
MVP-Net: Multi-View Depth Image Guided Cross-Modal
Distillation Network for Point Cloud Upsampling
Jiade Chen

Beijing University of Technology
Beijing, China

jdchen@emails.edu.cn

Jin Wang∗
Beijing University of Technology

Beijing, China
ijinwang@bjut.edu.cn

Yunhui Shi
Beijing University of Technology

Beijing, China
syhzm@bjut.edu.cn

Nam Ling
Santa Clara University

Santa Clara, USA
nling@scu.edu.cn

Baocai Yin
Beijing University of Technology

Beijing, China
ybc@bjut.edu.cn

Abstract
Point cloud upsampling concerns producing a dense and uniform
point set from a sparse and irregular one. Current upsampling meth-
ods primarily encounter two challenges: (i) insufficient uni-modal
representations of sparse point clouds, and (ii) inaccurate estima-
tion of geometric details in dense point clouds, resulting in subop-
timal upsampling results. To tackle these challenges, we propose
MVP-Net, a multi-view depth image guided cross-modal detail esti-
mation distillation network for point cloud upsampling, in which
the multi-view depth images of point clouds are fully explored to
guide upsampling. Firstly, we propose a cross-modal feature ex-
traction module, consisting of two branches designed to extract
point features and depth image features separately. This setup aims
to produce sufficient cross-modal representations of sparse point
clouds. Subsequently, we design a Multi-View Depth Image to Point
Feature Fusion (MVP) block to fuse the cross-modal features in a
fine-grained and hierarchical manner. The MVP block is incorpo-
rated into the feature extraction module. Finally, we introduce a
paradigm for multi-view depth image-guided detail estimation and
distillation. The teacher network fully utilizes paired multi-view
depth images of sparse point clouds and their dense counterparts to
formulate multi-hierarchical representations of geometric details,
thereby achieving high-fidelity reconstruction. Meanwhile, the stu-
dent network takes only sparse point clouds and their multi-view
depth images as input, and it learns to predict the multi-hierarchical
detail representations distilled from the teacher network. Extensive
qualitative and quantitative results on both synthetic and real-world
datasets demonstrate that our method outperforms state-of-the-art
point cloud upsampling methods.
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1 Introduction
As a 3D data format, point clouds are widely used in many fields,
including autonomous driving [26] and 3D reconstruction [25],
thanks to their effective representation capability and the advance-
ments in 3D sensing technology. However, the inherent limitations
of 3D sensing devices often result in point clouds being sparse,
non-uniform, noisy, and containing outliers. These drawbacks pose
a hindrance to the practical application of point clouds. Therefore,
converting sparse point clouds into high-fidelity versions that ac-
curately represent the underlying 3D shapes is crucial. To this end,
various point cloud upsampling techniques such as [21–23, 28, 37]
have been developed.

The predominant methods for point cloud upsampling are those
based on deep learning [21, 23, 28, 31, 40]. As illustrated in Figure
1(a), most of these methods consist of two fundamental modules:
feature extraction and upsampling tail. Initially, the feature extrac-
tion module is employed to extract point features. Subsequently,
the upsampling tail is utilized to expand point features and regress
the 3D coordinates of upsampled points, thereby achieving upsam-
pling. However, these methods encounter two primary issues. The
first issue is that these methods rely solely on the 3D coordinates
of sparse point clouds to predict their dense counterparts. They
do not fully utilize other available modality information, resulting
in insufficient uni-modal representations of sparse point clouds.
The second issue is the inaccurate estimation of geometric details
in dense point clouds, resulting in a lack of fidelity in the fine
geometric details in the upsampled results (refer to Figure 5). Ex-
isting methods utilize KNN [3, 27] or attention [34] mechanisms
to capture the geometric details of point clouds. However, the for-
mer is limited by its receptive field and has restricted modeling
capabilities. Meanwhile, the latter faces challenges in capturing
geometric details due to the absence of inductive bias regarding
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them. To tackle these two issues, we introduce aMulti-View Depth
Image Guided Cross-Modal Distillation Network for Point Cloud
Upsampling (MVP-Net) as shown in Figure 1(b). With MVP-Net,
we explore the optimal utilization of multi-view depth images to
effectively guide point cloud upsampling.

Firstly, we argue that alongside the 3D coordinates, feature in-
formation from other modalities can also provide complementary
information to assist the precise reconstruction of 3D point clouds.
The 2D depth image of a 3D point cloud not only contains the depth
value of each individual point but also provides information, re-
flecting the shape, contour, and details of the underlying 3D object.
However, capturing such information using only 3D coordinates is
usually challenging due to the sparsity, irregularity, non-uniformity,
noise, and outliers in the point cloud. Therefore, we propose a cross-
modal feature extraction module to comprehensively utilize the
cross-modal feature information from both 3D point clouds and
2D depth images. It contains dual branches to extract both point
features and depth image features. In the point cloud branch, each
point cloud is treated as a graph and graph convolutions are utilized
to capture local details. In the depth image branch, the multi-view
depth images of the point cloud are taken as input, and 2D convo-
lution is employed. We then introduce a Multi-View Depth Image
to Point Feature Fusion (MVP) block, which is integrated into the
feature extraction module and effectively fuses these cross-modal
features in a fine-grained and hierarchical manner.

Secondly, though the 2D depth image provides complementary
information, this information is somewhat limited due to the spar-
sity of the sparse point cloud. In contrast, the dense point cloud
includes rich detail information, as well as its depth image. There-
fore, we introduce a detail estimation and distillation structure to
make full use of detail information from dense point clouds. Specif-
ically, we establish both a teacher network and a student network.
The teacher network uses the multi-view depth images of dense
point clouds as additional inputs. Therefore, a well-trained teacher
network can effectively and accurately reconstruct fine geometric
details and form multi-hierarchical detail representations, thereby
demonstrating excellent performance (refer to Tables 1 and 2). Next,
the student network is trained using only the sparse point cloud
and its multi-view depth images. It learns to predict the multi-
hierarchical detail representations from the teacher network. This
enables the student network to produce finer geometric details in
the upsampled results without relying on extra information. Perfor-
mance evaluations across various datasets and settings demonstrate
that MVP-Net achieves state-of-the-art performance.

In summary, our contributions are as follows:
• We first propose to use the multi-view depth images of a
point cloud as guidance to point cloud upsampling, then
we present a novel network, MVP-Net, which makes full
use of cross-modal representations and thus can accurately
estimate geometric details.

• A cross-modal feature extraction module and a Multi-View
Depth Image to Point Feature Fusion (MVP) block are de-
signed. The former consists of dual branches to extract both
point features and depth image features, while the latter is in-
tegrated into the former to fuse these cross-modal features in
a fine-grained and hierarchical manner, thereby generating
sufficient cross-modal representations.

Figure 1: (a) Conventional point cloud upsampling methods
mainly depend on 3D coordinates to directly estimate dense
point clouds. (b) We introduce a multi-view depth image
guided cross-modal detail estimation distillation network for
point cloud upsampling, which can generate sufficient cross-
modal representation of sparse point clouds. The teacher
network captures geometric details in dense point clouds,
using paired multi-view depth images. Then the knowledge
of geometric details is distilled into the student network.

• Adistilling structure is introduced to produce finer geometric
details in upsampled point clouds, guided by the multi-view
depth image. The rich detail information from the dense
point cloud is derived by the teacher network and trans-
ferred to the student network, facilitating the generation of
geometric details without relying on extra information.

• Extensive experimental results show that our method out-
performs state-of-the-art point cloud upsampling methods
on both synthetic and real-world datasets.

2 Related Works
2.1 Point Cloud Upsampling
With the significant success of deep learning technology in point
cloud processing, deep learning-based methods have become main-
stream in the field of point cloud upsampling [6, 13, 21, 23, 24, 28–
30, 35, 40]. PU-Net [40] is a pioneering deep learning-based work,
which expands a point set via a multi-branch convolution in the
feature space. Then, MPU [37] proposes to progressively upsample
point patches in multiple steps. PU-GAN [21] introduces to em-
ploy a generative adversarial network for upsampling. PUFA-GAN
[23] adopts a frequency-aware discriminator to tackle the issue of
noise in the generated shape. PU-GCN [28] uses graph convolutions
and shuffle operations to expand features. In addition, PUGeo-Net
[29] initially generates points on 2D the tangent plane and then
evolves them into 3D space. MAFU [30] incorporates a similar con-
cept to PUGeo-Net to achieve flexible upsampling. Furthermore,
Dis-PU [22] leverages a dense generator and a spatial refiner to
achieve upsampling by disentangled refinement. PUCRN [6] gener-
ates points in multiple steps and then adjusts the spatial positions
of each point. PU-Flow [24] employs the normalizing flow model to
achieve upsampling by interpolating in latent space. NeuralPoints
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Figure 2: The overall architecture of MVP-Net. We first train the teacher network (top) with additional multi-view depth images
of ground truth. Then, we train the student network (bottom) to learn the knowledge distilled from the teacher network.

[8] employs the neural implicit functions to represent the local
neural fields to achieve arbitrary upsampling. Recently, SSPU-Net
[35] introduces a structure-sensitive upsampling network to handle
and reconstruct complex geometric structures. Grad-PU [13] uti-
lizes the idea of gradient descent with learned distance functions to
achieve arbitrary-scale upsampling. However, these above methods
only utilize 3D coordinates to learn the mapping from sparse point
clouds to their dense counterparts. To overcome this limitation,
we propose MVP-Net, which possesses the capability to generate
sufficient cross-modal representations of sparse point clouds and
produce finer geometric details in upsampled point clouds.

2.2 Cross-Modal Point Cloud Reconstruction
Point cloud completion and point cloud upsampling are both tasks
related to point cloud reconstruction. The former involves predict-
ing a complete point cloud from an incomplete one, and some cross-
modal methods have been developed for this purpose. For example,
ViPC [43] proposes to leverage a pre-trained single-view recon-
struction model to infer complete shapes. Subsequently, XMFNet
[1] leverages direct cross-modal information fusion at a feature
level, avoiding explicit reconstruction. CSDN [46] proposes to trans-
fer the intrinsic shape characteristics from single images to guide
the geometry generation of the missing regions. Recently, SVD-
Former [45] incorporates multi-view depth images of incomplete
point clouds to predict global complete shape by a self-view fu-
sion network. However, these cross-modal completion methods
fuse cross-modal features in a coarse-grained manner and focus on
leveraging information from other modalities to predict complete
shapes, rather than generating geometric details. Therefore these
cross-modal methods cannot be directly used for point cloud up-
sampling. Currently, there is a shortage of cross-modal methods
tailored for point cloud upsampling. To this end, we propose a dedi-
cated cross-modal feature extraction module for upsampling, along
with a fine-grained cross-modal feature fusion block that integrates
pixel-level depth image features into corresponding point features.

2.3 Knowledge Distillation for Point Cloud
Learning

A common application of knowledge distillation for point cloud
learning, similar to its original concept introduced by [14], is for
model compression [11, 15, 20, 42]. For the point cloud reconstruc-
tion task, RaPD [7] proposes a reconstruction-aware prior distilla-
tion method for point cloud completion, where the student network
learns the distribution of the latent space generated by the teacher
network. Recently, CPU [44], which introduces vector-quantization
into upsampling, incorporates knowledge distillation to facilitate
effective codebook learning and enhance the utilization of code
entries in the student network. We have a different purpose, which
is to utilize the teacher network to capture geometric details in
dense point clouds and then transfer this knowledge to the student
network, guided by multi-view depth images.

3 Method
3.1 Overview
Point cloud upsampling aims to produce a dense point cloud Q ∈
R𝑟𝑁×3 of 𝑟𝑁 points from a sparse one P ∈ R𝑁×3 of 𝑁 points,
where 𝑟 denotes the upsampling ratio. Given a sparse point cloud
P, we employ a basic renderer [10] to generate multi-view depth
images IP ∈ R𝑁𝑣×𝐻×𝑊 ×1, where 𝑁𝑣 is the number of viewpoints
and 𝐻,𝑊 denote the resolution of each depth image. We first train
a teacher network T using additional multi-view depth images
IQ̂ of ground truth Q̂ to derive the geometric details. Then, we
train a student network S to learn the knowledge from the teacher
network. In the following sections, we first describe the network
structure of both the teacher network and the student network,
which include a cross-modal feature extraction module (see Sec.
3.2) integrated with the cross-modal feature fusion block (see Sec.
3.3) and an upsampling tail (see Sec. 3.4). Then, we introduce the
structure of detail estimation and distillation (see Sec. 3.5). Finally,
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Figure 3: The architecture of DenseNet in cross-modal fea-
ture extraction module. DGC denotes the dynamic graph
construction operation [36].

Sec 3.6 presents the training objectives of the teacher network and
the student network.

3.2 Cross-Modal Feature Extraction
The cross-modal feature extraction module takes a sparse point
cloudP and its multi-view depth images 𝐼P as input. To fully extract
the features of these two modalities, we introduce a dual-branch
network. In the depth image branch, we input 𝐼P and utilize the
ResNet [12] to extract multi-hierarchical feature maps {𝐹 𝑙

𝐷
}𝐿
𝑙=1 by

hierarchically downsampling, where 𝐿 is the number of layers. In
the point cloud branch, we treat each point cloud as a graph and
employ the dynamic graph and edge convolution [36] to capture
local details. Different from the depth image branch, we utilize
intra-level (Figure 3) and inter-level (Figure 2) dense connections
[16, 37] to organize point features at different hierarchies for ex-
tracting point cloud feature maps {𝐹 𝑙P }

𝐿
𝑙=1, instead of using residual

connections [12]. Additionally, we refrain from downsampling the
point cloud, as it is already sparse. To effectively fuse the aforemen-
tioned cross-modal features, we introduce the MVP block, which
fuses cross-modal features at different hierarchical levels, as shown
in Figure 2. There are two reasons why we use two different strate-
gies to process depth images and point clouds, respectively: (i) The
depth images with a resolution of 128 × 128 of a sparse point cloud
with 2048 points are extremely sparse with at most only 12.5% of the
pixels having an actual meaning. As an auxiliary branch, the depth
image branch should be made as lightweight as possible. Therefore,
we employ ResNet and hierarchically downsampling in this branch
to expand the receptive field. (ii) Graph convolution [19, 28, 36]
has been demonstrated to have brilliant performance in processing
irregular point clouds. Furthermore, dense connections can more
effectively utilize shallow features, particularly when cross-modal
features are fused.

By using simple 2D convolutions on the depth image, capturing
geometric detail information becomes straightforward. However,
capturing such detail information directly in 3D space is challenging
due to the sparsity, irregularity and non-uniformity present in the
point cloud. Furthermore, the multi-hierarchical representations
of depth images comprehensively provide multi-scale geometric
details, ranging from coarse to fine.

3.3 Cross-Modal Feature Fusion
To effectively fuse the cross-modal features mentioned above, we
propose the MVP block, as depicted in Figure 4. Given the feature
maps 𝐹𝐷 = {𝑓𝑖 }𝑁𝑣

𝑖=1 of multi-view depth images and the point fea-
tures 𝐹P at the same hierarchical level, our approach aims to align
these cross-modal features within the feature space. Subsequently,

Figure 4: Illustration of (a) Multi-View Depth Image to Point
Feature Fusion (MVP) and (b) Attentional Feature Fusion.

we gather relevant pixel features in this aligned feature space. Fi-
nally, these features are projected back into the point feature space.
The point features are first projected to queries by multiple pa-
rameter matrices {𝑊 𝑖

𝑄
}𝑁𝑣

𝑖=1. Then, the features of multi-view depth
images are transformed into keys and values by parameter matrices
𝑊𝐾 and𝑊𝑉 , respectively. This process is formulated as:

𝑄𝑖 = 𝐹P𝑊
𝑖
𝑄 , 𝐾𝑖 = 𝑓𝑖𝑊𝐾 , 𝑉𝑖 = 𝑓𝑖𝑊𝑉 , 𝑖 = 1, ..., 𝑁𝑣, (1)

where 𝑖 is the index of viewpoints. Then, the cross-attention [34] is
calculated between 𝑄𝑖 and 𝐾𝑖 to generate aggregated depth image
features 𝑂𝑖 :

𝑂𝑖 = softmax(𝑄𝑖𝐾T
𝑖 /

√︁
𝑑𝑘 )𝑉𝑖 , 𝑖 = 1, ..., 𝑁𝑣 . (2)

Since the calculation of attention mentioned above is conducted
in the aligned feature space, an inverse projection is necessary for
further feature fusion. This process can be expressed as:

O = Concat(𝑂1, ...,𝑂𝑁𝑣
)𝑊 + 𝑏, (3)

where Concat(·) denotes the concatenation operation, and𝑊 and
𝑏 are the parameters of a Linear Layer. Note that until now, we
have only obtained the aggregated features O of depth images and
have not yet fused it into 𝐹P . A straightforward approach is to add
them together, followed by a Feed Forward Network [34]. However,
we find that this approach does not fuse them harmoniously. In
practice, we modify the attentional feature fusion (AFF) [5] to fuse
them:

𝐹P = 𝛽 ⊙ 𝐹P + (1 − 𝛽) ⊙ O, 𝛽 = sigmoid(A(𝐹P ,O)), (4)

where A is a sub-network that starts with an additional Batch-
Norm Layer [17] to eliminate differences in data distribution be-
tween different modalities to predict 𝛽 , and ⊙ denotes element-wise
multiplication.
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3.4 Upsampling Tail
The upsampling tail takes the outcome of the cross-modal feature
extraction module as input and expands it to achieve upsampling.
We utilize the feature expansion module and the multi-scale spatial
refinement module proposed in SSPU-Net [35] as our upsampling
tail to generate upsampled point clouds in a coarse-to-fine manner,
as shown in Figure 2. We don’t use its frequency-aware attention
mechanism to show that our approach’s advantage comes from our
contribution.

3.5 Detail Estimation and Distillation
We introduce a distilling structure to make full use of detail in-
formation from dense point clouds, achieving the generation of
finer geometric details in upsampled point clouds. As illustrated in
Figure 2, this distilling structure contains two training stages.

3.5.1 Stage I: Teacher Network. We concatenate the multi-view
depth images of a sparse point cloud and the ground truth from
the same viewpoint together along the channel dimension and
input them to the depth image branch of the teacher network.
Utilizing 𝐼 Q̂ , the teacher network can accurately reconstruct the
geometric details and formmulti-hierarchical detail representations
{𝐹 𝑙
𝐷
= {𝑓 𝑙

𝑖
}𝑁𝑣

𝑖=1}
𝐿
𝑙=1 of a dense point cloud.

3.5.2 Stage II: Student Network. The student network only takes
a sparse point cloud P along with its multi-view depth images 𝐼P
as input. During its training, the parameters of the well-trained
teacher network are frozen, and the teacher network only performs
inference to produce {𝐹 𝑙

𝐷
}𝐿
𝑙=1. To promote the student network to

better learn the knowledge from the teacher network, we investi-
gate two types of knowledge distillation methods: feature-based
distillation [32] and response-based distillation [14].

For the feature-based distillation, the student network aims to
mimic the multi-hierarchical detail representations {𝐹 𝑙

𝐷
}𝐿
𝑙=1:

L𝑚𝑖𝑚𝑖𝑐 =
1
𝐿𝑁𝑣

𝐿∑︁
𝑙=1

𝑁𝑣∑︁
𝑖=1

∥ 𝑓 𝑙𝑖 − 𝑓 𝑙𝑖 ∥
2
2, (5)

where {𝐹 𝑙
𝐷
= {𝑓 𝑙

𝑖
}𝑁𝑣

𝑖=1}
𝐿
𝑙=1 is the multi-hierarchical detail representa-

tions predicted by the student network. We also employ the spatial
attention map-based distillation [41] to predict the spatial atten-
tion map of the {𝐹 𝑖

𝐷
}𝐿
𝑖=1, which enables the student network to

predict more meaningful pixels. The spatial attention map-based
distillation is as follows:

L𝐴𝑇 =
1
𝐿𝑁𝑣

𝐿∑︁
𝑙=1

𝑁𝑣∑︁
𝑖=1

∥
G(𝑓 𝑙

𝑖
)

∥G(𝑓 𝑙
𝑖
)∥2

−
G(𝑓 𝑙

𝑖
)

∥G(𝑓 𝑙
𝑖
)∥2

∥2, (6)

where G(·) is an operator [41] to calculate the one-dimensional
spatial attention map.

For the response-based distillation, the student network learns
to predict the upsampled point clouds generated by the teacher
network. This can be summarized as:

L𝑟𝑒𝑠 =
1
𝑟𝑁

∥Q
′

S − Q
′
T ∥

2
2 +

1
𝑟𝑁

∥QS − QT ∥2
2, (7)

where Q′

S and QS are the coarse upsampled point cloud and fine
upsampled point cloud generated by the student network respec-
tively, and Q′

T and QT are the results predicted by the teacher

network. Hence, the distillation loss of the student network is as
follows:

L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 = 𝜆𝑚𝑖𝑚𝑖𝑐L𝑚𝑖𝑚𝑖𝑐 + 𝜆𝐴𝑇L𝐴𝑇 + 𝜆𝑟𝑒𝑠L𝑟𝑒𝑠 . (8)

The distillation constraints guide the student network in absorb-
ing the knowledge necessary to reconstruct geometric details in
dense point clouds. This knowledge is distilled from the teacher
network and covers both feature and response perspectives. This
approach helps the student network to reconstruct finer geometric
details.

3.6 Training Objectives
The training objectives of the teacher network are only employed
to ensure the quality of upsampled point clouds. We utilize the
Chamfer Distance (CD), a prevalent choice in recent studies [6, 35],
as one part of the reconstruction loss for the teacher network. We
also employ the depth image matching loss [39] to measure the
reconstruction error. Thus the training objectives of the teacher
network can be summarized as follows:

LT = L𝑟𝑒𝑐 = 𝛼 (L𝐶𝐷 (QT , Q̂) + ∥Φ(QT ) − Φ(Q̂)∥1)

+ (1 − 𝛼) (L𝐶𝐷 (Q
′
T , Q̂) + ∥Φ(Q

′
T ) − Φ(Q̂)∥1),

(9)

where 𝛼 is a hyper-parameter to balance the relative importance of
each term, and Φ(·) is the differentiable point renderer [39]. We set
𝛼 = 0.25 for the PU-GAN dataset [21] and 𝛼 = 0.5 for the PUGeo-
Net dataset [29]. The training objectives of the student network
comprise the reconstruction term L𝑟𝑒𝑐 for its upsampled results,
and the knowledge distillation term L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 :

LS = L𝑟𝑒𝑐 + 𝜆𝑑𝑖𝑠𝑡𝑖𝑙𝑙L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 , (10)

where 𝜆𝑑𝑖𝑠𝑡𝑖𝑙𝑙 is a hyper-parameter. We set 𝜆𝑑𝑖𝑠𝑡𝑖𝑙𝑙 = 0.15 for both
PU-GAN [21] and PUGeo-Net [29] dataset.

4 Experimental Results
4.1 Experimental Settings
4.1.1 Datasets. We conduct quantitative and qualitative experi-
ments on two synthetic datasets: the PU-GAN dataset [21] and the
PUGeo-Net dataset [29]. The latter contains more complex geome-
try and high-frequency details, compared to the former. We adhere
to the same experimental settings as SSPU-Net [35], utilizing Pois-
son disk sampling [4] to generate patches for training and point
clouds for testing. We also conduct qualitative experiments on the
real-world ScanObjectNN [33] and KITTI [9] datasets.

4.1.2 Evaluation Metrics. Following previous works [13, 21, 28,
35], we adopt four evaluation metrics: (i) Density-aware Chamfer
Distance (DCD) [38], (ii) Chamfer Distance (CD), (iii) Hausdorff
Distance (HD), and (iv) Point-to-Surface (P2F) Distance. P2F metric
include the mean (P2FM) and standard deviation (P2FS). For all
metrics, the smaller the metric, the better the performance. The
units of CD, HD, and P2F metrics are 10−3.

4.1.3 Methods for Comparison. We compare our method with a
series of state-of-the-art methods, including PU-Net [40], MPU [37],
PU-GAN [21], Dis-PU [22], PU-GCN [28], PUGeo-Net [29], MAFU
[30], PUFA-GAN [23], PU-Flow [24], PUCRN [6], Grad-PU [13] and
SSPU-Net [35].
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Table 1: Quantitative results on the PU-GAN dataset. The best and the second-best results are emphasized in bold and underlined
respectively.

Ratio 2× Upsampling 4× Upsampling 8× Upsampling
Method DCD CD HD P2FM P2FS DCD CD HD P2FM P2FS DCD CD HD P2FM P2FS

PU-Net [40] 0.355 0.553 3.610 3.577 4.875 0.355 0.398 3.325 4.126 4.978 0.403 0.411 5.643 4.987 5.724
MPU [37] 0.261 0.350 3.188 2.711 3.936 0.262 0.254 2.988 2.629 3.548 0.278 0.187 5.841 2.635 3.789

PU-GAN [21] 0.279 0.433 14.87 3.874 7.184 0.226 0.221 2.718 2.366 3.241 0.268 0.201 7.015 2.891 4.505
Dis-PU [22] 0.219 0.304 2.944 2.121 3.292 0.214 0.208 2.744 2.032 3.112 0.238 0.162 5.617 1.941 5.126
PU-GCN [28] 0.249 0.347 2.777 2.607 3.536 0.244 0.227 2.497 2.476 3.247 0.256 0.157 3.328 2.276 3.095

PUGeo-Net [29] 0.252 0.343 2.693 2.141 3.530 0.246 0.233 2.510 2.063 3.180 0.269 0.184 3.287 1.986 3.023
MAFU [30] 0.248 0.344 2.892 2.427 3.551 0.251 0.250 3.003 2.135 3.460 0.271 0.200 3.465 2.190 3.511

PUFA-GAN [23] 0.254 0.414 19.05 3.412 7.891 0.221 0.203 5.143 1.951 3.035 0.253 0.175 4.205 2.345 3.447
PU-Flow [24] 0.260 0.360 2.711 2.375 4.057 0.268 0.252 2.128 1.997 3.217 0.276 0.187 3.132 1.950 3.055
PUCRN [6] - - - - - 0.222 0.223 2.673 1.880 3.166 - - - - -
Grad-PU [13] 0.298 0.413 2.632 1.957 3.687 0.232 0.210 1.940 1.928 3.468 0.272 0.172 1.836 2.167 3.359
SSPU-Net [35] 0.198 0.273 2.603 1.681 2.870 0.198 0.183 2.001 1.426 2.274 0.217 0.132 3.520 1.458 2.606

Ours (Teacher) 0.174 0.242 2.276 1.765 2.449 0.176 0.160 1.490 1.610 2.204 0.196 0.113 1.611 1.283 1.966
Ours (Student) 0.185 0.266 2.297 1.713 2.275 0.186 0.172 1.919 1.609 2.206 0.201 0.120 2.928 1.283 2.268

4.1.4 Implementation Details. We utilize three orthogonal view-
points to generate multi-view depth images with a resolution of
128 × 128. The hyper-parameters 𝜆𝑚𝑖𝑚𝑖𝑐 , 𝜆𝐴𝑇 and 𝜆𝑟𝑒𝑠 are set to
0.1, 1 and 500, respectively. During training, we set 𝑁 = 256 for
each sparse patch, which is randomly downsampled from the dense
patch. We train both the teacher network and the student network
with a batch size of 32. The former is trained for 200 epochs, while
the latter is trained for 240 epochs. The Adam algorithm [18] is
adopted to optimize our network. The initial learning rate is set to
0.001 with a decay rate of 0.7.
Table 2: 4× quantitative results on the PUGeo-Net dataset.
We emphasize the best and second-best results by bolding
and underlining them, respectively.

Ratio 4× Upsampling
Method DCD CD HD P2FM P2FS

PU-Net [40] 0.393 0.285 5.079 2.470 2.522
MPU [37] 0.320 0.186 2.991 1.307 1.793

PU-GAN [21] 0.357 0.254 10.89 1.855 2.460
Dis-PU [22] 0.293 0.166 3.333 1.186 1.830
PU-GCN [28] 0.330 0.188 3.920 1.694 2.064

PUGeo-Net [29] 0.314 0.179 3.255 1.234 1.839
MAFU [30] 0.322 0.175 4.779 1.511 2.182

PUFA-GAN [23] 0.308 0.179 7.172 1.372 2.086
PU-Flow [24] 0.301 0.150 1.631 1.024 1.294
PUCRN [6] 0.250 0.122 3.236 1.009 1.674
Grad-PU [13] 0.211 0.088 0.948 0.682 1.153
SSPU-Net [35] 0.228 0.102 1.595 0.675 1.033

Ours (Teacher) 0.184 0.076 1.112 0.644 0.736
Ours (Student) 0.198 0.084 1.586 0.712 1.092

4.2 Results on Synthetic Dataset
4.2.1 Results on the PU-GAN dataset. Table 1 presents the quan-
titative comparison results on the PU-GAN dataset. Our method
outperforms previous approaches in terms of DCD and CD met-
rics, indicating that our method achieves minimal reconstruction
errors at different upsampling ratios. Since DCD can measure the
density difference between two point clouds, our upsampled results
exhibit the closest density distribution to the ground truth, sug-
gesting that our results are more uniform. For the HD metric, our

method outperforms all other methods at 2× and 4× upsampling
ratios and achieves the second-best performance at 8×. For the
P2F metric, our method exhibits the most competitive performance
with SSPU-Net [35] on P2FM and the best results on P2FS. This
demonstrates that our results are stably distributed on the surface
of the underlying object. As depicted in the upper section of Figure
5, previous methods tend to generate more noise and outlier points
when handling complex geometry. In contrast, our method can ac-
curately reconstruct complex geometric details with minimal noise
and outliers.

4.2.2 Results on the PUGeo-Net dataset. Table 2 shows the 4×
quantitative results on the PUGeo-Net dataset. Even when faced
with more complex geometric details, our method consistently
achieves the best performance in terms of DCD and CD metrics.
Furthermore, for the P2F metric, our method also demonstrates
comparable results to recent state-of-the-art methods, namely SSPU-
Net [35] and Grad-PU [13]. However, for the HD metric, Grad-PU
[13] achieves better performance, and we believe this phenomenon
arises from the differences in the upsampling tail. Grad-PU [13]
refines the positions of interpolated points by a point-to-point (p2p)
iterative optimization process. This process enables it to achieve
the smallest maximum p2p error, resulting in the lowest HD metric.
However, it lacks overall consideration and thus cannot surpass us
in DCD and CD metrics. This is evidenced in the lower section of
Figure 5, where our method can produce the most realistic results.

4.3 Results on Real-Scanned Dataset
Wealso conduct experiments on two real-world datasets, the ScanOb-
jectNN dataset [33] and the KITTI dataset [9], as shown in Figure 6
and Figure 7, respectively. Since there is no ground truth available,
we only perform qualitative comparisons. Figure 6 illustrates the
upsampled results (bottom row) and surface reconstruction results
(top row), where two consecutive 4× upsamplings are conducted
using models trained on the PU-GAN 4× dataset. As shown in
the first column, the input point cloud is extremely sparse and
non-uniformly distributed. There are noticeable gaps in the up-
sampled results generated by some methods, such as PUCRN [6],
PU-Flow[24] and SSPU-Net [35]. Grad-PU [13] fails to generate
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Figure 5: 4× qualitative comparison on synthetic datasets, where the upper section is the results on the PU-GAN dataset and
the lower section is the results on the PUGeo-Net dataset. We visualize the P2F metrics of each point. If a point has a small P2F,
it’s shown in blue, otherwise, it’s shown in red. Ours denotes the result of the student network.

plausible results. The surface reconstruction results of PU-GAN
[21] and Dis-PU [22] reveal holes. While our method can recon-
struct dense and uniformly distributed upsampled results, as well
as achieve smooth surface reconstruction results. Figure 7 shows
our method can accurately preserve the original structure (orange
box) and fill in the gaps caused by occlusion (red box).

Table 3: Robustness test with different Gaussian noise levels
on the PU-GAN 4× dataset. We use DCD as the metric.

Method 0.00% 0.30% 0.50% 0.80% 1.00% 2.00%

PU-Net [40] 0.355 0.380 0.378 0.418 0.461 0.539
MPU [37] 0.261 0.281 0.299 0.343 0.381 0.469

PU-GAN [21] 0.226 0.255 0.275 0.330 0.366 0.464
Dis-PU [22] 0.214 0.312 0.323 0.365 0.391 0.486
PU-GCN [28] 0.244 0.279 0.299 0.340 0.377 0.467

PUGeo-Net [29] 0.246 0.275 0.294 0.343 0.375 0.473
MAFU [30] 0.248 0.271 0.290 0.332 0.371 0.462

PUFA-GAN [23] 0.254 0.262 0.274 0.319 0.358 0.468
PU-Flow [24] 0.268 0.279 0.306 0.358 0.401 0.485
PUCRN [6] 0.222 0.253 0.272 0.318 0.360 0.457
Grad-PU [13] 0.232 0.255 0.298 0.358 0.406 0.502
SSPU-Net [35] 0.198 0.224 0.254 0.310 0.356 0.462

Ours (Student) 0.186 0.212 0.238 0.287 0.332 0.444

4.4 Robustness to Noise
Since point clouds usually contain noise and outliers in real scenar-
ios, we conduct experiments to assess the noise robustness of our
proposed method. Specifically, we add Gaussian noise at different
levels from 0 to 2.0% to the PU-GAN 4× testing dataset. Table 3
demonstrates that our method achieves the best performance at dif-
ferent noise levels. DCD is used as the metric instead of CD because
the upsampling results of Grad-PU tend to exhibit an aggregation

of points around the original point locations under higher noise
levels. This density imbalance can even result in a lower CD, as
explained in DCD [38].

Table 4: Comparison of model complexity on the PU-GAN
4× dataset conducted on an RTX 3090 GPU.

Method CD
(10−3 )

Training
(h)

Inference
(s/sample)

Param.
(Kb)

PU-Net [40] 0.398 4.7 0.44 814
MPU [37] 0.254 3.0 0.20 76

PU-GAN [21] 0.221 12.0 0.20 542
Dis-PU [22] 0.208 15.3 0.52 1047
PU-GCN [28] 0.227 0.5 0.20 76
PUGeo-Net [29] 0.233 10.5 0.43 2126
MAFU [30] 0.250 12.0 0.60 260

PUFA-GAN [23] 0.203 31.0 0.86 4642
PU-Flow [24] 0.252 11.5 0.32 806
PUCRN [6] 0.223 2.3 0.27 847

SSPU-Net [35] 0.183 13.5 0.53 533
Grad-PU [13] 0.210 5.7 0.19 67

Ours (Teacher) 0.160 11.5 0.90 1787.77
Ours (Student) 0.172 14.9 0.78 1787.62

4.5 Model Complexity Analysis
The results of the model complexity analysis are shown in Table
4. Since we only use the student network in practice, the number
of parameters utilized in the inference phase of PUFA-GAN [23]
is approximately 2.5 times that of our method. Additionally, our
method is comparable to Dis-PU [22]. The inference time of our
method is slightly longer than previous methods, such as MAFU
[30], but less than PUFA-GAN. This is because our method needs
to render multi-view depth images of each point cloud and extract
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Figure 6: 16× upsampled results on the ScanObjectNN dataset [33]. The first row and the second row showcase the meshes
reconstructed by [2] and the upsampled point clouds, respectively. Ours denotes the result of the student network.

Input

PUFA SSPU OursGradPUFlow

PUCRNDisPUPUGCNPUGANInput PU-GAN [21] PU-GCN [28] Dis-PU [22] PUCRN [6]Input

PUFA SSPU OursGradPUFlow
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PU-Flow [24] PUFA-GAN [23] SSPU-Net [35] Grad-PU [13] Ours

Figure 7: Visual comparison on the KITTI dataset [9]. Our method can accurately preserve the original structure (orange box)
and fill in the gaps caused by occlusion (red box). Ours denotes the result of the student network.

Table 5: Ablation studies of the cross-modal feature extrac-
tion and fusion, and the detail estimation distillation.

Model L𝑚𝑖𝑚𝑖𝑐 L𝐴𝑇 L𝑟𝑒𝑠 CD (10−3) HD (10−3)

A1 0.177 2.095
A2 ! ! 0.174 2.168
A3 ! ! 0.175 2.041
A4 ! 0.176 2.003
A5 ! ! 0.174 1.926

Model AFF multi-𝑊𝑄 Φ CD (10−3) HD (10−3)

B1 ! 0.186 2.267
B2 ! ! 0.189 2.130
B3 ! ! 0.179 2.103
B4 ! ! 0.179 2.111

Full - - - 0.172 1.919

their features. The total training time of our method is about 26.4
hours, including the training time of the teacher network and the
student network.

4.6 Ablation Study
We initially carry out ablation studies focusing on the detail esti-
mation and distillation, as illustrated in the upper section of Table
5. Based on models A2, A3 and A4, we conclude that the depth
image branch of the teacher network effectively captures the fine
geometric details in dense point clouds. This inference is drawn

from the observation that removing L𝑚𝑖𝑚𝑖𝑐 or L𝐴𝑇 results in sub-
optimal performance of the student network. From model A5, the
response-based knowledge distillation further improves the up-
sampling performance. We then conduct ablation studies on the
cross-modal feature extraction without the guidance of the teacher
network, as illustrated in the lower section of Table 5. Compared to
model A1, model B1, which utilizes only 3D coordinates for upsam-
pling, demonstrates that leveraging cross-modal information can
significantly improve point cloud upsampling. Model B2, which
fuses O and 𝐹P by direct addition, achieves worse results than
the uni-modal model B1, highlighting the importance of a suitable
feature fusion method for cross-modal features. Models B3 and B4
confirm the effectiveness of employing multiple𝑊𝑄 in the MVP
block and the depth image matching loss, respectively.

5 Conclusion
We propose a novel multi-view depth image guided cross-modal
distillation network for point cloud upsampling. Specifically, we
first introduce the cross-modal feature extractionmodule integrated
with theMVP blocks. The former consists of two branches to extract
both depth image features and point features. The latter fuses these
cross-modal features in a fine-grained and hierarchical manner.
Additionally, we introduce the detail estimation and distillation
structure to produce more realistic geometric details. Extensive
experiments demonstrate that MVP-Net achieves state-of-the-art
performance.
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