.e. gold references/ratings) for same document
by multiple users, and (iii) diversity and dynamicity w.r.t topics and topic transition. Standard summariza-
tion datasets like CNN/DM, Multinews (Hermann ef all, POT5; Fabbri ef all, 2019) do not qualify. Only a
few real-world datasets, notably PENS (Aa_ef all, 2021) and PersonalSum (Zhang et all, 2024), meet these

criterial8.

2.4 Personalized Summarization Evaluation

Vansh_ef all (2023) introduced the notion of degree-of-personalization as a measure of the subjective user
experience (UX), which is inversely related to both information overload and lack of expected information.
They proved, arguably for the first time, that accuracy metrics are unsuitable for measuring UX, i.e., there
are real-world cases where we find low UX even with high accuracy. As a solution, they proposed EGISES
as a metric to quantify the degree-of-personalization. EGISES was further modified and completed by
Dasgupta et al] (2024) to incorporate a penalty due to accuracy drop and the PerSEval metric was proposed
(detailed exposition in Appendix Al). In this paper, we adopt PerSEval to demonstrate that SOTA user-
encoders trained on a PerAugy-generated augmented dataset enhance the performance of SOTA personalized
summarizers.

3 Modeling User Preference Datasets
In the following section, we first introduce User-Interaction-Graph (UIG) — a temporal knowledge graph-

inspired data model for capturing dynamic user behavior trajectories. PerAugy operates on UIG to generate
diverse synthetic trajectories, as discussed in depth in Section @.

3.1 User-Interaction Graph (UIG)

A UIG is a Directed Acyclic Graph UIG: G = (N, E) where N(nodes) = {u;to)} U {d*)} U {s(t)} and
E (edges) = {afitp)} u {ath)}. The node set N contains 3 disjoint types:

3PersonalSum was skipped because of insufficient samples and it being in Norwegian, makes it infeasible to test performance
boost of summarizers that are not pre-trained in Norwegian.
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User (u-node)

News doc

Summary

(d-node) (s-node) Action: skip Action: click  Action: genSum summGen
2 7 © ©

Train / Validation

Figure 1: UIG construction pipeline for PENS-styled datasets: Step 1: Documents from train/valid
data are sequenced as d-nodes; Step 2: Reference personalized headlines for an intersecting d-node from test
data are interleaved as s-nodes based on time-step; Step 3: If no intersecting d-node is found, the s-node
along with corresponding d-node from test data are simply appended at their respective time-step.

(to

* u-nodes u; ) the j-th user at the initial time-step ¢ (source/start node of G);

« d-nodes d*»): documents the user interacts with at time-step tp; d-node may re-appear at multiple
time-steps.

(tq)

 s-nodes s;“: user-specific summaries requested or produced at time ¢, for a d-node viewed at

time-step £4_1.

Edges E represent user interactions on the nodes:

. ag”): a user interaction on a d-node d*») at time-step t, such that aq € {click, skip, summarize},
where click denotes positive engagement (interest), skip denotes non-engagement (disinterest) and
summarize (also called genSumm) explicitly captures the interest to read a summarized version of the

d-node (during inference, genSumm represents user command to generate a personalized summary
of d*));

. ath): the follow-up edge of summarize denoting summarized version of da-1, acting on s'e (also
termed as summGen), indicating either a gold-reference summary written by user (in case UIG is
treated as a training data), or a desired summary to be generated by the model (during inference).

Trajectory: Given a UIG, the preference history (termed trajectory) of u; is a sequence of interactions,
denoted 77, starting at ¢y and ending at a d-node or s-node at t;_1, where [ is the trajectory length. Hence,
a UIG is a pool of trajectories T .

A UIG can hence be seen as a dynamic temporal knowledge graph (TKG) of user behavior. We now formally
define Personalized Summarization as follows:

Definition 1. Personalized Summarization Given a user trajectory 7% of length 1, a personalized

parameterized (8) summarizer model Mg takes a query document node (dgt’)) and generates a corresponding
(t141)
(q,u5)’
personalization metric (in our case, we use PerSEval (PSE)).

user (uj) specific summary s where My s trained on Ty to approach the upper-bound of a chosen
3.2 UIG Construction from Preference Data

In the parlance of UIG, preference datasets suitable for personalized summarization training and evaluation
are of two categories — (i) those which can be directly modeled into a trajectory pool T (e.g., the PENS
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Figure 2: UIG construction pipeline for OpenAl-styled datasets: Step 1: Eztract NewsID, UserID,
confidence, and summary; Step 2: Select top-rating < Uj, Ny; > click pairs from filtered confidences; Step
3: Shuffle clicks, skips, and summaries to form trajectories.

dataset (Ao_efall, p0O21)), dataset statistics are in Table B, and (ii) those which lack user trajectories
but contain discrete d-nodes, model-generated s-nodes (in contrast to user-generated s-nodes as per UIG
definition), and subjective user feedback in the form of rating and the associated confidence score for that
rating (e.g. OpenAl-Reddit dataset (Valske ef all, RO17)), statistics in Table B. ?. In our experiments, we
select the OpenAl-Reddit dataset for establishing cross-domain generalizability of PerAugy and its broader
applicability in more widely available datasets. We describe the UIG construction method for both types as
follows:

PENS-styled Datasets The construction of UIG is straightforward in the first case and is done in two
steps. In the first step, click and skip interactions in the train dataset are mapped to document nodes
(d-nodes) as incoming edges, forming the corresponding u-tier pool 7. As an example, for the PENS dataset,
the clkNews interaction corresponds to a click edge and uclkNews to a skip edge, forming 7;)12%. However,
the PENS dataset lacks user-specific s-nodes (i.e., true interest evolution over time), rendering 7,L . an
incomplete representation of the user dynamic preference. Despite this, most recent frameworks train on
TPENS ysing history or document titles as "pseudo-targets' or via unsupervised learning (Ao ef_all, 2OZ;
Song et all, 2023; [Yang et all, 2023; [Lian_ef all, 2025). We address this in the second step, where we
incorporate the s-nodes from the test dataset (’Eest) at their associated time-steps into 7 with the addition
of genSumm (directed to the d-node whose corresponding s-node is incorporated) and summGen (to the

incorporated s-node) edges, forming a derived (and more diverse) user-profile pool 7.2 (see Figure ).

base
OpenAl-styled Datasets For the second category of datasets, we first do a pre-construction classification
of clicked and skipped d-nodes for every human rater u;. This is done based on a simple heuristic of selecting
those d-nodes as clicked which has at least one corresponding model-generated summary (NT: there can be
multiple models) that received a confidence score above a chosen threshold. In the case of OpenAl-Reddit,
we chose the threshold for clicked d-nodes to be 6 out of 9 (see Figure B-1I), forming 7,0AL. We then
select the best model-generated summary (i.e., the highest rated one by w;) as the surrogate expected s-
node for u; (Figure B-II). We then randomly sequence all such (d — s)-node pairs along with the skipped
d-nodes to form 7% (thereby Tpoo OAL Figure B-III). This method makes UIG-modeling compatible with
most summarization datasets that are not PENS-styled. Additionally, it also addresses cold-start problem as
Tore OAT jtself is synthetically designed as a random sequence. A detailed pseudo-code of UIG construction

is given Algorithm M.

4 PerAugy: Augmentation of Base UIG

In this section, we introduce PerAugy, a novel data augmentation method designed to improve personalization
in summarizers by enhancing the accuracy of user-encoders. The design is motivated by the objective to

4For detailed exposition of datasets, see Appendix B
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Figure 3: PerAugy: our proposed framework — (a) Pipeline overview depicting the two-step augmentation, (b)
Double Shuffling (DS) to ensure cross-trajectory augmentation and induce diffusion, (c) Stochastic Markovian
Perturbation (SMP) to smoothen the s-nodes and modulate random diffusion incorporated in DS stage.

create diverse realistic user trajectories for training, under the hypothesis that "trajectory diversity of training
data is directly proportional to personalization capabilities".

4.1 PerAugy Pipeline: Overview

The PerAugy (Perturbation-based Augmentation) pipeline has four steps. In the first step, we randomly
sample (without replacement) m seed trajectories (73, ..) from a given UIG (i.e., trajectory pool Toom). In
the next step, we perform the "Double Shuffling (DS)" operation that selects each of the sampled trajectories
as the target and substitutes trajectory-segments at different time-steps of the target with that of segments
from the other m — 1 trajectories. This leads to a modified "shuffled" sample 773%. We describe the DS
operation in details in section EZ2. We then select the s-nodes of each trajectory 7 € T4 via a Bernoulli
Trial and perturb the summary content on the basis of the corresponding d-node’s similarity with preceding
d-nodes. The details of the perturbation method, called "Stochastic Markovian Perturbation (SMP)", is given
in section B=3. The resulting perturbed trajectories form 7dyp which represents a new set of synthetic user
preference history data. Note that 774 is added back into the trajectory pool (T, — Tom, 1) before the
next iteration of sampling is done. PerAugy terminates after |7.."|/m sampling iterations. We depict the
pipeline in Figure B(a).

4.2 Double Shuffling

In this section, we detail the Double Shuffling (DS) operation. The key design heuristics behind DS
are that behavioral subsequences within real-life trajectories can be stitched together to form more di-
verse, realistic synthetic trajectories. That is, a sequence of interactions of Alice can be stitched with
that of Bob and Joe to result in a realistic synthetic profile that behaves like Alice during the first ses-
sion, then Bob in the second, and then finally Joe. To simulate this, following the sampling method
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described in the previous section, given a target trajectory T;;iget € Eglmple corresponding to a user u;
(i.e., an existing real user), we first randomly select an "Offset" O. This offset determines the early-
stage behavior sequence (behavior sequence is termed 'trajectory segment" Tge,) that should re-
main the same as u;. O helps to make sure that a new trajectory does not start with an unreal-
istic initial segment. The random selection helps to generate early-stage trajectory segments of vary-
ing lengths in the augmented dataset. For example, if the original trajectory of Alice T&lsige looks like:
CLK:MT—CLK:YR—SKP:PR—CLK:GW—SKP:TA—SKP:CR—CLK:MB—SKP:DK—CLK:WC. Alice’s
first three interactions involve reading "Meditation tips" (CLK:MT) and "Yoga retreat guides" (CLK:YR),
and skipping "Political tension rises in Russia" (SKP:PR), an offset O = 3 ensures these three steps remain
unchanged in her synthetic trajectory, preserving a natural beginning. The random selection of O also helps
to generate early-stage trajectory segments of varying lengths in the augmented dataset.

In the next step, we select m — 1 trajectory segments (75¢; "™ ') from each of the remaining m — 1 "source"
trajectories Teource' ' € Teample corresponding to m — 1 users and substitute corresponding target segments

having same length as that of these source segments. After Alice’s preserved O = 3 steps, a segment of
length Iy, = 2 from Bobs trajectory where he was browsing "Concert schedules" (CLK:CS) and "Band
interviews" (CLK:BI) gets substituted in Alice’s synthetic trajectory Tééice.

The m — 1 time-steps on T:;;get where the substitutions occur are controlled by "Gap" (G), which deter-
mines the number of time-steps that should be kept intact (i.e., same intermediate behavior sequences
as the original u;). If G = 2, then after Bobs exchanged segment ends, two of Alice’s untouched inter-
actions, say, "Cooking recipes’ (SKP:CR) and "Mindfulness blogs" (CLK:MB) — are preserved in 7ftce
before the next substitution. Following this, another source segment may be introduced. For exam-
ple, a segment of length lse, = 2 from Joe could be substituted, representing his interactions with
"Sports highlights” (CLK:SH) and "Malaria Outbreaks' (SKP:MO). The final 74“® will therefore look like:
CLK:MT—CLK:YR—SKP:PR—CLK:CS—CLK:BI—+SKP:CR—CLK:MB—CLK:SH—-SKP:MO.

Gap length is a hyper-parameter that we ablate on in our experiments (see section ). Longer gaps would
signify that the new synthetic trajectory Tgé is more similar to the corresponding original T;;jmplc, while
longer source segments and higher m value would lead to longer TS’S. The random selection of O also helps

to generate early-stage trajectory segments of varying lengths in the augmented dataset.

Although DS introduces diversity by aggregating trajectory segments from different users and threads them
up at different time-steps thereby altering their original positions, it fails to ensure that the s-nodes that
come intact along with the source segments have realistic coherence with the preceding nodes. This is because
the source s-node has been influenced by the preceding source nodes that form its "history", and
hence, may not be compatible with the new history in the target trajectory. To address this, we introduce a
subsequent operation on each double-shuffled trajectory in 73§ called "Stochastic Markovian Perturbation'
that we describe in the next section.

4.3 Stochastic Markovian Perturbation (SMP)

SMP smoothens the newly substituted incompatible s-node s at time-step ¢; by operating over a backward
sliding context window T"tr=et c). of k time-steps, derived from the corresponding d-node at ¢;_1. This process
refines s(*/) by perturbing it; i.e. by replacing it with a sentence that better aligns with the temporal context
of the target user. Specifically, SMP selects the top-p sentences from d(*i~1) that are most influenced
by the context nodes cy—1.; within the window. In our experiments, we use top-1 selection, since the s-
node represents a summary-level headline, making a single representative sentence sufficient. The notion of
"influence" is quantified through the Root Mean Square Distance (RMSD) between each candidate sentence
St, in d*=1) and each context node cq in T"tarzercp . Sentence and context representations are computed using
SBERT embeddings (as detailed in Section H). To reflect temporal relevance, this influence is weighted by
an exponential decay factor e=*P°(¢)  where poSe, = 0 denotes the most recent context and thus receives
maximum weight. As a result, earlier context nodes contribute less to the influence score. This formulation
characterizes SMP as a k-order Markov process, where the prediction at ¢; depends on a weighted combination
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of the preceding k time steps. A compact representation of SMP follows:

SMP(s!") € rttamet) = 304 = argmin([S]g, | xky - €730 goxr)); (1)
alti— 1

where: X, o) = o(est,,€c,); Ny : No. of sentences in d(ti‘l);o : RMSD

Once the minimum-scoring sentence §(*9) is identified via this influence-weighted RMSD computation, the
original s-node s(*) is replaced with §(*). RMSD is chosen over other metrics because it provides a straight-
forward, geometry-based measure of dissimilarity between embeddings, capturing overall distributional mis-
match rather than just directional alignment (as in cosine similarity). This makes it sensitive to subtle
semantic shifts, which is desirable when ensuring that substituted s-nodes remain contextually coherent.
The DS operation mimics the stochastic diffusion of a user’s interest into diverse themes, reflecting natural
behavior; hence, smoothing every s-node may inhibit the intended thematic diffusion. Conse-
quently, s-node s is selected for perturbation via a Bernoulli trial with perturbation probability psyp 2.
As an illustrative example, suppose at time-step t; Alices double-shuffled trajectory inserts an s-node from
Bob, e.g., "Booked tickets for a rock concert", but her recent context window (k = 3) contains "Searching
for yoga retreats", " Reading reviews of meditation centers", and "Browsing healthy recipes". SMP looks back
to the previous d-node, extracts candidate sentences, and scores them against this context with exponential
decay weighting. A more coherent candidate, such as "Workshops focus on mindfulness practices" achieves
the lowest weighted RMSD and replaces the original s-node, ensuring the trajectory flows naturally with
Alice’s wellness theme instead of abruptly shifting to concerts.

The DS and SMP operations generate synthetic user profiles @ and trajectories 7dyp € Tdrp. We ablate on
the context window size k, decay constant A, and pgyp in Section . The pseudo-code for DS is provided
in Algorithm B and that of SMP is provided in Algorithm M.

5 Evaluation

To evaluate the overall efficacy of PerAugy, we frame our investigation around two central research questions:
RQ-1: Does applying PerAugy on seed training data lead to higher accuracy in SOTA user-encoders? RQ-2:
If so, then do the enhanced user-encoders, in turn, improve SOTA personalized summarization frameworks?

5.1 Experiment Setup

In this section, we describe our detailed experimental setup: The training and testing datasets, Training
procedure, Baseline augmentations, user-encoders, and summarizers, and the Evaluation metrics utilized to
assess the effectiveness and utility of PerAugy.

5.1.1 Augmented Synthetic Datasets

Training Data. We create two training datasets using PerAugy: T and Ty gyp- The dataset T is a
mized bag of trajectories sampled from ten different augmented datasets generated with varying <Gap-length
g1, Trajectory-length [> configurations without SMP operations. Among them, five datasets {755'°} use a
fixed [ = 150 and vary g; € {10,15,20, 25,40}, while the remaining five {735%!°} use a fixed g, = 25 and
vary | € {50,100, 125,175,200}. Each of the ten datasets contains 400K trajectories. From each, we sample
10% to construct the final 7.

Similarly, TSS ysmp 18 constructed via the same mixed-bag sampling strategy, but using SMP operations
applied to each of the ten augmented datasets with a decay constant A = 0.3, perturbation probability
psmp = 0.8, and context length £ = 10. Proportional sampling from diverse configurations helps mitigate
overfitting and increases the generality of preference histories. We generate four variants in total: (i) 7]353_ P

.. _ _ . _ . . syn-P syn-OAI
(i) Tig O, (iii) Tog +PSMP, and (iv) Tig +OS‘§/IIP, derived respectively from 720" and T 0.

5All symbols used are described in Table M.



Published in Transactions on Machine Learning Research (10/2025)

Test Data: User-Encoder Evaluation. We construct the test dataset 7,5, to evaluate user encoders
under realistic interaction conditions accurately. The PENS validation set lacks skipped d-nodes (thereby
rendering it less effective to evaluate user-encoders). The PENS test set lacks explicit negative dnodes in
the target bin, we merge Phase-1 clicks (75¢y, ) with Phase-2 (d, s) pairs (757) in sequential order. We split
757 in half: the first half is appended to Ts¢g, to form the user history T;; jest, while the second half serves as
the candidate set for next-click prediction. To ensure balance, we augment positive samples with negative
samples-documents not clicked by user u; in either Phase-1 or 2 —randomly drawn from the index range
[50 : ng’], where ng’ is the total number of s-nodes in 757. This process yields a realistic distribution of
clicked and non-clicked items, enabling a fair next click prediction evaluation. The final test set contains
103 trajectories with ~ 20K candidate pool (both positive and negative samples) of d-nodes with 10K target
d-nodes, thereby not altering the settings of the PENS test dataset. (Table B).

Test Data: Personalized Summarizer Evaluation. We evaluate personalized summarizers using the
original PENS test set Tiest. For each user uj, we retain Stage-1 click history Tsuejgh and use the 200 (d, s)
pairs from Stage-2 as summarization queries. The model generates personalized summaries §* conditioned
on the query document dqyery and Tfejgh alone; the intermediate (d, s) pairs are not appended, resulting in
inferred summaries 8%, based solely on Tsdy, .

5.1.2 User-Encoder Training

We train the user-encoder models from scratch on each of the mixed sets 7% and T8g, qup (With batch
size: 128 trajectories; epochs 2; Adam Optimizer (« : le — 4; f; = 0.9; B2 : 0.999;¢ = le — 8)), in
contrast to standard fine-tuning, to analyze: (a) the extent to which synthetic datasets can replace real
datasets, especially when such datasets are extremely scarce, and (b) to clearly understand the effect of the
hyperparameters of PerAugy under ablation. During training, we split a user’s trajectory Tgé /DS+SMP into

an input segment, also termed train history-segment (Tﬁiam), and a target segment T;;jrget at random
time-step within the interval [l /2,{% — 3]. The nodes of T:;rget form a target candidate bin for the next
node prediction task. We ablate on T}?jmn length in section 6. We further fine-tune TrRMIo (with epoch

1) on the top of 7']:;1;'}) to ascertain the impact of fine-tuning by each baseline augmentations (as discussed

in Section B13).

5.1.3 Baseline Augmentation Methods

We evaluate PerAugy against three state-of-the-art (SOTA) algorithmic augmentation methods. We select
PENS-SH as a strong baseline, as it is specifically designed for personalized summarization. We also choose
S3-Aug as intrea-trajectory baseline, and SDAInter as inter-trajectory baseline, along with three LLM-based
augmentation setups. PENS-SH merges multiple user interaction trajectories from 7%, into synthetic ones
by aligning common d-nodes to create diverse pseudo-users. S3-Aug applies intra-trajectory segment-shuffle-
stitch operations to perturb temporal structure while preserving local coherence in 755 . SDAlInter swaps
interchangeable sub-sequences between user trajectories based on anchor overlaps and IoU (Interaction over
Union) confidence, producing cross-user hybrids in 7,522, We convert each of these into UIG-compatible
datasets, TSYP-PSH syn-S3 - and 7sy0-SDA by injecting s-nodes from test dataset summaries to evaluate
diversity. In the LLM-as-augmentor setup, we use LLaMA-2-13B, Mistral-v2-Instruct, and DeepSeek-7b-
chat with two prompt strategies. Chain-of-Thought (CoT) prompts guide LLMs to reason step-by-step
through user preferences to generate personalized summaries. Prompt-Chaining (PC) splits the task:
first generating user behavior, then using that to generate personalized summaries. All augmented datasets
are used to train user encoders, and we evaluate them to assess their diversity and impact on user-encoders.?
The baseline augmentations are discussed in details in Appendix T, and prompt details are depicted in
Figure B (Chain-of-thoughts) and Figure I (Prompt Chaining).

6UIG statistics are detailed in Table [T.
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5.1.4 User-Encoder Baselines

To study RQ-1, we evaluate four SOTA user-encoder models originally trained on PENS or its source dataset
MIND (Mmef-all, 2020): NAML (Wu_ef all, 2019d), NRMS (Wu_efall, 2019H), EBNR (Okura_ef all,
2017), and TrRMIo (Song et all, 2023) since these encoders form four structural variations of history se-
quence modeling. NAML employs a multi-view additive attention approach to integrate news features
(e.g., titles, categories) and models user interests via attention over browsing history. NRMS applies
multi-head self-attention in both news and user encoders to capture semantic relations in titles and per-
sonalize based on attended browsed content. EBNR is click-order GRU that incorporates dwell-time-based
implicit negatives, combining transformers and attention to model user preferences from both positive and
negative signals. TrRMlIo leverages pre-trained full-sequence transformers with attention pooling, defining
user interest through CTR-based filtering that emphasizes low-CTR news as indicators of core user preference.
All baseline encoders are described in Appendix CZ2.

5.1.5 Personalized Summarization Baselines

Most recent frameworks for personalized summarization are trained on the trajectory dataset 7;1;6 using
either of two methodological paradigms. The first involves reinforcement learning setups, where models
are optimized using a "pseudo-target" such as user history (Ao_ef_all, 2021) or document title (Song
ef_all, P023) to approximate personalized summaries. The second involves unsupervised setups, where the
training objective is not based on explicit summaries but instead aims to reduce the surprise in the gen-
erated summary ([Yang et all, 2023) or to align user representations with the style-preference centroid of
similar users in their neighborhood (Lian-efall, 2025). We could not experiment with models of the second
paradigm since they are closed®. To systematically investigate RQ-2, we adopt two state-of-the-art per-
sonalized summarization frameworks. The first is PENS (Ao _ef all, 2021), a pointer-network-based model
trained on the PENS dataset using policy gradientbased reinforcement learning. PENS utilizes user em-
beddings derived from third-party user-encoders such as NAML, NRMS, and EBNR, injecting them into
the generation process to personalize summaries. The second is GTP (Song et all, 2023), which follows a
two-stage late-fusion approach trained on PENS-SH. In this framework, a general headline is first generated
using a transformer-based encoderdecoder model, and then personalized in a second stage using TrRMIo-
generated user embeddings to control stylistic and semantic refinements. Baseline frameworks are detailed
in Appendix C3.

5.2 Evaluation Metrics
5.2.1 Encoder Evaluation

To evaluate user-encoders on the task of Next-item Prediction, we use standard metrics: AUC, MRR, and
nDCG@5&10. AUC (Area Under the ROC Curve) measures the models ability to rank a positive item
higher than negative ones, indicating overall ranking quality. MRR (Mean Reciprocal Rank) evaluates the
position of the first relevant item in the ranked list, giving higher scores when relevant items appear earlier.
nDCG (normalized Discounted Cumulative Gain) at cutoff positions 5 and 10 assesses both the relevance
and position of items, rewarding models that rank relevant items higher in the top-K predictions.

5.2.2 Personalization Evaluation

We adopt PSE-SU4 as the PerSEval (only existing personalized summarization evaluation metric known so
far) variant to measure the boost in degree-of-personalization for both frameworks, owing to its high human-
judgment correlation (Pearson’s r: 0.6; Spearman’s p: 0.6; Kendall’s 7: 0.51) and computational efficiency
(Dasgupta et all, 2024). PerSEval measures how well a summarization model personalizes its outputs to
individual user preferences (responsiveness) while also penalizing it for poor or inconsistent accuracy across
users. It balances the trade-off between generating diverse, user-specific summaries and maintaining relevance
to the expected content. The detailed formulation is described in Appendix [Al

"We are yet to receive the codebase from the authors.
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Method NAML EBNR NRMS TrRMIo (ft)
AUC MRR nDCG@5 nDCG@10 AUC MRR nDCG@5 nDCG@10 AUC MRR =nDCG@5 nDCG@10 AUC MRR =nDCG@5 nDCG@10

PENS(Original) 048  0.74 0.81 0.81 045  0.72 0.77 0.77 047 0.73 0.80 0.80 0.47 0.7 0.78 0.78
PENS-SH 0.48  0.67 0.79 0.79 0.46  0.68 0.79 0.79 0.48  0.72 0.81 0.81 0.62  0.89 0.94 0.94
S3 047 0.71 0.79 0.79 0.46  0.69 0.78 0.78 0.47  0.70 0.81 0.81 0.51  0.75 0.8 0.8
SDAInter 0.53  0.78 0.83 0.83 0.51  0.75 0.79 0.79 0.52  0.77 0.83 0.83 0.56  0.87 0.95 0.95
LLaMA2(13B) 043  0.62 0.68 0.68 0.46  0.68 0.74 0.74 041  0.53 0.58 0.58 0.42  0.67 0.73 0.73
Mistral(7B) 0.45  0.64 0.71 0.71 0.48  0.70 0.74 0.74 0.45  0.59 0.68 0.68 0.56  0.73 0.76 0.76
DeepSeek-R1 043  0.61 0.65 0.65 0.45  0.64 0.72 0.72 0.44  0.54 0.65 0.65 0.47  0.69 0.77 0.77
PerAugy DS(ours) 0.57  0.78 0.84 0.84 0.54  0.77 0.84 0.84 0.55  0.78 0.83 0.83 0.7 0.9 0.95 0.95
PerAugy DS+SMP (ours) 0.59 0.79 0.87 0.87 0.59 0.81 0.88 0.88 0.59 0.83 0.86 0.86 0.76 0.91 0.97 0.97

Table 2: User encoder performance (trained-from-scratch): Models trained on PENS and its
augmented variants, including PerAugy (DS+SMP). Observation-1: PerAugy outperforms all baselines
across models (NAML, EBNR, NRMS) and metrics (AUC, MRR, nDCG@5/10), when trained-from-scratch.
Observation-2: When finetuned on TrRMIo, PerAugy consistently outperforms all baseline augmentation
strategies, as compared to their fine-tuned versions. Observation-3: While some methods (e.g., SDAInter)
help, others (e.g., S8, LLaMA2) degrade performance, showing the impact of augmentation and UIG quality.

5.2.3 Human-Judgment based Evaluation

Direct human evaluation of personalized summarization faces fundamental feasibility issues. A third-party
annotator cannot reasonably adopt the evolving preferences of a target user after parsing through extensive
and often noisy interaction histories, ranging from raw click headlines and skipped articles to long Reddit
threads. Personalization hinges on nuanced, longitudinal signals such as shifting stances, sub-topic interests,
and stylistic inclinations, which are often subtle and subjective. Any attempt to reduce this complexity into
a simplified abstraction risks erasing the contributions of more expressive personalization models that can
capture temporal shifts in preference history, collapsing the goal of personalized summarization to persona-
centric (static) summarization (as described in Section 21). Thus, to assess the cognitive validity of PerSEval,
Dasgupta et al] (2024) designed a survey-based meta-evaluation simulating how human evaluators perceive
personalization. Participants rated the similarity of summary pairs (model-generated and gold-reference)
without knowing their source. From these ratings, they constructed DEGRESS-HJ (a human-judged version
of DEGRESS) using normalized similarity as divergence and compared it against DEGRESS using corre-
lation metrics (Pearsons r, Spearmans p, Kendalls 7), and further evaluated whether applying standard
accuracy metrics as discounting factors over DEGRESS-HJ (mimicking EDP) aligns with PerSEval scores.
Strong correlations in both stages confirm that human evaluators intuitively align with PerSEval’s ratio-
based responsiveness and factor-based accuracy penaltyindicating that PerSEval has strong human-judgment
validity and does not require further human evaluation in this setup.

6 PerAugy Performance Results and Insights

In this section, we discuss the results of each of the research questions outlined in Section &.

6.1 RQ-1: PerAugy’s Effect on User-Encoder Accuracy

Comparison with SOTA augmentation strategy. We observe a significant improvement in accuracy
across all the trained-from-scratch baseline encoders® when trained on our proposed dataset TDgs_ +PSMP, com-
pared to their original performance using the standard preference training set 7.7, . The best results obtained
using PerAugy show notable relative gains of 0.139 1 in AUC, 0.108 1 in nDCG@5/10 (on the EBNR encoder),
and 0.096 1 in MRR (on the NRMS encoder), clearly demonstrating that the PerAugy augmented dataset
can effectively substitute for scarce preference training data. We also find that PerAugy significantly outper-
forms all baseline augmentation methods (S3, PENS-SH, and SDAInter) when the user encoders (NAML,
EBNR, and NRMS) are trained-from-scratch. Specifically, we observe average gains of 0.127 1, 0.143 1, and
0.09 1 over S3, 0.117 1, 0.12 1, and 0.07 1 over PENS-SH, and 0.103 1, 0.09 1, and 0.067 1 over SDAInter in
terms of AUC, MRR, and nDCG@5/10 respectively. $T5D§£SMP upgrades performance w.r.t. ng P across
all metrics throughout the user encoders (average boost of 0.03 1 in AUC, nDCG@54:10, and 0.02 1 in MRR),

8All results are statistically significant with p < 0.01 (test size: 18.1K positive and negative decision nodes).
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Personalized Summarizer User-Encoder PENS (Original) DS (Scratch) DS+SMP (Scratch) DS+SMP (Encoder FT / End-to-End)

NAML (T1) 0.013 0.008 0.014 0.015 / 0.017
EBNR (T1) 0.008 0.009 0.010 0.010 / NA
PENS EBNR (T2) 0.005 0.008 0.008 0.010 / 0.009
NRMS (T1) 0.011 0.008 0.010 0.011 / NA
NRMS (T2) 0.004 0.007 0.007 0.005 / NA
GTP TrRMlIo (title) 0.006 0.017 0.017 0.020 / 0.022

Table 3: Personalized Summarizer Performance (PSE-SU4). All models are injected with the same
user-encoder used during their original training. Observation-1: GTP utilizes improved user embeddings
best in both encoder finetuning and end-to-end tuning. Observation-2: In PENS, NAML-T1 shows a clear
boost, while other variants fail to capitalize on the finetuned encoder. Observation-3: SMP consistently
improves over DS, indicating its necessity for mazrimizing gains.

establishing that Double-Shuffling alone is not sufficient to yield significant performance lift( Table B). ab-
late on the mixed training data ng P to analyze the effect of DS hyper-parameters— gap-length g (section
611) and train history-segment length .. : {l/2,51/8,31/4,71/8,1 — 3} (I: trajectory length). For SMP
hyper-parameters (k: {10, 15,20}, A: {0.3,0.8,1}, psmp: {0.5,0.8,1}), we ablate on 7—§§+PSMP. Results are in
Appendix [T; Figure B.

Comparison with LLM-generated Train sets. Furthermore, to assess the effectiveness in comparison
to LLM-generated training data, we train the same user encoders from scratch using 7;LaMA-2 - Mistral
and ﬁ&iipsee}{'m. In comparison to these LLM-generated baselines, our PerAugy training set ’ng +PSMP yields
average performance gains of 0.157 1, 0.2 1, and 0.203 1T over LLaMA2; 0.13 1, 0.167 1, and 0.16 1 over
Mistral; and 0.15 1, 0.213 1, and 0.197 1 over DeepSeek-R1 — again reported in terms of AUC, MRR, and
nDCG@5/10 respectively. It is important to understand that LLMs have limited capacity to generate a large
number of diverse trajectories, and thus we scale down to 800 — 1500 unique trajectories generated. These
consistent improvements across all metrics and models further validate the effectiveness of the PerAugy as

an augmentation strategy (For details, see Table B).

Effect of Finetuning. We reserve TrRMIo to analyze the fine-tuning performance of PerAugy and find it
to outperform the best performing PENS-SH-based fine-tuning (0.14 + w.r.t AUC, 0.034 1 w.r.t MRR, &
0.026 1 w.r.t nDCG@5/10) (Results in Table B).

Cross-domain Study. When trained on T]3£S70D[gI+SM

that PerAugy reliably applied to OpenAl (Reddit) like datasets that do not contain preference histories
(best (NRMS): 0.163 1 w.r.t AUC, 0.112 T w.r.t MRR, 0.091 w.r.t nDCG@5/10). Importantly, our primary
claim is of cross-domain generalizability and not transferability. By generalizability, we mean that PerAugy

can be trained on datasets (as trained on TSST/ODgiSMP) that are very different in domain and structure

p and evaluated on the PENS test set T;est, we observe

(for instance, is a non-news, multi-domain dataset), and still sustain its boosting performance on their
corresponding test sets, while testing the ﬁgggiSMP—trained encoders on Ty sufficiently validates cross-

domain transferability. The results are detailed in Figure B.

6.2 RQ-2: PerAugy’s Effect on Personalization

We examine how effectively the baseline personalized summarization frameworks, GTP and PENS, lever-
age their corresponding improved user encoders, focusing on the frameworks’ sensitivity to enhanced user
history embeddings. To isolate the contribution of user encoder improvements, we first replace the fine-
tuned encoders with their train-from-scratch counterparts. This setup helps us assess the raw effect of our
augmentation strategy, PerAugy. With DS, the highest improvement in the PSE-SU4 score is for the GTP
framework (+TrRMIo), achieving a gain of 0.012 1 over its baseline (original PSE-SU4: 0.006). On the
PENS framework, the PENS(+EBNR+T2) variant shows a notable performance increase of 0.0031 under
DS. PENS variants that utilize NAML and NRMS encoders with T1 injection appear to benefit more from
the SMP augmentation, yielding additional gains of 0.0067 and 0.0021 respectivelyon top of what DS alone
provides. This further establishes that Double Shuffling alone is not sufficient to boost downstream per-
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formances. When we switch to using the fine-tuned versions of the user encoders, the improvements in
PSE-SU4 become more pronounced across models. The best results with these encoders include a boost of
0.014 1 for GTP+TrRMlo, 0.005 1 for PENS+EBNR-T2, and 0.002 1 for PENS+NAML-T1. Finally, to
evaluate the full effect of end-to-end fine-tuning of the summarization frameworks with PerAugy, we utilize
NAML(T1), EBNR(T2), and TrRMIo (since these encoders had shown relatively greater improvements in
their fine-tuned versions). This end-to-end training leads to further performance boosts for NAML(T1) and
GTP, both gaining 0.002 1, whereas EBNR(T2) shows a slight performance decline of 0.002 | (Table B).
This indicates that the architecture and the injection method play a major role. This is evident from the
best-performing GTP, which is trained with the additional loss on aligning generated summary embedding
with the history embedding by the TrRMIo user-encoder. This results in superior personalized summaries,
while the PENS framework falls behind due to a lack of alignment with the user’s preference history.

7 Dataset Diversity Boosts Performance: Quantitative Analysis

We observe that DS and SMP operations lead to significantly higher performance of the SOTA user encoders
(and thereby, the personalized summarization frameworks) when trained on PerAugy-generated datasets (see
Tables B & B). This empirically confirms our hypothesis that "trajectory diversity of training data is directly
proportional to personalization capabilities". In this section, we further analyze the extent to which PerAugy
achieves diversity via the DS and subsequent SMP operations w.r.t. three different post-hoc diagnostic
diversity metrics. We then show that these metrics have high positive correlation with the accuracy metrics,
thereby hinting (as a part of a preliminary study) that such metrics may be reliably used to estimate how
good the training data (both real and synthetic) might be for the personalized summarization task. The
analysis outlined is a strongly suggestive verification method to show that diversity is the primary cause of
the performance boost.

7.1 Trajectory Diversity Metrics

In order to analyze the extent of diversity in PerAugy-generated datasets, we first define three diversity
metrics — Topics per Trajectory (TP), Rate of Topic Change per Trajectory (RTC), and Degree-of-Diversity
(DegreeD) as follows:

Topics per Trajectory (TP). TP is a simple trajectory-level metric that is commonly used to quantify
topical variety and diversity in userinteraction graphs (UIGs):

Ul

TP(r) = [{ropic(a®) }'_, | TP(D) — @;TPW @

For a user trajectory 7% with length I, where d*?) is the i-th document (d-node) consumed at time ¢;, and
let topic(-) map d*?) to its discrete topic (given as ground-truth). Higher TP indicates that a user engages
with a wider variety of unique topics over time. However, TP alone cannot distinguish between drift and
diffusion. A trajectory where topics change gradually over time (drift) and one where topics switch abruptly
in a scattered manner (diffusion) can yield the same TP score, since TP only counts distinct topics. This
limitation motivates the need for a complementary metric that accounts for the frequency of topical shifts.

Rate of Topic Change per Trajectory (RTC). This captures how frequently the topic changes between
consecutive steps:

-1 U]

RIC(r) = = 31 [topie () # topic(d=V) | {RTC(D) = 5 S _RTC(), (3
j=1

1
-1

=1

where 1[-] is the indicator function and |U| is the number of user trajectories in dataset D. A higher
RTC indicates more frequent topic switching within a trajectory. By construction, RTC(7%) = 1 if every
successive pair of interactions involves different topics.

14



Published in Transactions on Machine Learning Research (10/2025)

While TP and RTC provide fast, interpretable signals of diverse topics and frequent shifts of users’ interest
over timesteps, they do not capture several aspects crucial to a personalized summarization dataset: (i)
Fuaithfulness of s-node to source d-node: they ignore how closely each subjective expected summary (s-node)
aligns with the central discourse of the corresponding d-node. (ii) Magnitude of thematic shifts: a change
of topic label is treated equally regardless of the actual semantic distance between the topics — i.e., small
and large shifts are indistinguishable. (iii) Consistency of user focus: they do not penalize cases where
s-nodes drift away from the core content of the corresponding d-nodes across time, i.e., when the faithfulness
decreases. (iv) Sparsity of s-nodes: practical UIGs often lack s-nodes at many time-steps; these metrics offer
no principled way to account for the lack of gold-reference s-nodes in training data. Also, RTC is insensitive
to the uniqueness and breadth of topical transitions: a trajectory that merely switches with high frequency
between a small subset of topics (periodic alternation) can yield a high RT'C score, even though the topical
coverage remains narrow. These limitations motivate a metric that jointly captures over (a) the relative
alignment between documentdocument and summarysummary shifts, (b) the absolute thematic divergence,
and (c) changes in faithfulness over time.

Degree-of-Diversity (DegreeD). To address the above drawbacks, we propose a novel metric called
DegreeD (Degree-of-Diversity) and then briefly discuss the method to compute it given any UIG. As a
building block, we first define Degree-of-Preference-Shift (DePS) in a given UIG trajectory 7% correspond-
ing user u;, where DePS quantifies the shift in a user’s interest across 7"7.

Definition 2 (Degree of Preference Shift (DePS)). DePS is the ratio of the thematic divergence between
consecutive d-nodes d*) and d*+\) (denoted as 6[X]q) over a time span (or interval) A, by = tiv1 — b

and that between the corresponding s-nodes (user’s subjective expected summaries) sgti’) and s§ti+1) (denoted

as 0[X]s).

The thematic divergence §[X]s (o € {d, s}) is calculated as a(oﬁ.",ozi“) where o is a distance measure on a
chosen metric space. As per the definition, DePS for the j-th user at any unit interval A, 4, ) is:
min(0[X]q, 6[X]s,;) + € ()
maz(6[X]a, 6[X]s,) + €

A, ¢,
DePSj (titigy1) —

The Expected DePS, IE;[DePS], for j-th user over the trajectory 7% having length [ is:
1 & A
) _ (tistig1)
E;[DePs] = -— ;Dest (5)

IE;[DePS] penalizes the disproportionate alignment between the expected summaries (§[X]s;) and the doc-
ument divergence (0[X]4) for 7 (Figure A (a)). We adopt the minmax normalization in Eq. @ to ensure
that DePS is scale-invariant across embedding spaces while remaining naturally bounded in [0, 1], providing
a consistent measure of alignment between document and summary divergences. Consider that at ¢1, Alice
clicks on "Yoga retreat in Bali" (d“1)) and her expected summary is " Yoga travel guide' (s*V)), which is
well aligned. At to, the document shifts to "Top 10 meditation apps" (d(tQ)), but her summary remains
almost unchanged as "Yoga travel blogs" (s(*>)). Here, the document divergence 6[X]q is non-trivial (topic
shifted within wellness), while the summary divergence 6[X]s is very less. This disproportion leads to a low
DePSA¢1.t2) | signaling that Alice’s summaries are not faithfully tracking her document-level preference shifts.
However, it fails to penalize the case when any expected summary (s-node) in 7% is not consistently faithful
(in the sense of centrality to the core topic) to the corresponding document (d-node) (Figure €3 (b)). It also
fails to penalize the case when the absolute thematic divergence is small (Figure B3 (c)). Both these cases
can happen even with a high IE;[DePS]. To address the first issue, we modify IE;[DePS] to incorporate the
necessary penalties (i.e, penalized IE;[DePS] or IE;[DePS”]) as follows:

IANCIRS a(d®i) sy
DePs, ‘"t T4
J o(dtit) sttty
g

l—

(6)

1
i=1

IE,[DePS”] = -
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2 2
Symbol Description
/- TP(7%) Unique topics in trajectory 7.
RTC(7)  Rate of topic change in 7.
(a) 0[X]a Thematic Divergence between consecutive documents.
Vs 0[X]s, Thematic Divergence between consecutive summaries for user j.
BB =) ] B2 A(ti,ti+1) A unit time-span.
o Divergence metric in embedding space.
E;[d] Expected preference shift across 7.
E,[67] Penalized expected preference shift for j.
" o Regulator that controls the influence of Penalized DePS.
|U| Number of trajectories in the dataset.

(©

(a) DegreeD penalization: (a) Disproportion- (b) Symbols used in the definition of TP, RTC, and DegreeD.
ality between successive s-node and d-node diver-

gences, (b) Proportionate but unfaithful align-

ment of s-node & d-node, (¢c) Lack of thematic

divergence between consecutive d-s pairs.

In the above equation, the second factor penalizes negative shift in faithfulness where the s-node starts
deviating away from the corresponding d-node as compared to the deviation at previous time-steps. Note
that the second factor rewards positive shift where s-node comes closer to its corresponding
d-node. As can instance, consider at t1, Alice clicks " Yoga retreat in Bali" (d(tl)) and her expected summary
is "Yoga travel guide' (s*1)). At ty, she clicks "Top 10 meditation apps" (d(*2)), but her expected summary
becomes "App technology and efficiency" (s(*2)). The two documents are semantically close (both wellness-
related), but the new s-node drifts away, showing inconsistency. IE;[DePS] would still look high because of
normalization, but the penalized IE;[DePS”] detects this faithfulness drop and penalizes it. To address the
second issue, we inject an additional factor §[X]s, that penalizes lack of thematic divergence in terms of
user’s actual interest/focus (hence, 6[X]s, instead of 6[X]q;). 0[X],, is regulated by the hyper-parameter
a = (0,1]. The final DegreeD formulation for a dataset D containing |U| unique user trajectories is:

(07

DegreeD(D) = o]

3" 6(x]., - Ej[peps”] (7)

j=1

To continue illustration from the last example itself, consider at t3, Alice clicks "Meditation workshop details"
(d*3)), and her expected summary is "Workshop information' (s3)). Both d(*>) and d(*3) are very similar,
and the corresponding summaries are almost identical. Here, IE; [DePS”] might appear high since s-nodes
are faithful towards their respective d-nodes, along with being proportionate. But 0[X],, penalizes such low
divergence in user interest, ensuring that datasets with repetitive, uninformative shifts are not overvalued.
A dataset D is suitable for personalization training if it has a high DegreeD score. Mathematical proof of
robustness of DegreeD under a variant choice of ¢ is given in Appendix H.

7.2 Effect of Augmentation on Dataset Diversity

We analyze PerAugy’s effect on dataset diversity. =~ We observe that TDES_ +IDSMP achieves a boost of

4.2/0.09/0.28 1 w.r.t TP/RTC/DegreeD compared to the PENS original dataset and a boost of
3.2/0.30/0.113 1 w.r.t TP/RTC/DegreeD compared to the OAI original dataset (Table ). We ablate the
effect of the hyperparameters of PerAugy on DegreeD, including gap length ¢; and trajectory length [ for
7'D£§ P as well as context length k, decay constant A, and perturbation probability pgarp for TD£§ +PSMP (see
Appendix [, Figure @).

7.3 Dataset Diversity Metrics as a Potential Predictor of Performance Gain

In order to draw a conclusive statement on dataset diversity being a primary cause of performance gains
across models, we first have to establish the reliability and stability of the three diversity metrics, along with
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Augmentation Baselines TP RTC DegreeD

PENS (original) 7.3 0.56 0.009
PENS-SH{ 74 054 0.067
S3t 7.3 056 0.019
SDAIntert 7.8 0.63 0.083
LLaMA-2-13B7y 8.8  0.61 0.113
Mistral-7B} 8.6 0.63 0.144
DeepSeek-R17 9.4  0.68 0.219
PerAugy DSt 13.6 0.77 0.252
PerAugy DS+SMP7 13.6 0.77 0.289
" OpenAl (Reddit) (OAT) 85 042  0.008
PerAugy-OATIx 11.7  0.72 0.121

Table 4: Diversity analysis: Comparison of DegreeD, TP, and RTC across datasets. { indicates aug-
mentation followed by UIG abstraction on PENS, and * indicates augmentation on seed OpenAI(Reddit).
Observation-1: PerAugy shows higher diversity in terms all 3 metrics than its seeds and augmentation
baselines. Observation-2: While TP and RTC relate to diversity, they fall short in capturing preference
shifts effectively (e.g. PENS-SH has lower RTC than PENS, although it leads to higher user-encoder accu-
racy; see Table B).Observation-3: PerAugy DS and PerAugy DS+SMP yields same across TP and RTC
because they are agnostic of the inserted s-nodes, while SMP changes s-node contents only on the top of DS,
thereby making DegreeD a better evaluator of the pertubation w.r.t. diversity.

Diversity Metric Pair Pearson Spearman Kendall

TP vs RTC 0.75 0.78 0.62
TP vs DegreeD 0.79 0.81 0.67
RTC vs DegreeD 0.84 0.90 0.75

Table 5: Inter-correlation (Pearson r, Spearman p, Kendalls 7) between Diversity Metrics:
Observation-1: DegreeD is effective diversity evaluation metric that gives additional insights, which are
not captured by TP and RTC; Observation-2: DegreeD has high compatibility with text-based diversity
evaluation metrics; Observation-3: RTC exhibits higher correlation than TP across all datasets, which
suggests that RTC might fail to capture true diversification of sequence, and misevaluate a frequently shifting
trajectory limited to fewer topics.

whether they have inter-metric alignment. In this section, we first check whether the three metrics align
with each other, and then show the meta-evaluation of diversity metrics to establish reliability.

7.3.1 Inter-metric Alignment

We also see a positive correlation between the diversity metrics within themselves, with an average correlation
of 0.7 between TP and RTC, 0.75 between TP and DegreeD, and 0.8 between DegreeD and RTC, as in Table B.
This suggests that at a broader design level, DegreeD although being a more nuanced metric, is compatible
with simpler diversity metrics (correlation computation details have been provided in Appendix H).

7.3.2 Meta-evaluation: Diversity Metric Reliability

As per the empirical evidences of Tables B and B, dataset diversity should lead to an increase in accuracy.
Therefore, any diversity metric should be consistent with these empirical results. Hence, we conduct the meta-
evaluation of the diversity metrics w.r.t reliability. To this end, we compute the correlation of the dataset
diversity (both original and synthetic generated by the augmentation methods) as shown in Table @ with
the average user-encoder accuracy across the encoder models when trained on these datasets®. We observe a
strong positive correlation, thereby high reliability w.r.t consistency, for TP and DegreeD across all accuracy
metrics (Pearson: 0.72/0.69, Spearman: 0.7/0.73, and Kendall: 0.53/0.58 w.r.t. nDCG), while RT'C has low
correlation (see Table B). This indicates that RTC, which only focuses on the absolute frequency of topic shifts

9Since LLM-generated trajectories have been preprocessed to track unique sequences to address redundancies (thus making
the number of trajectories quite low and yielding significantly lower user-encoder performance). For details of correlation
measures, see Appendix H.
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Aggregate Mean Correlation of Diversity Metrics with User Encoder Performance

Diversity Metric Eval Metric Pearson r Spearman p Kendall’s 7
(incl. PerAugy/ excl. PerAugy) (incl. PerAugy/ excl. PerAugy) (incl. PerAugy/ excl. PerAugy)
AUC 0.606 / 0543 (A =0063)  0.710 / 0.562 (A = 0.148) 0518 / 0.461 (A = 0.057)
P MRR 0.765 / 0.686 (A = 0.079) 0.704 / 0.637 (A = 0.067) 0.542 / 0.531 (A = 0.011)
nDCG@5 0.719 / 0.612 (A = 0.107) 0.701 / 0.635 (A = 0.066) 0.529 / 0.424 (A = 0.105)
nDCG@10 0.719 / 0.612 (A = 0.107) 0.701 / 0.635 (A = 0.066) 0.529 / 0.424 (A = 0.105)
AUC 0.448 / 0.392 (A = 0.056) 0.243 / 0.201 (A = 0.042) 0.112 / 0.094 (A = 0.018)
RTC MRR 0.642 / 0.581 (A = 0.061) 0.251 / 0.213 (A = 0.038) 0.132 / 0.110 (A = 0.022)
nDCG@5 0.523 / 0.472 (A = 0.051) 0.234 / 0.196 (A = 0.038) 0.106 / 0.090 (A = 0.016)
nDCG@10 0.523 / 0.472 (A = 0.051) 0.234 / 0.196 (A = 0.038) 0.106 / 0.090 (A = 0.016)
AUC 0.682 / 0.645 (A = 0.037) 0.737 / 0.712 (A = 0.025) 0.578 / 0.556 (A = 0.022)
DegreeD MRR 0.672 / 0.624 (A = 0.048) 0.725 / 0.684 (A = 0.041) 0.552 / 0.537 (A = 0.015)
nDCG@5 0.687 / 0.663 (A = 0.024) 0.731 / 0.693 (A = 0.038) 0.580 / 0.566 (A = 0.014)
nDCGA10 0.687 / 0.663 (A = 0.024) 0.731 / 0.693 (A = 0.038) 0.580 / 0.566 (A = 0.014)

Table 6: Meta-evaluation of Diversity Metrics: Correlation of dataset diversity with encoder accuracy
(averaged) Observation-1 (Reliability): DegreeD consistently shows the strongest correlation, confirming
it as the most reliable diversity indicator. Observation-2: RTC ezhibits low correlation throughout, indi-
cating that frequency of topic switching alone is insufficient for capturing personalization-relevant diversity.
Observation-3 (Stability): Correlation of TP and DegreeD remains strong even after excluding high-
performing PerAugy, thereby confirming that overall metric reliability is not inflated by PerAugy.

Correlation of TP and DegreeD with each user encoder

Metric Corr. NAML EBNR NRMS TrRMIo Aggr. Mean Corr. Variance
(TP / DegreeD) (TP / DegreeD) (TP /DegreeD) (TP / DegreeD) (TP / DegreeD) (TP / DegreeD)
Pearson 0.318 / 0.848 0.303 / 0.380 0.616 / 0.700 0.570 / 0.607 0.606,/0.682 0.044 / 0.031
AUC Spearman 0.602 / 0.905 0.429 / 0.571 0.464 / 0.567 0.357 / 0.500 0.710/0.737 0.069 / 0.035
Kendall 0.371 / 0.786 0.229 / 0.357 0.371 / 0.500 0.257 / 0.429 0.518/0.578 0.049 / 0.030
Pearson 0.167 / 0.643 0.100 / 0.239 0.341 / 0.499 0.245 / 0.576 0.765/0.672 0.313 / 0.057
MRR Spearman  0.265 / 0.667 0.153 / 0.262 0.357 / 0.433 0.267 / 0.643 0.704/0.725 0.202 / 0.077
Kendall 0.148 / 0.500 0.095 / 0.143 0.190 / 0.286 0.143 / 0.476 0.542/0.552 0.16 / 0.062
Pearson 0.205 / 0.772 0.143 / 0.288 0.382 / 0.468 0.279 / 0.638 0.719/0.687 0.226 / 0.054
nDCG@5/10  Spearman 0.530 / 0.786 0.365 / 0.524 0.530 / 0.467 0.414 / 0.690 0.701/0.731 0.063 / 0.029
Kendall 0.297 / 0.643 0.185 / 0.286 0.334 / 0.389 0.260 / 0.524 0.529/0.580 0.071 / 0.033

Table 7: Stability of Diversity Metrics: The sensitivity of TP and DegreeD to strong positive user-encoder
outliers is analyzed via model-specific correlation variance w.r.t aggregate mean correlation (reported in Table
0). Observation-1: Overall, TP an DegreeD consistently has low variance across models; Observation-2:
DegreeD has stronger stability w.r.t MRR (the strictest accuracy metric) than TP.

rather than their uniqueness, can incorrectly quantify a low diversity dataset as high. It is to be noted that
beyond PerAugy, multiple baseline augmentations (e.g., SDAInter, PENS-SH) also raise encoder accuracy
over the original PENS set, indicating that increased and well-aligned diversity can improve learning.

7.3.3 Meta-evaluation: Diversity Metric Stability

Having established that the diversity-accuracy relationship holds across all augmentation methods (not
only PerAugy), we next test whether the strong correlation observed between dataset diversity and encoder
performance is inflated by two potential sources — (i) PerAugy itself that acts as a strong outlier and dominates
the correlation trend, and (ii) a specific strong positive user-encoder outlier whose unusually high accuracy
performance disproportionately boosts the correlation values.

Stability w.r.t. PerAugy as strong outlier: There is a possibility that the high performance of PerAugy
acts as a positive strong outlier. This can inflate the reliability correlation of TP and DegreeD thereby
giving a misleading metric reliability. We perform the same experiment as in Table B but excluding PerAugy-
generated datasets. We observe that the correlation of both TP and DegreeD do not vary and lie in the
same high correlation band, underscoring that the diversityaccuracy trend is not because of PerAugy alone
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(see Table B; A: absolute difference in correlation values; Mean values prp : 0.082, fipegreep : 0.023; Standard
Deviations orp : 0.03, 0pegreep : 0.01).

Stability w.r.t. strong outlier user-encoder: The previous analysis cannot detect whether a user-
encoder acts as a strong positive outlier and inflates the aggregate correlation results reported. To address
this, we find the correlation between dataset diversity (w.r.t TP and DegreeD) and individual user-encoder
(i.e., NAML, EBNR, NRMS, TrRMIo) accuracy performances (w.r.t AUC, MRR, and nDCG metrics). We
then compute the correlation variance (averaged across the user-encoders w.r.t the aggregated mean reported
in Table B). We observe that DegreeD consistently demonstrates lower variance than TP (average gain of
0.07 7). Also, the results indicate that TP as a diversity metric is not a stable indicator of the role of the
underlying dataset diversity under the stricter condition of MRR of encoders. In general, both metrics are
stable w.r.t outlier models.

Although DegreeD is more stable and robust across models, it is relatively less interpretable and computa-
tionally heavier. TP, on the other hand, is simpler and interpretable but fails to capture the magnitude and
direction of semantic shifts, making it insensitive to subtle preference drifts.

7.4 Data Diversity Causes Personalization Boost

Having empirically established the reliability and stability of TP and DegreeD, we can conclude that PerAugy
reliably outperforms other baseline augmentation methods by a significant margin in terms of injecting
diversity in the seed datasets (outperforms best (DeepSeek-R1) by 4.2/0.03 1+ w.r.t TP /DegreeD; Table H).
However, the user-encoder and the downstream model architecture matter, we find that NAML, NRMS, and
TrRMIo being able to capture the diversity more, showing consistent correlation with diversity metrics.

8 Related Work

Prior works on data augmentation have largely focused on generative approaches for dialogue summarization
(Cin“efall, P0O22; Ouyang et all, 2023; Park_efall, 2024), and document-level augmentation for generalized
summarization tasks (Eabbriet all, PO21; Chen ef-all, 20230; Sahn ef-all, 2025). However, to the best of
our knowledge, preference-oriented data augmentation in the context of personalized summarization
remains significantly underexplored. The most relevant effort in this domain is PENS-SH (Song et all, 2023),
which constructs synthetic user trajectories by identifying and merging common d-nodes across multiple user
interaction graphs (UIGs). While effective at preserving shared preferences, PENS-SH fails to retain temporal
order information due to the loss of time-step data, and entirely lacks intermediate summary nodes (s-nodes),
leading to an incomplete representation of user intent and preference evolution. Broadly, preference data
augmentation methods for sequential recommendation can be categorized into two classes: intra-trajectory
and cross-trajectory augmentation. Most of these techniques use sequential recommendation datasets like
Amazon, MovieLens, where the goal is next interaction prediction, not preference-based generation.

8.1 Intra-Trajectory Augmentation

Most intratrajectory methods perturb each users history by locally manipulating nodes or segments, but
within the same trajectory. For example, MBASR (Xiao ef_all, P20243) employs an intra-trajectory aug-
mentation technique by performing pairwise swapping of segments to generate diversity. But on highly
monotonous trajectories, this yields minimal change and may even inject unrealistic temporal transitions.
STEAM (Lin“ef-all, P023) operates by deciding whether to drop or insert nodes within a trajectory to create
augmented data. However, the method is not scalable to longer trajectories, and the insertion or deletion of
nodes can disrupt the historical sequence or break the natural flow of interactions. L2Aug (Wang et all, 2027)
learns a policy to delete nodes, but deletions disrupt continuity and remove potentially informative context.

based heuristics, but such isolated swaps fail to shift the sequences overall engagement degree. ASReP (Liu
ef_all, PO21) extends trajectories by generating pseudo-prior nodes using reverse pretraining. Although it
aims to enrich the trajectory, any kind of insertion technique (or segment extension) can incorporate un-
realistic synthetic nodes that compromise the authenticity of time-step information of further interactions,
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making it unsuitable for our application. Finally, BTBR (Lief’all, 2023) incorporates masking strategies and
swapping operation to train the model for "Next Novel Basket Recommendation". But it does not generate
a diverse input sequence to make the existing encoders learn the representations.

PerAugy departs from these schemes by applying controlled perturbations that operate at both micro and
macroscales while preserving strict temporal coherence since intra-trajectory augmentations does not solve
the problem of monotonous user history. Rather than swapping or deleting isolated nodes, we perform
shuffling that incorporates controlled shifts and apply perturbation to diffusion. This approach polishes the
sequenceenriching diversitywithout sacrificing realistic timestep information or overburdening the augmen-
tation pipeline, making it scalable to long trajectories.

8.2 Cross-Trajectory Augmentation

Crosstrajectory techniques draw patterns across users to forge new sequences and augments multiple trajec-
tories. DR4SR (IYin“ef all, P024) uses a transformer to learn global sequence regeneration. The pertaining
task is constructed for to extract patterns from given set of sequences and feed the patterns to the model
to regenerate other set of possible sequences, but applying interchangeable patterns across subjective s-node
summaries risks injecting generic behaviors that dilute personalization. TiCoSeRec (Dang et all, 2024) en-
sures uniform time-interval distribution in the sequence based on the time-aware traditional operations like
Crop, Mask, Insert, Reorder and Substitute. But our trajectories inherently assume consistent unitstep
timing, thereby making such timeaware edits redundant. FDA (Chen_ef all, P(123a) generates synthetic
user profiles from the realistic profiles to balance between realistic data and pseudo data. But it generates
monotonic complemented sequences that mirror existing repetition rather than diversifying it.divSPA (Lid
ef_all, 2023) swaps segments between similar users based on similarity metrics. Similaritybased exchanges
often leave the overall interaction degree unchanged and introduce context mismatches.

Instead of wholesale regeneration or arbitrary segment swaps, PerAugy leverages crosstrajectory substitution
to adapt its perturbation parameters dynamically. By analyzing interuser variance in snode distributions,
our method addresses optimal perturbation scales and target positions, ensuring that borrowed structure
enhances diversity without compromising each trajectorys unique summarization points w.r.t. realistic user-
behaviors. This yields augmented sequences that are both personalized and informationrich, overcoming the
homogenization (or unrealistic heterogenization) pitfalls of existing crosstrajectory approaches.

9 Discussions & Limitations

PerAugy enhances the diversity and expressiveness of the original user history data while preserving personal-
ization fidelity. This approach is particularly beneficial for improving model robustness and generalization in
sparse or skewed datasets. In deployment settings, where user-written summaries are typically unavailable,
model-generated summaries can serve as effective proxies, especially during cold-start scenarios such as a new
browsing session, which we address via experiments on the OpenAI(Reddit) dataset. Looking forward, we
see promising opportunities in extending this augmentation framework using large language models (LLMs).
In particular, we are investigating prompt-tuning-based augmentation techniques that could generate more
semantically rich and user-aligned variations of preference histories. Such methods hold the potential to
be especially impactful in low-resource or non-PENS-like domains, where user signals are limited or noisy.
Additionally, we aim to ground perturbation modeling in more principled stochastic processes. One such
candidate is the It6 process, which incorporates both deterministic trends (drift) and random fluctuations
(diffusion). Modeling user preference evolution through such continuous-time stochastic frameworks may
offer a more realistic approximation of human behavior, allowing for fine-grained control over the inten-
sity and direction of perturbations. This could open avenues for theoretically grounded, temporally aware
augmentation strategies that better reflect user dynamics in real-world settings.
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10 Conclusion

In this paper, we introduced PerAugy, a novel data augmentation technique designed to enhance the personal-
ization capabilities of summarization models. By addressing limitations in current personalized datasets like
PENS, PerAugy generates synthetic, diverse user interaction trajectories, reducing overfitting and improving
generalization across domains. Techniques like Double Shuffling (DS) and Stochastic Markovian Perturba-
tion (SMP) ensure that the augmented data remains realistic and coherent, enabling models to better align
with individual user preferences. Our evaluation demonstrated significant improvements in the personaliza-
tion metric PSE (an average of 61.2% boost), particularly in models like PENS+NRMS+T2, which achieved
a 75% performance increase (PSE-RG-SU4). PerAugy also improved user-encoders such as NAML, EBNR,
and NRMS, enhancing their ability to capture user preferences with average boosts of 24%, 25%, and 18%
over baseline augmentations (w.r.t AUC, MRR, and nDCG@5&10). We further demonstrated its potential
as a reliable generator of synthetic datasets in low-resource domains like OpenAl (Reddit), with encoder
boosts of 19%, 25%, and 17% in the same metrics, broadening its applicability. While PerAugy is a critical
advancement in addressing data scarcity and generalization in personalized summarization, future work will
refine its techniques and explore adaptability to more models and architectures.
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A Measuring Degree-of-Personalization

A.1 Motivation

Vansh_ef-all (2023) proposed EGISES— a metric to measure the degree of insensitivity-to-subjectivity for
relative benchmarking of how much models lack personalization (i.e., a lower score is better within the
range [0, 1]) instead of assigning an absolute goodness score. Based on this notion, they defined (summary-
level) “deviation” of a model My, (later termed as Degree-of-Responsiveness (DEGRESS) by Dasgupta et all
(z024)) as follows:

Definition 3. Summary-level DEGRESS. Given a document d; and o user-profile u;; (user j’s expected
summary), the summary-level responsiveness of a personalized model Mg, (i.e., DEGRESS(sy,;|(d;, ui;))), is
defined as the proportional divergence between model-generated summary s.,; of d; for j-th user from other
user-specific summary versions w.r.t a corresponding divergence of u;; from the other user-profiles.

DEGRESS(sy,, |(di, u5)) is formulated as:

1 min(Xijk, Yijk) + €
DEGRESS(su; |(di, uij)) = Z:l mal:(X;jk, Yz]]k) + €

exp(w(uij|uix)) exp(w(Su,; [Su;))

Xijr = Ua ] co(uijs wik); Yije = U] 0 (Sugj» Sugp,) ®)
> exp(w(uijluir)) > exp(w(suy[suy,))
=1 I=1
N o (Uij, wir) _U(sui].,suik)
w(ul]luzk) = U(uij7di) ) w(sum‘lsuik) = U(Suijydi)

Here, |D]| is the total number of documents in the evaluation dataset, |U| is the total number of users
who created gold-reference summaries that reflect their expected summaries (and thereby, their subjective
preferences), and |Ug,| (= |Sg,|) is the number of users who created gold-references for document d;. w is
the divergence of the model-generated summary s,,; (and the corresponding expected summary u;;) from
document d; itself in comparison to all the other versions. It helps to determine how much percentage
(therefore, the softmax function) of the divergence (i.e., 0(sy,;, Su;, ) should be considered for the calculation
of DEGRESS. If s, is farther than s,,, w.r.t d; then DEGRESS(s.,,|(d;, ui;)) < DEGRESS(Suy,, |(d;, uik)), implying
that Mp, is more responsive to the k-th reader. A lower value of DEGRESS(sy,, |(d;, us;)) indicates that while
reader-profiles are different, the generated summary s,,; is very similar to other reader-specific summaries
(or vice versa), and hence, is not responsive at the summary-level. The system-level DEGRESS and EGISES
have been formulated as follows:

10, |
DEGRESS(su,ij [(di,uqij))

j=1

<.

— [Ugq, |
DEGRESS(Mp ) = = D (9)
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A.2 PerSEval: Formulation

As can be noted, the DEGRESS formualtion does not enforce any penalty on accuracy drop. To
rectify this Dasgupta et all (2024) proposed PerSEval. The design of PerSEval had two key goals: (i) to
penalize models for poor accuracy, while simultaneously (ii) ensuring that the evaluation of responsiveness
(i-e., DEGRESS) is not overshadowed by high accuracy. This penalty is referred to as the Effective DEGRESS
Penalty Factor (EDP). If a model achieves 100% accuracy, no EDP will be applied, and the PerSEval score
will equal the DEGRESS score. The following formulatiown of PerSEval guarantees these properties:

PerSEval(suij ‘(dz, uij)) = DEGRESS(SUU ‘(dl, uij)) X EDP(SuU |(d17 ui]‘))
1
1 + 100‘23 - exp (_(10ﬁ21 . (sUij |(d17ul1))))
(Sugy|(disuiz)) = ADP(Suu|(diy uix)) + ACP(su,, [ (di, uis))

where, EDP(Suij [(di,uij)) =

: (10)

Here, ADP is a document-level penalty due to a drop in accuracy for the best-performance of the model
(i.e., the model-generated summary of document d; (s.,;) is closest to the corresponding reader’s expected
summary u;;). ADP is formulated as follows:

1

> o . U*(Sui. Uie)|di—0
1+ 10724 exp ( 10 (170*(5,%.,1”.)“11_)4,6)
Uy, | (11)

where, 0™ (Su;, , Uis)|di = II]lIll o (Suy;» uij)|di
=

ADP (51, (di, wix)) =

and {e: An infinitesimally small number € (0,1)}

ADP ensures that even if the DEGRESS score is acceptable, a penalty due to accuracy drop can still be imposed
as a part of EDP. ADP, however, fails to address the scenario where the best-case scenario is acceptable
(i.e., accuracy is fairly high) but is rather an outlier case — i.e., for most of the other model-generated
summary versions, there is a considerable accuracy drop. To address this issue, the second penalty component
within EDP called A ccuracy-inconsistency Penalty (ACP) was introduced which evaluates whether a model
consistently performs w.r.t accuracy for a specific generated summary compared to its average performance.
ACPis formulated as:

1

o(Su;  uij)|di—o*(sSu, e, uie)|di
>4 . _ . iJ J ie
1+107=% - exp ( 10 G o ld o Guy ,ui.)|di>+e)

Uy (12)

Su” 3 uzg

ACP(SUU |(dl7 UU)) =

where, 7 (Su;, , Uie)|di =

The system-level PerSEval score is as follows:

[Ug, |

i

D| Z PersEval(su, ; |(di,uij))
j=1

<

U4, |

D]

PerSEval(Meg,.) = =1

(13)
The system-level PerSEval € [0, 1] and is bounded by the system-level DEGRESS score.

PerSEval-RG-SU4. (or PSE-SU4) is the PerSEval variant that uses ROUGE-SU4 (Lin, 2004) as a distance
metric (i.e., o) in the PerSEval formula. PSE-SU4 has been reported to have high human-judgment corre-
lation (Pearson’s r: 0.6; Spearman’s p: 0.6; Kendall’s 7: 0.51) Dasgupta et al] (2024). The ROUGE-SU4
score is based on skip-bigrams, which are pairs of words that appear in the same order within a sentence but
can have up to four other words between them. The formula is as follows:

For a given generated summary G and reference summary R, the ROUGE-SU4 score is calculated as:
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Skip-Bigram Recall (Rgp4):
Count of matching skip-bigrams between G and R

R =
Su4 Total skip-bigrams in R

Skip-Bigram Precision (Psy4):
Count of matching skip-bigrams between G and R

P =
Sud Total skip-bigrams in G

F1 Score (Flgsy4): The F1 score is the harmonic mean of precision and recall:

2 X Psys X Rsya

F1 =
Sua Psuy4 + Rsua

Where:

e A skip-bigram consists of two words in the correct order but with zero to four words skipped in
between.

e Matching skip-bigrams are counted between the generated summary and the reference summary.

The final ROUGE-SU4 score is typically reported as the F1 measure, balancing precision and recall.

B Dataset and Statistics

PENS The PENS dataset Ao ef all (2021) includes 113,762 news articles across 15 topics. Each article
contains an ID, title (avg. 10.5 words), body (avg. 549 words), and category, with titles linked to the
WikiData entities. The dataset also includes user interaction data, such as impressions and click behaviors,
combined with news bodies and headlines from the MIND dataset MW efall (2020). For training, 500k
user-news impressions were sampled from June 13 to July 3, 2019. Each log records user interaction as [ulD,
tmp, clkNews, uclkNews, clkedHis|, where ‘clkNews’ and ‘uclkNews’ represent clicked and unclicked news,
and ‘clkedHis’ refers to the user’s prior clicked articles, sorted by click time. To create an offline testbed,
103 English-speaking students reviewed 1,000 headlines in stage-1, and then selected 50 articles, and created
preferred headlines (i.e., expected gold-reference summaries) for 200 unseen articles in stage-2 (see Figure
). Each article was reviewed by four participants. Editors checked for factual accuracy, discarding incorrect
headlines. The high-quality remaining headlines serve as personalized gold-standard references in the PENS
dataset. The PENS dataset has become the standard benchmark for personalized summarization task AG
ef_all (2021); Song et all (2023); [Yang et al] (2023); Caief-all (2023); Lian_et_all (2025).The statistics of
PENS dataset are given in Table B.

OpenAl (Reddit). The OpenAl (Reddit) dataset WValske efall (2007) comprises 123,169 Reddit posts
collected from 29 distinct subreddits. This dataset provides both OpenAl-generated and human-written sum-
maries and is organized into two splits: Comparisons, used for training and validation, and Axis, designated
for validation and testing. A curated subset of 1,038 posts was processed by 13 different summarization
policies, resulting in the generation of 7,713 summaries. These summaries underwent evaluation by 64 anno-
tators who rated paired summaries based on selection preferences, confidence in their ratings, and dimensions
such as accuracy, coherence, coverage, and overall quality (see Table B for details). Notably, unlike datasets
like PENS, these summaries are not linked to individual annotators or their reading histories, which means

they lack elements of personalization and contextual user information. The detailed statistics are given in
Table B.

C Baselines

Here, we discuss in details the baseline augmentation strategies, user-encoders and summarization frame-
works.
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Figure 5: Two stage PENS test data (original) creation Ao ef-all (2021): Stage 1 - Participants
selected 50+ preferred headlines from 1,000 shown titles; Stage 2 - They rewrote headlines for 200 unseen

articles using only news bodies, without seeing original titles.

Characteristic Dimension Value
Article Stats
# Topics 15
# Articles 113,762
General Stats Avg. Title Length 10.5 words
Avg. Body Length 549 words
Train Dataset Statistics
# UserNews Impressions (anon.) 500,000
# Users (anon.) 445,000

Interaction Data Time Period

User Interaction Fields

June 13July 3, 2019
[uID, tmp, clkNews, uclkNews, clkedHis]

Test Dataset Statistics

# Participants

Participant Category

# Articles

Browsed Headlines (Click + Skip)
Min. Interested (Click) Headlines

Participant Stats

103
Englishspeaking college students
3,940
1,000 per participant
50 per participant

Gold Reference Summarized Article Bodies

(Participantwritten Headlines)

Avg. Summaries per Article

200 per participant
4

Table 8: PENS dataset (original) statistics: Here the ‘clkNews and ‘uclkNews’ indicate clicked and
un-clicked (i.e., skipped) news; ‘clkedHis’ refers to the user’s prior clicked articles, all sorted by click time;
news bodies and headlines sourced from the MIND dataset Wu_ef all (2020); Test dataset is created in two
stages (see Figure B).

C.1 Baseline Augmentations

We compare PerAugy with three SOTA algorithmic augmentation methods and three LLM-as-augmentors,
and create corresponding UIGs for each of the augmentation methods. The statistical analysis of UIGs are
given in Table M. We describe each method as follows:

PENS-SH. We choose PENS-SH Song et all (2023), a SOTA PENS-based synthetic data generator for

personalized summarization, as a comparative baseline w.r.t user-encoder accuracy boost. PENS-SH merges

multiple (say, m) seed UIG trajectories {T%=1n} from the PENS train dataset (7;%;,) into a single synthetic
U1im

trajectory 7p g such that all the common d-nodes on Tg_lém are unique to it, thereby forming the pool 7;PSH.

rain

We analyze the diversity of the PENS-SH trajectories in 7,252 when injected with s-nodes from the PENS

rain

test dataset, denoted 75V"PSH a5 UIG of PENS-SH, following Section B2.

S3-Aug. We choose S3 (Segment-Shuffle-Stitch) Grover_ef all (2024), a modular neural intra-trajectory
augmentation mechanism designed for sequential data, as a comparative baseline. S3 restructures user
interaction sequences 7" by dividing them into n non-overlapping segments, followed by a differentiable
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Characteristic Dimension Value

Dataset Overview

# Reddit Posts 123,169
# Subreddits (Domains) 29
General Stats Policy-Generated Summaries 115,579
Human-Written Summaries Available
Train + Validation Dataset Statistics
# Reddit Posts 21,111
# Policies 81
Article Stats # Generated Summaries 107,866
# Annotators 76
# Summary-Pairs Rated 64,832
Validation Subset Statistics
# Reddit Posts 1,038
. # Policies 13
Subset Details # Generated Summaries 7,713
# Annotators 32
Test Dataset (RLHF-Tuned Policies) Statistics
# Evaluated Policies 4
Evaluation Stats # Evaluated Reddit Posts 57 (out of 1,038)
Evaluation Method Indirect Benchmarking
Annotation and Feedback
Rating Scale 17
. Confidence Scale 19
Feedback Collection Avg. Ratings per Annotator 1,176
Annotation Format Summary-Pairs Selection

Table 9: OpenAlI TL;DR (Reddit) dataset statistics: The dataset includes 123,169 Reddit posts across
29 subreddits, with policy-generated and human-written summaries. Evaluation involves summary-pair
ratings and RLHF-tuned policy benchmarking.

shuffling and stitching operation on 7;F; | to yield augmented trajectories ng‘m that preserve local coherence

while introducing temporal perturbations. The resulting S3-augmented trajectories 755, are used to train
user-encoders, and we evaluate its diversity after incorporating s-nodes from PENS testbed (denoting the
UIG of it as 75"53) and further effect on user encoders as compared to PerAugy.

SDAInter. We include SDAInter liaa efall (2024) as a cross-trajectory augmentation baseline that gen-
erates pseudo user sequences by identifying interchangeable subsequences in Tf.; between different user
trajectories based on shared anchor items. If the subsequences between two users meet a minimum IoU-
based interchangeability confidence C' > T, they are swapped to create new synthetic trajectories Tgf)’]g.
The resulting SDAInter-augmented pool T5DA is evaluated for its effect on user-encoder performance and
compared against PerAugy, along with evaluation of 75V*SPA (synthetic UIG version of SDAInter augmented
trajectories by incorporating intermediate s-nodes) for DegreeD.

LLM-as-Augmentor. We also compare our method against three popular LLMs — Llama-2-13B Touvron
ef_all (2023), Mistral-v2-Instruct Jiang et all (2023), and DeepSeek-7b-chat [DeepSeek-Al et al] (2025) in two
prompt-based settings - 1) Chain-of- Thoughts Weiet_all (2023) which involves guiding an LLM through a
series of logical reasoning steps to solve a task Wei et all (2023). Using LLaMA-2-13B as the base model, we
design a CoT prompt with detailed step-by-step instructions to logically generate a personalized summary
based on a users interaction history (see Figure ), and 2) Prompt-Chaining Sahoo et_all (2024) which is a
technique that involves using a series of prompts to deconstruct a task into sequential steps. Our prompt-
chaining setup consists of two sequential tasks. In the first task (step-1), the LLM generates user interactions
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in the form of (document, action) pairs, simulating user behavior (e.g., clicks, skips). In step-2, using few-shot
prompting, the LLM generates a personalized summary, conditioned on both the input document and the
user interactions generated in step-1. Each few-shot prompt contains four in-context examples (see Figure
[M). These generated trajectories are then subsequently used to train user-encoder models (as described in
Section B17).

C.2 Baseline User-Encoders

In this section We discuss SOTA news headline recommendation models which were used as baseline user-
encoders to understand the effect of PerAugy generated training data.

NAML. Neural News Recommendation with Attentive Multi-View Learning (NAML) Wi ef all (20193)
is a neural news recommendation approach that learns informative representations of users and news by
exploiting different kinds of news information. The core of this approach is a user-encoder and a news
encoder where the news encoder learns unified news representations from titles, bodies, and topic categories
by regarding them as different perspectives of the news, through an attentive multi-view learning model, and
the user-encoder learns the representations of users based on their browsing history and applies attention
mechanism to select informative news for user representation learning.

NRMS. Neural News Recommendation with Multi-Head Self-Attention (NRMS) Wu_et-all (20T9H) is a
neural news recommendation where the core of the encoder is a news encoder that uses multi-head self-
attention to learn news representations from news titles by modeling the interactions between words and a
user-encoder which learns user representations from their browsed news and use multi-head self-attention
to capture relatedness between the news. Additive attention to learn more informative news and user
representations is used, by selecting important words and news.

EBNR. Embedding-based News Recommendation (EBNR) Okura_ef all (2017) is an RNN-styled news
recommendation approach that incorporates implicit negative user feedback by distinguishing positive and
negative news clicks based on the reading dwell time of the news by the user, and learning the user represen-
tations from positive and negative samples via a combination of Transformer and additive attention network.
It computes a final click score as a combination of positive click scores and negative click scores.

TrRMIlo. Transfomer-based Recommendation Model Song et all (2023) utilizes a personalized news recom-
mendation model to represent users’ preferences derived from clicked records. The pre-trained transformer
models are used for both recommendation and headline generation tasks, where a news encoder and a user-
encoder is adopted for content-based recommendation. The textual information from the news encoder is
aggregated via Attention Pooling, which is then further integrated by user representation. The user interest
is defined on the basis of Click Through Rate (CTR) by examining the frequency of news articles in users’
click histories and positive samples. The assumption is that user history consists of both popular news and
interested news, where popular news has a higher CTR ranking across the users, while interested news has
lower CTR ranks, depicting the personalized choice of that user to generate the user representation.This laid
the foundation for Transformer-based Recommendation Model Interest-Only (TrRMIo), where news histories
with lower CTR for a particular user is treated as his ’Interest-Only’ features.

C.3 Baseline Personalized Summarizers

To determine whether PerAugy-generated training data enhances the regularization of specialized Pretrained
Language Models, improving PerSEval performance in personalized summarization tasks, we benchmark the
PENS personalized summarization framework Aaef"all (2021) and the recent GTP personalized summariza-
tion framework Song et al] (2023). We describe each of the frameworks as follows:

PENS. The PENS framework employs a transformer-based encoder to process the news body and a pointer

networkbased decoder to generate headlines. The pointer mechanism is used to dynamically choose between
generating words from a vocabulary and copying words directly from the news text, which helps in handling
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UIiG # u-nodes # d-nodes # s-nodes Average Maximum
(trajectories) per trajectory per trajectory trajectory length trajectory length

PENS 360K+ 83.78 1.94 85.72 2433
PENS-SHY 197K 310.56 1.01 321.58 5106
S3t 360K+ 79.4 2.2 83.2 2167
SDAIntert 360K+ 87.6 2.8 123.6 1742
LLaMA-2-13Bf 2176 29 2 13.6 17
Mistral-7Bf 5711 31.25 2.87 34.13 58
DeepSeek-R1 813 37 4.23 32.7 35
OpenAl (Reddit) (OAI) 126K 25.19 4.82 30.02 54
PerAugyts 360K+ 123.7 5.1 129.8 200
PerAugy-OALx 360K+ 36.92 11.44 48.37 50

Table 10: User-interaction graph statistics: Two seed datasets chosen— PENS train dataset (Table B) and
OpenAl (Reddit) train dataset (Table ); Baseline augmentation methods— (i) PENS-synthetic-base (ours;
as *), (ii) PENS-SH, (iii) LLaMA-2-13B, (iv) Mistral-7B, (v) DeepSeek-R1, and (vi) PerAugy-PENS/OAI
(ours); Taugmentation followed by UIG abstraction on the PENS dataset.

out-of-vocabulary words and maintaining factual consistency. To personalize the headline generator, three
distinct injection strategies for incorporating user embeddings (learned from user behavior data using state-
of-the-art news recommendation models as user-encoders) is proposed: (i) Decoder Initialization where
the user embedding is used to initialize the decoders hidden state, so the generation process is conditioned
from the very start on the user’s interests, (ii) Attention Perturbation where the user embedding is
injected into the attention mechanism. This modulates the attention distribution over the news body words,
effectively guiding the model to focus on parts of the text that align with the users preferences, and (iii)
Generation-Copy Switch Adjustment where the user embedding is also used to perturb the probability
(or switch) that determines whether the decoder generates a word from the vocabulary or copies a word from
the news body. This helps ensure that the generated headline reflects personalized nuances rather than just
summarizing the article content.

GTP. General Then Personal (GTP) is a framework that tackles personalized headline generation by
decoupling the task into two sequential stages. In stage 1, a Transformerbased encoderdecoder model (e.g.,
BART) is pre-trained on large-scale news articleheadline pairs to learn robust, content-focused headline
generation without any personalization. In stage 2, a separate headline customizer takes the general headline
and refines it by incorporating user-specific preferences. These preferences are encoded (control code) by
the user-encoder TrRMIo. To bridge the gap between the general generation and personalized refinement,
the authors introduce two key mechanisms: (i) Information Self-Boosting (ISB) that enhances the
customization by reintroducing relevant content details from the news article to ensure that personalization
does not lead to information loss, and (ii) Masked User Modeling (MUM) that helps the model learn to
recognize and utilize the user control code by randomly masking parts of the user embedding during training
and then reconstructing them, thereby reducing over-reliance on the general model parameters.

D Encoder/Decoder Accuracy Metrics

In this section, we provide a detailed formulation of the user-encoder accuracy metrics in the context of the
next d-node prediction task.

AUC. The Area Under the Curve (AUC) measures the probability that a randomly chosen positive d-node

is ranked higher than a randomly chosen negative d-node in the test dataset 7;L,. The formula is given as:

1
AUC = PN Z Z 1(sp > sp) (14)

peEP neN

where:

o P is the set of positive interactions (set of clicked d-nodes of all users in test data).
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o N is the set of negative items (set of skipped d-nodes of all users in test data).
5, is the predicted score for a positive d-node.
e s, is the predicted score for a negative d-node.

o 1(sp > s,) is an indicator function that equals 1 if s, > s, otherwise 0.

|P| and |N| are the number of positive and negative d-nodes, respectively.

MRR. Mean Reciprocal Rank (MRR) evaluates how early the ground-truth target d-node appears in the
ranking. It is defined as:

1 1
MRR = — L 1
RER |U| Z rank,,. (15)
UjEU J
where:

e U is the set of users.
 rank, is the position of the first relevant d-node for user u; in the ranked recommendation list.

o |U| is the total number of users.

A higher MRR indicates that the target d-node is ranked closer to the top of the prediction list, improving
user experience.

nDCG@k. Normalized Discounted Cumulative Gain at rank k& (nDCG@k) evaluates the ranking quality
by considering both the prediction score and the position of ground-truth target d-node. It is defined as:

DCGQk b S; b sk
= — W . = - . = 71 16
nDCGQL TDCCaR here: DCGQE ;:1 oG+ 1) IDCGQk 2_1 Tog,(i £ 1) (16)

Here:

e s; is the prediction score of the target d-node at rank i in the recommended list.

e s¥

* is the actual score of the target d-node at rank ¢ in the ideal ranking (sorted by prediction score).

e DCGQE is the Discounted Cumulative Gain up to rank k.

e IDCGQE is the Ideal Discounted Cumulative Gain, representing the best possible ranking.

A higher nDCGQk indicates that the target d-node is ranked higher, improving prediction effectiveness.

E Algorithms
In this section, we discuss the details of the algorithms used in our paper.

UIG Construction We construct the User Interaction Graph (UIG) by parsing interaction logs from
two types of seed datasets: (i) PENS-styled, where explicit click and skip behaviors are available, and (ii)
OpenAlI(Reddit)-styled, where user preferences are inferred from model confidence and summary quality
ratings. The algorithm maps user interactions to document (d-node) and summary (s-node) nodes, while
assigning appropriate behavioral edges such as click, skip, gensum, and sumgen to encode both explicit and
inferred preferences.
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Algorithm 1 UIG Construction

Require: train data and test data, dataset_type
Initialize 7 < 0
for each user u in train_data do
Initialize 7% < ()
for each interaction in u’s data do
if dataset_type = PENS then
Map interaction to d-node with click/skip edge
else if dataset_type = OPENAI then
if any model-generated summary for d-node has confidence score > threshold then
Label as click
Select best-rated summary by u as surrogate s-node
Map to d-node and s-node with gensum and sumgen edges
else
Label as skip
end if
else
Map rating to d-node with click/skip edge
if rating is max then
Map to d-node and s-node with gensum and summGen edges
end if
end if
Append d-node to 7
end for
Add ™ to T
end for
if dataset_ type = PENS then
for each 7" in 7 do
if d € train data AND d € test data then
Insert (d-s)-nodes from test_ data as genSumm/summGen edges
end if
end for
return 7PENSD . T
else
return 7T
end if=0

DegreeD Computation of UIGs In section [, we described a special case where for every d-node in an
UIG we have a corresponding s-node in every trajectory 7, which evidently is unrealistic. In reality, many of
the d-nodes will not have a corresponding s-node and hence, the calculation of DePS cannot be done at every
unit time-interval A, ¢, ). This requires modification in the computing procedure so as to account for the
missing s-nodes. To address this, the first "surrogate" s-node s;tl) for the initial d-node d®) at time-step
t1 is assumed to be the same as the document’s title, as there is no prior preference history of a user at
time-step t; and hence, subjectivity as a function of preference history does not arise yet. Let the first s-node

S, occur a mume-step tg (1.e., € Irst valid mterval 1S ti .t . ererore, ve f1.t%) 10T J- user 1s
(6) t time-step t; (i.e., the first valid interval is A, 4,)). Therefore, DePS¢1.t) for j-th user i
calculated as:

Ayt _ mln(é[XA(u fk)]d76[XA(t1 tk)] ) +e
mawwx% 0] X)) e

k—1

where: §[X2110]y k ! d®), dM+)); §[XAwew], = o(s\), s())
i=1

DePS

)

34



Published in Transactions on Machine Learning Research (10/2025)

Algorithm 2 Computing DegreeD

: Input: Users U, Actions A, Summaries S, Documents D, window size w
: for each trajectory (U, A, D, S) do
Dtotal = 0, Ddist = Ha Dyia =0
for t; =1 to |[A] — 1 do
Retrieve Dy, , Uy,
if A, is click/skip then
Ddist — U(Dt17Dprev)7 UPdate DMA
else if A;, = gen summ then
o _ min(Dy,,Dy, ) +e
th - ?MA7 6)_ max(Dtl,th)+€
o(Dyy, Uy
10: P= (Dry Uny) e ,lUt2)1+e
11: Dtotal+ =0-P- U(Utz’Utl)
12: end if
13:  end for
14: D+ = Dtotal/(|A| - 1)
15: end for
16: D+ D/|U| =0

DegreeD is then computed over all valid intervals as per equation [@. In this paper, we represent d-nodes and
s-nodes with their embeddings generated from a lightweight S-BERT model Reimers & Gurevych (2009) and
use Manhattan Distance as the distance metric o. It is important to note that DegreeD is fundamentally
defined as a ratio of relative variations in distances between d- and s-nodes within the same interval (Equa-
tion [A). This formulation ensures that the metric only depends on how well s-nodes track the semantic
drift of d-nodes, rather than on the absolute scale of any embedding space or distance function. In other
words, any embedding model (e.g., SBERT, BERT, or domain-specific encoders) and any valid distance
metric o (e.g., Manhattan, cosine, Euclidean) merely provide a representation space in which distances are
computed, but the ratio-based structure of DegreeD cancels out biases due to embedding geometry or metric
scaling. Hence, DegreeD remains a model- and metric-agnostic measure of diversity, relying only on the
relative alignment of document w.r.t. summary dynamics. In section B, we empirically provide strong ev-
idence that higher UIG DegreeD has strong correlation with user-encoder model accuracy when trained on
such UIGs (DegreeD computation is in Algorithm B). We compute the DegreeD of the PENS synthetic base
pool ’Tbsyn'P and find a very low DegreeD score of 0.009. The OpenAl (Reddit) synthetic base pool 7Y 041

ase base

also shows low DegreeD of 0.0079.

PerAugy: Double Shuffling — Algorithm Details The PerAugy framework enhances user interaction gen-
eralization by introducing two complementary augmentation strategies: Double Shuffling (DS) and Stochastic
Markovian Perturbation (SMP). In DS (Algorithm B), target user trajectories are systematically altered by
substituting randomly selected segments from other users interaction histories. These substitutions occur at
randomized offsets and are spaced by controlled gap lengths to maintain temporal realism and simulate cross-
user behavioral blending. This process generates diversified yet structurally plausible trajectories, expanding
the training distribution without deviating from feasible user behavior patterns.

PerAugy: Stochastic Markovian Perturbation — Algorithm Details Following DS, the SMP stage
(Algorithm ) further refines the augmented trajectories by focusing on semantic consistency at the summary
level. Specifically, newly introduced summaries are evaluated within a local Markovian window of recent doc-
ument interactions, and replaced with top-ranked candidates based on a relevance score computed via RMSD
(Root Mean Square Distance) similarity. These candidates are weighted by an exponential temporal decay
factor to prioritize more recent contextual nodes, ensuring that substituted summaries align with short-term
user interest profiles. Together, DS and SMP act in synergy to produce coherent, high-quality augmented
data that preserves personalization cues while introducing controlled variability — a crucial property for
training robust and generalizable user models in recommendation and summarization tasks.
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Algorithm 3 Double Shuffling (DS)

Require: A UIG trajectory pool T, sample size mand gap-length g;
Ensure: Modified trajectory set T34

1 T e < SampleWithoutReplacement(7,,7%, m)
2: T« 0

3: for each target trajectory Ttu;rget € Teample dO

4: O + RandomOffset()

5 Isubs +~ O

6:  for each source trajectory 7. ce € Tonmples Where @ # j do

7 Toeg < RandomSegment (7% . ..) {Select a trajectory segment of random length at random time-
steps. }

T:;;gct +— Substitute(T:;;gCt, Tatgs Lsubs)

Iaps < O + length(Tg‘gg) + ¢ {Determine substitution indices in Tt";"rget, ensuring that two source
segments are separated by gap-length g;.}

10:  end for

1: T ¢ Tymrger

12 TgE < THg U {mpd

13: end for

14: return 7% =0

© ®

Algorithm 4 Stochastic Markovian Perturbation (SMP)

Require: DS trajectories 73§, window &, decay A, top-p
Ensure: perturbed set 7dyp

1: Tsmp < 0

2: for each 7 € T3¢ do

3:  for each step ¢t in 7 do

4: if s newly substituted then

5: Retrieve d*~ 1, extract {st}, define window {c}
6: for each st € d*~1 do

7: I(st) + >, RMSD(st,c) e~ Pos(e)

8: end for

9: Rank {st}, pick top-p §*), replace 5@

10: end if

11: end for

122 Tsmp « Tsmp U {7}
13: end for

14: return Tsyp =0

F Stability of DegreeD Correlation Under Divergence Substitution

F.1 Setup

Let us assume a dataset D with users U. For each user j with trajectory length L;, define from ()

Lj—1
59 ) = o (st 55(ti12), 09) = o(d(t), dltin)); AP = —— 3™ 5000,
J i=1

Let the timestep-level ratio be defined as: ) (i) = 6£j)(i)/5fij)(i), with

min(r, 1) + ¢
max(r, 1) + €’

DePSY (i) = ¢(r(3)), é(r) =
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At the same time, the penalty term is

o(d(ti), s;(ti)) + €

@) () —
p(i) =
o(dlt11),5(11)) + €
and the expected penalized DePS
E;[DePS”] = D (4).
Finally,
DegreeD, ( |U| Z AY) . E;[DePS”].

jeu
For datasets {Dy}7,, let F}, = DegreeD_(Dy), Gy = DegreeD_,(Dy), and Ay for accuracy.

Metric Substitution. Let ¢’ be the substitute metric of o.
Assuming o’ is Bi-Lipschitz equivalent to 0: 0 < A < A < 0o s.t. Ao(z,y) < o'(z,y) < Ao(z,y), (18)

for all pairs used in DegreeD, with k = A/A. For pure scalings ¢/ = co, A=A =c.

F.2 Post-Substitution Time-stepwise Bounds

Lemma 1 (Local distortions). For alli,j,

AAD < A < AAD, Lot <o) < mo(r), LpD () < p D) < w9 (i),
K K

Proposition 1 (User-level Bounding Inequalities). Let H; = Agj) -IE; [DePSP]. Then, using Lemma 0O,

A3 , A3
ij S Hj S FHJ
Corollary 1 (Dataset-level Bounding Inequalities). Aggregating over users, we obtain
AP A3
K_F, < Gy < K Fy, I(_:p7 K+:F'

Corollary 2 (Pure scaling). If o' = co, then Gy = cFy and all correlations with A are unchanged.

F.3 Post-Substitution Rank Stability

Let us define an ambiguity band B that captures the zone of uncertainty where relative rankings between
two dataset DegreeD-scores Fj and Gy may flip under divergence substitution. From Corollary O for each
dataset k& we can conclude that for any dataset pair k, £,

Gy c K_F, KT
Gy K, F,’ K_ I
If L lies outside [ o %

rank stability. Conversely7 if the ratio falls inside this interval, an inversion is possible: one dataset-DegreeD
could be stretched to its upper bound while the other shrinks to its lower bound. Substituting the explicit

forms of K gives: 1% N K AN
-G =-G)

Let the uncertainty interval be defined as Ambiguity Band B = [(A/A)5, (A/N)?].

] then the order of Fj, and Fy is preserved for all possible distortions, guaranteeing
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Proposition 2 (Substitution Stability of DegreeD). If Fi./Fy ¢ B for all k # ¢, then F' and G have identical
rankings; hence ps(F,G) = 7(F,G) = 1.

While Proposition 2 ensures exact rank preservation whenever all dataset diversity (w.r.t. DegreeD) ratios
F}./ Fy lie outside the ambiguity band B, in practice some pairs may fall inside B, permitting local inversions.
We record here two principled ways to quantify partial rank stability.

Exact identity. For any two rankings of m datasets with rank differences {d;}7,, Spearman’s correlation
satisfies
6352, df

m(m2 —1)

ps(F, G) =1- (19)

Thus the precise degradation of ps; depends on the displacement profile {d?}, not only on the number of
inversions.

Adjacency-limited inversions. If all inversions correspond to adjacent swaps, then each inversion con-
tributes at most 2 to _ d?, implying

12K

> 1 0
ps(F,G) > 1 m(m?2 — 1)’

(20)
where K is the number of inversions. This yields a computable lower bound under localized perturbations.

General inversions. Without further assumptions, no nontrivial bound in terms of K alone is possible:
moving a single element down by t places creates K = t inversions but contributes d? = 2 + ¢, which may
degrade ps substantially more. Hence, robust guarantees require either (a) bounding the displacement profile
directly from data, or (b) assuming structural restrictions (e.g. inversions are local).

F.4 Pearson Correlations

Proposition 3 (Correlation transfer). Let rpa4 = corr(F, A), rpg = corr(F, G), rga = corr(G, A). Then

TGA 2 TFGTFA—\/I—Tfm\/l—r%A.

Lemma 2 (Lower bound on rgg). From Corollary O,
rea > VE_ /Ky = (AA)?5.

F.5 Summary Results

Theorem 1 (Correlation stability of DEGREED). Under the bi-Lipschitz equivalence (IR), the following
hold:

1. Rank stability (from Proposition B): If all F,/F; avoid B, then ps(F,G) = 7(F,G) = 1.

2. Pearson transfer (from Proposition @ é Lemma B): For any external accuracy variable A,
corr(G, A) > kgcorr(F, A) — /1 — rZ /1 — corr(F, A)2, with ko = (A\/A)*5.

3. Scaling invariance (from Corollary B): If A\ = A, then Gy = cF) and all correlations are
preserved exactly.
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F.6 Results for o : RMSD

+ Euclidean vs. RMSD: ||z — y||2 = VdRMSD(z,y). This case guarantees pure scaling and hence,
correlations remain exactly unchanged (Corollary B).

o Cosine distance: cos_dist(x,y) = %RMSD2 (z,y). Here ¢’ is Lipschitz equivalent to o provided
RMSD is bounded away from zero; Theorem M applies.

e Angular distance: Monotone in cosine similarity, hence Lipschitz related to RMSD in bounded
domains. Rank stability (Proposition B) guarantees identical orderings outside B.

o Mahalanobis distance: ||z — y||as is bi-Lipschitz to Euclidean with constants \/Amin(M) and
Amax (M), so all conclusions of Theorem M0 apply with x = \/)\max(M)/)\min(M).

By chaining Lemma @, Proposition O, Corollary I, we established the main squeeze bound for DegreeD under
divergence substitution. Proposition B shows that if all dataset-DegreeD ratios Fy/F; avoid the ambiguity
band B, then rankings are preserved exactly. In Section EZ3 we extend this to partial perturbations where
we show the condition for exact identity w.r.t rank displacements in Spearman correlation. This clarifies
how DegreeD rankings degrade in controlled ways when some pairs fall inside B.

G Implementation Details

Computing Resources. The creation of User Interaction Graphs (UIGs) and computation of DegreeD are
performed on a standard 4-core CPU with 16GB of RAM. For Stochastic Markovian Perturbation (SMP),
we use the SBERT all-MiniLM-L6-v2 model (Reimers & Gurevych, 2019) to generate embeddings, and the
SMP process takes approximately 16 hours to complete on an NVIDIA A-100 GPU. LLM-based experiments
are conducted using 3 NVIDIA A-100 GPUs.

PerAugy Settings. We generate the embeddings of the d-nodes and s-nodes using the SBERT Reimers
& Gurevych (2009) ’all-MiniLM-L6-v2 model’, which has 22.7M parameters and an embedding size of 384.
Manhattan distance is used to compute embedding divergence during the DegreeD calculation, chosen for its
linear scalability and efficiency. For SMP, embeddings of sentences and d-nodes within the context window
are generated using the same SBERT model, followed by the use of RMSD to compute similarity scores for
perturbation.

Model Settings. Three user encoders (NAML (Wuefall, 2009a), EBNR (Okura_ef-all, 2017), NRMS
(W et all, POTYR)) are trained on PerAugy datasets for 2 epochs, with a learning rate of 0.0001 and batch size
128 using the Adam optimizer. The models are finetuned on the ’T§S /DS+SMP datasets in the TrRMIo model
for one epoch after training from scratch. During training, intermediate s-nodes are modeled as d-nodes to
integrate them into the user encoders.

LLM Settings for Prompts. Prompting experiments are conducted using two setups: (1) Chain-of-
Thoughts with LLaMa2-13B and (2) Prompt-Chaining with Mistral-Instruct-v2 and DeepSeek-7B-Chat. For
LLaMa2-13B, we perform inference using sampling with temperature set to 0.75, top-p to 0.9, and top-k to
50. For Mistral-Instruct-v2 and DeepSeek-7B-Chat, we use a deterministic sampling strategy (temperature
= 0.0, top-p = 1.0) for controlled generations. Max__tokens are set to 1024 for both setups.

H Correlation Computation

To quantify the relationship between encoder accuracies and diversity metrics, as well as the inter-dependence
of diversity metrics themselves, we employ three standard correlation measures: Pearsons correlation coef-
ficient, Spearmans rank correlation coefficient, and Kendalls 7 coefficient. Their formulations are provided
below.
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Formulations. Given paired observations {(x;,y;)}{,, we compute:

1. Pearson Correlation:

Yoy (@i — 7)(yi — 9)

r= — = — — (21)
\/21:1(551' - SE)Z\/Zizl(yi —y)?
where z and y are the sample means.
2. Spearman Rank Correlation:
6> " d?
=1-—==12 22
P n(ng _ 1) ’ ( )
where d; is the difference between the ranks of z; and y;.
3. Kendalls 7: O—D
=, (23)
sn(n—1)

where C' and D denote the number of concordant and discordant pairs, respectively.

Accuracy vs. Diversity Metrics. Let A= {q; };Vil denote the set of averaged encoder accuracies across

all encoders for dataset j, and let DF = {d;C };‘il denote the set of diversity scores corresponding to the k-th
diversity metric, where k € {PENS, PENS-SH, S3, SDAInter, PerAugy-DS, PerAugy-DS+SMP}. For each k,
we compute the correlation with accuracy as

Corr') (A, D*) = f ({(aj’df)}j]\il) ; (24)

where f € {r, p, 7} corresponds to Pearson, Spearman, or Kendalls correlation, respectively.

Note that LLM-generated trajectories are excluded from DF due to their inability to produce complete
trajectory sets with 113K news items, resulting in artificially lower accuracies despite exhibiting topical
diversity and frequent shifts.

Inter-Correlation of Diversity Metrics. Let M = {TP,RTC, DegreeD} denote the set of inter-diversity
metrics. For each dataset j, we obtain the metric values D; = {d}' },nem. For any pair (mi,mz) € M x M,
we compute

CorrlN (D™ D™=y = £ ({(d™, d™)}1,) (25)

where f € {r,p,7}.

This formulation allows us to construct a correlation matrix across M, thereby quantifying the degree of
alignment or divergence among different internal diversity measures (including those derived from LLMs).

| Detailed Results

.1 Ablation Studies (RQ-1)

We ablate on the mixed training data 7'§§ P to analyze the effect of DS hyper-parameters— gap-length g
(section B1) and train history-segment length 75, .. : {1/2,51/8,31/4,71/8,1—3} (I: trajectory length). For
SMP hyper-parameters (k: {10, 15,20}, A: {0.3,0.8,1}, psmp: {0.5,0.8,1}), we ablate on TSS_+PSMP. Results
are in Figure B.

Effect of 7., & g We fix g to 25 and observe that 73, has a major impact across all
user-encoders with the longest 7., (I — 3) having the highest mean boost (0.064 1 w.r.t AUC,
0.035 + wo.t MRR, 0.011 1 w.ao.t nDCG@5/10) against the least scores, thereby confirming that
longer preference history in train is better. g¢; (I fixed at 150) also matters particularly w.r.t AUC with
best at 40. This shows that synthetic profiles having longer original user segments are better.
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Figure 6: Effect of PerAugy hyper-parameters on User-Encoder Accuracy: All encoder models are
trained-from-scratch; results summarized in Table . Observation-1: Best hyper-parameter values perform
consistently across models; Observation-2: For DS, g, = 40 and 13, =l — 3 favor longer profile/history
retention; Observation-3: For SMP, k = 10, pspyp = 0.8, A = 0.3 control abrupt diffusion best, and
non-Markovian smoothing is preferred.

Effect of k, A\, & psmp We observe that pgyp has the maximum impact (fixing k& = 10; A = 0.5), particu-
larly for ranking metrics (MRR, nDCG@5/10). We find that pspp = 0.8/1 have highest boost (0.04 1T w.r.t
nDCG@10). This shows that SMP smoothing is mostly required during augmentation. We also observe that
the length of the context window (74 "**; A = 0.5; psyp = 0.8) also has a significant effect on the overall
AUC (0.05 1) and nDCG@5/10 (0.032 1) with the best at & = 10. With the best k and psmp (0.8), we
find the best A to be 0.3, particularly for MRR (0.047 1) and nDCG@5 (0.032 1). This shows that (a)

long context window is not useful for SMP smoothing and (b) smoothing cannot be strictly Markovian.
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Hyper-parameter AUC MRR nDCG@5 nDCG@10
RWM AWM RWM AWM RWM AWM RWM AWM
I 0018 0.043 0005 0021 0007 0023 0.007 0.018
Thorus 0.024 0.064 0.013 0035 0011 0026 0011  0.028
k 0.028 0.049 0016 0.027 0016 0032 0016  0.032
A 0.019 0034 0.023 0.047 001 0029 001  0.029
PSMP 0019 004 0018 0039 0.023 0.035 0.018 0.04

Table 11: Comparative impact of hyper-parameters. Metrics shown are Relative Win Margin (RWM)
and Absolute Win Margin (AWM). Observation: Shorter gap-length leads to consistent wins across encoders
w.r.t AUC, but for prediction ranking, higher perturbation probability and context-window length matter more.

DS: Gap Length (g7) DS: Trajectory Length (/) SMP: Context-Window (k) SMP: Decay Constant () SMP: Perturbation Prebability (psup)
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Figure 7: Ablation effect of hyper-parameters on DegreeD: Diversity analysis for all hyper-parameters
of PerAugy; Observation-1: lower gap length increases diversity due to diffusion into different topics across
a trajectory; Observation-2: Longer context window may not lead to sufficient perturbation; Observation-
3: stricter Markovian does not yield higher diversity; & Observation 4: frequent SMP on s-nodes lead to
higher diversity.

1.2 DegreeD Ablations

We ablate various hyperparameters of PerAugy, including gap length g; and trajectory length [ for TDgsf Pas
well as context length k, decay constant A\, and perturbation probability psasp for ’7]355_ +PSMP. A summary of
our findings is given in Figure @.

Gap Length g; and Trajectory Length [. Smaller values of g; generally lead to higher DegreeD, with
g1 = 10 yielding the best results (DegreeD of 0.163). This suggests that frequent substitutions in ’source’
segments boost thematic divergence. Similarly, increasing [ results in higher DegreeD, with the highest score
(0.158) observed at I = 175. This indicates that the length of ’source’ segments plays a crucial role in
promoting diversity.

SMP Parameters. We observe that smaller values of the context window k and the decay constant A
lead to higher DegreeD, while higher pgysp improves DegreeD, with the optimal setup being k = 10, A = 0.3,
and psyp = 1 (with a score of 0.278). This suggests that, while there is a Markovian effect (as a lower k
results in higher diversity), the role of higher-order influence should not be overlooked. In other words, user-
generated subjective summaries are not solely governed by a Markovian process (as evident from the fact
that lower A corresponds to higher DegreeD), and might have long-term dependencies. We conclude that user
behavior exhibits a tendency toward diffusion (random or exploratory variation in a users reading behavior);
however, an abrupt diffusion does not necessarily lead to higher diversity. This underscores the importance of
SMP as a smoothing mechanism to regulate diffusion. The comparative analysis of the ablations on different
hyperparameters w.r.t DegreeD are in Table [

Comparative Impact of Hyperparameters. We conduct a detailed ablation to understand the influ-
ence of each hyperparameter of PerAugy on user-encoder model performance across AUC, MRR, nDCG@5
& 10 using Relative Win Margin (the difference between the best and second-best performance for a hy-
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Figure 8: User-encoder performance (OpenAl (Reddit)): Impact of Double Shuffling (DS) and
DS+SMP on OpenAl seed base 7,941 (SMP hyper-parameters: k=10, A=0.3, pspp=0.8). TrRMIo is fine-
tuned; others are trained from scratch. Observation-1: Vanilla OpenAl lags behind DS and DS+SMP,
indicating that random augmentation is less effective than PerAugy; Observation-2: DS achieves perfor-
mance boosts as in PerAugy-PENS; Observation-3: DS+SMP further boosts performance, demonstrating

the cross-domain strength of PerAugy.

perparameter) and Absolute Win Margin (difference between best and worst). History Length exhibits the
strongest effect on AUC with an Absolute Win Margin of 0.064 and a Relative Win Margin of 0.024, in-
dicating that longer historical context is crucial for general user modeling. Context-Length k provides the
highest Relative Win Margin of 0.028 for AUC and consistent gains across all ranking metrics, showing the
importance of larger context windows. Decay Constant A achieves the highest MRR Absolute Win Margin
of 0.047 and a strong Relative Win Margin of 0.023, highlighting the impact of temporal recency weighting.
Perturbation Probability pgyp leads in ranking metrics, with nDCG@5 Relative=0.023, Absolute=0.035 and
nDCG@10 Absolute=0.04, suggesting higher perturbation improves top-k relevance. Finally, Gap Length con-
tributes stable gains to AUC (Abs.=0.043), indicating that shorter gaps between actions lead to consistent
encoder performance. Overall, each hyperparameter uniquely benefits different objectives, and careful tuning
is vital for optimal performance. The detailed results are in Table [I.

J Comparative Study

In this section, we provide a comparative analysis of SOTA relatable data augmentation techniques based
on the operations they perform on trajectory-like datasets. In terms of operations, the methods are divided
into two main categories: Intra-Trajectory Augmentation and Cross-Trajectory Augmentation, serving the
purpose of sequential recommendation tasks.

J.1 Intra-Trajectory Augmentation

S3 Grover et _all (2024): Segment-Shuffle-and-Stitch is an intra-trajectory augmentation where non-
overlapping segments within same trajectory sequences are segmented, shuffled and finally concatenated
(stitched) to form a new optimal trajectory. Since our goal is to generate diverse synthetic trajectories,
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shuffling among the segments within same sequence does not guarantee a smooth thematic transition of s-
nodes w.r.t the historical interactions. Also, in our case, Shuffling does not enhance diversity w.r.t. DegreeD.

MBASR Xiao_ef_all (2024a): Multi-behavior Augmentation for Sequential Recommendation method
employs an intra-trajectory augmentation technique by performing pairwise swapping of segments to gener-
ate diversity. However, in our case, the base historical dataset has highly monotonous trajectories. Therefore
swapping nearby subsequences fails to produce sufficient diversity, and additional operations like order per-
turbation or redundancy reduction do not effectively smoothen the s-node content in line with historical
preferences and might inject (or remove) unrealistic time-step information thereby disrupting the flow of the
trajectory. For these reasons, we do not adopt MBASR.

STEAM [Lin_et_all (2023): STEAM operates in an intra-trajectory manner by deciding whether to
drop or insert nodes within a trajectory to create augmented data. However, the method is not scalable
to longer trajectories, and the insertion or deletion of nodes can disrupt the historical sequence, ultimately
undermining the realistic flow of the synthetic user profiles. Hence, we do not use STEAM.

L2Aug Wang et all (2022): Learning-to-Augment is an intra-trajectory augmentation method where
a node is deleted from the sequence of core users to generate sequence of synthetic casual users through a
reinforcement learning-based policy mechanism. Node deletion is irrelevant in our case as it can disrupt the
sequential flow of the trajectories.

BTBR LLietall (2023): Bi-directional Transformer Basket Recommendation model incorporates masking
strategies and swapping operation to train the model for 'Next Novel Basket Recommendation’. Despite some
similarity in the purpose at broader level, our goal is not to create a model/encoder that encodes the input
sequence but to generate a diverse input sequence to make the existing encoders learn the representations.

J.2 Cross-Trajectory Augmentation

SDAinter Hiao ef_all (2024): SDAinter is a cross-trajectory technique that matches anchor items (e.g.,
identical start and end d-nodes or s-nodes) across trajectories to facilitate segment exchange. However,
the reliance on anchor-based matching does not effectively capture the subjective nuances of individual
user interests, limiting its applicability in personalized summarization. For this reason, we do not consider
SDAinter suitable for historical interaction sequence-based tasks.

DRA4SR Yin ef-all (2024): Data-Regeneration-for-Sequential-Recommendation is a transformer-styled
cross-trajectory sequence regeneration model where the pertaining task is constructed for to extract patterns
from given set of sequences and feed the patterns to the model to regenerate other set of possible sequences.
However, patterns in our case would mean reading and summarizing habits of two different users, where the
s-nodes are subjective. Therefore, this technique might incorporate redundant s-nodes, defeating the goal of
personalized summarization.

TiCoSeRec Dang et all (2024): Time Interval Aware Augmentation technique ensures uniform time-
interval distribution in the sequence based on the time-aware traditional operations like Crop, Mask, Insert,
Reorder and Substitute. However, our trajectories are primarily assumed to be uniform in terms of time-steps
(unit time between two successive interactions).

FDA Chen et all (2023a): Fairness-oriented Data Augmentation is used to generate synthetic user pro-
files from the realistic profiles to balance between realistic data and pseudo pseudo data. However, modeling
historical preference trajectories by generating fake interaction sequences will not lead to diversified trajec-
tories as the ’complemented’ sequence will also remain monotonous. Also, ideal datasets for personalized
summarization tasks must have intermediate summary nodes for supervised learning setup, which makes the
generation of fake interactions challenging.
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Chain-of-Thoughts (COT) Prompt

You are an AI model generating synthetic user interaction trajectories with news articles.

### Task Definition

Each user follows a sequence of interactions with news articles. The dataset consists of:

» "UserID" : Unique identifier for the user.

» "Sequence of Docs" : Ordered list of news article IDs the user interacts with.

» "Sequence of Actions" : Ordered list of actions taken ( click, skip, gensum, sumgen ).

» "Number of Summary Nodes" : The count of summary nodes (e.g., S-1, S-2) generated during the trajectory.

### Rules for Interaction Generation
1. Each User's Trajectory is 100-200 Interactions Long
- The user interacts with a sequence of news articles.
- The sequence follows logical decision-making based on relevance and interest.

2. Action Types
- "click" — User reads the article.
- "skip" — User ignores the article.
- "gensum" — User generates a rewritten headline for that document.
- "sumgen" — User written personalized headline.

3. Summary Node Constraints
- "sumgen" must immediately follow "gensum" .
- Each "sumgen" introduces a new summary node ( S-{id} )in the document sequence.
- Each user must have 3 to 50 summary nodesin their trajectory.

### Step-by-Step Thought Process
1. Assign a UserID

- Generate a unique identifier for the user.

2. Generate a Long Sequence of Interactions
- Select 100-200 news articlesfrom various categories.
- Apply logical reasoning to assign "click", "skip", "gensum", or "sumgen" actions.

3. Ensure Summary Nodes are Introduced Properly
- When "gensum" occurs, assign it a new summary node ( S-{id} ).
- The next "sumgen" action must refer to a previously generatedsummary node.
- Ensure there are at least 3 summary nodes per user.

4. Output the Structured Dataset
- "UserID"
- "Sequence of Docs" : Ordered list of article IDs and summary nodes.
- "Sequence of Actions" : Corresponding user actions.
- "Number of Summary Nodes"

### Expected Output Format (JSON)
f
1
"UserID": "U001",
"Docs": ["N101", "N102", "N103", "S-1", "N'104", "N 105", "S-2", "S-1", "N'106"],
"Actions": ["click", "skip", "gensum", "sumgen", "click", "gensum", "sumgen", "sumgen", "click"],
"Num_ Summary Nodes": 3

Figure 9: Chain-of-Thoughts (CoT) prompt template used in LLM-based experiments.

divSPA-styled methods Linef_all (2023): These methods use a cross-trajectory augmentation strat-
egy by exchanging segments between trajectories based on similarity metrics. Despite this, the exchanged
segments often lack sufficient variation with respect to the overall degree (DegreeD), resulting in minimal
diversity gains. This limitation makes the approach less effective for our needs.

K Prompt Details

Chain-of-Thoughts. Chainofthought (CoT) prompting is a powerful technique that guides large language
models to decompose complex problems into a series of intermediate reasoning steps before emitting their
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final answer. CoT prompting was shown to significantly improve multistep arithmetic, commonsense, and
symbolic reasoning tasks by eliciting explicit rationale chains that mirror human logic Ve efall (2024).
Subsequent work in ACL demonstrated that CoT can be extended to address hallucination and faithfulness
issues by injecting structured knowledge during rationale generation (Wang et all, 2024). EMNLP findings
further confirmed that structured CoT variations, such as statebased prompting, yield substantial gains in
contentgrounded dialogue systems by promoting intermediate subtask decomposition Sultan et all (2024).
Another EMNLP study introduced prompt tuning of masked language models to generate both intermediate
and final reasoning steps jointly, striking a balance between interpretability and performance without full
finetuning (Kunnafh ef all, 2023). Across these efforts, a consistent insight is that CoT acts as a bridge,
enabling LLMs to expose latent reasoning processes. The method is particularly effective for tasks demanding
logical coherence and multihop inference, such as math word problems and question answering. Although
CoT relies on large model scale to be effective, research shows that even generated exemplars (e.g. Lets
think step by step) can approximate fewshot behavior. In the context of our work, CoT prompting with
LLaMA213B is used to craft personalized user summaries by breaking down interactions step by step, so as
to enhance transparency and accuracy, making LLM reasoning more interpretable and reliable.

Prompt Chaining. Prompt chaining is an effective prompting strategy where a complex task is decom-
posed into a sequence of smaller, well-defined prompts, with the output of one prompt becoming the input
to the next, thereby guiding the model through a structured reasoning pipeline. It improves performance on
multi-step tasks by reducing cognitive load on the model and increasing transparency at each stagedevelopers
can verify and debug intermediate outputs, enhancing controllability and reliability. Academic research, such
as , shows prompt chaining excels in iterative summarization by orchestrating drafting, critiquing, and re-
fining phases via discrete prompts, outperforming one-shot or stepwise alternatives (Sun_ef all, 2024)). Across
these efforts, the core insight is that chaining leverages the models strengths at each subtask rather than
relying on single-shot reasoning, leading to superior performance, especially when task complexity or in-
put length is high. In our context, prompt chaining is implemented via two stepsuser behavior simulation
followed by summary generationmirroring the validated pattern of decomposition for enhanced LLM task
performance.
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#it# Task

Generate a sequence of interactions for User {user id}.
Document IDs: {doc_sequence}

Actions: [click, skip]

### Rules:
1)  Each action corresponds to a document in the sequence.
2)  The sequence should only contain "click" or "skip" actions at this stage.

### Expected Output Format (JSON)

{
document 1 : action 1, document 2 : action 2, document n, action n
}.
### Examples
Below are examples of personalized headlines generated for different users based on their document
content:

{fewshot examples}

### Task:
Generate a personalized headline based on the document content. Ensure that the headline aligns with the
user's preferences and effectively captures the essence of the document.

User: {user_id}
Document: {doc_id}
Document Content: {doc_content}

### Expected Output Format (JSON)
Strictly return a JSON object in the following format:

{
}

"headline": "your generated headline"

Figure 10: Prompt-Chaining template used in LLM-based experiments.



	Introduction
	Background
	Dynamic User Preference (vs. Static User Persona)
	Personalized Summarizers
	Personalized Summarization Datasets
	Personalized Summarization Evaluation

	Modeling User Preference Datasets
	User-Interaction Graph (UIG)
	UIG Construction from Preference Data

	PerAugy: Augmentation of Base UIG
	PerAugy Pipeline: Overview
	Double Shuffling
	Stochastic Markovian Perturbation (SMP)

	Evaluation
	Experiment Setup
	Augmented Synthetic Datasets
	User-Encoder Training
	Baseline Augmentation Methods
	User-Encoder Baselines
	Personalized Summarization Baselines

	Evaluation Metrics
	Encoder Evaluation
	Personalization Evaluation
	Human-Judgment based Evaluation


	PerAugy Performance Results and Insights
	RQ-1: PerAugy's Effect on User-Encoder Accuracy
	RQ-2: PerAugy's Effect on Personalization

	Dataset Diversity Boosts Performance: Quantitative Analysis
	Trajectory Diversity Metrics
	Effect of Augmentation on Dataset Diversity
	Dataset Diversity Metrics as a Potential Predictor of Performance Gain
	Inter-metric Alignment
	Meta-evaluation: Diversity Metric Reliability
	Meta-evaluation: Diversity Metric Stability

	Data Diversity Causes Personalization Boost

	Related Work
	Intra-Trajectory Augmentation
	Cross-Trajectory Augmentation

	Discussions & Limitations
	Conclusion
	Measuring Degree-of-Personalization
	Motivation
	PerSEval: Formulation

	Dataset and Statistics
	Baselines
	Baseline Augmentations
	Baseline User-Encoders
	Baseline Personalized Summarizers

	Encoder/Decoder Accuracy Metrics
	Algorithms
	Stability of DegreeD Correlation Under Divergence Substitution
	Setup
	Post-Substitution Time-stepwise Bounds
	Post-Substitution Rank Stability
	Pearson Correlations
	Summary Results
	Results for : RMSD

	Implementation Details
	Correlation Computation
	Detailed Results
	Ablation Studies (RQ-1)
	DegreeD Ablations

	Comparative Study
	Intra-Trajectory Augmentation
	Cross-Trajectory Augmentation

	Prompt Details

