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Figure 1: Comparison between our method and previous approaches. This figure compares
rendering results between ExAvatar (Moon et al.|(2024)), a human-centric model, and Ex4DGS
(2024)), which uses a single motion field for all motions. ExAvatar reconstructs only humans,
while Ex4DGS fails to represent contact in interaction scenarios, producing artifacts and noise around
contact regions.

ABSTRACT

Reconstructing dynamic scenes with complex human—object interactions is a fun-
damental challenge in computer vision and graphics. Existing Gaussian Splatting
methods either rely on human pose priors, neglecting dynamic objects, or approxi-
mate all motions within a single field, limiting their ability to capture interaction-
rich dynamics. To address this gap, we propose Human-Object Interaction Gaussian
Splatting (HOIGS), which explicitly models interaction-induced deformation be-
tween humans and objects through a cross-attention based HOI module. Distinct
deformation baselines are employed to extract complementary motion features: hex-
plane for humans and Cubic Hermite Spline (CHS) for objects. By integrating these
heterogeneous features, HOIGS effectively captures interdependent motions and im-
proves deformation estimation in scenarios involving occlusion, contact, and object
manipulation. Comprehensive experiments on multiple datasets demonstrate that
our method consistently outperforms state-of-the-art human-centric and 4D Gaus-
sian approaches, highlighting the importance of explicitly modeling human—object
interactions for high-fidelity reconstruction. The video results of HOIGS are avail-
able at: https://anonymous.4open.science/w/HOI-GS/

1 INTRODUCTION

Reconstructing videos of scenes that involve complex interactions between humans and objects
and synthesizing novel viewpoints constitute a central research problem in computer vision and
graphics. These techniques can be extended to various applications, including virtual reality, the
metaverse, and 3D animation. However, the inherent limitations of monocular cameras and the need
to accurately model intricate interactions between humans and objects remain major challenges for
achieving high-quality reconstruction. Addressing these issues is essential for enabling realistic scene
understanding and representation.

Recent approaches on human-centric video scene reconstruction (Kocabas et al.| (2024);
2024)); [Hu et al| (2024b)); [Qian et al.| (2024); Liu et al.| (2024); [Hu et al.| (2024a)); [Wen et al.|(2024);
Kim et al.| (2025))) have combined human pose estimation with 3D Gaussian Splatting (3DGS)

(Kerbl et al.|(2023)) to model dynamic scenes. Typically, SMPL (Loper et al.| (2023)) parameters are
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regressed in advance for each frame, and a canonical space is defined using a T-pose as the reference.
Within this space, 3D Gaussian parameters are established and trained using feature planes and MLPs.
Subsequently, deformation to each frame’s 3D space is performed via Linear Blend Skinning (LBS)
(Loper et al.|(2023)), allowing for scene reconstruction and rendering. These methods have evolved
into specialized models focused on humans and static backgrounds, achieving reliable performance
when accurate human pose priors are available. However, existing approaches mainly focus on
modeling humans alone, and thus fail to reconstruct complete scenes that involve objects beyond
the human body. As a result, dynamically moving objects are often treated as static background
or even disappear from the reconstructed scene. Even when deformations of objects are modeled
separately, the interactions between humans and objects are not sufficiently considered in dynamic
scenarios, which leads to artifacts and noisy results in the interaction regions, as shown in Fig.
Consequently, accurately reconstructing scenes that involve both humans and objects requires new
modeling paradigms that extend beyond conventional human-centric frameworks.

Recent studies on 4D Gaussian Splatting extend beyond humans to encompass arbitrary moving
objects, offering the advantage of general applicability. However, they generally exhibit lower
reconstruction performance for humans compared to human-centric models. These approaches
typically either define a canonical space and learn an implicit function that deforms it into the world
coordinate system (Wu et al.| (2024)); Jung et al.|(2023); Bae et al.[(2024)), or explicitly parameterize
object motions and optimize the corresponding parameters (Yang et al.|(2023)); |Li et al.| (2024); [Lee
et al.| (2024))). Nevertheless, they do not explicitly model interactions between objects and instead
treat all moving entities within a single motion field, which limits their ability to capture complex
interactions. As a result, implicit methods struggle to represent long-term or highly non-linear
motions in a stable manner, while explicit methods fail to handle scenarios such as contact and object
manipulation, as ignoring the mutual interactions between motions limits their ability to capture
realistic dynamics.

To overcome these limitations, we propose Human-Object Interaction Gaussian Splatting (HOIGS), a
unified framework for reconstructing complex video scenes that involve both humans and dynamic
objects. Unlike previous approaches that either model only human motion or employ a single motion
field for all entities, our framework explicitly incorporates human—object interactions to achieve more
faithful deformation modeling.

At the core of our framework lies the HOI module, which adopts a mutual attention mechanism
to capture the bidirectional dependencies between human features and object motion features at
each frame. Specifically, the module receives temporally varying human features, derived from the
dynamic components of the hexplane representation, together with object motion features, obtained
by embedding velocity vectors and their associated parameters. By explicitly learning how these two
types of features influence one another, the HOI module effectively overcomes the shortcomings of
prior methods that modeled humans and objects independently, which often resulted in artifacts and
unstable reconstructions in interaction-rich scenes.

Furthermore, we design different deformation baselines tailored to humans and objects. For objects,
we employ the Cubic Hermite Spline (CHS) to capture continuous motion trajectories, embedding the
velocity vectors of keyframe Gaussians along with additional learnable parameters to construct robust
object motion features. For humans, we utilize hexplane as the deformation baseline, where time-
varying parameters are leveraged to represent fine-grained human deformation in both spatial and
temporal domains. The extracted features from both humans and objects are subsequently integrated
within the HOI module, which outputs offset vectors for each entity. This design ultimately enables
our framework to achieve accurate and stable deformation estimation, even under complex scenarios
involving close contact, mutual manipulation, or other intricate human—object interactions.

In summary, our main contributions are as follows:

* We propose an entity-aware cross-attention based HOI module that explicitly enforces
motion consistency between humans and objects. By attending across their motion features,
the module captures interdependent dynamics and improves reconstruction in scenarios such
as contact and object manipulation.

* We design distinct strategies for humans and objects using tailored deformation baselines.
Hexplane encodes temporal and spatial features for human motion, while Cubic Hermite
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Splines (CHS) embed velocity vectors and learnable parameters for objects. This separation
enables accurate and expressive motion representations for both entities.

* We conduct extensive experiments on diverse human—object interaction scenes and demon-
strate that our method achieves more accurate reconstruction compared to existing human-
centric and 4D Gaussian approaches.

2 RELATED WORKS

2.1 HUMAN MODELING

Research on realistic human modeling has long been pursued. Early parametric models enabled
efficient estimation of human pose, exemplified by HMR (Kanazawa et al.| (2018))), but struggled
to capture clothing and accessories. To address this, implicit function-based methods (Huang et al.
(2020); |Saito et al.| (2019} 2020); Xiu et al.| (2022; 2023))) were proposed, which recover fine details
such as hair and clothing but remain limited in global consistency and rendering efficiency. These
methods mainly focused on human geometry with little attention to human-object interactions. With
Neural Radiance Fields (NeRF) (Mildenhall et al.|(2021))), several works applied it to human modeling
(Peng et al.| (2021)); Jiang et al.[(2022); |Weng et al.| (2022)); |Alldieck et al.| (2022); |Liao et al.|(2023));
Guo et al.|(2023))), achieving realistic appearance and view consistency but still suffering from high
training cost and slow rendering. In terms of human-object interactions, some attempts (Fan et al.
(2024)) introduced objects, yet dynamic interactions were not fully captured. Recently, 3D Gaussian
Splatting (3DGS) (Kerbl et al.|(2023)) emerged as a new representation and has been applied to human
reconstruction (Kocabas et al.|(2024);[Moon et al.|(2024); Hu et al.| (2024b); |Liu et al.|(2024)); Hu et al.
(2024a)). However, most efforts still regard objects as static. To overcome this, we propose HOIGS,
a model for stable human reconstruction in dynamic scenes that explicitly captures human—object
interactions.

2.2 DYNAMIC SCENE MODELING

The field of dynamic scene rendering and reconstruction has seen a paradigm shift from initial NeRF-
based methods (Park et al.|(2021akb)); Wu et al.| (2022); |[Fridovich-Keil et al.|(2023))) to the more recent
3D Gaussian Splatting framework. Previous studies such as HOSNeRF (Liu et al.| (2023))) effectively
modeled human-object interactions by controlling human motion through skeleton-based models
such as SMPL and leveraging object state embeddings. Nevertheless, the implicit representation
inherent to NeRF led to significant computational overhead in training and rendering, and limited the
ability to represent detailed features in large-scale environments. To address this efficiency bottleneck,
a line of work has emerged that extends 3DGS to the temporal domain, known as 4D Gaussian
Splatting (4DGS) (Wu et al.|(2024)); Yang et al.[(2023))). Although these methods achieve real-time
rendering speeds, they face persistent issues. Most 4DGS approaches rely on Structure-from-Motion
for Gaussian initialization, which is fundamentally ill-suited for dynamic subjects as it operates on
the assumption of a static world. This leads to inaccurate point cloud generation for moving objects.
Moreover, the MLP-based implicit deformation fields used to capture motion, while adequate for
simple trajectories, often result in over-smoothed or unnatural movements when applied to complex,
in-the-wild scenarios. Therefore, we propose an explicit, spline-based motion model. This approach
allows us to model intricate temporal movements with high fidelity, achieving high-quality rendering
even in dynamic scenes that include complex human-object interactions.

3 METHOD

As shown in Fig. 2] we reconstruct the scene by independently modeling the deformations of humans
and objects, and then incorporating interaction-aware transformations through the HOI module.
Object deformations are estimated using a Cubic Hermite Spline (CHS). Human deformations are
based on hexplane features, where time-invariant spatial features are used to learn the texture of the
canonical T-pose, and Linear Blend Skinning (LBS) is subsequently applied to deform the canonical
representation into each world space. Using these deformation baselines, we independently model
humans and objects and estimate their approximate positions for each frame, from which motion
features are extracted. Finally, the extracted human and object features are fed into the HOI module,
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Figure 2: Overview of the Proposed Framework. Given an input video sequence, we first extract
object-specific information, which is then used to reconstruct the 3D object shape via a diffusion
prior. Based on the reconstructed shape, we initialize 3D Gaussians for each keyframe and use
spline-based deformation as the baseline, where time-invariant and time-varying hexplane features
are employed for canonical humans and interaction modeling, respectively.The final deformation is
modeled through the HOI module, which learns interactions using human features and object motion

features.

which accounts for interaction-driven transformations and determines the final positions of humans
and objects in the reconstructed interaction scene.

3.1 OBIJECT DEFORMATION

We apply a diffusion prior with SDS loss to reconstruct the object from a representative frame
of the entire sequence. The reconstructed object is then warped using the camera parameters of
each keyframe to initialize the corresponding 3D Gaussians. However, the 3D Gaussians generated
through the diffusion prior may differ from the actual object geometry. While diffusion models
can generate plausible 3D shapes from images, they often fail to precisely recover the true object
structure. To address this, we introduce an explicit 3D Gaussian deformation model that aligns the
diffusion-based initialization with the actual object geometry and structural information. From the
warped Gaussians G, of each keyframe, we extract each Gaussian’s mean and color value, while
initializing the remaining 3D Gaussian parameters with identity values. Based on the redefined mean
and color from the keyframes, we construct the object’s 3D Gaussians and use them to model the
object deformation. To represent the continuous motion of the object over time, we model the mean
values of each Gaussian as control-point-based curves. Specifically, we define a Cubic Hermite Spline
function CHS(t, m), and estimate the position of an object Gaussian at time ¢, denoted as M (t), as
follows:

M(t) = CHS(t,m), (1)

where m = {mk | my € R3 } kel is a learnable set of control points representing the mean

0,Njey—1]
positions of the Gaussians at each key frame, and Ny, denotes the number of key frames. CH S (¢, m)
is formulated as

CHS(t,m) = (2t — 37 + 1)ymyy, | + (£] — 22 + t,) 74,

()
(=263 4 3t myp, 1+ (8 — )70 11

where ¢, = ts — |ts], ts = tn(Nigey — 1), tn, = ﬁ and N; denotes the number of all frames.

my;, | denotes the mean of the 3D Gaussians corresponding to the |t |-th key frame.

In the standard formulation, 7;,| represents the tangent vector with respect to the means of the
surrounding Gaussians, which is typically approximated as 7;, | = % (mLts J41 — Mg, ,1). Instead
of using this fixed approximation, we reinterpret ;| as a velocity vector and employ it as a learnable
parameter. By embedding this velocity, we construct motion features that better capture the dynamic
behavior of objects over time.
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The position parameter m between key frames is estimated via spline interpolation using both the
Gaussian positions my, at the key frames and the corresponding velocity vectors 7). Only the
Gaussians at the key frames are directly optimized during training. Once the intermediate Gaussians
are estimated and rendered, the resulting gradients from the loss function are backpropagated to
update the parameters of the corresponding key frame Gaussians. Among the Gaussian parameters,
rotation and opacity are defined as time-dependent variables. The rotation parameter is modeled using
Spherical Linear Interpolation based on the Gaussian rotations at each key frame, enabling smooth
transitions over time. The opacity parameter varies with time to account for occluded regions caused
by object motion. In contrast, the scale parameter is kept constant across all corresponding Gaussians
at different key frames.

3.2 HUMAN DEFORMATION

We model human deformation using hexplane features. Specifically, we adopt time-invariant spatial
features f from hexplane to learn the texture of the canonical T-pose mesh 7 in the canonical space.
The features f are processed by an MLP head 1 to learn the Gaussian properties in the canonical
space. This representation serves as the baseline for human deformation. The canonical human
representation is then deformed into the posed world space using Linear Blend Skinning (LBS) as
follows:

Un(f(T2)) = (¢,0,AF, R, S, W), ©)
Pyey = ax LBS(P,,0,W), )

where 6 denotes the set of SMPL-X pose parameters and « is a learnable scale parameter for human
pose. Equation (3) extracts the Gaussian properties (color ¢, opacity o, position offset A P,, rotation
R, scale S and skinning weights W) from the canonical hexplane features, while Equation (4) applies
the LBS function to obtain the deformed positions Py of the Gaussians in the posed space.

To ensure that the reconstructed human representation matches the actual geometry, we further apply
a depth supervision loss:

£depth = ||Drender - D||1 5 (5)

where D¢y ger 1S the rendered depth map from the deformed Gaussians and D is the depth obtained
from an off-the-shelf metric depth estimation model and further scaled using the COLMAP point
cloud. This depth-guided supervision constrains the learnable scale parameter o and improves
geometric fidelity in the reconstructed human shape.

3.3 HOI MODULE

Feature Extraction. We extract time-varying features from both humans and objects to learn their
interactions. For humans, instead of relying on time-invariant texture features from the canonical
space, we utilize time-varying features from hexplane. Furthermore, since it is not possible to know
in advance which body parts are involved in object interactions, we divide the human body into 16
parts and extract hexplane features for each part.

For objects, the features are derived from the velocity embeddings associated with each keyframe in
the deformation process, which capture the local motion information at those frames. In addition,
we embed learnable parameters for each keyframe to represent latent motion characteristics that
cannot be fully captured by velocity alone. These velocity vectors and learnable parameters are then
projected together with the corresponding time values, enabling the construction of object motion
features. This formulation allows us to obtain continuous motion features for objects across all frames,
rather than being limited to discrete keyframes.

HOI module. The proposed HOI module takes time-varying features of humans and objects as inputs
and explicitly models their interactions. Let the human and object features be denoted as Fyyyman and
Fopject- To capture interdependencies between the two, we apply mutual attention, where queries,
keys, and values are defined as:

Qh = FHumanWhQ» Ko = FObjectWoKa Vo = FObjectW(}/a (6)

Qo = FObjechoQ7 Kh = FHumanW}{{7 Vh = FHumanW}Y- (7)
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Table 1: Per-scene quantitative evaluation on the HOSNeRF dataset against baselines of our method.
We color code each cell as best and second best .

BACKPACK TENNIS SUITCASE PLAYGROUND DANCE LOUNGE AVG.

PSNRT LPIPS| | PSNRT LPIPS|||PSNR{ LPIPS|||[PSNRT LPIPS|||PSNRT LPIPS|||PSNR{ LPIPS|||PSNRT LPIPS|
K-Planes (Fridovich-Keil et al.|[(2023])[[ 19.05 0.557 || 1931 0.536 || 18.64 0.602 || 17.92 0.635 || 18.17 0.623 || 24.21 0.453 || 19.55 0.568
D2NeRF (Wu et al.[(2022}) 2052 0.608 || 23.97 0.540 || 20.99 0.645 || 21.23 0.616 || 19.92 0.647 || 27.13 0.509 || 22.29 0.594
Nerfies (Park et al.|(2021a}) 19.56 0.559 || 22.12 0.443 || 19.01 0.555 || 21.14 0.533 || 19.37 0.524 || 25.90 0.342 || 21.18 0.493
HyperNeRF (Park et al.|(2021b}) 19.62 0587 || 21.26 0.510 || 19.41 0.607 || 21.67 0.578 || 19.30 0.601 || 27.25 0.332 || 21.42 0.536
NeuMan (Jiang et al.|(2022}) 2121 0478 || 23.17 0.442 || 20.84 0.551 || 21.46 0.551 |[21.19 0.490 || 28.40 0.341 || 22.71 0.476
4DGS (Wu et al.|(2024]) 2449 0.192 || 26.57 0.162 || 17.98 0.460 || 2434 0.222 || 21.34 0.212 | 30.50 0.067 || 24.20 0.219
D3DGS (Yang et al.|(2024}) 24.06 0.099 || 25.09 0.125 || 17.85 0.453 |[23.93 0.141 || 21.07 0.117 || 26.90 0.072 || 23.15 0.168
ED3DGS (Bae et al. |(2024}) 2478 0.146 || 26.53 0.161 || 18.05 0.461 || 24.37 0.206 || 23.87 0.159 || 30.04 0.086 | 24.61 0.203
Ex4DGS (Cee et al.|(2024]) 18.07 0.433 |( 17.90 0.399 || 1525 0.557 || 16.36 0.535 || 17.08 0.529 || 23.15 0.310 || 17.97 0.461
ExAvatar (Moon et al.|(2024}) 24.15 0.107 || 23.57 0.160 || 20.32 0.260 | 25.30 0.129 | 23.32 0.170 || 29.43 0.048 || 24.35 0.146
HOSNeRF (Liu et al.|(2023]) 2256 0.243 | 24.15 0320 | 21.74 0.382 || 22.67 0.336 || 22.63 0.248 || 27.74 0.227 || 23.58 0.293
Ours 2578 0.082 || 27.12 0.108 | 22.09 0.246 | 25.23 0.103 | 24.17 0.098 | 30.97 0.048 | 25.89 0.114

Cross-attention is then performed in both directions, from human to object and from object to human,
while incorporating a distance mask B into the attention computation:

Apey = softmax(Q’jgoT n B) Ay = softmax(‘?njg n BT) . ®)

This process yields updated features Fy,,,, and Foy,.., that embed interaction cues. Finally, Fyy i,
is used to regress ASMPL-X refinements (body pose, hand pose, translation), while Fgy. . is
used to predict AGgpject, i.€., corrections for Gaussian-based object motion. In this way, the HOI
module augments the baseline deformations (hexplane+LBS for humans and CHS for objects) with
interaction-aware adjustments, enabling accurate reconstruction of human—object interaction scenes.

3.4 OPTIMIZATION

For background modeling, we employ the standard 3D Gaussian Splatting (3DGS) technique. During
training, we isolate the background by masking out the object and human regions, allowing the static
Gaussian background to be optimized using a photometric loss. For human modeling, we regress the
SMPL parameters (Loper et al.|(2023))), and incorporate an SMPL-X-based avatar model to ensure
natural interaction with the object. For each frame, we extract the SMPL-X parameters and define a
canonical T-pose human avatar. This canonical avatar is then deformed to match each frame using
LBS. During training, image-based loss metrics such as SSIM, LPIPS, and L1-norm were utilized to
compare the Gaussian renderer’s output with the human region in the image.

Object Motion Optimization

We model the motion of objects using CHS to ensure continuity in position interpolation. A CHS is a
piecewise cubic polynomial that is defined by both the positions and the first derivatives (tangents)
at key points in time. By specifying the starting and ending slopes for each spline segment, CHS
guarantees smooth transitions between key frames, maintaining continuity not only in the object’s
position but also in its velocity. In other words, the object’s trajectory over time remains continuous
and smooth, without abrupt jumps or changes in speed. This property is crucial for accurately
modeling temporal motion in a realistic and stable manner.

Integrated Optimization We train our model using an integrated optimization objective that com-
bines multiple loss terms. Specifically, the overall loss function is formulated as:

L= 0 ‘Cobject motion + ﬁ Ehuman +o ﬁscene + Edeptha (9)

where Lopject motions Lhuman, and Lgeene are the loss components for the object’s motion, the human-
related factors, and the scene context, respectively. Here, -y, 3, and ¢ are hyperparameters that control
the relative weight of each loss term during training. By tuning these hyperparameters, we balance the
influence of each component on the training objective. This integrated optimization approach ensures
that the model simultaneously accounts for object motion accuracy, human interaction plausibility,
and scene consistency during learning.
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Figure 3: Qualitative comparison of reconstructed rendered view results on the HOSNeRF
dataset.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We use ExAvatar (2024)) as the baseline human rendering model, and all hyperparameters

are kept identical to those used in ExAvatar. For object deformation using splines
(2016); [De Boor & De Boor| (1978))), we fix the time interval to 4 for all scenes. Training is conducted

using an NVIDIA H100 GPU, taking approximately 5 hours per scene.

4.2 DATASETS

HOSNeRF dataset (2023)). We use the monocular dynamic-scene dataset HOSNeRF,
which captures human—object interaction scenarios. The dataset comprises recordings in six indoor
and outdoor locations with six subjects interacting with objects within a single scenario. Each
sequence contains 300-400 frames. For evaluation, we uniformly select 16 frames per sequence for
testing and use the remaining frames for training.

BEHAVE dataset (Bhatnagar et al.|(2022)). We use the BEHAVE multi-view RGB-D human-object
interaction dataset, but adapt it to a monocular setting by selecting a single fixed camera from the four
static viewpoints for each sequence. Specifically, we curate 9 sequences covering four distinct indoor
environments, five subjects, and four objects. From each sequence’s raw video, we uniformly sample
300 frames. For evaluation, following HOSNeRF, we uniformly select 16 frames per sequence for
testing and use the remaining frames for training

ARCTIC dataset (2023)). We use the ARCTIC hand-object interaction dataset and
extend comparisons to hand—object baselines. Since HOIGS is human-centric rather than hand-only,
we evaluate only sequences where the full body is visible. Specifically, we use sequences of one
subject interacting with four objects. Each monocular sequence (600 frames) is split by uniformly
sampling 16 frames for testing and using the rest for training, following HOSNeRF.

4.3 QUALITATIVE RESULTS

We compare our view-synthesis results with existing Gaussian-based models, which generally
outperform NeRF-based methods in rendering quality. The experimental results are visualized
in Fig. [3] The dynamic-scene models D3DGS (2024)) and Ex4DGS (2024))
yield ghosting artifacts for both human and dynamic objects because they fail to disentangle human
and object motions within complex interactions. ExAvatar (Moon et al.| (2024))) reconstructs humans
but does not handle dynamic objects. Our method accurately reconstructs humans and objects with
temporally coherent motion, using CHS object trajectories with velocity vectors and the human
backbone based on hexplane and LBS, while the HOI module further ensures contact consistency. On
the ARCTIC dataset, as shown in Fig. [, HOLD (2024)) shows limited performance in
full-body—object interactions, whereas HOIGS successfully reconstructs them. This is because HOLD
reconstructs only hands, while HOIGS reconstructs the entire human body including the hands. On
the BEHAVE dataset, as shown in Fig.[5] whereas ExAvatar suffers body—background overlap due to
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Table 2: Per-scene quantitative evaluation on the ARCTIC dataset against baselines of our method.
Box CAPSULEMACHINE || ESPRESSOMACHINE MIXER AVG
HPSNRT LPIPS||PSNRT LPIPS| |[PSNRT LPIPS| ||PSNRT LPIPSJ,HPSNRT LPIPS|
4DGS (Wu et al.|(2024)) 2222 0.182 || 26.15 0.124 21.80  0.196 2321 0.166 || 23.35 0.167
ED3D) 20.60 0.153]/25.10 0.089 || 19.50 0227 || 22.14 0.139 || 21.84 0.152
HOLD (Fan et al.[(2024] 24.72 0494 || 25.52  0.522 2352 0.547 23.35 0.540 || 24.28 0.526
Ours 23.50 0.124 || 27.05  0.069 2529  0.079 24.59 0.095 || 25.11 0.092

[\

4DGS (Wueetal. (2024])  E-D3DGS (|Lee et al. (2024]) ~ HOLD ([Fan et al. [(2024}) Ours Ground Truth

Figure 4: Qualitative comparison of reconstructed rendered view results on the ARCTIC dataset.

human misalignment in world space, our depth-based alignment ensures accurate human placement.
Through qualitative results, we further confirm that our method effectively reconstructs complex
human—object interactions with visually consistent outcomes.

4.4 QUANTITATIVE RESULTS

As shown in Tab. |I|, HOIGS achieves the highest PSNR and the lowest LPIPS on the Backpack, Tennis,
Suitcase, Dance, and Lounge scenarios of the HOSNeRF dataset, surpassing prior 3D Gaussian-based
models in visual quality. Tab. 2] shows that on the ARCTIC dataset, our method outperforms the
hand-object model HOLD (2024)). Unlike HOLD, our model reconstructs complex
full-body geometry while simultaneously capturing interactions with dynamic objects. Tab. 3] shows
that on the BEHAVE dataset, it likewise attains the highest PSNR and lowest LPIPS, demonstrating
effective reconstruction of complex human—object interactions from single-view input.

4.5 ABLATION STUDY

We conduct ablation studies to validate the effectiveness of the proposed method. As shown in
Tab. 4 modeling object deformation with a simple MLP yields the lowest performance, while our
CHS-based baseline deformation improves PSNR by 0.5, demonstrating its superiority. Removing
the HOI module and applying only velocity further results in a 0.6 drop in PSNR compared to the full
model, confirming the necessity of explicitly modeling human—object interactions. Finally, replacing
the time-varying hexplane features with simple parameter embeddings for the human features leads
to a 0.2 decrease in PSNR, highlighting the effectiveness of our human feature design.

5 CONCLUSION

We presented HOIGS, a novel framework for reconstructing dynamic scenes with explicit modeling of
human-object interactions from monocular videos. By combining hexplane-based human deformation,
spline-based object motion, and an interaction-aware HOI module, our method achieves stable and
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Table 3: Per-scene quantitative evaluation on the BEHAVE dataset against baselines of our method.

BACKPACK; PLASTICCONTAINER] || PLASTICCONTAINERS SUITCASE1 BACKPACK2
PSNRT LPIPS||[PSNRT LPIPS| ||[PSNRT LPIPS| ||PSNR{ LPIPS||PSNR{ LPIPS)
4DGS (Wu et al.|(2024)) 21.81 0.076 || 22.92 0.072 26.37 0.081 26.66 0.071 || 24.59 0.085

ED3DGS (Bae et al.|(2024)) || 19.99 0.086 | 20.15 ~ 0.086 | 2475 0078 || 2585 0.058 | 23.72 0.074
ExAvatar (Moon et al.|(2024})|| 27.86 0.041 | 29.96  0.042 | 30.11 0038 |[30.86 0.032 | 2647 0.054
Ours 3179 0.031 (3310  0.032 | 3239  0.034 || 3458 0.028 || 30.17 0.044

PSNRf LPIPS| ||[PSNRt LPIPS| ||[PSNR{ LPIPS)|PSNRT LPIPS}||PSNR{ LPIPS)

0
4DGS (Wu et al.[(2024)) 2460  0.087 |[2459  0.090 |[23.43 0.090 || 26.07 0.082 || 24.61 0.082
ED3DGS (Bae etal[|(2024)) || 23.81  0.070 || 2298  0.083 |/ 22.07 0.079 || 2556 0.062 | 2331 0.075
ExAvatar (Moon et al.|2024)|| 26.71  0.056 || 27.05 ~ 0.042 | 25.78 0.038 || 29.81 0.029 | 2829 0.041

Ours 29.38 0.046 27.50 0.043 29.05 0.030 || 31.62 0.023 || 31.06 0.034

0
PLASTICCONTAINER3 || PLASTICCONTAINER4 BACKPACK3 TRASHBIN AVG
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Figure 5: Qualitative comparison of reconstructed rendered view results on the BEHAVE
dataset.

Table 4: Ablation studies on the HOSNeRF dataset using our method. The best results are highlighted.
Avg (6 scenes)

PSNRT LPIPS]

w/o CHS deformation (using MLP) | 24.52 0.154

Baseline deformation 25.01 0.130
w/o human feature 25.67 0.119
w/o HOI module 25.24 0.128
HOIGS (Ours) 25.89 0.114

accurate reconstruction even in challenging scenarios with contact and manipulation. In particular,
the explicit treatment of human-object interactions enables our framework not only to recover
realistic human geometry but also to faithfully capture object dynamics and their mutual influences,
which have been largely overlooked in prior works. Extensive experiments on HOSNeRF, BEHAVE,
and ARCTIC datasets demonstrate that HOIGS outperforms state-of-the-art human-centric and 4D
Gaussian approaches in both visual quality and consistency, highlighting its effectiveness in advancing
realistic modeling of complex human—object interactions.

Limitations and future works. While our framework handles typical dynamic motions well, it
struggles under minimal camera movement, where COLMAP-based pose and point cloud estimation
becomes unreliable. This often leads to rendering artifacts. Future work may improve robustness in
such low-baseline settings by jointly optimizing camera poses during training.
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6 APPENDIX

STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

In the interest of transparency and in compliance with the ICLR 2026 guidelines, we report that a
large language model (LLM) was used to assist in the refinement of this paper’s text.

Scope of Use. The model’s role was strictly limited to that of a writing assistant. Its contributions
include:

* Correcting grammatical errors, spelling, and punctuation.
* Improving sentence structure and flow for enhanced clarity.

* Refining word choices for greater precision and conciseness.
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Figure 6: Object feature extraction. Extraction of object motion features using the embedded
parameters and velocity vectors of each key frame.

6.1 FEATURE EXTRACTION

Object feature As shown in Fig. [6[a), we extract object features by leveraging the velocity vectors
and embedding parameters of Gaussians at key frames. As shown in Fig. [f[b), each key frame’s
velocity vector is applied to the CHS and jointly optimized with the baseline deformation as input
features for the HOI module. In addition, a 29-dimensional learnable parameter is embedded for each
key frame Gaussian, which is concatenated with the velocity vector to form the feature representation.
The interpolated Gaussian features produced by CHS are then combined with the concatenated feature
and time information, and projected through a shallow MLP, resulting in a 32-dimensional feature
vector.

Human feature Fig. [7illustrates the process of human feature extraction. We divide the SMPL-
X model into 16 body parts and learn features corresponding to each part. Temporal features are
sampled from the hexplane at SMPL-X vertices, where each feature at time ¢ is obtained based on
the coordinates (¢, y¢, 2¢ ). For each body part, the features of its associated vertices are averaged to
form the part-specific representation Fiyman:

1
Fon = 5 Z_ezpjmfxzt,yt,zt), (10)

where N denotes the number of vertices belonging to the part. As a result, 16 part features, including
head, torso, arms, and legs, are obtained and used as inputs to the HOI module. This design captures
temporally varying dynamic representations while preserving semantically meaningful features for
individual body parts.

6.2 HOI MODULE NETWORK DETAIL

As shown in Fig.[8] the proposed HOI module takes the time-varying features of humans and objects as
inputs and explicitly models their interactions. Let the human feature be denoted as Fijyman € RV" <4
and the object feature as Fopject € RNoxd where N}, and N, are the numbers of feature tokens for
human and object respectively, and d is the feature dimension.

To capture interdependencies between the two modalities, we apply a mutual-attention mechanism.
Specifically, queries (@), keys (K), and values (V') are obtained via learnable linear projections:

Qh = FaumaW, K, = Fonea WX, Vo = Fopjea WY, (11)
Qo = Forjee WE, Ki = FaumaW5, Vi = Fauman Wy (12)

where WhQ JWE WY, W WK WYV € R¥*? are learnable projection matrices.

Cross-attention is then computed in both directions: from human to object and from object to human.
To enforce spatial priors, a distance mask B € RV»*No is added to the attention logits, where By

13



Under review as a conference paper at ICLR 2026

Fhead Fr_forearm
Fneck Fr_hand
Feature average sampling Ftorso Fliupleg

Fhiuman

Fhips F r_upleg

wa ol

Y, ot Fliarm Fl_leg
Fl_forearrn Frileg
\ Flihand Flifoot
A SMPLX vertex Friarm Fr_ -
16 Part SMPLX 16 parts features

Figure 7: Human feature extraction.

encodes the relative distance between the i-th human token and the j-th object token. The resulting
attention maps are defined as:

Apneo = softmax(Q"ix/g“T + B) , Aocn = softmax(% + BT) . (13)

Using these attention weights, the updated features are obtained as:

Flf{uman = AheoVo, Fébject = AoV (14)

The updated human feature Fy; is then fed into a small MLP head to regress the refinement terms

of SMPL-X parameters:

uman

ASMPL-X = {Afpody, Abpang, At}, (15)

where Abyoqy and Abhang denote pose corrections for body and hands, and At is the global translation
refinement. Similarly, the updated object feature FY..., is used to regress Gaussian-based object
motion corrections:

bject

AG’objecl € RNO % 37 (1 6)
which represent displacement vectors applied to object Gaussians.

In this way, the HOI module augments the baseline deformations (hexplane+LBS for humans and
CHS for objects) with interaction-aware refinements, enabling accurate reconstruction of complex
human-—object interaction scenes.

6.3 OBIJECTIVE FUNCTION DETAILS

The overall loss function of our model is defined as follows:

L= '-YLobject motion + BLhuman + ULscenea (17)

where Lopject motion> Lhuman» and Lgcene correspond to losses for object motion, human modeling, and
scene context, respectively. The weights v, 3, and o control the relative importance of each loss
term and are specifically set to 1.0, 0.5, and 0.25, respectively. In our approach, these three terms are
optimized simultaneously to consistently model the interactions between humans and objects.

Human Loss details

The Lpyman term consists of losses related to human representation using the SMPL-X (Pavlakos et al.
(2019)) model. Specifically, it includes the reprojection error between the 3D human joint positions
and detected 2D keypoints in images, a mesh-based face loss enhancing the consistency of facial
geometry and texture, and a Laplacian regularization term. Additionally, there is an L1 loss (Lsmpix)
between the optimized SMPL-X parameters and the frame-wise initial SMPL-X parameters obtained
by a regressor. These loss terms are directly adopted from previous methods such as ExAvatar (Moon
et al.[(2024))), without modifications. For example, the face loss optimizes the consistency between
rendered facial images and actual facial images, ensuring geometry-texture coherence. Laplacian
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Figure 8: Detailed HOI network. The proposed architecture for estimating human-object interactions,
leveraging features from human body parts and object Gaussian representations. The model takes as
input human part features and per-Gaussian object features, processes them through bidirectional
attention mechanisms to incorporate mutual contextual information, and outputs predictions for
SMPL-X parameters per body part along with offset adjustments for object Gaussian centers.

regularization is applied to enhance the stability of human body shape. Further details can be found
in the referenced research.

Formally, the human loss is given by:

Lhuman = Lkpt + Lface + Lreg +0.1 x Lsmplxy (] 8)

Scene Loss details

The Lgcene term is a photometric loss focusing on the background regions of the entire scene, following
the image similarity-based loss used in existing 3D Gaussian Splatting (Kerbl et al.[(2023))) (3DGS)
methods. Specifically, a pre-trained human/object segmentation model is employed to mask out human
and object regions in the images, optimizing the background Gaussians for the remaining pixels
only. This involves minimizing the difference between the rendered result and the background pixels
excluding the segmented human and object areas. Occlusions frequently occur during interactions
between human hands and objects, causing inconsistencies in masks. By optimizing humans, objects,
and backgrounds simultaneously, our method effectively mitigates these boundary inconsistencies.

The scene loss is explicitly defined as:

Lscene =0.8x Ll(Igt; Irender) + 0.2 x LD—SSIM(IghIrender)a (19)

Object Loss details

The Lopject term is a photometric loss that focuses exclusively on the object regions within the scene.
We render only the segmented object areas and compute the loss solely on these regions. A pre-trained
object segmentation model is employed to isolate object masks in the input images. The object loss
encourages accurate reconstruction and appearance consistency for moving objects, which often
undergo significant deformation and motion. By supervising only the object regions, this loss helps
to refine the geometry and texture of the object-specific Gaussians without being influenced by
background or human-related elements.

The object loss is defined as:

Lobject motion — 0.8 x Ll(Igt; Iobj) +0.2 x LD-SSIM(Igtv Iobj)- (20)
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