
Beyond Fixed Tasks: Unsupervised Environment
Design for Task-Level Pairs

Daniel Furelos-Blanco∗
Imperial College London

Charles Pert
Imperial College London

Frederik Kelbel
Imperial College London

Alex F. Spies
Imperial College London

Alessandra Russo
Imperial College London

Michael Dennis†
Google DeepMind

Abstract

Training general agents to follow complex instructions (tasks) in intricate environ-
ments (levels) remains a core challenge in reinforcement learning. Random sam-
pling of task-level pairs often produces unsolvable combinations, highlighting the
need to co-design tasks and levels. While unsupervised environment design (UED)
has proven effective at automatically designing level curricula, prior work has
only considered a fixed task. We present ATLAS (Aligning Tasks and Levels for
Autocurricula of Specifications), a novel method that generates joint autocurricula
over tasks and levels. Our approach builds upon UED to automatically produce
solvable yet challenging task-level pairs for policy training. To evaluate ATLAS
and drive progress in the field, we introduce a benchmark suite that models tasks as
reward machines in Minigrid levels. Experiments demonstrate that ATLAS vastly
outperforms random sampling approaches, particularly when sampling solvable
pairs is unlikely. We further show that mutations leveraging the structure of both
tasks and levels accelerate convergence to performant policies.

1 Introduction

Training generally-capable agents that follow diverse instructions (tasks) in varied environments
(levels) is a central challenge in reinforcement learning [39]. This dual complexity emerges across
domains—from cooking agents executing recipes in different kitchens, to navigation agents following
directives through unfamiliar cities. To generate this open-ended complexity, methods like EU-
REKA [34], OMNI-EPIC [17], and others [28, 56] have often relied on LLM-driven code-generation.

However, there has been growing interest in an alternative approach of expressing tasks through
formal languages, including temporal logics [22, 29, 43, 52] and finite-state machines [54, 55].
Unlike natural language [33], formal languages offer unambiguous semantics and precise progress
tracking, making them well-suited for generalization across task-level pairs. These approaches
typically train agents by sampling from uninformed task-level distributions, a strategy known as
domain randomization [DR; 45, 49].

DR can succeed when sampled task-level pairs are mostly solvable. However, as the number of
task-level combinations grows, the proportion of solvable pairs tends to decrease. Even among
solvable pairs, DR generates samples of arbitrary difficulty, causing unsolvable or overly challenging
levels to dominate training. This raises the question: How can we train agents effectively from
solvable yet appropriately challenging task-level pairs?
∗Correspondence to d.furelos-blanco18@imperial.ac.uk.
†Contributed in an advisory capacity.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: Scaling Environments
for Agents (SEA).



Unsupervised environment design [UED; 16] has demonstrated success in automatically generating
level curricula, producing solvable and progressively more challenging levels that enable effective
generalization. However, existing UED methods only generate curricula over levels for a fixed task,
yet general agents require both.

We introduce ATLAS (Aligning Tasks and Levels for Autocurricula of Specifications), which extends
UED’s principled curriculum generation to both tasks and levels, ensuring that agents train on solvable
yet appropriately challenging pairs. We express tasks as reward machines [RMs; 50]—finite-state
machines that compactly represent reward functions. Our contributions include:

1. Joint task-level autocurricula. ATLAS co-designs tasks and levels to generate aligned
curricula, ensuring solvable yet challenging pairs. A policy network, conditioned on graph
embeddings of the RMs, learns effectively from the resulting curriculum.

2. Structure-aware task mutations. We leverage RM structure to guide task mutations while
co-evolving levels, achieving faster convergence than approaches that solely curate solvable
but challenging random samples.

3. Benchmark. We introduce a benchmark combining RM tasks with Minigrid levels [11] that,
unlike previous work, enables evaluating generalization from rarely solvable task-level pairs.

Our experiments show that ATLAS generates joint task-level curricula that enable agents to master
increasingly complex levels (with more rooms and objects) and tasks (with more RM states). By
prioritizing solvable pairs at the frontier of agent capability, ATLAS consistently outperforms DR
across diverse benchmarks. Interestingly, forming curricula by repeatedly mutating tasks and levels
from a simple starting point can result in policies with comparable performance to those based on
random sampling.

2 Background

2.1 Unsupervised Environment Design

Unsupervised environment design [UED; 16] aims to generate training environments that adapt to
an agent’s capabilities, inducing an autocurriculum. The key is to parameterize RL environments
(e.g., grid size) and adapt these parameters during training. The goal is to train agents that generalize
across all possible parameterizations.

Formally, UED problems are underspecified partially observable Markov decision processes [UP-
OMDPs; 16]. A standard POMDP is a tupleM = 〈A,O, S, T , I,R, γ〉 where A is a set of actions,
O is a set of observations, S is a set of states, T : S × A → ∆(S) is the transition function,
I : S → O is the observation function, R : S → R is the reward function, and γ is the discount
factor. UPOMDPs augment POMDPs with a parameter space Θ, which represents the space of all
environment configurations. Each parameterization θ ∈ Θ instantiates a fully specified POMDPMθ,
often called level [14, 24]. The expected discounted return (or value) of a policy π in levelMθ is
V θ(π) = E[

∑T
t=0 γ

trt], where T is a horizon. The goal is to produce a sequence of distributions
over Θ that maximizes the policy’s value across levels.

2.2 Methods for UED

UED methods often frame curriculum design as a game between two players: a teacher, which
proposes levels, and a student, which trains on them. The teacher generates levels by maximizing a
utility score. We review two scoring strategies: constant and regret-based scoring.

Constant. All levels have equal utility, ignoring the student’s performance. Parameters θ are
uniformly sampled from the parameter space Θ. This strategy is commonly known as domain
randomization [DR; 45, 49].

Regret-Based. The regret for a levelMθ is the value gap V θ(π∗)− V θ(π) between the optimal
policy π∗ and the current policy π. Unlike DR, regret scoring deprioritizes unsolvable levels and
focuses on those at the frontier of the agent’s capabilities. Theoretically, a teacher that maximizes
regret induces a minimax regret student policy at equilibrium [16].

2



Since finding the optimal policy is intractable, UED methods resort to regret approximations. For
example, MaxMC [23] uses the highest undiscounted return seen so far, Rθmax, as a proxy for optimal
performance inMθ and computes regret as (1/T )

∑T
t=0R

θ
max − V θ(ot), where V θ(ot) is the value

of the observation at time t.

Prioritized Level Replay [PLR; 24] curates a buffer of high-regret levels. At each episode, PLR
chooses between (i) with probability p, replaying levels from the buffer and updating their estimates,
and (ii) with probability 1− p, sampling new levels via DR and adding them to the buffer. In both
cases, the student policy trains on the selected levels.

In this paper, we consider two extensions of PLR. Robust PLR [PLR⊥; 23] trains the student only on
replayed levels. ACCEL [40] extends PLR⊥ by mutating the last replayed levels (e.g., moving an
object) before adding them to the buffer, thereby exploring the neighborhood of high-regret levels
rather than solely relying on random sampling.

2.3 Reward Machines

Reward machines [RMs; 50] are finite-state machines for specifying reward functions using high-level
propositional events. They provide a flexible task representation, supporting derivations from other
formal languages [9] and indirect mappings from natural language [32, 51].

Formally, an RM is a tuple 〈U,P, δ,R, u0, uA〉, where U is a finite set of states; P is a finite set of
propositions that forms the alphabet of the RM; δ : U × 2P → U is the state-transition function,
which maps an RM state and a subset of propositions into an RM state; R : U × U → R is the
reward-transition function, which maps an RM state pair into a reward; u0 ∈ U is the initial state of
the RM; and uA ∈ U is the accepting state of the RM, which represents the task’s completion.

We refer to propositions setsL ∈ 2P as labels. These are produced by a labeling functionL : O → 2P

from environment observations. Given an RM state u and a labelL, the RM transitions to u′ = δ(u, L)
and emits rewardR(u, u′).

By enabling RMs to call each other, RMs can be composed into hierarchies [HRMs; 19]. This
modular structure supports task decomposition and reusability across HRMs. For such HRMs, a
single RM is designated as the root, initiating execution and terminating upon reaching its accepting
state; other RMs return control to their caller upon completion.

3 A Task-Level Generalization Benchmark

We introduce a benchmark for problem-conditioned RL, where a problem specification (hereafter,
problem) is a tuple consisting of a task, an instruction the agent must follow, and a level, the
environment instance in which the agent acts.

u0

u1

uA

〈o.w., 0〉

〈o.w., 0〉

〈front_ball, 0〉

〈front_square_red, 1〉

Figure 1: A problem consisting of a Min-
igrid level and an RM task for “go to a
ball, then go to a red square”.

The core challenge lies in generalizing from task-level
pairs that are rarely solvable. This stems from the large
combinatorial space of possible problems, where tasks
may require interactions that are infeasible in a level
(e.g., picking up a red ball in a level containing no balls).
Prior benchmarks for problem-conditioned RL ensure ran-
domly sampled pairs are highly solvable (see Section 6).

Our benchmark targets two key fronts. First, it probes
the limits of problem-conditioned methods that train solely
from DR-sampled problems. Second, it broadens the scope
of UED, enabling settings where tasks are not fixed but
must be co-designed with levels. To support these goals,
the benchmark provides 150 hand-designed problems and modular samplers for tasks, levels, and
joint generation (see Appendix A).

3.1 Levels

Our benchmark instantiates levels as Minigrid environments [11]. A level consists of a grid containing
objects (keys, squares, balls, doors) with different colors (red, green, blue, purple, yellow, gray).

3



Doors have three states: locked, open, or closed, with locked doors requiring keys of matching color
to open. The agent observes a 5× 5 region in front of it. Figure 1 (left) shows a Minigrid level with
the agent (red triangle) and its observation (highlighted area). We develop samplers that generate
levels with a random number of rooms and objects. All objects are randomly determined. Agent and
non-door objects are randomly placed. Rooms are connected via doors.

3.2 Tasks

Tasks are instantiated as HRMs that encode BabyAI instructions [10]. These instructions consist of
go to, open, pick up and put next commands, each applied to specific objects, optionally conditioned
on color and state. The HRM alphabet is defined by mapping these commands to propositions:

• front_〈o1〉_〈c1〉_〈s1〉 indicates the agent is in front of object o1 with color c1 and state s1,
• carrying_〈o1〉_〈c1〉_〈s1〉 indicates the agent carries object o1 with color c1 and state s1, and
• next_〈o1〉_〈c1〉_〈s1〉_〈o2〉_〈c2〉_〈s2〉 indicates that object o1 with color c1 and state s1 is

next to object o2 with color c2 and state s2 within the agent’s visual field,

where oi ∈ {ball, square, key, door}, ci ∈ {red, green, blue, purple, yellow, gray, ε}, and
si ∈ {open, closed, locked, ε} for i ∈ {1, 2}. The state si is unspecified (ε) if oi 6= door.
The propositions capture each instruction type: front for go to and open, carrying for pick up,
and next for put next. Crucially, HRMs enable sequencing and alternating formulas over these
propositions, mirroring the connectors then and and in BabyAI instructions.

Figure 1 (right) shows an RM for the instruction “go to a ball, then go to a red square”. A reward of
1 is given upon completing the task, and 0 otherwise. Given the level on its left, the observation of the
agent is mapped into the label {front_ball, front_ball_blue, next_square_purple_key_green,
next_square_key_green, next_square_key, next_square_purple_key}, which satisfies the tran-
sition from u0 to u1.

We introduce two HRM sampling strategies. First, the sequential sampler generates non-hierarchical
HRMs with a single path from u0 to uA, where the path length is sampled from a predefined range
(e.g., Figure 1). Second, the random walk-based sampler generates potentially hierarchical HRMs
with one or more (possibly cyclic) paths from u0 to uA, subsuming the sequential case. Transitions are
determined by a random walk over a uniformly initialized Markov transition matrix (see Appendix A.1
for details). In both strategies, each transition is labeled with a proposition p sampled uniformly from
the alphabet, while its negation ¬p is added to all other outgoing transitions from the same state to
enforce determinism.

Sampled HRMs support a variety of reward functions, including sparse rewards (1 only when reaching
uA), step-wise rewards [1 on each transition to a new state, e.g. 51], and shaped rewards based on the
distance to uA [e.g., 8, 18].

3.3 Problem Sampling

There are two main strategies to sample a problem: independent, in which tasks and levels are
sampled separately; and level-conditioned, in which task generation is constrained by the objects in
the sampled level (i.e., only propositions involving those objects may label the edges in the HRM).

Level-conditioning increases the likelihood of sampling solvable problems, but does not guarantee it.
For example, a task may require unlocking a door with an existing but unreachable key. Guaranteeing
solvability is challenging, as it may require solving the problem during generation.

4 Problem-Conditioning via Autocurricula

We introduce ATLAS (Aligning Tasks and Levels for Autocurricula of Specifications), a method
for learning policies that generalize across problem specifications by leveraging autocurricula—
automatically adapting the training problems to match the agent’s capabilities. This is critical in
settings where solvable problems are rarely sampled.

4



Buffer

Generator

Mutator
Policy<front_ball,0>

<front_square_red,1>

Problem

Score Function

train 
(from buffer)

Rollout Environment
Observation

Reward 
Machine

CNN

GNN

RNN

Policy Network

State

Level Task

Figure 2: Overview of ATLAS instantiated with PLR⊥ and ACCEL. The UED loop (left) samples
problems—i.e., task-level pairs—from either a generator or a buffer of high-regret problems. ACCEL
provides problems that result from mutating selected buffer problems. The policy network (right)
processes observations via a convolutional neural network (CNN) and RM tasks via a graph neural
network (GNN). The GNN produces representations for all RM states. The current state’s embedding
is concatenated with the CNN features and passed through a recurrent neural network (RNN) to
capture history. The resulting representation is used to generate actions and value estimates. Policy
rollouts are used to train the network (for buffer-sourced problems), and to compute regret scores,
which determine if new problems enter the buffer or update existing ones. Unlike PLR⊥ and ACCEL,
DR trains policies only from problems produced by the generator.

Our approach extends UED beyond level generation to jointly adapt over both tasks and levels. By
co-designing these, regret-based UED methods generate problems that are not only solvable (i.e. the
task is feasible within the corresponding level) but also challenging.

Figure 2 illustrates ATLAS, which comprises two components: a problem-conditioned policy network
and a UED-driven curriculum generation loop. In this work, we focus on flat HRMs (i.e., standard
RMs), deferring hierarchies to future extensions.

4.1 Policy Architecture

To generalize across task-level combinations, we use an actor-critic architecture conditioned on both
environment observations and RM task states. The key design choice is to encode RMs using a graph
neural network (GNN). Unlike fixed embeddings (e.g., one-hot encodings of the RM state index),
GNNs naturally handle varying RM topologies and edge labelings, supporting generalization across
RMs. The policy is trained using PPO [47]. See Appendix C for details.

4.2 Problem Autocurricula via UED

We extend UED approaches to support joint generalization over both tasks and levels. For brevity,
we refer to ATLAS instantiations of these methods as DR, PLR⊥, and ACCEL, corresponding to
the underlying UED approach. In the latter two, generalization is driven by automatically induced
curricula over both levels and RM tasks.

Unlike the original ACCEL [40], which only applied level mutations, ATLAS’ instantiation in-
corporates task-aware mutations leveraging the RM structure. This enables exploring a broader
neighborhood of problems by modifying both tasks and levels.

A mutation consists of a sequence of edits, where the number of edits (sampled from a predefined
range) and each edit type are selected uniformly at random. We define three types of edits (see
Appendix D for examples):

Level Edits. Edits applied to the environment. In Minigrid, this includes moving the agent,
adding/removing rooms, and adding/removing/replacing/moving an object.

Task Edits. Edits applied to the RM structure. These include switching a proposition and
adding/removing a state.

Hindsight Edits. Inspired by hindsight relabeling [4], these edits generate new subproblems from
partial progress. When a rollout ends in an intermediate RM state u (neither initial nor accepting),

5



there are two possible edits: preceding edits keep the original level but set u as the accepting RM
state, yielding a simpler problem, and succeeding edits. use the reached environment state as the new
level and set u as the initial RM state, creating a continuation problem. Since these edits depend on
the original problem, they can only be applied as the first step in a mutation sequence.

5 Experiments

We address the following research questions:

RQ1 Joint Curriculum Effectiveness. Do approaches that generate curricula over both levels and
tasks (PLR⊥, ACCEL) outperform DR?

RQ2 Mutation Benefits. Does incorporating mutations (ACCEL) offer advantages over curation-
only approaches (PLR⊥)?

RQ3 Joint Curriculum Emergence. Does ATLAS induce autocurricula over both levels and tasks?
RQ4 Mutation Analysis. Which mutation types become most prevalent during training?

We address these questions in our main results, supported by key ablations below and extended
analysis in Appendix E. The code is available at https://github.com/spike-imperial/atlas.

5.1 Experimental Setup

We describe the default training setup used in our experiments. See Appendix E.2 for details.

Generation. Levels and tasks are sampled independently, creating a setting in which most training
problems are not solvable. Levels are generated by sampling (i) a number of rooms in {1, 2, 4, 6},
(ii) a number of objects from a grid-dependent range, (iii) the objects themselves, and (iv) the agent
position. Tasks are specified as RMs generated via the sequential sampler, with path lengths randomly
chosen between 1 and 5. Although our benchmark supports various reward functions (see Section 3.2),
we use sparse rewards—1 on transitions to uA and 0 otherwise—as they are general yet challenging,
making them well-suited for assessing performance and curricula emergence.

Algorithms. We evaluate ATLAS instantiated with DR, PLR⊥, and ACCEL. For ACCEL, we
distinguish between (i) ACCEL, where problems are sampled using the setup above; and (ii) ACCEL-
0, where sampled problems consist of single-room levels with one object and RMs with one transition,
and complexity emerges solely through mutations. We apply the mutations described in Section 4.2,
with sequence lengths sampled uniformly in the range 7–10.

Metrics. We evaluate performance using two metrics, averaged over five seeds with 95% confidence
intervals. First, we compute conditional value at risk [CVaR; 44], which quantifies robustness by
reporting the solve rate for the α% worst-performing problems in a large sampled set. Second,
we report test performance using the aggregate inter-quartile mean [IQM; 2] of solve rates on our
hand-designed evaluation set, assessing both in-distribution and out-of-distribution generalization.

5.2 Main Results

We present our core experimental results addressing the research questions outlined earlier.

Performance (RQ1, RQ2). Figure 3a displays CVaR results measuring agent robustness. ACCEL
variants consistently outperform PLR⊥ across most α values, particularly for worst-case scenarios
(low α). At α = 100% (average performance), both methods perform similarly and substantially
outperform DR, which solves almost no problems.

Figure 3b shows zero-shot performance over time on our hand-designed evaluation set. While ACCEL
variants and PLR⊥ achieve comparable final results, ACCEL converges faster. Notably, ACCEL-0
achieves strong performance, demonstrating that problem complexity can emerge purely through
targeted mutations, without relying on initial problem diversity. DR again underperforms due to the
scarcity of solvable training problems.

6

https://github.com/spike-imperial/atlas


1 10 100
% Worst-Case Problems

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

So
lv

e 
Ra

te

DR
PLR
ACCEL
ACCEL-0

(a) CVaR of the solve rate.

0 1000 2000 3000 4000
Number of Environment Steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

 S
ol

ve
 R

at
e

DR
PLR
ACCEL
ACCEL-0

(b) Aggregate zero-shot performance on the hand-
designed test set.

Figure 3: Performance of ATLAS variants on (a) the worst-case problems and (b) a challenging
hand-designed test set.

0.0 0.5 1.0
Solve Rate

DR

PLR

ACCEL

ACCEL-0


 – ��

(a) MYOPIC

0.0 0.5 1.0
Solve Rate

DR

PLR

ACCEL

ACCEL-0

� – � –� – �
(b) PATROL

0.0 0.5 1.0
Solve Rate

DR

PLR

ACCEL

ACCEL-0

� – 
�� – � – 
��

(c) CHOICE

Figure 4: Zero-shot performance of ATLAS on hand-designed problems. Symbol sequences represent
the RM tasks. Symbols represent balls (○), squares (
), keys (ç), and closed/locked/open/unspecified
doors (�/�� /�/�? ). Unspecified doors can match any state. Single symbols indicate front proposi-
tions, pairs indicate next propositions. Striped patterns represent an unspecified color (e.g., 
 stands
for front_square).

Figure 4 breaks down performance on three challenging hand-designed scenarios. MYOPIC requires
long-term planning: the agent must face a square but it cannot be the one behind the locked blue
door, as unlocking that door renders the problem unsolvable. PATROL involves navigating with
underspecified instructions (i.e., carrying the keys is required to unlock the doors but not mentioned).
CHOICE combines both: agents must explore the grid while ensuring some doors remain locked. In
all cases, regret-based methods outperform DR by a wide margin.

The success of PLR⊥ and ACCEL stems from filtering solvable problems. Independent sampling
yields only 2.7% solvable problems per batch (see Appendix E.3), making task-level co-design
essential. Both methods curate a buffer of high-regret problems, resulting in the generation of
challenging yet solvable problems. Indeed, the fraction of solvable buffer problems steadily grows,
eventually nearing 100% (see Appendix E.4)—interestingly, the growth is faster in ACCEL than for
PLR⊥. DR, in contrast, trains on predominantly unsolvable problems throughout.

Curriculum Analysis (RQ3). We analyze how curricula emerge across both tasks and levels.
Figure 5 illustrates the evolution of buffer problems during training. Initially, PLR⊥ and ACCEL
curate buffers with simple problems—few rooms, objects, and RM states. Over time, problem
complexity increases along all dimensions. ACCEL variants reach higher RM state counts than
PLR⊥, reflecting a stronger emphasis on task complexity. As expected, ACCEL-0 starts with the
simplest problems (two states, one room, one object) as it only relies on mutations from these.

Figure 6 provides examples of generated training problems near the end of training. For PLR⊥ and
ACCEL, these are sampled from their respective buffers, while DR examples are drawn directly from
the generator. Both PLR⊥ and ACCEL prioritize dense six-room layouts, but ACCEL favors RMs
with more states. The problems generated by PLR⊥ and ACCEL are complex, requiring efficient
exploration, implicit door unlocking, and even maintaining doors locked to preserve solvability
(e.g., the gray doors in ACCEL). In contrast, DR trains on mostly unsolvable or overly complex
problems, which the agent struggles to learn from.

7



0 1000 2000 3000 4000
Number of Environment Steps (in millions)

2

3

4

5

6

Av
er

ag
e 

#R
M

 S
ta

te
s

0 1000 2000 3000 4000
Number of Environment Steps (in millions)

1

2

3

4

5

6

Av
er

ag
e 

#R
oo

m
s

PLR
ACCEL
ACCEL-0

0 1000 2000 3000 4000
Number of Environment Steps (in millions)

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Av
er

ag
e 

#O
bj

ec
ts

Figure 5: Emergent complexity metrics for problems in the buffer.




�? – 


�?
ç

�
– ○

○
– ○

�




��
– ç
�? – 


��
– 


ç




�
– ○

ç
– � – ç

�
– ○

�

Figure 6: Generated problems by ATLAS (DR, PLR⊥, ACCEL, ACCEL-0).

Mutation Analysis (RQ4). We observe the average number of edits per problem increases over
training, indicating that (i) longer edit sequences are beneficial and (ii) the buffer content shifts from
primarily randomly generated problems to predominantly mutated ones. This trend shows ACCEL
successfully compounds complexity over time, rather than relying on random sampling alone.

We analyze how different edit types shape curricula by measuring their frequency in the buffers,
weighted by the sampling probabilities of the problems they generate. Task and level edits contribute
roughly equally. In contrast, hindsight edits are rare, likely due to limited applicability: they require
rollouts to end in intermediate RM states and can only appear as the first edit. Exploring more general
hindsight edits is an interesting direction for future work. See Appendix E.4 for illustrations.

5.3 Problem Sampling Ablations

In the default setup, levels and RM tasks are sampled independently, yielding only 2.7% solvable
problems per batch. In this setting, PLR⊥ and ACCEL vastly outperformed DR. To test the hypothesis
that this gap stems from the scarcity of solvable problems, we perform an ablation with level-
conditioned problem sampling (see Section 3.3), which increases solvability to 83.4%.

We make three key observations. First, as hypothesized, DR improves substantially, matching the
CVaR and test performance (≈91.6%) of PLR⊥ and ACCEL variants. Second, PLR⊥ and ACCEL
see only marginal gains (≈1–3%) over the independent setting, highlighting their robustness when
solvable problems are rare. Third, a curriculum still emerges: for PLR⊥, it becomes more pronounced,
with RM tasks containing 4–5 states increasingly prioritized. See Appendix E.5 for further analysis.

5.4 Task Sampling Ablations

To evaluate generalization under more complex training distributions, we replace the sequential task
sampler with the random walk-based task sampler, restricted to generate RMs as directed acyclic
graphs (see Section 3). This class subsumes sequential tasks and introduces multiple acyclic paths
from u0 to uA, creating richer temporal dependencies. As in the default setup, the maximum number
of states is 6. We restrict comparisons to DR and PLR⊥ under independent problem sampling.

We find that PLR⊥ continues to substantially outperform DR for both CVaR and zero-shot perfor-
mance on the hand-designed set. However, solve rates on the hand-designed evaluation set drop by
≈35% compared to the sequential setting, indicating that increased task complexity can affect overall
performance. See Appendix E.6 for full results.

8



5.5 Mutation Ablations

We assess ACCEL’s performance under two types of ablations: (i) disabling specific edit types,
and (ii) varying the edit sequence length. Disabling either level or task edits significantly reduces
performance, while combining both types yields the best results. This highlights the necessity of joint
task-level mutations for effective training. ACCEL is sensitive to sequence length: short sequences
severely hinder performance, with single-edit sequences causing a ≈40% drop and 3-edit sequences
leading to a ≈15% drop. In contrast, long sequences (20 edits) have minimal effect (≈2% variation).
See Appendix E.7 for details.

6 Related Work

We summarize key related work here, with an extended discussion in Appendix B.

Unsupervised Environment Design (UED). To the best of our knowledge, research on UED has
exclusively focused on level generation with fixed tasks. ATLAS is the first UED-based approach to
co-design both tasks and levels.

Seminal UED approaches rely on regret-based utility scores [16, 23], which we also employ in
ATLAS. However, recent work identifies three limitations: high-regret levels need not be diverse [30];
regret can become irreducible, causing training to stagnate [6]; and common regret approximations
correlate with success rate rather than true regret [44]. To address these issues, alternative scores—
diversity [30], novelty [48], and learnability, which prioritizes levels solved 50% of the time [44]—
have been proposed. We hypothesize irreducible floors may emerge under any scoring function. Our
benchmark supports future research using task-level variations to evaluate these limitations.

Alternative approaches to automatic level design beyond UED have been proposed. POET [53] trains
populations of specialist agents using evolutionary strategies, while ATLAS trains general agents
from random and co-evolved task-level pairs. PCGRL [25] frames level design as an RL problem,
where levels are incrementally edited to optimize a given quality objective.

Formal Language Conditioning. Most closely related to our work, Yalcinkaya et al. [54, 55]
condition policies on GNN embeddings of automata representing reach-avoid task sequences. While
Yalcinkaya et al. [55] apply task mutations, their goal is to derive task representations, not to construct
a curriculum. In contrast, ATLAS targets high-regret tasks for curriculum generation and co-evolves
both tasks and levels, whereas their method only modifies tasks.

Linear temporal logic [LTL; 42] approaches typically train using formulas sampled from context-free
grammars. Kuo et al. [29] and Vaezipoor et al. [52] encode task structure by embedding the formula’s
syntax tree through compositional RNNs and GNNs, respectively. Qiu et al. [43] and Jackermeier and
Abate [22], unlike previous work and ATLAS, tackle infinite-horizon tasks by mapping formulas into
equivalent automata whose paths determine the conditioning—the former is sequentially conditioned
on each subtask along a path, while the latter is conditioned on derived reach-avoid sequences.

These approaches implement DR, sometimes with fixed curricula [22], which may collapse when
solvable problems are rarely sampled (see Section 5). In contrast, ATLAS leverages regret-based
UED to generate autocurricula of solvable yet challenging problems. Prior work with DR succeeded
because their domains ensure high solvability: all propositions are observable across levels, making
most tasks completable. We address this evaluation gap through a benchmark with naturally low
solvability rates, revealing the limitations of DR.

7 Conclusions

We introduce ATLAS, a novel method for generating joint autocurricula over problems (task-level
pairs). By co-designing tasks and levels via regret-based UED, ATLAS achieves robust generalization
even when most sampled problems are unsolvable—a setting in which domain randomization fails.
Additionally, ACCEL-0 achieves strong performance and builds rich curricula by repeatedly mutating
initially simple problems. We contribute 150 hand-designed test problems on which we verify that
these findings hold, validating our approach and providing a foundation for further research on
task-level generalization.

9



Future Work. Our framework opens several promising research directions. First, extending the
approach to other temporal formalisms—including LTL, programs, or hierarchical specifications—
would demonstrate the broad applicability of joint curriculum generation via UED. Second, develop-
ing scoring functions and mutation operators that better exploit task structure could yield even more
effective curricula. Finally, scaling to domains like Craftax [35] would test the effectiveness of joint
curricula in richer settings.

Acknowledgments and Disclosure of Funding

We thank the reviewers and Roko Parać for their valuable feedback on this manuscript. We thank
Isabella Pearce for her invaluable assistance in designing the benchmark problems, and Dugan
Witherick for his essential support in setting up the computational resources provided by the Imperial
College Research Computing Service (http://doi.org/10.14469/hpc/2232).

This work is partially supported by DEVCOM Army Research Lab under grant W911NF2220243
and EPSRC projects EP/X040518/1 and EP/Y037421/1. Charles Pert is supported by UK EPSRC
grant 2760033. Frederik Kelbel is supported by UK EPSRC grant 2757464.

References
[1] R. Abboud, İ. İ. Ceylan, M. Grohe, and T. Lukasiewicz. The Surprising Power of Graph

Neural Networks with Random Node Initialization. In Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2021.

[2] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. G. Bellemare. Deep Reinforce-
ment Learning at the Edge of the Statistical Precipice. In Proceedings of the Conference on
Neural Information Processing Systems (NeurIPS), 2021.

[3] J. Andreas, D. Klein, and S. Levine. Modular Multitask Reinforcement Learning with Policy
Sketches. In Proceedings of the International Conference on Machine Learning (ICML), 2017.

[4] M. Andrychowicz, D. Crow, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight Experience Replay. In Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS), 2017.

[5] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization. arXiv preprint, arXiv:1607.06450,
2016.

[6] M. Beukman, S. Coward, M. T. Matthews, M. Fellows, M. Jiang, M. D. Dennis, and J. N.
Foerster. Refining Minimax Regret for Unsupervised Environment Design. In Proceedings of
the International Conference on Machine Learning (ICML), 2024.

[7] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/jax-ml/jax.

[8] A. Camacho, O. Chen, S. Sanner, and S. A. McIlraith. Non-Markovian Rewards Expressed in
LTL: Guiding Search Via Reward Shaping. In Proceedings of the International Symposium on
Combinatorial Search (SOCS), 2017.

[9] A. Camacho, R. Toro Icarte, T. Q. Klassen, R. A. Valenzano, and S. A. McIlraith. LTL and
Beyond: Formal Languages for Reward Function Specification in Reinforcement Learning. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2019.

[10] M. Chevalier-Boisvert, D. Bahdanau, S. Lahlou, L. Willems, C. Saharia, T. H. Nguyen, and
Y. Bengio. BabyAI: A Platform to Study the Sample Efficiency of Grounded Language Learning.
In Proceedings of the International Conference on Learning Representations (ICLR), 2019.

[11] M. Chevalier-Boisvert, B. Dai, M. Towers, R. Perez-Vicente, L. Willems, S. Lahlou, S. Pal,
P. S. Castro, and J. K. Terry. Minigrid & Miniworld: Modular & Customizable Reinforcement
Learning Environments for Goal-Oriented Tasks. In Proceedings of the Conference on Neural
Information Processing Systems (NeurIPS), 2023.

10

http://doi.org/10.14469/hpc/2232
http://github.com/jax-ml/jax


[12] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP), 2014.

[13] H. Chung, J. Lee, M. Kim, D. Kim, and S. Oh. Adversarial Environment Design via Regret-
Guided Diffusion Models. In Proceedings of the Conference on Neural Information Processing
Systems (NeurIPS), 2024.

[14] K. Cobbe, C. Hesse, J. Hilton, and J. Schulman. Leveraging Procedural Generation to Bench-
mark Reinforcement Learning. In Proceedings of the International Conference on Machine
Learning (ICML), 2020.

[15] S. Coward, M. Beukman, and J. N. Foerster. JaxUED: A simple and useable UED library in Jax.
arXiv preprint, arXiv:2403.13091, 2024.

[16] M. Dennis, N. Jaques, E. Vinitsky, A. M. Bayen, S. Russell, A. Critch, and S. Levine. Emergent
Complexity and Zero-shot Transfer via Unsupervised Environment Design. In Proceedings of
the Conference on Neural Information Processing Systems (NeurIPS), 2020.

[17] M. Faldor, J. Zhang, A. Cully, and J. Clune. OMNI-EPIC: Open-endedness via Models of
human Notions of Interestingness with Environments Programmed in Code. In Proceedings of
the International Conference on Learning Representations (ICLR), 2025.

[18] D. Furelos-Blanco, M. Law, A. Jonsson, K. Broda, and A. Russo. Induction and Exploitation of
Subgoal Automata for Reinforcement Learning. Journal of Artificial Intelligence Research, 70:
1031–1116, 2021.

[19] D. Furelos-Blanco, M. Law, A. Jonsson, K. Broda, and A. Russo. Hierarchies of Reward
Machines. In Proceedings of the International Conference on Machine Learning (ICML), 2023.

[20] S. Garcin, J. Doran, S. Guo, C. G. Lucas, and S. V. Albrecht. DRED: Zero-Shot Transfer in
Reinforcement Learning via Data-Regularised Environment Design. In Proceedings of the
International Conference on Machine Learning (ICML), 2024.

[21] J. Godwin, T. Keck, P. Battaglia, V. Bapst, T. Kipf, Y. Li, K. Stachenfeld, P. Veličković,
and A. Sanchez-Gonzalez. Jraph: A library for graph neural networks in JAX, 2020. URL
http://github.com/deepmind/jraph.

[22] M. Jackermeier and A. Abate. DeepLTL: Learning to efficiently satisfy complex LTL spec-
ifications for multi-task RL. In Proceedings of the International Conference on Learning
Representations (ICLR), 2025.

[23] M. Jiang, M. Dennis, J. Parker-Holder, J. N. Foerster, E. Grefenstette, and T. Rocktäschel.
Replay-Guided Adversarial Environment Design. In Proceedings of the Conference on Neural
Information Processing Systems (NeurIPS), 2021.

[24] M. Jiang, E. Grefenstette, and T. Rocktäschel. Prioritized Level Replay. In Proceedings of the
International Conference on Machine Learning (ICML), 2021.

[25] A. Khalifa, P. Bontrager, S. Earle, and J. Togelius. PCGRL: Procedural Content Generation via
Reinforcement Learning. In Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), 2020.

[26] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In Proceedings of the
International Conference on Learning Representations (ICLR), 2015.

[27] T. N. Kipf and M. Welling. Semi-Supervised Classification with Graph Convolutional Networks.
In Proceedings of the International Conference on Learning Representations (ICLR), 2017.

[28] M. Klissarov, M. Henaff, R. Raileanu, S. Sodhani, P. Vincent, A. Zhang, P.-L. Bacon, D. Precup,
M. C. Machado, and P. D’Oro. MaestroMotif: Skill Design from Artificial Intelligence Feedback.
In Proceedings of the International Conference on Learning Representations (ICLR), 2025.

11

http://github.com/deepmind/jraph


[29] Y. Kuo, B. Katz, and A. Barbu. Encoding formulas as deep networks: Reinforcement learning
for zero-shot execution of LTL formulas. In Proceedings of the International Conference on
Intelligent Robots and Systems (IROS), 2020.

[30] W. Li, P. Varakantham, and D. Li. Generalization through Diversity: Improving Unsuper-
vised Environment Design. In Proceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 2023.

[31] J. Liu, A. Kumar, J. Ba, J. Kiros, and K. Swersky. Graph Normalizing Flows. In Proceedings of
the Conference on Neural Information Processing Systems (NeurIPS), 2019.

[32] J. X. Liu, Z. Yang, I. Idrees, S. Liang, B. Schornstein, S. Tellex, and A. Shah. Grounding
Complex Natural Language Commands for Temporal Tasks in Unseen Environments. In
Proceedings of the Conference on Robot Learning (CoRL), 2023.

[33] J. Luketina, N. Nardelli, G. Farquhar, J. Foerster, J. Andreas, E. Grefenstette, S. Whiteson,
and T. Rocktäschel. A survey of reinforcement learning informed by natural language. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 2019.

[34] Y. J. Ma, W. Liang, G. Wang, D. Huang, O. Bastani, D. Jayaraman, Y. Zhu, L. Fan, and
A. Anandkumar. Eureka: Human-Level Reward Design via Coding Large Language Models. In
Proceedings of the International Conference on Learning Representations (ICLR), 2024.

[35] M. T. Matthews, M. Beukman, B. Ellis, M. Samvelyan, M. T. Jackson, S. Coward, and J. N.
Foerster. Craftax: A lightning-fast benchmark for open-ended reinforcement learning. In
Proceedings of the International Conference on Machine Learning (ICML), 2024.

[36] J. Mu, V. Zhong, R. Raileanu, M. Jiang, N. D. Goodman, T. Rocktäschel, and E. Grefenstette.
Improving Intrinsic Exploration with Language Abstractions. In Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS), 2022.

[37] C. Neary, Z. Xu, B. Wu, and U. Topcu. Reward Machines for Cooperative Multi-Agent
Reinforcement Learning. In Proceedings of the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2021.

[38] A. Nikulin, V. Kurenkov, I. Zisman, A. Agarkov, V. Sinii, and S. Kolesnikov. XLand-MiniGrid:
Scalable Meta-Reinforcement Learning Environments in JAX. In Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS), 2024.

[39] OEL Team, A. Stooke, A. Mahajan, C. Barros, C. Deck, J. Bauer, J. Sygnowski, M. Trebacz,
M. Jaderberg, M. Mathieu, N. McAleese, N. Bradley-Schmieg, N. Wong, N. Porcel, R. Raileanu,
S. Hughes-Fitt, V. Dalibard, and W. M. Czarnecki. Open-Ended Learning Leads to Generally
Capable Agents. arXiv preprint, arXiv:2107.12808, 2021.

[40] J. Parker-Holder, M. Jiang, M. Dennis, M. Samvelyan, J. N. Foerster, E. Grefenstette, and
T. Rocktäschel. Evolving Curricula with Regret-Based Environment Design. In Proceedings of
the International Conference on Machine Learning (ICML), 2022.

[41] T. Pierrot, G. Ligner, S. E. Reed, O. Sigaud, N. Perrin, A. Laterre, D. Kas, K. Beguir, and
N. de Freitas. Learning Compositional Neural Programs with Recursive Tree Search and Plan-
ning. In Proceedings of the Conference on Neural Information Processing Systems (NeurIPS),
2019.

[42] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the Annual Symposium on
Foundations of Computer Science (FOCS), 1977.

[43] W. Qiu, W. Mao, and H. Zhu. Instructing Goal-Conditioned Reinforcement Learning Agents
with Temporal Logic Objectives. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS), 2023.

[44] A. Rutherford, M. Beukman, T. Willi, B. Lacerda, N. Hawes, and J. N. Foerster. No Regrets:
Investigating and Improving Regret Approximations for Curriculum Discovery. In Proceedings
of the Conference on Neural Information Processing Systems (NeurIPS), 2024.

12



[45] F. Sadeghi and S. Levine. CAD2RL: Real Single-Image Flight Without a Single Real Image. In
Proceedings of the Robotics: Science and Systems Conference (RSS), 2017.

[46] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling. Modeling
Relational Data with Graph Convolutional Networks. In Proceedings of the Extended Semantic
Web Conference (ESWC), 2018.

[47] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms. arXiv preprint, arXiv:1707.06347, 2017.

[48] J. Teoh, W. Li, and P. Varakantham. Improving Environment Novelty Quantification for Effective
Unsupervised Environment Design. In Proceedings of the Conference on Neural Information
Processing Systems (NeurIPS), 2024.

[49] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In Proceedings of the
International Conference on Intelligent Robots and Systems (IROS), 2017.

[50] R. Toro Icarte, T. Q. Klassen, R. A. Valenzano, and S. A. McIlraith. Using Reward Machines for
High-Level Task Specification and Decomposition in Reinforcement Learning. In Proceedings
of the International Conference on Machine Learning (ICML), 2018.

[51] M. Tuli, A. C. Li, P. Vaezipoor, T. Q. Klassen, S. Sanner, and S. A. McIlraith. Learning to
Follow Instructions in Text-Based Games. In Proceedings of the Conference on Advances in
Neural Information Processing Systems (NeurIPS), 2022.

[52] P. Vaezipoor, A. C. Li, R. Toro Icarte, and S. A. McIlraith. LTL2Action: Generalizing LTL
Instructions for Multi-Task RL. In Proceedings of the International Conference on Machine
Learning (ICML), 2021.

[53] R. Wang, J. Lehman, J. Clune, and K. O. Stanley. Paired Open-Ended Trailblazer (POET):
Endlessly Generating Increasingly Complex and Diverse Learning Environments and Their
Solutions. arXiv preprint, arXiv:1901.01753, 2019.

[54] B. Yalcinkaya, N. Lauffer, M. Vazquez-Chanlatte, and S. Seshia. Automata Conditioned
Reinforcement Learning with Experience Replay . In Proceedings of the Workshop on Goal-
Conditioned Reinforcement Learning (GCRL) at the Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2023.

[55] B. Yalcinkaya, N. Lauffer, M. Vazquez-Chanlatte, and S. Seshia. Compositional Automata
Embeddings for Goal-Conditioned Reinforcement Learning. In Proceedings of the Conference
on Neural Information Processing Systems (NeurIPS), 2024.

[56] J. Zhang, J. Lehman, K. O. Stanley, and J. Clune. OMNI: Open-endedness via Models of
human Notions of Interestingness. In Proceedings of the International Conference on Learning
Representations (ICLR), 2024.

A Benchmark Details

In this section, we describe additional information about the benchmark introduced in Section 3. We
organize the section as follows: Appendix A.1 describes some implementation details and features
omitted in the main paper, and explains how HRMs are sampled via random walks, and Appendix A.2
provides some details about the structure of the problems in the hand-designed set. Illustrative
example problems are given throughout the paper and the appendix (e.g., see Sections 4 and 5
and Appendices D and E.6).

A.1 Implementation Details

The benchmark is implemented in JAX [7] to enable seamless execution across CPUs and hardware
accelerators (GPUs, TPUs). The implementation of Minigrid is based on that by Nikulin et al. [38].

13



Alphabet. Following the work of Mu et al. [36], we do not encode propositions for commands
involving objects relative to the agent’s position, e.g. “go to a ball on your left”. None of the com-
mands imply the uniqueness of an object, e.g. “pick up the yellow square”. The alphabet size consists
of 889 propositions, which is almost two orders of magnitude larger than the alphabets considered
in previous work [22, 29, 52, 55]. The alphabet does not contain symmetric propositions (e.g., only
contains one of next_ball_key and next_key_ball) and is derived under the assumption that two
doors cannot be next to each other (one of the objects in a next proposition must be movable).

Task Sampling. For both the sequential and the random walk-based HRM samplers, there is a
single edge between each pair of states. We provide an in-depth description of the random walk-based
sampler in Appendix A.1.

Problem Sampling. We implement a task-conditioned sampler that complements the independent
and level-conditioned sampling strategies (see Section 3.3). The task-conditioned sampler generates
levels conditioned on the sampled HRM’s propositions, ensuring that objects related to the HRM’s
propositions are present in the level. For example, given the proposition next_ball_blue_square,
the level will be guaranteed to contain a blue ball and a square of any color. Upon choosing a
conditioning strategy for the ablations (see Section 5.3), we selected the level-conditioned sampler as
it better reflects real-world problem specification. In practice, the physical environment determines
the agent’s affordances—what actions and interactions are possible—which then constrains the
meaningful range of tasks that can be specified. This mirrors how humans naturally assign tasks
based on environmental context and available objects.

Random Walk-Based HRM Generation We here describe the method for sampling HRM tasks
via random walks briefly outlined in Section 3. Figure 7 illustrates an HRM sampled via random
walks. Unlike other hierarchies depicted throughout the paper, these HRMs may consist of multiple
RMs, and each constituent RM need not be sequential. We specify HRMs using the following
components, where m is the number of RMs in the hierarchy:

• a hierarchical graph structure T = 〈VT , ET 〉, where VT is a set of nodes for each constituent
RM, and ET ⊆ VT × VT is a set of edges between these nodes;

• local RM graph structures Gi = 〈Vi, Ei〉 for i ∈ [1,m], where Vi is a set of nodes for each RM
state, and Ei ⊆ Vi × Vi is a set of edges between these nodes;

• the call-labeling function C : Ei → {Gj}mj=1, mapping each edge in RM i to an RM graph; and
• the edge-labeling function P : Ei → P , mapping each edge in RM i to a proposition.

This specification can be easily transformed into the HRMs defined by Furelos-Blanco et al. [19]. In
the following paragraphs, we describe how each of these components is sampled.

Hierarchical Graph Structure Sampling. The hierarchical graph structure T determines which
RMs may be invoked from a given RM. Since the number of RMs in the hierarchy is m, the number
of non-leaf nodes (i.e., RM nodes calling at least one RM) is at most bm/2c. To generate the
tree structure, we sample from a categorical distribution Cat(p(bm/2c), q) over the ordered integer
partitions p(bm/2c), with associated categorical weights q. Here, ordered means that the order of
summands matters. The value of the i-th summand in a partition specifies the number of children
of the i-th node. Edges are connected sequentially based on these values. For balanced hierarchies,
we recommend using a uniform distribution over the partitions, ensuring that all nodes have equal
branching factors. Alternatively, the weights q can be tuned to bias the hierarchy toward flatter or
deeper structures.

RM Sampling. The RM sampling is parallelized. Each RM i is instantiated via a realization
of a Markov chain defined by a transition matrix Mi ∈ R|U |×|U |. For sequential RMs, Mi is a
diagonal matrix with a unit diagonal shift. For directed acyclic RMs, Mi is lower triangular with
a diagonal shift of one. Each matrix Mi is sampled as Mi ∼ D, where D is typically chosen as
a uniform distribution to avoid introducing bias, though it can be tuned to induce other desirable
structures. The sampled matrix Mi is then normalized to be right-stochastic. Let k̄ denote the
average node connectivity in the sampled graph. Given |U | as the number of states, the RM structure
Gi is generated from the connectivity distribution induced by a random walk of length k̄|U |, i.e.,

14



M0

u0

u1u2

uA

ç�?

M1 | 
ç

M1 | ○�
M1 |
 �?

M1

u0

u1

u2

u3

uA


�

M2 | ○ �?

M2 | ○ç

M2 | 
�

M2 | ○�

M2

u0

uA

○


Figure 7: Example of an HRM generated via the random-walk based sampler. Symbols follow the
descriptions in Figure 4. Calls to other RMs are denoted with Mi | ϕ, where Mi is the called RM
and ϕ a formula that must be satisfied for the call to be started. Negative propositions in the cases
where there are multiple outgoing transitions from a given state are omitted, e.g. the edges from u1 in
M0 are actually labeled with the formulas 
ç ∧ ¬
 �? and 
 �? ∧ ¬
ç.

Gi ∼ RWk̄|U |(Mi). After sampling a structure Gi, the random walk may be restarted with a fixed
probability, and the final graph is obtained by taking the union of edges from all sampled trajectories.
This mechanism allows control over the distribution of paths per RM. In the case of cyclic graphs,
it imposes a lower bound on the number of distinct paths. For non-root RMs, we introduce one
modification: we set Mi(0, j) = 0 for all j, ensuring that the initial state has exactly one outgoing
edge. The motivation for this constraint will become clear in the following sections.

Proposition Labeling. Labeling must be performed conditionally at random to avoid pathological
cases. There are two such undesirable cases. First, a labeling is tautological if an incoming transition
is labeled with a proposition pk such that pk → pl ≡ >, where pl is the label of an outgoing transition.
Second, a labeling is non-deterministic if two outgoing transitions from the same node are labeled
with propositions pl1 and pl2 such that either pl1 → pl2 ≡ > or pl1 ← pl2 ≡ >. For every node,
each of the outgoing l transition labelings is represented as a one-hot encoded vector p(l)

out ∈ {0, 1}P
over the proposition set sampled from the conditional categorical distribution:

p
(l)
out ∼ Cat

(
P,

(
k∏
i=1

C · p(i)
in

)
�

(
l−1∏
i=1

C · p(i)
out

)
� ρprop

)
,

where C is a binary constraint matrix encoding the undesirable cases above and defined by

Cij =

{
0 if pj → pi ≡ >,
1 otherwise,

k is the number of incoming transitions, p(i)
in ∈ {0, 1}P is a one-hot vector representing the labeling

of the i-th incoming transition, and ρprop ∈ {0, 1}P is a categorical prior over the proposition set. To
avoid introducing bias into the labeling, labels are sequentially assigned by sampling uniformly at
random from the available outgoing edges Ei. Finally, to ensure determinism, each label must be
conjoined with the negation of its neighboring labels (i.e., labels on the transitions from the same
node).

Call Labeling. Call labeling follows principles similar to those used for proposition labeling.
However, in this case, the labels correspond to calls determined during hierarchy sampling; that is,
the hierarchy defines the call alphabet for each RM. As with proposition labels, call labels are subject
to consistency constraints. Since any call condition is conjoined with the initial transition labeling of
the RM being called, the two must not be contradictory. This dependency also motivates the design
choice of restricting RMs in the hierarchy to have exactly one initial transition without any call label.
This restriction ensures tractability over call labelings. Let K be a binary compatibility matrix defined

15



by:

Kij =

{
0 if pj ∧ pi ≡ ⊥,
1 otherwise,

where pi and pj are propositions. Then, for each edge E(j)
i , the call label cj is sampled from the

conditional categorical distribution:

cj ∼ Cat
(
Ci ∪ {>},

(
K ·P(i)

init

)
· ρ(i)

call

)
,

where Ci ⊂ {Gj}mj=1 is the set of callable RMs as defined by the hierarchy T from RM i, and P
(i)
init is

a matrix whose columns correspond to the proposition vectors associated with the initial transitions
of the RMs in Ci. The vector ρ(i)

call specifies the categorical prior over call probabilities.

A.2 Hand-Designed Evaluation Set

The hand-designed evaluation set consists of 150 problems. Levels mostly follow the grid morpholo-
gies used for training (see Appendix E.2), which divide the grid into different equally-sized rooms.
Unlike random generation, we distribute objects across the grid in challenging ways, e.g. sparsely
across different rooms, surrounded by several distractor objects, or enforcing door unlocking to
reach certain areas. A small fraction of the problems (6) consist of levels without the specified room
morphology. Tasks are all non-hierarchical RMs, most of which are sequential, following our default
training scenario; however, some consist of multiple more than one path from u0 to uA, or longer
paths than the training default (5). The RMs are designed to assess performance in scenarios where
considering further ahead than the current subgoal (i.e., the literals labeling an outgoing edge from the
current RM sate) is needed, or where the tasks are fully specified (i.e., contain all required subgoals)
or underspecified (i.e., omit some subgoals, such as picking up a key to open a door). Examples of
these hand-designed problems are shortly described in Section 5.2.

B Extended Related Work

In this section, we provide additional details on the related work covered in Section 6.

B.1 Unsupervised Environment Design (UED)

Adaptive UED methods often rely on regret estimates to determine the utility of levels. In this work,
we employed MaxMC [23]; however, there are other methods such as the positive value loss [PVL;
23], which we experiment with in Appendix E.9. Both MaxMC and PVL rely on a single student. In
contrast, the seminal UED approach, PAIRED [16], computes regret as the value difference between
two student policies; specifically, the teacher aims to exploit the weaknesses of one student (the
protagonist) in relation to the other student (the antagonist), producing an emergent curriculum of
levels at the frontier of the protagonist’s capabilities. We highlight some known limitations of regret
estimation in Section 6.

PAIRED, as highlighted by Jiang et al. [23], is slow to adapt to changes in student policies since
the teacher adapts through gradient updates. PLR [24] takes a different approach: the teacher does
not generate levels, but curates a buffer of previously seen levels. Crucially, the teacher adapts
faster than in PAIRED since it only implements a scoring mechanism. PLR⊥ [23] extend PLR by
training from buffer levels only, which improves the convergence to Nash equilibria. ACCEL [40]
extends PLR methods by mutating previously sampled high-regret levels, showing that complexity
can emerge starting from simple levels. Recent directions explore generative models for environment
generation [13] and distribution shift in adaptive curricula [20].

Unlike previous UED approaches, ATLAS does not assume a fixed task and induces autocurricula
over both tasks and levels. Furthermore, it implements structure-aware task mutations that enable
compounding complexity from very simple tasks (one transition RMs) and levels.

16



Table 1: Comparison of problem-conditioned RL methods using formal task representations.

Algorithm Conditioning Curriculum Target Autocurricula Alphabet Size Sampling Invalid Problems
Kuo et al. [29] LTL/Network-Operators LTL complexity 7 ≤ 9 DR 7
Vaezipoor et al. [52] LTL syntax tree No curriculum 7 ≤ 12 DR 7
Qiu et al. [43] Propositions No curriculum 7 ≤ 16 DR (prop.) 7
Yalcinkaya et al. [54] DFA No curriculum 7 3 DR 7
Yalcinkaya et al. [55] cDFA No curriculum 7 ≤ 12 DR (RAD) 7
Jackermeier and Abate [22] Reach-avoid sequences LTL complexity 7 ≤ 20 DR 7
ATLAS (ours) RMs RM & level complexity 3 ≤ 889 PLR, ACCEL 3

B.2 Formal Language Conditioning

We provide further details on the core components of the methods that learn policies conditioned by
formal language task specifications, mainly LTL and automata. Table 1 provides an overview of the
main distinguishing factor, which we elaborate on in the following paragraphs and Section 6.

Sampling and Mutations. LTL-conditioned methods [e.g., 22, 29, 52] typically generate tasks by
procedurally sampling LTL formulas combining logical and temporal operators from a context-free
grammar. These methods build rules into the grammar that prevent logically unsatisfiable tasks. Qiu
et al. [43] propose a method that trains from randomly sampled propositions instead of LTL tasks—the
policies are proposition-conditioned and then ensembled together to satisfy LTL specifications.

In the context of automata-conditioned methods, Yalcinkaya et al. [54] sample deterministic finite
automata (DFA) representing reach-avoid tasks. The path length is specified within a range similar to
ours (3–7). Yalcinkaya et al. [55] propose a family of DFAs called reach-avoid derived (RAD). The
authors pre-train DFA encoders on this class and demonstrate zero-shot generalization to other DFAs.
The key insight is that any path through a DFA can be seen as a series of reach-avoid sub-tasks. RAD
DFAs are generated through mutations from reach-avoid DFAs. Each mutation involves randomly
changing a transition, converting the accepting state into a sink, and minimizing the resulting DFA to
ensure simplicity. A filtering step rejects resulting trivial, uninteresting tasks (e.g., single-state DFAs);
hence the training distribution consists of non-trivial, solvable tasks. ATLAS does not perform the
mutations on random samples, but on high-regret ones; further, it indirectly performs the filtering
through regret scoring. Our random walk-based sampling strategy acts as an alternative to performing
mutations on reach-avoid DFAs, still permitting the application of mutations over the samples. The
authors also introduce cDFAs, a parallel composition of two DFAs that enables executing the DFAs in
an interleaved manner. HRMs, the formalism employed in ATLAS, composes automata sequentially
at arbitrarily many hierarchical levels rather than in parallel. Previous work has considered parallel
compositions of RMs in the multi-agent setting [37].

There are two key differences between ATLAS and previous work. First, the problems tackled by
previous LTL- and automata-conditioned methods often consist of small propositional alphabets, with
the maximum being 20 in the work by Jackermeier and Abate [22]; in contrast, ATLAS employs an
alphabet of 889 propositions. Second, as mentioned in Section 6, prior work employs levels where
any proposition in the alphabet can be observed. For example, the commonly used LETTERWORLD
domain contains 12 letters in a 7× 7 grid, each corresponding to a proposition and appearing twice.
Similarly, the also typical ZONES domain determines four colors (i.e., four propositions) and any
level has two regions for each of these colors. On the other hand, the problems we consider do not
guarantee that the objects mentioned in an RM will appear or be reachable.

Curriculum. The LTL-conditioned methods proposed by Kuo et al. [29] and Jackermeier and
Abate [22] use a handcrafted curriculum that starts with simple tasks and gradually progresses
to more complex tasks (e.g., longer formulas) as satisfactory performance is achieved. Similar
curricula, combined with a small predefined set of tasks, have been previously been used with policy
sketches [3], neural programs [41], and hierarchies of reward machines [19]. In contrast, ATLAS
leverages regret-based UED to generate autocurricula of solvable yet challenging problems; further,
unlike previous approaches, ATLAS performs curricula over both tasks and levels rather than tasks
alone.

17



C Architecture Details

The following paragraphs provide details on the problem-conditioned architecture introduced in
Section 4.1.

C.1 Environment Observation Encoding

In the Minigrid implementation by Nikulin et al. [38], observations are V × V × 2, where V = 5 is
the size of the agent’s field of view, the first dimension contains the object identifiers, and the second
dimension contains the colors. If the agent is carrying an object, the object appears in the agent’s
position.

Following the example implementation by Nikulin et al. [38], the object and color identifiers in the
observation are separately embedded into 16-dimensional vectors. The object and color embeddings
are concatenated. The resulting V × V × 32 tensor is processed by a 3-layer convolutional neural
network (CNN) with ReLU activations and 32, 64, and 64 filters, respectively. All kernels are 2× 2
with a stride of 1 and zero-padding.

C.2 Reward Machine Encoding

Given an RM M = 〈U,P, δ,R, u0, uA〉 and one of its states u ∈ U , the encoding is performed with
a graph neural network (GNN). The section is organized as follows. First, we describe the GNN
architecture we use. Second, we describe how the graph passed to the GNN is constructed from the
input RM. Finally, we describe the values of the GNN-related hyperparameters. Our implementation
is based on that from the jraph library [21].

Graph Convolutional Networks [GCNs; 27]. Given a graph G = 〈V, E〉 with nodes vi ∈ V
and edges 〈vi, vj〉 ∈ E , GCNs update node representations hi ∈ Rn by aggregating those from
neighboring nodes. Each node vi is randomly initialized with features h

(0)
i ∼ N (0, σ2I), where

σ2 = 0.1 [1, 31]. Our GCN updates the node features through L layers of message passing:

h
(l+1)
i = σ

LN(l)

W
(l)
selfh

(l)
i + W

(l)
neigh

∑
j∈N(i)

h
(l)
j ⊕ ej,i

|N(i)|

 ,

where N(i) denotes the neighbors of node vi, W
(l)
self ∈ Rn×n and W

(l)
neigh ∈ Rn×(n+m) are learnable

parameters, ej,i ∈ Rm encodes the formula of edge 〈vj , vi〉, σ is an activation function, LN denotes
layer normalization [5], and ⊕ denotes concatenation. The parameters W(l)

self are used to capture the
same node’s features in the previous layer, while W

(l)
neigh are used for the neighboring nodes. We

separate them since RM states do not have self-loops labeled by formulas. R-GCNs [46] handle this
similarly by having a set of parameters for different relation types and specifying self-loops as a type
of relation. The resulting features h(L)

i undergo a last linear transformation Wlast ∈ Rn×n.

Graph Construction from a Reward Machine. The input graph is constructed from an RM by
reversing the edges, enabling each state to be contextualized by future states reachable within L
transitions. This design enables considering what needs to be accomplished far into the future, rather
than being myopic (i.e., looking one step ahead). Previous approaches for conditioning policies on
LTL formulas [e.g., 52] and finite-state machines [e.g., 54, 55] follow the same reasoning.

The edge features ej,i are built by (i) embedding each literal (proposition or its negation) of the
formula, (ii) aggregating the literal embeddings by summing them, and (iii) applying a linear
transformation Wlit ∈ Rm×m. We consider two methods for constructing the literal embeddings:

• Domain Independent. Literals are embedded independently through an embedding matrix with
2N + 1 rows, where N is the alphabet size. Negative literals correspond to rows 0, . . . , N − 1;
> (the value true) corresponds to the N -th row; and positive literals correspond to rows
N + 1, . . . , 2N .

• Domain Dependent. The proposition’s location and object information is decomposed, embed-
ded separately, and aggregated. Figure 8 illustrates and describes how each literal embeddings
are constructed.

18



0

0

1

front

carrying

next

0

0

1

0

0

0

0

1

0

0

0

0

0

ball

square

key

red

green

blue

purple

yellow

gray

closed

locked

open

0

0

0

1

0

0

0

0

0

0

0

1

0

ball

square

key

red

green

blue

purple

yellow

gray

closed

locked

open

Location Object 1 Object 2

door door

(a) Encoding decomposition for the proposition
next_key_purple_door_locked.

Lo
ca

tio
n

O
bj

ec
t 1

O
bj

ec
t 2

Si
gn

(b) Construction of a literal embedding from the
decomposed proposition encoding.

Figure 8: Phases in the literal embedding construction. (a) A binary encoding of the proposition is
first constructed. (b) The literal embedding is built using the proposition decomposition. First, the
binary encodings of the objects undergo a linear transformation Wobj ∈ Rm×13 and their resulting
representations are aggregated using an order invariant operation (sum). Second, the location binary
encoded is appended to the object representation and linearly transformed with Wloc ∈ Rm×(m+3).
Finally, the sign of the literal (1 if positive, −1 if negative) is applied to produce the final embedding.

In both cases, the literal embeddings are learnable.

Hyperparameters. The GCN consists of L = 5 layers, chosen after the maximum number of
transitions from the initial state u0 to the accepting state uA that can be sampled in our training
setting. The number of node features is n = 128 and the number of edge features is m = 64. The
activation functions are ReLUs.

C.3 Encoding Aggregation and Actor-Critic Heads

Given the encodings for the current observation and the current RM state, we concatenate them with
a 16-dimensional embedding of the previous action. The resulting embedding is processed by a gated
recurrent unit [GRU; 12] producing 512 features. RMs implicitly encode a history over propositions,
so the application of the GRU over the RM state encoding could be deemed unnecessary; however,
we found that it experimentally works better.

The embedding—aggregating the observation, RM state, and action information—is then processed
by the actor and critic heads, each consisting of two hidden layers with 256 rectifier units. The
actor’s output layer produces a logit for each action, while the critic’s output layer produces a scalar
estimating the value for the input observation, RM state, and action.

D Mutation Details

In this section, we describe the preconditions and effects of each edit introduced in Section 4.2. These
edits are conceptually applicable to any problem, i.e. task-level pair. However, we focus on our main
training setting where (i) RM tasks are sequential with at most 6 states, and (ii) levels are structured
into {1, 2, 4, 6} rooms of size 7× 7. One-room levels are 7× 7 and contain 1–5 objects, two-room
levels are 7×13 and contain 1–10 objects, four-room levels are 13×13 and contain 4–15 objects, and
six-room levels are 13× 19 and contain 7–20 objects. The minimum number of objects is determined
as the maximum between 1 and the number of doors in the level.

D.1 Level Edits

There are eight types of level edits, illustrated in Figure 9:

19



(a) Source level

(b) ADDROOMS (c) REMOVEROOMS (d) ADDOBJECT (e) REMOVEOBJECT

(f) MOVEAGENT (g) MOVEOBJECT (h) REPLACEDOOR (i) REPLACENONDOOR

Figure 9: Level edit examples.

ADDROOMS Applicable if the source level has 1, 2, or 4 rooms. Transforms one-room levels into
two-room levels, two-room levels into four-room levels, and four-room levels into six-room levels.
The extended side of the source level is determined uniformly at random—that is, given a one-room
level, a room is added to the left or the right; given a two-room level, two rooms are added above
or below; and given a six-room level, two rooms are added to the left or the right.

REMOVEROOMS Applicable if the source level has 2, 4, or 6 rooms. Transforms levels following
the inverse order of ADDROOMS. The removed rooms cannot have the agent in them—given a
two-room level, remove a room; given a four-room level, remove a row of rooms; and given a
six-room level, remove the leftmost or rightmost column (if the agent is in the center column,
choose one randomly).

ADDOBJECT Applicable if the source level does not contain the maximum number of objects
allowed (room-dependent, see above). A random non-door object (type and color) is determined
and placed on a random free position.

REMOVEOBJECT Applicable if the source level does not contain the minimum number of objects.
A random non-door object on the grid is removed.

MOVEAGENT Applicable if there are free locations, which is guaranteed by the maximum number
of objects being lower than the number of locations per level. The agent is moved to a random free
location with a randomly determined orientation.

MOVEOBJECT Applicable if there are free locations. An existing non-door object is randomly
chosen and moved to a random free location.

REPLACEDOOR Applicable if the level contains doors (i.e., more than one room). An existing door
is randomly chosen and replaced with a new door whose color and status (locked, closed, open)
are randomly determined.

REPLACENONDOOR Applicable if the level contains non-door objects. An existing non-door
object is randomly chosen and replaced with a new random non-door object.

D.2 Task Edits

There are three types of task edits, illustrated in Figure 10:

SWITCHPROPOSITION Always applicable. An edge is randomly selected, and its proposition is
replaced by another one chosen uniformly at random from the alphabet.

20



u0

u1

uA

〈○
, 0〉

〈
ç, 1〉

(a) Source RM task

u0

u1

uA

〈�
 , 0〉

〈
ç, 1〉

(b) SWITCHPROPOSITION

u0

u1

u2

uA

〈○
, 0〉

〈ç, 0〉

〈
ç, 1〉

(c) ADDSTATE

u0

uA

〈○
, 1〉

(d) REMOVESTATE

Figure 10: Task edit examples. Zero-reward self-transitions are omitted for simplicity.

ADDSTATE Applicable if the number of states is less than the maximum. Adds a new state at the
start, middle, or end of the existing state sequence. If inserted in the middle, transitions are rewired
to maintain connectivity. The outgoing transition from the new state is labeled with a proposition
chosen uniformly at random from the whole alphabet.

REMOVESTATE Applicable if there are more than two states. Removes one of the states and, if it is
a non-accepting state, its outgoing transition as well. If the removed state is the initial state, the
state pointed to by it becomes the new initial state. If the removed state is the accepting state, the
state that pointed to it becomes the new accepting state.

The reward transition function of the resulting RM is adjusted to make it sparse (reward of 1 in
transitions to uA), which is the training default (see Section 5.1).

D.3 Hindsight Edits

These edits are applicable if the last RM state u ∈ U in a rollout is not the initial or the accepting
state. Further, they can only be selected as the first step of the edit sequence. There are two edit types,
illustrated in Figure 11, both of which jointly modify the level and the task:

EXTRACTPRECEDING Keeps the original level and derives a new RM with u as the accepting state.
EXTRACTSUCCEEDING Derives a new level from the last environment state and a new RM with u

as the initial state.

E Experimental Details

In this section, we explain our experimental setup, hyperparameters, and additional results for the
experiments described in Section 5. Our codebase is fully implemented in JAX [7]. We extended the
JaxUED [15], a collection of UED algorithm implementations in JAX, to support problems (levels

21



u0

u1

uA

〈○
, 0〉

〈
ç, 1〉

(a) Source problem

u0

u1

uA

〈○
, 0〉

〈
ç, 1〉

(b) Environment and HRM states at the end of a rollout

u0

uA

〈○
, 1〉

(c) EXTRACTPRECEDING

u0

uA

〈
ç, 1〉

(d) EXTRACTSUCCEEDING

Figure 11: Hindsight edit examples.

and tasks) rather than only levels. Our implementation of Minigrid is based on that by Nikulin et al.
[38].

The experiments were executed across three different Linux clusters, respectively consisting of
(i) NVIDIA RTX 6000 Ada Generation GPUs and Intel Xeon Gold 6348 CPUs, (ii) NVIDIA L40S
GPUs and Intel Xeon Platinum 8358 CPUs, and (iii) NVIDIA A100-SXM4-80GB GPUs and Intel
Xeon Platinum 8562 CPUs. For all experiments we reserved 32GB of RAM. Each experiment takes
approximately 40 hours to complete; however, the time can be substantially reduced by logging
checkpoints and results less often. Our results report aggregate performance across 5 seeds.

E.1 Hyperparameters

Table 2 shows the table containing the RL-related hyperparameters used in the final experiments,
for which we use the Adam optimizer [26]. We refer the reader to Appendix C for the architectural
details.

To determine the final hyperparameter values, we sampled a random level-conditioned problem set.
The problems underwent a solvability check, which we describe in Appendix E.3. The RMs in the
set are all sequential. The problem set is constituted by 300 samples that result from taking 5 samples
for each combination of: number of rooms (1, 2, 4, 6), number of objects and number of transitions
(1–5). For each number of rooms, we distinguish three object intervals:

• One room: 1–2, 3–4, 5.
• Two rooms: 1–3, 4–7, 8–10.
• Four rooms: 4–7, 8–11, 12–15.
• Six rooms: 7–10, 11–16, 17–20.

This set is exclusively used for validation.

The hyperparameter sweep was as follows. We performed a grid search for PLR⊥ across the
buffer capacity {25000, 50000}, the replay probability {0.5, 0.9}, the PPO entropy loss coefficient
{0.0, 0.001, 0.01}, and whether to feed the RM embedding into the RNN together with the obser-
vation embedding. For ACCEL, we fixed a replay probability of 0.9, a buffer size of 50000, and
a maximum number of edits of 10, and repeated the same grid search over the same remaining
hyperparameters while sweeping over the minimum number of edits {3, 5, 7, 10}. In hyperparameter
searches preceding the final one, we swept also over the staleness coefficient {0.1, 0.3}, discount rate
{0.9, 0.95, 0.98, 0.99}, GAE lambda {0.9, 0.95, 0.98}, sampling temperature {0.3, 1.0}, learning
rate {1× 10−5, 5× 10−5}, and value loss coefficient {0.5, 0.75}.

22



Table 2: List of environment, PPO, PLR⊥ and ACCEL hyperparameters.
Parameter Value

Environment
Maximum episode length 512

PPO
# Environment steps (Seq.) 4,194,304,000
# Environment steps (DAG) 6,291,456,000
Discount rate γ 0.99
GAE λ 0.9
# Parallel environments 4,096
PPO rollout length 512
PPO epochs 4
PPO minibatches per epoch 128
PPO clip range 0.2
PPO max. gradient norm 0.5
Adam learning rate 5× 10−5

Adam ε 1× 10−5

Value loss coefficient 0.5
Entropy loss coefficient 0.01

PLR⊥
Buffer capacity 50,000
Prioritization rank
Temperature 1.0
Replay rate 0.5
Staleness coefficient 0.1
Score function MaxMC

ACCEL
Replay rate (full) 0.9
Number of edits U{7, 10}

ACCEL-0
Replay rate 0.99
Number of edits U{7, 10}

E.2 Experimental Setup Details

We describe some omitted details from the experimental setup description in Section 5.1.

Level Generation. Training levels (see Section 3.1) are generated as follows:

1. A number of rooms is uniformly sampled from {1, 2, 4, 6}. Rooms are 5× 5, surrounded by
walls (total dimension 7× 7). Two-room levels are 7× 13, four-room levels are 13× 13, and
six-room levels are 13× 19. Levels with more than one room have doors between each pair of
adjacent rooms, always in the middle of their dividing wall.

2. A number of objects is sampled uniformly from a grid-dependent range. One-room levels can
have 1–5 objects, two-room levels can have 1–10 objects, four-room levels can have 4–15
objects, and six-room levels can have 7–20 objects. The minimum is determined by the number
of doors.

3. Non-door objects are generated by choosing their type, color, and location uniformly at random.
Door objects are analogously generated by choosing their state (open, closed, locked) and
color.

4. The agent is randomly placed in a free position.

Metrics. The CVaR problem set consists of 10,000 samples, as recommended by Rutherford et al.
[44], generated with the level-conditioned sampler described in Section 3.3. Sampling problems

23



Table 3: Percentage of solvable problems when the RMs are sequential and directed acyclic graphs.
Problem Sampling Sequential Directed Acyclic Graph

Independent 2.7± 0.3 3.9± 0.2
Level-Conditioned 83.4± 0.4 84.8± 0.5

conditionally on the level increases the solvability rate (see Appendix E.3); hence, although results
do not substantially differ, the level-conditioned set covers a more diverse set of problems than if the
level and the task were independently sampled. The problems are guaranteed to be solvable using the
process described in Appendix E.3.

E.3 Fraction of Solvable Randomly Generated Problems

We analyze the fraction of solvable problems across batches sampled via the different sampling
strategies. We report the average solvability and the standard deviation across 5 batches, where each
batch consists of 4096 problems, as in our experiments.

To evaluate whether a problem is solvable, we decompose the constituent RM into paths to the
accepting state and determine if the formulas along these paths are satisfiable. An RM is considered
solvable if the formulas in at least one path are satisfiable. A formula is considered satisfiable if
the objects associated with it are reachable by the agent. For example, the formula front_ball is
satisfiable if there is a ball within the reach of the agent. Reachability is determined by locked doors—
hence, if a given formula cannot be satisfied by the objects within reach, we select a locked door
whose color matches a key within reach. This procedure derives a tree where each child node increases
the reachability with respect to its parent. Maintaining a tree, keeping different orderings on the
opening of the locked doors, is important because only some of them might guarantee solvability. For
instance, if there is a single green locked door and the reachability procedure opens it, a subsequent
formula front_door_green_locked will not be satisfiable.

Table 3 shows the results for the cases where the task sampler generates sequential and directed
acyclic graphs, and the problem sampler generates levels and tasks independently, or conditionally
on the level. The instantiation of the samplers is as explained in Section 5.1. We observe that
independent sampling produces batches with barely any solvable problems (around 3–4%), whereas
level-conditioned sampling produces a large majority of solvable problems (around 85%). As shown
in Section 5.3, increasing the number of solvable problems per batch results in a sensible performance
improvement for DR, which closes the gap with respect to PLR⊥ and ACCEL.

Table 4 decomposes the results for the sequential RM sampler across: problem sampler (independent,
conditioned), number of transitions (1–5), number of rooms (1, 2, 4, 6), and number of objects (L, M,
H). The symbols for the number of objects denote different intervals (low, medium, high) depending
on the number of rooms:

• One room: L (1–2), M (3–4), H (5).
• Two rooms: L (1–3), M (4–7), H (8–10).
• Four rooms: L (4–7), M (8–11), H (12–15).
• Six rooms: L (7–10), M (11–16), H (17–20).

Following the trend from Table 3, we observe that sampling conditionally on the level results in a
substantially higher fraction of solvable problems. In the independent case, having fewer transitions
and more rooms (and, hence, more objects) results in more solvable problems since there is a higher
chance the transitions will refer to objects in the level. The percentage of solvable problems is
extremely low, showing the potential of UED approaches in these settings. We emphasize that
these results are illustrative and that none of these combinations are exclusively used in training the
policies; instead, given a fixed problem sampling strategy (independent, conditioned), we determine
the number of transitions, number of rooms, and number of objects uniformly at random.

E.4 Extended Main Results

We provide some more details on the core results described in Section 5.2.

24



Table 4: Percentage of solvable samples produced by the sequential sampler by fixing the problem
sampler (independent, level-conditioned), number of transitions (1–5), number of rooms (1, 2, 4, 6),
and a range for the number of objects (L, M, H).

1 2 4 6

L M H L M H L M H L M H

In
de

pe
nd

en
t 1 0.9± 0.1 2.6± 0.2 4.4± 0.3 2.2± 0.1 7.6± 0.3 12.1± 0.2 5.2± 0.3 14.6± 0.6 22.4± 0.3 6.7± 0.3 20.0± 0.4 30.9± 0.8

2 0.0± 0.0 0.0± 0.0 0.2± 0.1 0.1± 0.0 0.6± 0.1 1.5± 0.3 0.3± 0.1 2.5± 0.2 5.6± 0.4 0.6± 0.2 4.4± 0.1 10.6± 0.3
3 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.1± 0.0 0.3± 0.0 0.0± 0.0 0.5± 0.1 1.4± 0.1 0.1± 0.0 1.2± 0.1 4.2± 0.2
4 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.1± 0.0 0.0± 0.0 0.1± 0.1 0.4± 0.1 0.0± 0.0 0.3± 0.0 1.5± 0.1
5 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.0± 0.0 0.1± 0.1 0.0± 0.0 0.2± 0.1 0.6± 0.1

C
on

di
tio

ne
d 1 100.0± 0.0 100.0± 0.0 100.0± 0.0 90.5± 0.4 85.1± 0.5 86.6± 0.6 84.6± 0.6 84.0± 0.5 86.0± 0.4 82.3± 0.4 82.1± 0.6 85.8± 0.4

2 100.0± 0.0 100.0± 0.0 100.0± 0.0 87.9± 0.5 79.5± 0.7 80.2± 0.4 79.5± 0.7 78.4± 0.5 81.3± 0.7 76.7± 0.5 76.5± 0.6 80.9± 0.5
3 100.0± 0.0 100.0± 0.0 100.0± 0.0 87.0± 0.4 76.4± 0.8 76.8± 0.7 77.2± 0.7 76.1± 0.8 78.6± 0.6 73.8± 0.6 73.4± 0.5 78.5± 0.1
4 100.0± 0.0 100.0± 0.0 100.0± 0.0 86.5± 0.5 74.4± 0.7 74.6± 0.6 75.8± 0.8 74.1± 0.7 76.7± 0.6 72.0± 0.7 71.4± 0.4 76.8± 0.3
5 100.0± 0.0 100.0± 0.0 100.0± 0.0 86.1± 0.6 73.0± 0.5 73.2± 0.8 74.7± 0.4 72.4± 0.6 75.0± 0.6 70.8± 0.9 69.9± 0.5 75.1± 0.1

0 1000 2000 3000 4000
Number of Environment Steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0
%

 S
ol

va
bl

e 
Bu

ffe
r P

ro
bl

em
s

PLR
ACCEL
ACCEL-0

Figure 12: Fraction of solvable buffer problems throughout training in the independent sampling
setting.

Performance. Figure 12 shows the percentage of solvable problems in the buffer throughout
training. As training progresses, PLR⊥, ACCEL, and ACCEL-0 curate a buffer mostly consisting
of solvable problems. The performance for each individual hand-designed problem is reported in
Appendix E.10.

Curriculum Analysis. Figures 13 to 16 show a sequence of training problems for DR, PLR⊥,
ACCEL and ACCEL-0. In the case of the last three approaches, these problems are samples with
high probability from the buffer, gradually become more complex, and are often solvable. In the case
of DR, the generated problems are of arbitrary complexity and often unsolvable.

Mutation Analysis Figure 17a illustrates the evolution of mutations in buffer problems throughout
training. Both ACCEL and ACCEL-0 exhibit similar trends. Hindsight edits are barely present
(possibly) because they are hard to sample: they are only applicable if the RM state is not u0 or uA,
and can only be randomly selected as the first edit in the sequence. Non-hindsight edits have a similar
and continued presence in the buffer.

Figure 17b shows the average number of edits that produced each buffer problem from its parent.
Non-mutated problems (i.e., problems with zero edits) are accounted for. In our experiments, the
number of edits is sampled uniformly at random between 7 and 10. For both ACCEL variants, the
average number of edits quickly grows close to the maximum, showing that (i) longer edit sequences
are beneficial, and (ii) the buffer eventually consists mostly of mutated problems.

E.5 Extended Problem Sampling Ablation Results

Figures 18a and 18b show the performance of DR, PLR⊥ and ACCEL in the level-conditioned
setting, i.e. when RM task sampling is conditioned on the level (see Section 3). By sampling RMs
conditionally, the fraction of solvable problems increases from 2.7% to 83.4%. DR is the approach
that benefits most from the higher number of solvable problems per batch; indeed, it is competitive
with PLR⊥ and ACCEL in terms of robustness (CVaR) and generalization on the hand-designed test

25



u0

u1

u2

uA

〈ç�, 0〉

〈ç�, 0〉

〈
ç, 1〉

(a) 1× 109

u0

u1

u2

u3

uA

〈
�, 0〉

〈○ç, 0〉

〈ç�? , 0〉

〈ç�, 1〉

(b) 2× 109

u0

u1

u2

uA

〈○
, 0〉

〈
ç, 0〉

〈○�? , 1〉

(c) 3× 109

u0

u1

uA

〈
�? , 0〉

〈
�? , 1〉

(d) 4× 109

Figure 13: Samples of generated problems at different points in time (in number of environment
steps) using DR.

u0

u1

uA

〈○
, 0〉

〈ç�, 1〉

(a) 1× 109

u0

u1

uA

〈○�, 0〉

〈○�� , 1〉

(b) 2× 109

u0

u1

u2

u3

uA

〈○�? , 0〉

〈ç�, 0〉

〈○
, 0〉

〈
�, 1〉

(c) 3× 109

u0

u1

u2

uA

〈ç�, 0〉

〈○○, 0〉

〈○�, 1〉

(d) 4× 109

Figure 14: Samples of generated problems at different points in time (in number of environment
steps) using PLR⊥.

26



u0

u1

u2

u3

u4

uA

〈
, 0〉

〈ç�, 0〉

〈ç�, 0〉

〈ç�, 0〉

〈ç�, 1〉

(a) 1× 109

u0

u1

u2

uA

〈○�, 0〉

〈ç�, 0〉

〈○ç, 1〉

(b) 2× 109

u0

u1

u2

u3

u4

uA

〈
ç, 0〉

〈ç�, 0〉

〈○
, 0〉

〈○ç, 0〉

〈çç, 1〉

(c) 3× 109

u0

u1

u2

u3

uA

〈
�� , 0〉

〈ç�? , 0〉

〈
�� , 0〉

〈
ç, 1〉

(d) 4× 109

Figure 15: Samples of generated problems at different points in time (in number of environment
steps) using ACCEL.

set. Figure 18c illustrates the test performance for independent and level-conditioned sampling at the
end of training. Except for DR, all approaches perform similarly for both sampling methods, further
emphasizing the robustness of PLR⊥ and ACCEL in settings where solvable problems are difficult to
sample.

Figure 19 illustrates the evolution of problems in the buffer throughout training. As for the independent
sampling case (see Figure 5), we observe that PLR⊥, ACCEL, and ACCEL-0 start prioritizing simple
problems (few states, rooms, and objects) and progressively switch towards harder problems. The
curriculum over the number of rooms and objects is similar for both independent and level-conditioned
sampling. However, the curriculum over the number of states differs: converging toward sampling
RMs with increasingly more states is more challenging in the independent sampling case. This is
especially noticeable for PLR⊥, which generates RMs with 3–4 states (resp. 5–6) for independent
sampling (resp. level-conditioned) by the end of training. We hypothesize that enabling the sampling
of a higher fraction of solvable problems due to level-conditioning induces this effect on PLR⊥.

Figure 20 shows the fraction of solvable problems in the buffer throughout training. As with
independent sampling (Figure 12, Appendix E.4), PLR⊥ and ACCEL manage to curate a buffer
mostly constituted by solvable problems. We emphasize that although the generator produces
level-conditioned samples, the edits are not level-conditioned and may produce unsolvable problems.

E.6 Extended Task Sampling Ablation Results

Figure 21 shows the performance of DR and PLR⊥ in the setting where RM tasks are directed acyclic
graphs (DAGs) generated with the random walk-based sampler. The maximum number of states is
set to 6 (like for the sequential sampler), and the maximum number of paths from the initial state
u0 to the accepting state uA is set to 2. We analyze the results with independent sampling and
level-conditioned sampling. The CVaR of the solve rate shows that PLR⊥ is far more robust than DR
in the independent sampling setting; however, in the level-conditioned sampling setting, PLR⊥ is

27



u0

u1

u2

u3

uA

〈○ç, 0〉

〈
�, 0〉

〈○○, 0〉

〈ç�, 1〉

(a) 1× 109

u0

u1

u2

u3

u4

uA

〈ç�� , 0〉

〈○ç, 0〉

〈
�, 0〉

〈○ç, 0〉

〈�
 , 1〉

(b) 2× 109

u0

u1

u2

u3

u4

uA

〈○
, 0〉

〈ç�, 0〉

〈
ç, 0〉

〈
�, 0〉

〈○�, 1〉

(c) 3× 109

u0

u1

u2

u3

u4

uA

〈
�� , 0〉

〈○ç, 0〉

〈�, 0〉

〈ç�, 0〉

〈○�, 1〉

(d) 4× 109

Figure 16: Samples of generated problems at different points in time (in number of environment
steps) using ACCEL-0.

1000 2000 3000 4000

Number of Environment Steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

F
ra

ct
io

na
l

S
ha

re

ACCEL

1000 2000 3000 4000

Number of Environment Steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0
ACCEL-0

Edit Type
ExtractSucceeding

ExtractPreceding

RemoveState

AddState

SwitchProposition

RemoveRooms

AddRooms

ReplaceNonDoor

ReplaceDoor

MoveAgent

MoveObject

RemoveObject

AddObject

(a) Edit occurrence probability (ignoring non-mutated problems).

0 1000 2000 3000 4000
Number of Environment Steps (in millions)

2

4

6

8

# 
Ap

pl
ie

d 
Ed

its
 (a

ve
ra

ge
)

ACCEL
ACCEL-0

(b) Average number of edits.

Figure 17: Evolution of edits in buffer problems throughout training. The frequency is weighted by
the sampling probability of the associated problem.

1 10 100
% Worst-Case Problems

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

So
lv

e 
Ra

te

DR
PLR
ACCEL
ACCEL-0

(a) CVaR of the solve rate.

0 1000 2000 3000 4000
Number of Environment Steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

IQ
M

 S
ol

ve
 R

at
e

DR
PLR
ACCEL
ACCEL-0

(b) Performance on the hand-
designed test set.

0.00 0.25 0.50 0.75 1.00
ACCEL-0cond

ACCELcond
PLRcond
DRcond

ACCEL-0indep
ACCELindep

PLRindep
DRindep

IQM Solve Rate

(c) Comparison with independent
sampling.

Figure 18: Performance of UED approaches with level-conditioned problem sampling.

28



0 1000 2000 3000 4000
Number of Environment Steps (in millions)

2

3

4

5

6

Av
er

ag
e 

#R
M

 S
ta

te
s

0 1000 2000 3000 4000
Number of Environment Steps (in millions)

1

2

3

4

5

6

Av
er

ag
e 

#R
oo

m
s

PLR
ACCEL
ACCEL-0

0 1000 2000 3000 4000
Number of Environment Steps (in millions)

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Av
er

ag
e 

#O
bj

ec
ts

Figure 19: Emergent complexity metrics for problems in the buffer in the level-conditioned sampling
setting.

0 1000 2000 3000 4000
Number of Environment Steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0
%

 S
ol

va
bl

e 
Bu

ffe
r P

ro
bl

em
s

PLR
ACCEL
ACCEL-0

Figure 20: Fraction of solvable buffer problems throughout training in the level-conditioned sampling
setting.

less robust than DR, albeit they are close. In line with the results on the hand-designed set obtained
with sequential sampling, PLR⊥ outperforms DR in the independent sampling setting, which is the
most challenging. However, we make two key observations: (i) the performance is almost half of that
obtained with sequential RMs, so increasing the training distribution complexity hinders performance,
and (ii) PLR⊥ performs slightly worse than DR in the level-conditioned setting.

Figure 22 illustrates the evolution of problems in the buffer throughout training. Since, unlike
sequential RMs, DAG RMs may consist of several paths from the initial to the accepting state, we
analyze whether a curriculum is induced for two new metrics: the number of paths and the average
path length. Both metrics are computed via a topological sort of the RM graph. In line with the
sequential setting, we observe that a curriculum is induced over all the metrics; however, some
change more drastically with level-conditioned sampling (the number of states and the average path

1 10 100
% Worst-Case Problems

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e 

So
lv

e 
Ra

te

DRindep
DRcond
PLRindep

PLRcond

(a) CVaR of the solve rate.

0.00 0.25 0.50 0.75 1.00
PLRseq,cond
DRseq,cond

PLRseq,indep
DRseq,indep
PLRdag,cond
DRdag,cond

PLRdag,indep
DRdag,indep

IQM Solve Rate
(b) Performance on the hand-designed test set.

Figure 21: Performance of UED approaches using the random walk-based task sampler.

29



0 2000 4000 6000
Number of Environment Steps (in millions)

2

3

4

5

6

Av
er

ag
e 

#R
M

 S
ta

te
s

0 2000 4000 6000
Number of Environment Steps (in millions)

1.2

1.4

1.6

1.8

2.0

Av
er

ag
e 

#P
at

hs

0 2000 4000 6000
Number of Environment Steps (in millions)

2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00

Av
er

ag
e 

Pa
th

 L
en

gt
h

PLRindep

PLRcond

0 2000 4000 6000
Number of Environment Steps (in millions)

1

2

3

4

5

6

Av
er

ag
e 

#R
oo

m
s

0 2000 4000 6000
Number of Environment Steps (in millions)

2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

Av
er

ag
e 

#O
bj

ec
ts

Figure 22: Emergent complexity metrics for problems in the buffer for independent and level-
conditioned sampling settings using the random-walk based task sampler to generate DAG RMs.

u0

u1

u2

u3

u4

uA

〈
�, 0〉

〈○�, 0〉

〈
ç, 0〉

〈○�, 0〉

〈ç�, 0〉

〈ç�� , 1〉

〈
�� , 1〉

(a) 2× 109

u0

uA

〈○ç, 1〉

(b) 4× 109

u0

u1

u2

u4

u3

uA

〈
�� , 0〉

〈
�, 0〉

〈
�, 0〉

〈○�� , 1〉

〈○○, 0〉

〈
�, 0〉

(c) 6× 109

Figure 23: Samples of DR-generated problems at different points in time (in number of environment
steps) using the random-walk based sampler.

length). Figures 23 and 24 show some problems generated throughout training with DR and PLR⊥,
respectively. Negations to ensure mutual exclusivity (hence, determinism) are omitted for simplicity.
While all problems are solvable for PLR⊥, not all paths are.

Figure 25 shows the fraction of buffer problems that are solvable over time. As in the sequential RM
sampling case, PLR⊥ curates a buffer that mostly contains solvable problems.

E.7 Extended Mutation Ablation Results

We analyze how performing ablations on the applicable edit types and the edit sequence length
changes the performance of ACCEL and ACCEL-0. Figure 26a shows the performance of ACCEL
for different combinations of level (L), task (T), and hindsight (H) edits. By default, we perform
a combination of all such edits (L+T+H). Hindsight edits are not tested in isolation since they are
not always applicable, whereas at least one level/task edit is always applicable. We observe that
combining level and task edits sensibly improves performance over the same edits performed in
isolation. Hindsight edits enhance performance when combined with level edits alone; however, in
general, performance changes induced by hindsight edits seem minimal. As previously observed in
Appendix E.4, hindsight edits have little presence in the buffers.

Figure 26b illustrates the performance of ACCEL-0 with (default) and without hindsight edits. In
this case, we do not ablate level and task edits since they are key to building increasingly complex

30



u0

u1

u2

uA

〈ç�? , 0〉

〈çç, 0〉

〈○
, 0〉

〈
�� , 1〉

(a) 2× 109

u0

u1 u2

uA

〈
�, 0〉 〈ç�? , 0〉

〈ç�� , 1〉 〈ç�, 1〉

(b) 4× 109

u0

u1

u2

u4

u3

uA

〈○ç, 0〉

〈
�, 0〉

〈○ç, 0〉

〈ç, 1〉

〈
�� , 0〉

〈çç, 0〉

(c) 6× 109

Figure 24: Samples of PLR⊥-generated problems at different points in time (in number of environ-
ment steps) using the random-walk based sampler.

0 2000 4000 6000
Number of Environment Steps (in millions)

0.0

0.2

0.4

0.6

0.8

1.0

%
 S

ol
va

bl
e 

Bu
ffe

r P
ro

bl
em

s

PLRindep

PLRcond

Figure 25: Fraction of solvable buffer problems throughout training using the random walk-based
task sampler.

problems from the sampled ones (one room, one key, one transition). In line with the previous point,
hindsight edits do not sensibly improve performance.

Figure 26c shows how performing fewer (1, 3) or more edits (20) than in our default setting changes
ACCEL variants’ performance. Our default setting uniformly samples between 7 and 10 edits.
Decreasing the number of edits severely hinders the performance of ACCEL and ACCEL-0, especially
when a single edit is performed. Increasing the number of edits to 20 has barely any effect on
performance.

E.8 Task-Conditioning Ablation Results

We analyze how the behavior of PLR⊥ changes for some ablations on task-conditioning (see Ap-
pendix C). The ablations are the following:

Vanilla Condition the policy on the index of the current RM state rather than conditioning on an
RM’s graph embedding.

31



0.00 0.25 0.50 0.75 1.00
L+T+H

L+T
T+H
L+H

T
L

IQM Solve Rate

(a) Edit type ablations in ACCEL.

0.00 0.25 0.50 0.75 1.00
No Hindsight

Hindsight

IQM Solve Rate

(b) Edit type ablations in ACCEL-0.

0.00 0.25 0.50 0.75 1.00
ACCEL-020
ACCEL-03
ACCEL-01
ACCEL20
ACCEL3
ACCEL1

ACCEL-0
ACCEL

IQM Solve Rate

(c) Edit sequence length ablation.

Figure 26: ACCEL and ACCEL-0 performance for ablations on the applicable edit types and length
of the edit sequence.

0.00 0.25 0.50 0.75 1.00
D.I. Embed.

Myopic
Vanilla

Default

IQM Solve Rate

Figure 27: PLR⊥ performance after applying different task-conditioning ablations.

Myopic Still conditions on the graph embedding, but the GCN has a single layer; hence, each RM
state embedding only aggregates information from its immediate neighbors. By default, our GCN
has five layers.

Domain Independent Embeddings (D.I. Embed.) Instead of exploiting domain-specific knowl-
edge to build the literal embeddings, each literal (proposition or its negation) is embedded differ-
ently.

Figure 27 shows the results. We make the following observations. First, the graph embeddings
provide a substantial benefit with respect to the vanilla embeddings since the latter cannot generalize
across different tasks (the RM state index tells nothing about the task being performed). Second,
the myopic ablation performs close to the default setting, suggesting that the latter has converged
to a myopic strategy. Indeed, the performance shown for the MYOPIC problem (see Figure 4) is an
additional indication: a non-myopic agent could easily solve the task 100% of the time. Third, the
domain-dependent literal embeddings help improve performance with respect to the domain-agnostic
ones.

E.9 Scoring Function Ablation Results

Figure 28 compares the performance of PLR⊥, ACCEL and ACCEL-0 using two scoring functions:
MaxMC (default) and the positive value loss [PVL; 23]. MaxMC induces a significantly better
performance than PVL for both independent and level-conditioned sampling. This suggests that
choosing an appropriate scoring function is key for final performance, or that PVL may require
hyperparameter tuning. Performing an in-depth analysis of how scoring functions induce different
training distributions is an interesting venue for future work. Along this path, Rutherford et al. [44]
show that MaxMC and PVL align with success rate rather than actual regret.

E.10 Individual Problem Results

Tables 5 to 7 report the average solve rate for each of the hand-designed problems in
our proposed evaluation set across different task samplers (sequential, random-walk based)
and problem sampling strategies (independent, level-conditioned). The problems originally
shown in Figure 4 are MYOPIC (myopic), PATROL (patrol_4r_full_spec), and CHOICE
(choice-choice_three-next_to_square_b).

32



0.00 0.25 0.50 0.75 1.00
ACCEL-0PVL

ACCELPVL
PLRPVL

ACCEL-0MaxMC
ACCELMaxMC

PLRMaxMC

IQM Solve Rate
(a) Independent sampling.

0.00 0.25 0.50 0.75 1.00
ACCEL-0PVL

ACCELPVL
PLRPVL

ACCEL-0MaxMC
ACCELMaxMC

PLRMaxMC

IQM Solve Rate
(b) Level-conditioned sampling.

Figure 28: Performance of PLR⊥, ACCEL, and ACCEL-0 using the MaxMC (default) and PVL
scoring functions.

Table 5: Solve rates and 95% CIs (in brackets) for hand-designed problems with sequential task
sampling and independent problem sampling.

DR PLR⊥ ACCEL ACCEL-0
Problem

1r-corner_balls-back_n_forth 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.94 (0.9, 0.98)
1r-corner_balls-criss_cross 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-corner_balls-move_purple_key 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.9 (0.6, 1.0) 1.0 (1.0, 1.0)
1r-corner_balls-withholding 0.06 (0.0, 0.24) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-item_cluster-all_keys 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-item_cluster-arrangement 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.9 (0.6, 1.0) 0.96 (0.84, 1.0)
1r-item_cluster-arrangement_a 0.0 (0.0, 0.0) 0.96 (0.92, 1.0) 0.8 (0.44, 0.96) 0.98 (0.92, 1.0)
1r-item_cluster-arrangement_b 0.0 (0.0, 0.0) 0.98 (0.92, 1.0) 0.76 (0.2, 1.0) 0.92 (0.76, 1.0)
1r-key_swap-carry_yellow_blue 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-key_swap-front_red_green 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-key_swap-lookahead 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-key_swap-swap_red_green 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_agent-arrangement 0.04 (0.0, 0.16) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_agent-escape 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.96 (0.84, 1.0)
1r-trapped_agent-find_yellow_square 0.28 (0.08, 0.8) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_agent-reshape_squares 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_object-big_changes 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.94 (0.76, 1.0)
1r-trapped_object-find_yellow_key 0.6 (0.2, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_object-rearrange_purple_square 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 0.98 (0.92, 1.0)
1r-trapped_object-sort 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-green_locked_door-ball_tribute 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-green_locked_door-bury_object 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0)
2r-green_locked_door-never_unlock 0.0 (0.0, 0.0) 0.38 (0.16, 0.62) 0.3 (0.14, 0.54) 0.38 (0.1, 0.66)
2r-green_locked_door-next_square_key 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-key_barrier-mix 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-key_barrier-no_space 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-key_barrier-self_destructive 0.0 (0.0, 0.0) 0.98 (0.92, 1.0) 0.96 (0.84, 1.0) 1.0 (1.0, 1.0)
2r-key_barrier-the_other_side 0.0 (0.0, 0.0) 0.72 (0.34, 1.0) 0.98 (0.92, 1.0) 0.98 (0.92, 1.0)
2r-locked_blocked_0-move_blue_key 0.0 (0.0, 0.0) 0.7 (0.58, 0.82) 0.98 (0.92, 1.0) 0.82 (0.68, 0.96)
2r-locked_blocked_0-next_square_red_ball_blue 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.96 (0.92, 1.0) 1.0 (1.0, 1.0)
2r-locked_blocked_0-no_unlock 0.0 (0.0, 0.0) 0.66 (0.5, 0.8) 0.6 (0.3, 0.8) 0.66 (0.34, 0.9)
2r-locked_blocked_0-pair_squares 0.0 (0.0, 0.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-locked_blocked_1-explore 0.0 (0.0, 0.0) 0.92 (0.84, 1.0) 1.0 (1.0, 1.0) 0.9 (0.76, 1.0)
2r-locked_blocked_1-never_leave 0.0 (0.0, 0.0) 0.66 (0.38, 0.86) 0.7 (0.42, 0.96) 0.66 (0.42, 0.92)
2r-locked_blocked_1-recall 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
2r-locked_blocked_1-retrieve 0.0 (0.0, 0.0) 0.54 (0.3, 0.8) 0.92 (0.84, 0.98) 0.72 (0.4, 0.9)
2r-locked_choice-choose 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-locked_choice-pair_keys 0.0 (0.0, 0.0) 0.56 (0.34, 0.76) 0.6 (0.48, 0.78) 0.68 (0.28, 0.88)
2r-locked_choice-rearrange 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-locked_choice-toggle_door 0.0 (0.0, 0.0) 0.16 (0.04, 0.48) 0.16 (0.08, 0.24) 0.32 (0.12, 0.46)
4r-circuit-around_the_world 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
4r-circuit-pair_keys 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
4r-circuit-squares 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
4r-circuit-take_square_purple 0.0 (0.0, 0.0) 0.82 (0.68, 0.96) 0.9 (0.78, 0.98) 0.9 (0.78, 1.0)
4r-four_balls_a-adventure 0.0 (0.0, 0.0) 0.64 (0.36, 0.86) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
4r-four_balls_a-arrange_balls 0.0 (0.0, 0.0) 0.96 (0.92, 1.0) 0.36 (0.1, 0.6) 0.78 (0.6, 0.96)
4r-four_balls_a-connect_balls 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0)
4r-four_balls_a-place_keys 0.0 (0.0, 0.0) 0.5 (0.36, 0.64) 0.98 (0.92, 1.0) 0.98 (0.92, 1.0)
4r-sequential_rooms_a-block_doors 0.0 (0.0, 0.0) 0.9 (0.84, 0.96) 0.7 (0.28, 0.9) 0.86 (0.76, 0.94)
4r-sequential_rooms_a-never_unlock 0.0 (0.0, 0.0) 0.26 (0.14, 0.42) 0.46 (0.26, 0.66) 0.14 (0.04, 0.4)
4r-sequential_rooms_a-pair_red_keys 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
4r-sequential_rooms_a-sort 0.0 (0.0, 0.0) 0.96 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
4r-trapped-ball_search 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.94 (0.76, 1.0)
4r-trapped-excavation 0.0 (0.0, 0.0) 0.38 (0.16, 0.64) 0.3 (0.12, 0.54) 0.12 (0.04, 0.2)
4r-trapped-key_search 0.0 (0.0, 0.0) 0.72 (0.52, 0.94) 0.98 (0.92, 1.0) 0.8 (0.44, 0.96)
4r-trapped-retrieve 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.96 (0.84, 1.0) 1.0 (1.0, 1.0)
4r-u_shape_blocked_a-all_grey 0.0 (0.0, 0.0) 0.96 (0.84, 1.0) 0.88 (0.68, 0.98) 0.92 (0.84, 0.98)
4r-u_shape_blocked_a-find_yellow_objs 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.78 (0.2, 0.98) 0.92 (0.84, 1.0)
4r-u_shape_blocked_a-pairs 0.0 (0.0, 0.0) 0.9 (0.6, 1.0) 1.0 (1.0, 1.0) 0.94 (0.76, 1.0)
4r-u_shape_blocked_a-unlock_doors 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)

33



Table 5: Solve rates and 95% CIs (in brackets) for hand-designed problems with sequential task
sampling and independent problem sampling (continued).

DR PLR⊥ ACCEL ACCEL-0
Problem

6r-corridors-arrange_keys 0.0 (0.0, 0.0) 0.72 (0.64, 0.8) 0.84 (0.74, 0.9) 0.84 (0.72, 0.96)
6r-corridors-block_doors 0.0 (0.0, 0.0) 0.78 (0.62, 0.92) 0.82 (0.62, 0.96) 0.74 (0.54, 0.88)
6r-corridors-find 0.0 (0.0, 0.0) 0.1 (0.02, 0.18) 0.1 (0.02, 0.18) 0.1 (0.0, 0.24)
6r-corridors-green_square_search 0.0 (0.0, 0.0) 0.38 (0.14, 0.56) 0.22 (0.14, 0.3) 0.1 (0.0, 0.4)
6r-key_objective-find_red_ball 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-key_objective-key_tour 0.0 (0.0, 0.0) 0.96 (0.92, 1.0) 0.96 (0.84, 1.0) 0.94 (0.84, 1.0)
6r-key_objective-pair_balls 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-key_objective-return_to_base 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-key_temple-ball_offer 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.04 (0.0, 0.16) 0.08 (0.0, 0.24)
6r-key_temple-pair_chain 0.0 (0.0, 0.0) 0.46 (0.34, 0.62) 0.52 (0.18, 0.86) 0.68 (0.4, 0.92)
6r-key_temple-ritual 0.0 (0.0, 0.0) 0.14 (0.04, 0.32) 0.38 (0.24, 0.78) 0.48 (0.2, 0.78)
6r-key_temple-unlock_chain 0.0 (0.0, 0.0) 0.52 (0.36, 0.7) 0.64 (0.54, 0.9) 0.5 (0.3, 0.84)
6r-locked_rooms-ball_sequence 0.0 (0.0, 0.0) 0.52 (0.24, 0.78) 0.24 (0.06, 0.42) 0.34 (0.2, 0.58)
6r-locked_rooms-find_blue_ball 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-locked_rooms-green_stuff 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-locked_rooms-unlock_doors 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
6r-secret_treasure-find_treasure 0.0 (0.0, 0.0) 0.28 (0.1, 0.64) 0.28 (0.04, 0.56) 0.24 (0.08, 0.56)
6r-secret_treasure-pairings 0.0 (0.0, 0.0) 0.1 (0.0, 0.32) 0.12 (0.04, 0.24) 0.32 (0.24, 0.4)
6r-secret_treasure-take_the_key 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-secret_treasure-unlock_all 0.0 (0.0, 0.0) 0.84 (0.68, 0.94) 0.54 (0.32, 0.78) 0.62 (0.34, 0.86)
anyorder_2o 0.0 (0.0, 0.0) 0.98 (0.92, 1.0) 0.94 (0.84, 1.0) 0.96 (0.92, 1.0)
anyorder_3o 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_four-carrying_keys 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_four-front_green_square 0.0 (0.0, 0.0) 0.46 (0.3, 0.6) 0.46 (0.28, 0.86) 0.48 (0.22, 0.74)
choice-choice_four-front_red_square 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.96 (0.84, 1.0) 0.98 (0.92, 1.0)
choice-choice_four-no_unlocking 0.0 (0.0, 0.0) 0.36 (0.14, 0.5) 0.56 (0.26, 0.86) 0.62 (0.52, 0.72)
choice-choice_four-pair_blue_red_objs 0.0 (0.0, 0.0) 0.14 (0.06, 0.24) 0.32 (0.12, 0.42) 0.4 (0.2, 0.56)
choice-choice_four-patience_test 0.0 (0.0, 0.0) 0.92 (0.76, 1.0) 0.96 (0.92, 1.0) 0.9 (0.82, 0.98)
choice-choice_four-red_ball_square 0.0 (0.0, 0.0) 0.26 (0.16, 0.34) 0.14 (0.02, 0.48) 0.14 (0.1, 0.26)
choice-choice_four-two_red_squares 0.0 (0.0, 0.0) 0.58 (0.44, 0.72) 0.58 (0.36, 0.84) 0.58 (0.42, 0.78)
choice-choice_one-arrange_squares 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-key_to_square 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-move_everything 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-retrieve_square 0.0 (0.0, 0.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-toggle_door_squares 0.0 (0.0, 0.0) 0.8 (0.2, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-unlock_door 0.18 (0.04, 0.38) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-unlock_door_specific 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-visit_all_squares 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_three-front_ball_blue 0.0 (0.0, 0.0) 0.48 (0.22, 0.72) 0.36 (0.14, 0.72) 0.3 (0.12, 0.44)
choice-choice_three-front_ball_purple 0.0 (0.0, 0.0) 0.5 (0.24, 0.76) 0.56 (0.42, 0.7) 0.56 (0.36, 0.78)
choice-choice_three-next_to_square 0.0 (0.0, 0.0) 0.98 (0.92, 1.0) 0.8 (0.52, 0.96) 0.9 (0.82, 0.98)
choice-choice_three-next_to_square_a 0.0 (0.0, 0.0) 0.96 (0.92, 1.0) 0.82 (0.68, 0.96) 0.8 (0.72, 0.94)
choice-choice_three-next_to_square_b 0.0 (0.0, 0.0) 0.58 (0.38, 0.8) 0.76 (0.66, 0.92) 0.68 (0.44, 0.86)
choice-choice_three-next_to_squares 0.0 (0.0, 0.0) 0.94 (0.76, 1.0) 0.8 (0.68, 0.92) 0.86 (0.6, 0.96)
choice-choice_three-next_to_squares_a 0.0 (0.0, 0.0) 0.82 (0.68, 0.92) 0.78 (0.6, 0.92) 0.92 (0.76, 1.0)
choice-choice_three-unlocking_sequence 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.96 (0.84, 1.0) 1.0 (1.0, 1.0)
choice-choice_two-avoid_unlock 0.0 (0.0, 0.0) 0.04 (0.0, 0.08) 0.08 (0.02, 0.16) 0.02 (0.0, 0.08)
choice-choice_two-avoid_unlock_hard 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0)
choice-choice_two-avoid_unlock_impossible 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0)
choice-choice_two-front_square_green 0.12 (0.0, 0.48) 0.82 (0.58, 1.0) 0.88 (0.68, 0.96) 0.86 (0.6, 1.0)
choice-choice_two-front_squares 0.0 (0.0, 0.0) 0.34 (0.1, 0.64) 0.12 (0.02, 0.24) 0.14 (0.0, 0.4)
choice-choice_two-front_squares_hard 0.0 (0.0, 0.0) 0.3 (0.16, 0.48) 0.34 (0.14, 0.54) 0.32 (0.1, 0.62)
choice-choice_two-intermediate_door_unlock 0.0 (0.0, 0.0) 0.72 (0.52, 0.88) 0.56 (0.22, 0.78) 0.88 (0.76, 0.98)
choice-choice_two-next_key_square 0.0 (0.0, 0.0) 0.08 (0.02, 0.16) 0.28 (0.04, 0.56) 0.26 (0.06, 0.54)
choice-choice_two-next_to_squares_0 0.0 (0.0, 0.0) 0.5 (0.2, 0.78) 0.24 (0.06, 0.42) 0.36 (0.2, 0.52)
choice-choice_two-next_to_squares_1 0.0 (0.0, 0.0) 0.36 (0.12, 0.52) 0.34 (0.18, 0.46) 0.26 (0.1, 0.54)
myopic 0.0 (0.0, 0.0) 0.4 (0.3, 0.62) 0.28 (0.18, 0.52) 0.48 (0.22, 0.74)
patrol_4r_full_spec 0.0 (0.0, 0.0) 0.82 (0.36, 0.98) 0.56 (0.2, 0.84) 0.82 (0.6, 1.0)
patrol_4r_overspec 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 0.98 (0.92, 1.0)
patrol_4r_underspec 0.0 (0.0, 0.0) 0.6 (0.22, 0.86) 0.04 (0.0, 0.16) 0.18 (0.04, 0.48)
patrol_4r_underspec-1 0.0 (0.0, 0.0) 0.58 (0.24, 0.82) 0.24 (0.12, 0.44) 0.32 (0.12, 0.62)
patrol_6r 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
patrol_6r_objects 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
patrol_6r_objects_obstacles 0.0 (0.0, 0.0) 0.9 (0.84, 0.95) 0.88 (0.82, 0.94) 0.9 (0.76, 1.0)
patrol_6r_obstacles 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
putnext_1r 0.0 (0.0, 0.0) 0.98 (0.92, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0)
putnext_2r-0 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
putnext_2r-1 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
putnext_2r_distractor-0 0.0 (0.0, 0.0) 0.68 (0.34, 0.86) 0.66 (0.36, 0.88) 0.86 (0.52, 1.0)
putnext_2r_distractor-1 0.0 (0.0, 0.0) 0.42 (0.2, 0.6) 0.56 (0.26, 0.86) 0.78 (0.66, 0.88)
putnext_4r 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
unlocktounlock_overspec 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
unlocktounlock_underspec 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0)
walls-chunks-blue_ball 0.34 (0.12, 0.58) 0.82 (0.44, 0.96) 0.98 (0.92, 1.0) 0.98 (0.92, 1.0)
walls-chunks-green_ball 0.04 (0.0, 0.16) 0.96 (0.92, 1.0) 0.7 (0.52, 0.88) 0.92 (0.84, 0.98)
walls-chunks-grey_ball 0.42 (0.18, 0.72) 0.96 (0.92, 1.0) 0.98 (0.92, 1.0) 0.96 (0.84, 1.0)
walls-chunks-purple_ball 0.0 (0.0, 0.0) 0.88 (0.76, 0.96) 0.8 (0.68, 0.9) 0.72 (0.52, 0.9)
walls-chunks-red_ball 0.04 (0.0, 0.16) 0.12 (0.0, 0.4) 0.04 (0.0, 0.16) 0.16 (0.0, 0.48)
walls-chunks-yellow_ball 0.0 (0.0, 0.0) 0.52 (0.2, 0.74) 0.42 (0.1, 0.8) 0.56 (0.28, 0.78)
walls-maze_4r-red_ball 0.0 (0.0, 0.0) 0.04 (0.0, 0.16) 0.04 (0.0, 0.08) 0.02 (0.0, 0.08)
walls-maze_4r-red_key 0.0 (0.0, 0.0) 0.48 (0.1, 0.84) 0.52 (0.26, 0.78) 0.26 (0.06, 0.82)
walls-maze_4r-red_square 0.0 (0.0, 0.0) 0.08 (0.0, 0.24) 0.0 (0.0, 0.0) 0.02 (0.0, 0.08)
walls-maze_6r-green_ball 0.0 (0.0, 0.0) 0.08 (0.0, 0.24) 0.36 (0.08, 0.68) 0.06 (0.0, 0.14)
walls-maze_6r-green_key 0.0 (0.0, 0.0) 0.06 (0.0, 0.24) 0.02 (0.0, 0.08) 0.08 (0.0, 0.32)

34



Table 5: Solve rates and 95% CIs (in brackets) for hand-designed problems with sequential task
sampling and independent problem sampling (continued).

DR PLR⊥ ACCEL ACCEL-0
Problem

walls-maze_6r-green_square 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.06 (0.02, 0.1) 0.04 (0.0, 0.16)
walls-maze_9r-blue_ball 0.0 (0.0, 0.0) 0.28 (0.04, 0.56) 0.22 (0.08, 0.48) 0.3 (0.0, 0.66)
walls-maze_9r-blue_key 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.02 (0.0, 0.08)
walls-maze_9r-blue_square 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
walls-spiral_4r-purple_key 0.02 (0.0, 0.08) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0) 0.04 (0.0, 0.08)
walls-spiral_9r-grey_key 0.18 (0.0, 0.72) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)

Table 6: Solve rates and 95% CIs (in brackets) for hand-designed problems with sequential task
sampling and level-conditioned problem sampling.

DR PLR⊥ ACCEL ACCEL-0
Problem

1r-corner_balls-back_n_forth 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-corner_balls-criss_cross 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-corner_balls-move_purple_key 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-corner_balls-withholding 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-item_cluster-all_keys 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-item_cluster-arrangement 1.0 (1.0, 1.0) 0.88 (0.52, 1.0) 1.0 (1.0, 1.0) 0.96 (0.84, 1.0)
1r-item_cluster-arrangement_a 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.94 (0.84, 1.0)
1r-item_cluster-arrangement_b 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 0.96 (0.92, 1.0)
1r-key_swap-carry_yellow_blue 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-key_swap-front_red_green 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-key_swap-lookahead 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-key_swap-swap_red_green 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_agent-arrangement 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_agent-escape 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0)
1r-trapped_agent-find_yellow_square 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_agent-reshape_squares 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_object-big_changes 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
1r-trapped_object-find_yellow_key 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_object-rearrange_purple_square 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
1r-trapped_object-sort 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-green_locked_door-ball_tribute 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-green_locked_door-bury_object 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-green_locked_door-never_unlock 0.58 (0.34, 0.78) 0.82 (0.68, 0.94) 0.76 (0.5, 0.9) 0.48 (0.26, 0.68)
2r-green_locked_door-next_square_key 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-key_barrier-mix 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-key_barrier-no_space 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-key_barrier-self_destructive 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-key_barrier-the_other_side 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.88 (0.52, 1.0) 0.94 (0.76, 1.0)
2r-locked_blocked_0-move_blue_key 0.86 (0.8, 0.94) 0.88 (0.6, 1.0) 0.96 (0.92, 1.0) 0.92 (0.84, 1.0)
2r-locked_blocked_0-next_square_red_ball_blue 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 0.98 (0.92, 1.0) 0.96 (0.84, 1.0)
2r-locked_blocked_0-no_unlock 0.64 (0.54, 0.74) 0.44 (0.24, 0.58) 0.88 (0.68, 0.96) 0.82 (0.76, 0.88)
2r-locked_blocked_0-pair_squares 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-locked_blocked_1-explore 0.92 (0.68, 1.0) 0.98 (0.92, 1.0) 0.98 (0.92, 1.0) 0.92 (0.68, 1.0)
2r-locked_blocked_1-never_leave 0.48 (0.3, 0.74) 0.7 (0.4, 0.94) 0.88 (0.82, 0.9) 0.66 (0.44, 0.86)
2r-locked_blocked_1-recall 0.9 (0.84, 0.96) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-locked_blocked_1-retrieve 0.64 (0.5, 0.78) 0.98 (0.92, 1.0) 0.98 (0.92, 1.0) 0.96 (0.84, 1.0)
2r-locked_choice-choose 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-locked_choice-pair_keys 0.84 (0.8, 0.88) 0.56 (0.4, 0.7) 0.68 (0.32, 0.82) 0.82 (0.68, 0.96)
2r-locked_choice-rearrange 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-locked_choice-toggle_door 0.18 (0.06, 0.32) 0.3 (0.18, 0.38) 0.62 (0.28, 0.9) 0.36 (0.2, 0.52)
4r-circuit-around_the_world 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
4r-circuit-pair_keys 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
4r-circuit-squares 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
4r-circuit-take_square_purple 0.94 (0.84, 1.0) 0.8 (0.56, 0.96) 0.92 (0.84, 0.98) 0.84 (0.76, 0.94)
4r-four_balls_a-adventure 0.96 (0.92, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
4r-four_balls_a-arrange_balls 0.72 (0.53, 0.92) 0.48 (0.32, 0.72) 0.36 (0.12, 0.6) 0.64 (0.36, 0.8)
4r-four_balls_a-connect_balls 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 0.96 (0.92, 1.0) 1.0 (1.0, 1.0)
4r-four_balls_a-place_keys 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 0.96 (0.92, 1.0)
4r-sequential_rooms_a-block_doors 0.72 (0.52, 0.82) 0.7 (0.2, 0.94) 0.78 (0.72, 0.86) 0.74 (0.58, 0.86)
4r-sequential_rooms_a-never_unlock 0.28 (0.1, 0.42) 0.2 (0.04, 0.56) 0.2 (0.04, 0.66) 0.02 (0.0, 0.08)
4r-sequential_rooms_a-pair_red_keys 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
4r-sequential_rooms_a-sort 0.88 (0.6, 1.0) 0.92 (0.76, 1.0) 0.98 (0.92, 1.0) 0.98 (0.92, 1.0)
4r-trapped-ball_search 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.96 (0.84, 1.0)
4r-trapped-excavation 0.58 (0.36, 0.78) 0.14 (0.06, 0.24) 0.06 (0.02, 0.1) 0.38 (0.2, 0.64)
4r-trapped-key_search 0.98 (0.92, 1.0) 0.98 (0.92, 1.0) 0.96 (0.92, 1.0) 0.9 (0.6, 1.0)
4r-trapped-retrieve 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0)
4r-u_shape_blocked_a-all_grey 1.0 (1.0, 1.0) 0.96 (0.84, 1.0) 0.9 (0.78, 0.96) 0.96 (0.84, 1.0)
4r-u_shape_blocked_a-find_yellow_objs 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 0.92 (0.68, 1.0) 1.0 (1.0, 1.0)
4r-u_shape_blocked_a-pairs 1.0 (1.0, 1.0) 0.9 (0.6, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
4r-u_shape_blocked_a-unlock_doors 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-corridors-arrange_keys 0.66 (0.26, 0.84) 0.9 (0.84, 0.96) 0.9 (0.78, 1.0) 0.66 (0.44, 0.86)
6r-corridors-block_doors 0.78 (0.68, 0.92) 0.78 (0.62, 0.94) 0.84 (0.6, 0.96) 0.84 (0.6, 0.96)
6r-corridors-find 0.02 (0.0, 0.08) 0.0 (0.0, 0.0) 0.06 (0.0, 0.24) 0.04 (0.0, 0.16)
6r-corridors-green_square_search 0.1 (0.02, 0.22) 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.12 (0.0, 0.24)
6r-key_objective-find_red_ball 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-key_objective-key_tour 0.94 (0.84, 1.0) 0.68 (0.5, 0.82) 0.9 (0.78, 1.0) 0.78 (0.64, 0.92)

35



Table 6: Solve rates and 95% CIs (in brackets) for hand-designed problems with sequential task
sampling and level-conditioned problem sampling.

DR PLR⊥ ACCEL ACCEL-0
Problem

6r-key_objective-pair_balls 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-key_objective-return_to_base 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
6r-key_temple-ball_offer 0.02 (0.0, 0.08) 0.04 (0.0, 0.08) 0.04 (0.0, 0.08) 0.04 (0.0, 0.08)
6r-key_temple-pair_chain 0.74 (0.62, 0.86) 0.58 (0.32, 0.84) 0.5 (0.21, 0.62) 0.62 (0.46, 0.8)
6r-key_temple-ritual 0.64 (0.44, 0.86) 0.56 (0.4, 0.84) 0.6 (0.22, 0.9) 0.48 (0.2, 0.6)
6r-key_temple-unlock_chain 0.52 (0.34, 0.7) 0.16 (0.06, 0.32) 0.46 (0.26, 0.74) 0.38 (0.2, 0.64)
6r-locked_rooms-ball_sequence 0.78 (0.58, 0.88) 0.3 (0.04, 0.66) 0.34 (0.06, 0.62) 0.2 (0.04, 0.48)
6r-locked_rooms-find_blue_ball 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-locked_rooms-green_stuff 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-locked_rooms-unlock_doors 0.94 (0.76, 1.0) 0.86 (0.74, 0.98) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
6r-secret_treasure-find_treasure 0.1 (0.02, 0.18) 0.06 (0.0, 0.14) 0.14 (0.02, 0.48) 0.1 (0.04, 0.16)
6r-secret_treasure-pairings 0.1 (0.02, 0.18) 0.24 (0.14, 0.4) 0.5 (0.16, 0.7) 0.16 (0.0, 0.48)
6r-secret_treasure-take_the_key 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-secret_treasure-unlock_all 0.4 (0.2, 0.62) 0.34 (0.18, 0.76) 0.42 (0.16, 0.64) 0.44 (0.2, 0.74)
anyorder_2o 0.76 (0.48, 1.0) 0.9 (0.6, 1.0) 0.94 (0.84, 1.0) 0.96 (0.92, 1.0)
anyorder_3o 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.94 (0.84, 1.0)
choice-choice_four-carrying_keys 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_four-front_green_square 0.56 (0.46, 0.72) 0.56 (0.4, 0.78) 0.52 (0.18, 0.84) 0.5 (0.22, 0.76)
choice-choice_four-front_red_square 1.0 (1.0, 1.0) 0.9 (0.78, 0.98) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0)
choice-choice_four-no_unlocking 0.62 (0.18, 0.8) 0.6 (0.48, 0.68) 0.7 (0.54, 0.86) 0.58 (0.24, 0.92)
choice-choice_four-pair_blue_red_objs 0.14 (0.04, 0.4) 0.2 (0.08, 0.48) 0.28 (0.18, 0.5) 0.24 (0.14, 0.36)
choice-choice_four-patience_test 0.7 (0.58, 0.8) 0.8 (0.68, 0.92) 0.86 (0.72, 0.94) 0.92 (0.84, 0.98)
choice-choice_four-red_ball_square 0.08 (0.0, 0.24) 0.12 (0.04, 0.24) 0.12 (0.04, 0.24) 0.22 (0.2, 0.28)
choice-choice_four-two_red_squares 0.7 (0.52, 0.88) 0.5 (0.3, 0.68) 0.56 (0.46, 0.7) 0.56 (0.26, 0.8)
choice-choice_one-arrange_squares 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-key_to_square 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-move_everything 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-retrieve_square 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-toggle_door_squares 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-unlock_door 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-unlock_door_specific 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-visit_all_squares 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_three-front_ball_blue 0.48 (0.4, 0.64) 0.34 (0.2, 0.56) 0.48 (0.3, 0.68) 0.46 (0.28, 0.64)
choice-choice_three-front_ball_purple 0.52 (0.38, 0.66) 0.3 (0.18, 0.6) 0.54 (0.42, 0.66) 0.5 (0.36, 0.68)
choice-choice_three-next_to_square 0.94 (0.84, 1.0) 0.84 (0.68, 0.92) 0.9 (0.78, 0.98) 0.94 (0.84, 1.0)
choice-choice_three-next_to_square_a 0.7 (0.46, 0.86) 0.8 (0.68, 0.92) 0.7 (0.44, 0.88) 0.84 (0.6, 0.96)
choice-choice_three-next_to_square_b 0.58 (0.42, 0.7) 0.66 (0.56, 0.76) 0.72 (0.64, 0.84) 0.64 (0.52, 0.8)
choice-choice_three-next_to_squares 0.92 (0.76, 1.0) 0.72 (0.56, 0.8) 0.82 (0.7, 0.94) 0.92 (0.84, 0.98)
choice-choice_three-next_to_squares_a 0.88 (0.82, 0.94) 0.8 (0.66, 0.94) 0.9 (0.82, 0.98) 0.9 (0.68, 1.0)
choice-choice_three-unlocking_sequence 0.96 (0.92, 1.0) 0.88 (0.76, 0.96) 0.98 (0.92, 1.0) 0.98 (0.92, 1.0)
choice-choice_two-avoid_unlock 0.12 (0.04, 0.18) 0.08 (0.02, 0.14) 0.04 (0.0, 0.08) 0.12 (0.04, 0.18)
choice-choice_two-avoid_unlock_hard 0.04 (0.0, 0.16) 0.06 (0.02, 0.1) 0.02 (0.0, 0.08) 0.02 (0.0, 0.08)
choice-choice_two-avoid_unlock_impossible 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0) 0.04 (0.0, 0.16)
choice-choice_two-front_square_green 1.0 (1.0, 1.0) 0.88 (0.68, 1.0) 0.9 (0.6, 1.0) 0.96 (0.84, 1.0)
choice-choice_two-front_squares 0.78 (0.68, 0.92) 0.24 (0.04, 0.52) 0.24 (0.08, 0.66) 0.38 (0.12, 0.64)
choice-choice_two-front_squares_hard 0.82 (0.72, 0.92) 0.3 (0.1, 0.56) 0.32 (0.14, 0.5) 0.44 (0.16, 0.8)
choice-choice_two-intermediate_door_unlock 0.94 (0.84, 1.0) 0.8 (0.36, 1.0) 0.74 (0.36, 0.96) 0.68 (0.46, 0.8)
choice-choice_two-next_key_square 0.5 (0.28, 0.72) 0.22 (0.1, 0.4) 0.26 (0.12, 0.4) 0.6 (0.42, 0.78)
choice-choice_two-next_to_squares_0 0.82 (0.74, 0.88) 0.22 (0.14, 0.34) 0.34 (0.14, 0.54) 0.62 (0.46, 0.86)
choice-choice_two-next_to_squares_1 0.58 (0.44, 0.72) 0.44 (0.3, 0.54) 0.3 (0.06, 0.56) 0.58 (0.38, 0.68)
myopic 0.34 (0.16, 0.64) 0.52 (0.24, 0.82) 0.52 (0.32, 0.82) 0.42 (0.28, 0.58)
patrol_4r_full_spec 0.98 (0.92, 1.0) 0.5 (0.16, 0.86) 0.84 (0.44, 0.98) 0.88 (0.76, 0.96)
patrol_4r_overspec 1.0 (1.0, 1.0) 0.86 (0.52, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0)
patrol_4r_underspec 0.94 (0.84, 1.0) 0.2 (0.04, 0.48) 0.42 (0.24, 0.64) 0.2 (0.08, 0.32)
patrol_4r_underspec-1 0.96 (0.92, 1.0) 0.3 (0.12, 0.54) 0.42 (0.18, 0.7) 0.28 (0.12, 0.42)
patrol_6r 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
patrol_6r_objects 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0)
patrol_6r_objects_obstacles 0.98 (0.92, 1.0) 0.94 (0.84, 1.0) 0.62 (0.4, 0.84) 0.96 (0.92, 1.0)
patrol_6r_obstacles 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
putnext_1r 1.0 (1.0, 1.0) 0.92 (0.76, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
putnext_2r-0 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
putnext_2r-1 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
putnext_2r_distractor-0 0.76 (0.72, 0.8) 0.86 (0.76, 0.94) 0.76 (0.66, 0.84) 0.88 (0.76, 0.96)
putnext_2r_distractor-1 0.62 (0.36, 0.8) 0.8 (0.42, 0.94) 0.46 (0.26, 0.54) 0.66 (0.52, 0.8)
putnext_4r 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
unlocktounlock_overspec 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
unlocktounlock_underspec 0.96 (0.92, 1.0) 0.84 (0.6, 0.96) 0.92 (0.68, 1.0) 0.86 (0.6, 1.0)
walls-chunks-blue_ball 0.7 (0.36, 0.88) 0.92 (0.76, 1.0) 0.86 (0.6, 0.96) 1.0 (1.0, 1.0)
walls-chunks-green_ball 0.22 (0.16, 0.28) 0.8 (0.68, 0.92) 0.8 (0.62, 0.94) 0.94 (0.84, 1.0)
walls-chunks-grey_ball 0.92 (0.76, 1.0) 0.96 (0.84, 1.0) 0.96 (0.92, 1.0) 0.98 (0.92, 1.0)
walls-chunks-purple_ball 0.3 (0.2, 0.42) 0.56 (0.3, 0.7) 0.82 (0.76, 0.88) 0.84 (0.6, 0.96)
walls-chunks-red_ball 0.04 (0.0, 0.08) 0.08 (0.02, 0.14) 0.2 (0.04, 0.64) 0.14 (0.04, 0.4)
walls-chunks-yellow_ball 0.26 (0.16, 0.36) 0.2 (0.06, 0.38) 0.54 (0.26, 0.78) 0.34 (0.16, 0.52)
walls-maze_4r-red_ball 0.02 (0.0, 0.08) 0.06 (0.0, 0.24) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0)
walls-maze_4r-red_key 0.2 (0.08, 0.48) 0.36 (0.16, 0.48) 0.5 (0.18, 0.86) 0.56 (0.28, 0.76)
walls-maze_4r-red_square 0.04 (0.0, 0.16) 0.16 (0.04, 0.48) 0.1 (0.0, 0.32) 0.28 (0.08, 0.82)
walls-maze_6r-green_ball 0.0 (0.0, 0.0) 0.34 (0.12, 0.68) 0.22 (0.0, 0.72) 0.34 (0.04, 0.66)
walls-maze_6r-green_key 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.08 (0.0, 0.24) 0.0 (0.0, 0.0)
walls-maze_6r-green_square 0.0 (0.0, 0.0) 0.06 (0.0, 0.14) 0.02 (0.0, 0.08) 0.1 (0.0, 0.32)
walls-maze_9r-blue_ball 0.0 (0.0, 0.0) 0.24 (0.08, 0.4) 0.06 (0.0, 0.24) 0.5 (0.24, 0.74)
walls-maze_9r-blue_key 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.14 (0.0, 0.4)
walls-maze_9r-blue_square 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
walls-spiral_4r-purple_key 0.0 (0.0, 0.0) 0.12 (0.02, 0.4) 0.0 (0.0, 0.0) 0.1 (0.0, 0.32)
walls-spiral_9r-grey_key 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)

36



Table 7: Solve rates and 95% CIs (in brackets) for hand-designed problems with random walk-based
task sampling.

DRindep PLR⊥
indep DRcond PLR⊥

cond
Problem

1r-corner_balls-back_n_forth 0.0 (0.0, 0.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-corner_balls-criss_cross 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-corner_balls-move_purple_key 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-corner_balls-withholding 0.16 (0.0, 0.36) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-item_cluster-all_keys 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-item_cluster-arrangement 0.12 (0.0, 0.48) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-item_cluster-arrangement_a 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-item_cluster-arrangement_b 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-key_swap-carry_yellow_blue 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-key_swap-front_red_green 0.3 (0.08, 0.72) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-key_swap-lookahead 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-key_swap-swap_red_green 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_agent-arrangement 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_agent-escape 0.0 (0.0, 0.0) 0.9 (0.6, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_agent-find_yellow_square 0.02 (0.0, 0.08) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_agent-reshape_squares 0.0 (0.0, 0.0) 0.92 (0.76, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_object-big_changes 0.08 (0.0, 0.32) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_object-find_yellow_key 0.4 (0.08, 0.8) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_object-rearrange_purple_square 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
1r-trapped_object-sort 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-green_locked_door-ball_tribute 0.0 (0.0, 0.0) 0.18 (0.0, 0.56) 1.0 (1.0, 1.0) 0.82 (0.66, 0.98)
2r-green_locked_door-bury_object 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-green_locked_door-never_unlock 0.0 (0.0, 0.0) 0.92 (0.84, 0.98) 0.64 (0.36, 0.88) 0.74 (0.66, 0.92)
2r-green_locked_door-next_square_key 0.0 (0.0, 0.0) 0.78 (0.54, 0.94) 0.98 (0.92, 1.0) 0.96 (0.84, 1.0)
2r-key_barrier-mix 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-key_barrier-no_space 0.0 (0.0, 0.0) 0.82 (0.44, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-key_barrier-self_destructive 0.0 (0.0, 0.0) 0.96 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-key_barrier-the_other_side 0.0 (0.0, 0.0) 0.74 (0.64, 0.84) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
2r-locked_blocked_0-move_blue_key 0.0 (0.0, 0.0) 0.2 (0.08, 0.44) 0.8 (0.58, 0.9) 0.72 (0.6, 0.88)
2r-locked_blocked_0-next_square_red_ball_blue 0.0 (0.0, 0.0) 0.2 (0.0, 0.44) 0.94 (0.9, 0.98) 0.76 (0.58, 0.94)
2r-locked_blocked_0-no_unlock 0.0 (0.0, 0.0) 0.76 (0.46, 0.92) 0.34 (0.2, 0.48) 0.52 (0.26, 0.74)
2r-locked_blocked_0-pair_squares 0.0 (0.0, 0.0) 0.52 (0.46, 0.62) 0.96 (0.84, 1.0) 1.0 (1.0, 1.0)
2r-locked_blocked_1-explore 0.0 (0.0, 0.0) 0.76 (0.42, 0.88) 0.84 (0.44, 1.0) 0.9 (0.6, 1.0)
2r-locked_blocked_1-never_leave 0.0 (0.0, 0.0) 0.88 (0.76, 0.96) 0.56 (0.3, 0.84) 0.8 (0.62, 0.94)
2r-locked_blocked_1-recall 0.0 (0.0, 0.0) 0.3 (0.1, 0.56) 0.86 (0.6, 0.96) 0.92 (0.76, 1.0)
2r-locked_blocked_1-retrieve 0.0 (0.0, 0.0) 0.2 (0.0, 0.44) 0.66 (0.52, 0.8) 0.84 (0.52, 0.96)
2r-locked_choice-choose 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 0.92 (0.76, 1.0) 0.98 (0.92, 1.0)
2r-locked_choice-pair_keys 0.0 (0.0, 0.0) 0.24 (0.08, 0.36) 0.84 (0.68, 0.96) 0.44 (0.16, 0.6)
2r-locked_choice-rearrange 0.0 (0.0, 0.0) 0.76 (0.44, 0.9) 0.9 (0.78, 0.98) 0.96 (0.92, 1.0)
2r-locked_choice-toggle_door 0.0 (0.0, 0.0) 0.06 (0.0, 0.16) 0.24 (0.1, 0.4) 0.32 (0.16, 0.5)
4r-circuit-around_the_world 0.0 (0.0, 0.0) 0.58 (0.32, 0.84) 1.0 (1.0, 1.0) 0.94 (0.9, 0.98)
4r-circuit-pair_keys 0.0 (0.0, 0.0) 0.54 (0.24, 0.8) 0.98 (0.92, 1.0) 0.82 (0.58, 1.0)
4r-circuit-squares 0.0 (0.0, 0.0) 0.86 (0.6, 0.96) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
4r-circuit-take_square_purple 0.0 (0.0, 0.0) 0.92 (0.76, 1.0) 1.0 (1.0, 1.0) 0.96 (0.92, 1.0)
4r-four_balls_a-adventure 0.0 (0.0, 0.0) 0.86 (0.76, 0.94) 0.96 (0.92, 1.0) 1.0 (1.0, 1.0)
4r-four_balls_a-arrange_balls 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.4 (0.2, 0.62) 0.04 (0.0, 0.08)
4r-four_balls_a-connect_balls 0.0 (0.0, 0.0) 0.34 (0.04, 0.66) 0.96 (0.84, 1.0) 0.86 (0.76, 0.94)
4r-four_balls_a-place_keys 0.0 (0.0, 0.0) 0.4 (0.14, 0.78) 0.9 (0.68, 1.0) 0.88 (0.72, 1.0)
4r-sequential_rooms_a-block_doors 0.0 (0.0, 0.0) 0.58 (0.22, 0.82) 0.6 (0.34, 0.86) 0.4 (0.14, 0.66)
4r-sequential_rooms_a-never_unlock 0.0 (0.0, 0.0) 0.06 (0.0, 0.14) 0.32 (0.14, 0.54) 0.36 (0.08, 0.72)
4r-sequential_rooms_a-pair_red_keys 0.0 (0.0, 0.0) 0.52 (0.38, 0.88) 1.0 (1.0, 1.0) 0.88 (0.76, 1.0)
4r-sequential_rooms_a-sort 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.62 (0.54, 0.68) 0.36 (0.12, 0.58)
4r-trapped-ball_search 0.0 (0.0, 0.0) 0.68 (0.4, 0.8) 0.92 (0.84, 0.98) 0.9 (0.84, 0.96)
4r-trapped-excavation 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.32 (0.12, 0.62) 0.16 (0.04, 0.32)
4r-trapped-key_search 0.0 (0.0, 0.0) 0.4 (0.24, 0.68) 0.98 (0.92, 1.0) 0.76 (0.44, 0.9)
4r-trapped-retrieve 0.0 (0.0, 0.0) 0.92 (0.84, 0.98) 1.0 (1.0, 1.0) 0.92 (0.68, 1.0)
4r-u_shape_blocked_a-all_grey 0.0 (0.0, 0.0) 0.08 (0.0, 0.32) 0.94 (0.84, 1.0) 0.42 (0.22, 0.56)
4r-u_shape_blocked_a-find_yellow_objs 0.0 (0.0, 0.0) 0.16 (0.04, 0.32) 0.96 (0.92, 1.0) 0.9 (0.68, 1.0)
4r-u_shape_blocked_a-pairs 0.0 (0.0, 0.0) 0.34 (0.08, 0.7) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0)
4r-u_shape_blocked_a-unlock_doors 0.0 (0.0, 0.0) 0.36 (0.06, 0.66) 1.0 (1.0, 1.0) 0.92 (0.68, 1.0)
6r-corridors-arrange_keys 0.0 (0.0, 0.0) 0.22 (0.04, 0.46) 0.52 (0.34, 0.68) 0.64 (0.42, 0.86)
6r-corridors-block_doors 0.0 (0.0, 0.0) 0.42 (0.3, 0.52) 0.74 (0.5, 0.88) 0.5 (0.25, 0.68)
6r-corridors-find 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
6r-corridors-green_square_search 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.18 (0.1, 0.26) 0.0 (0.0, 0.0)
6r-key_objective-find_red_ball 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-key_objective-key_tour 0.0 (0.0, 0.0) 0.12 (0.06, 0.18) 0.62 (0.42, 0.84) 0.48 (0.32, 0.72)
6r-key_objective-pair_balls 0.0 (0.0, 0.0) 0.92 (0.68, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-key_objective-return_to_base 0.0 (0.0, 0.0) 0.8 (0.28, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
6r-key_temple-ball_offer 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.12 (0.06, 0.18) 0.04 (0.0, 0.16)
6r-key_temple-pair_chain 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.52 (0.36, 0.7) 0.04 (0.0, 0.16)
6r-key_temple-ritual 0.0 (0.0, 0.0) 0.06 (0.02, 0.1) 0.56 (0.14, 0.72) 0.06 (0.0, 0.16)
6r-key_temple-unlock_chain 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.16 (0.04, 0.28) 0.0 (0.0, 0.0)
6r-locked_rooms-ball_sequence 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.7 (0.46, 0.94) 0.08 (0.0, 0.24)
6r-locked_rooms-find_blue_ball 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-locked_rooms-green_stuff 0.0 (0.0, 0.0) 0.96 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-locked_rooms-unlock_doors 0.0 (0.0, 0.0) 0.36 (0.24, 0.6) 1.0 (1.0, 1.0) 0.62 (0.48, 0.88)
6r-secret_treasure-find_treasure 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0)
6r-secret_treasure-pairings 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0)
6r-secret_treasure-take_the_key 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
6r-secret_treasure-unlock_all 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.04 (0.0, 0.16) 0.02 (0.0, 0.08)
anyorder_2o 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
anyorder_3o 0.0 (0.0, 0.0) 0.9 (0.84, 0.96) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_four-carrying_keys 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 0.96 (0.92, 1.0)

37



Table 7: Solve rates and 95% CIs (in brackets) for hand-designed problems with random walk-based
task sampling (continued).

DRindep PLR⊥
indep DRcond PLR⊥

cond
Problem

choice-choice_four-front_green_square 0.0 (0.0, 0.0) 0.18 (0.12, 0.2) 0.66 (0.54, 0.82) 0.42 (0.28, 0.76)
choice-choice_four-front_red_square 0.0 (0.0, 0.0) 0.8 (0.36, 1.0) 1.0 (1.0, 1.0) 0.82 (0.74, 0.88)
choice-choice_four-no_unlocking 0.0 (0.0, 0.0) 0.14 (0.06, 0.24) 0.4 (0.1, 0.68) 0.34 (0.14, 0.62)
choice-choice_four-pair_blue_red_objs 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.08 (0.02, 0.14) 0.0 (0.0, 0.0)
choice-choice_four-patience_test 0.0 (0.0, 0.0) 0.62 (0.46, 0.8) 0.8 (0.72, 0.92) 0.68 (0.38, 0.88)
choice-choice_four-red_ball_square 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.04 (0.0, 0.08) 0.04 (0.0, 0.08)
choice-choice_four-two_red_squares 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.62 (0.48, 0.74) 0.08 (0.02, 0.16)
choice-choice_one-arrange_squares 0.0 (0.0, 0.0) 0.82 (0.28, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-key_to_square 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-move_everything 0.0 (0.0, 0.0) 0.96 (0.84, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-retrieve_square 0.0 (0.0, 0.0) 0.9 (0.78, 0.98) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
choice-choice_one-toggle_door_squares 0.0 (0.0, 0.0) 0.74 (0.42, 1.0) 0.98 (0.92, 1.0) 0.96 (0.84, 1.0)
choice-choice_one-unlock_door 0.36 (0.12, 0.72) 0.96 (0.84, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-unlock_door_specific 0.02 (0.0, 0.08) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_one-visit_all_squares 0.0 (0.0, 0.0) 0.9 (0.6, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
choice-choice_three-front_ball_blue 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.38 (0.2, 0.56) 0.06 (0.0, 0.16)
choice-choice_three-front_ball_purple 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.4 (0.28, 0.48) 0.0 (0.0, 0.0)
choice-choice_three-next_to_square 0.0 (0.0, 0.0) 0.7 (0.44, 0.88) 0.96 (0.92, 1.0) 0.86 (0.76, 0.96)
choice-choice_three-next_to_square_a 0.0 (0.0, 0.0) 0.8 (0.42, 0.94) 0.66 (0.56, 0.74) 0.9 (0.82, 0.98)
choice-choice_three-next_to_square_b 0.0 (0.0, 0.0) 0.06 (0.02, 0.1) 0.38 (0.24, 0.52) 0.26 (0.1, 0.42)
choice-choice_three-next_to_squares 0.0 (0.0, 0.0) 0.6 (0.38, 0.88) 0.76 (0.54, 0.9) 0.78 (0.6, 0.96)
choice-choice_three-next_to_squares_a 0.0 (0.0, 0.0) 0.22 (0.14, 0.3) 0.72 (0.64, 0.84) 0.2 (0.06, 0.34)
choice-choice_three-unlocking_sequence 0.0 (0.0, 0.0) 0.26 (0.08, 0.36) 0.88 (0.76, 0.96) 0.32 (0.1, 0.8)
choice-choice_two-avoid_unlock 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.06 (0.0, 0.16) 0.0 (0.0, 0.0)
choice-choice_two-avoid_unlock_hard 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.04 (0.0, 0.08) 0.0 (0.0, 0.0)
choice-choice_two-avoid_unlock_impossible 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
choice-choice_two-front_square_green 0.0 (0.0, 0.0) 0.22 (0.08, 0.38) 0.92 (0.84, 0.98) 0.54 (0.36, 0.83)
choice-choice_two-front_squares 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.4 (0.22, 0.6) 0.14 (0.02, 0.26)
choice-choice_two-front_squares_hard 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.46 (0.32, 0.62) 0.18 (0.06, 0.3)
choice-choice_two-intermediate_door_unlock 0.0 (0.0, 0.0) 0.64 (0.2, 0.88) 0.96 (0.84, 1.0) 0.72 (0.48, 0.88)
choice-choice_two-next_key_square 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.5 (0.32, 0.8) 0.04 (0.0, 0.16)
choice-choice_two-next_to_squares_0 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.38 (0.2, 0.54) 0.02 (0.0, 0.08)
choice-choice_two-next_to_squares_1 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.34 (0.16, 0.56) 0.04 (0.0, 0.08)
myopic 0.0 (0.0, 0.0) 0.58 (0.36, 0.72) 0.48 (0.4, 0.64) 0.48 (0.38, 0.54)
patrol_4r_full_spec 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.86 (0.76, 0.94) 0.14 (0.0, 0.56)
patrol_4r_overspec 0.0 (0.0, 0.0) 0.56 (0.18, 0.88) 0.96 (0.92, 1.0) 0.74 (0.5, 0.96)
patrol_4r_underspec 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.7 (0.58, 0.88) 0.0 (0.0, 0.0)
patrol_4r_underspec-1 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.8 (0.68, 0.92) 0.04 (0.0, 0.16)
patrol_6r 0.0 (0.0, 0.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
patrol_6r_objects 0.0 (0.0, 0.0) 0.84 (0.68, 0.96) 1.0 (1.0, 1.0) 0.96 (0.92, 1.0)
patrol_6r_objects_obstacles 0.0 (0.0, 0.0) 0.36 (0.12, 0.62) 0.94 (0.76, 1.0) 0.92 (0.84, 0.98)
patrol_6r_obstacles 0.0 (0.0, 0.0) 0.88 (0.68, 1.0) 1.0 (1.0, 1.0) 0.98 (0.92, 1.0)
putnext_1r 0.0 (0.0, 0.0) 0.68 (0.54, 0.88) 1.0 (1.0, 1.0) 0.96 (0.84, 1.0)
putnext_2r-0 0.0 (0.0, 0.0) 0.92 (0.76, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
putnext_2r-1 0.0 (0.0, 0.0) 0.9 (0.78, 0.98) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
putnext_2r_distractor-0 0.0 (0.0, 0.0) 0.08 (0.02, 0.16) 0.56 (0.44, 0.78) 0.42 (0.33, 0.54)
putnext_2r_distractor-1 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.38 (0.24, 0.52) 0.2 (0.04, 0.4)
putnext_4r 0.0 (0.0, 0.0) 0.98 (0.92, 1.0) 1.0 (1.0, 1.0) 1.0 (1.0, 1.0)
unlocktounlock_overspec 0.0 (0.0, 0.0) 0.8 (0.28, 0.98) 1.0 (1.0, 1.0) 0.96 (0.84, 1.0)
unlocktounlock_underspec 0.0 (0.0, 0.0) 0.28 (0.06, 0.72) 0.92 (0.84, 0.98) 0.8 (0.36, 0.96)
walls-chunks-blue_ball 0.0 (0.0, 0.0) 0.9 (0.68, 1.0) 0.5 (0.26, 0.74) 0.82 (0.68, 0.92)
walls-chunks-green_ball 0.08 (0.02, 0.16) 0.82 (0.68, 0.94) 0.38 (0.24, 0.68) 0.8 (0.5, 0.92)
walls-chunks-grey_ball 0.18 (0.0, 0.72) 0.9 (0.82, 0.98) 0.64 (0.5, 0.9) 0.92 (0.84, 0.98)
walls-chunks-purple_ball 0.0 (0.0, 0.0) 0.7 (0.4, 0.82) 0.32 (0.1, 0.58) 0.82 (0.62, 0.96)
walls-chunks-red_ball 0.04 (0.0, 0.08) 0.06 (0.0, 0.16) 0.08 (0.02, 0.14) 0.02 (0.0, 0.08)
walls-chunks-yellow_ball 0.14 (0.0, 0.4) 0.36 (0.1, 0.5) 0.1 (0.04, 0.16) 0.16 (0.06, 0.32)
walls-maze_4r-red_ball 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
walls-maze_4r-red_key 0.06 (0.0, 0.24) 0.62 (0.4, 0.8) 0.28 (0.14, 0.42) 0.2 (0.0, 0.8)
walls-maze_4r-red_square 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0) 0.02 (0.0, 0.08)
walls-maze_6r-green_ball 0.0 (0.0, 0.0) 0.36 (0.0, 0.72) 0.02 (0.0, 0.08) 0.02 (0.0, 0.08)
walls-maze_6r-green_key 0.0 (0.0, 0.0) 0.04 (0.0, 0.16) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
walls-maze_6r-green_square 0.0 (0.0, 0.0) 0.02 (0.0, 0.08) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
walls-maze_9r-blue_ball 0.0 (0.0, 0.0) 0.2 (0.06, 0.38) 0.0 (0.0, 0.0) 0.12 (0.0, 0.32)
walls-maze_9r-blue_key 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
walls-maze_9r-blue_square 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)
walls-spiral_4r-purple_key 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.02 (0.0, 0.08)
walls-spiral_9r-grey_key 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0) 0.0 (0.0, 0.0)

38


	Introduction
	Background
	Unsupervised Environment Design
	Methods for UED
	Reward Machines

	A Task-Level Generalization Benchmark
	Levels
	Tasks
	Problem Sampling

	Problem-Conditioning via Autocurricula
	Policy Architecture
	Problem Autocurricula via UED

	Experiments
	Experimental Setup
	Main Results
	Problem Sampling Ablations
	Task Sampling Ablations
	Mutation Ablations

	Related Work
	Conclusions
	Benchmark Details
	Implementation Details
	Hand-Designed Evaluation Set

	Extended Related Work
	Unsupervised Environment Design (UED)
	Formal Language Conditioning

	Architecture Details
	Environment Observation Encoding
	Reward Machine Encoding
	Encoding Aggregation and Actor-Critic Heads

	Mutation Details
	Level Edits
	Task Edits
	Hindsight Edits

	Experimental Details
	Hyperparameters
	Experimental Setup Details
	Fraction of Solvable Randomly Generated Problems
	Extended Main Results
	Extended Problem Sampling Ablation Results
	Extended Task Sampling Ablation Results
	Extended Mutation Ablation Results
	Task-Conditioning Ablation Results
	Scoring Function Ablation Results
	Individual Problem Results


