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Abstract

Market equilibrium is one of the most fundamental solution concepts in economics1

and social optimization analysis. Existing works on market equilibrium computa-2

tion primarily focus on settings with a relatively small number of buyers. Motivated3

by this, our paper investigates the computation of market equilibrium in scenarios4

with a large-scale buyer population, where buyers and goods are represented by5

their contexts. Building on this realistic and generalized contextual market model,6

we introduce MarketFCNet, a deep learning-based method for approximating mar-7

ket equilibrium. We start by parameterizing the allocation of each good to each8

buyer using a neural network, which depends solely on the context of the buyer9

and the good. Next, we propose an efficient method to estimate the loss function of10

the training algorithm unbiasedly, enabling us to optimize the network parameters11

through gradient descent. To evaluate the approximated solution, we introduce12

a metric called Nash Gap, which quantifies the deviation of the given allocation13

and price pair from the market equilibrium. Experimental results indicate that14

MarketFCNet delivers competitive performance and significantly lower running15

times compared to existing methods as the market scale expands, demonstrating16

the potential of deep learning-based methods to accelerate the approximation of17

large-scale contextual market equilibrium.18

1 Introduction19

Market equilibrium is a solution concept in microeconomics theory, which studies how individuals20

amongst groups will exchange their goods to get each one better off [51]. The importance of21

market equilibrium is evidenced by the 1972 Nobel Prize awarded to John R. Hicks and Kenneth22

J. Arrow “for their pioneering contributions to general economic equilibrium theory and welfare23

theory” [58]. Market equilibrium has wide application in fair allocation [32], as a few examples,24

fairly assigning course seats to students [11] or dividing estates, rent, fares, and others [35]. Besides,25

market equilibrium are also considered for ad auctions with budget constraints where money has real26

value [15, 16].27

Existing works often use traditional optimization method or online learning technique to solve market28

equilibrium, which can tackle one market with around 400 buyers and goods in experiments [30, 52].29

However, in realistic scenarios, there might be millions of buyers in one market (e.g. job market,30

online shopping market). In these scenarios, the description complexity for the market is O(nm) and31

it needs at least O(nm) cost to do one optimization step for the market, if there are n buyers and m32

goods in the market, which is unacceptable when n is extremely large and potentially infinite. In this33

case, and traditional optimization methods do not work anymore.34

However, contextual models come to the rescue. The success of contextual auctions[21, 5] demon-35

strate the power of contextual models, in which each bidder and item are represented as context and36
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the value (or the distribution) of item to bidder is determined by the contexts. In this way, auctions37

as well as other economic problems can be described in a more memory-efficient way, making it38

possible to accelerate the computation on these problems. Inspired by the models of contextual39

auctions, we propose the concept of contextual markets in a similar way. We verify that contextual40

markets can be useful to model large-scale markets aforementioned, since the real market can be41

assumed to be within some low dimension space, and the values of goods to buyers are often not42

hard to speculate given the knowledge of goods and buyers [46, 45]. Besides, contextual models43

never lose expressive power compared with raw models[7], giving contextual markets capabilities to44

generalize over traditional markets.45

This paper initiates the study of deep learning for contextual market equilibrium computation46

with a large number of buyers. The description complexity of contextual markets is O(n + m),47

if there are n buyers and m items in the market, making them memory-efficient and helpful for48

follow-up equilibrium computation while holding the market structure. Following the framework of49

differentiable economics [18, 26, 62], we propose a deep-learning based approach, MarketFCNet,50

in which one optimization step costs only O(m) rather than O(nm) in traditional methods, greatly51

accelerating the computation of market equilibrium. MarketFCNet takes the representations of one52

buyer and one good as input, and outputs the allocation of the good to the buyer. The training on53

MarketFCNet targets at an unbiased estimator of the objective function of EG-convex program, which54

can be formed by independent samples of buyers. By this way, we optimize the allocation function55

on “buyer space” implicitly, rather than optimizing the allocation to each buyer directly. Therefore,56

MarketFCNet can reduce the algorithm complexity such that it becomes independent of n, i.e., the57

number of buyers.58

The effectiveness of MarketFCNet is demonstrated by our experimental results. As the market59

scale expands, MarketFCNet delivers competitive performance and significantly lower running times60

compared to existing methods in different experimental settings, demonstrating the potential of deep61

learning-based methods to accelerate the approximation of large-scale contextual market equilibrium.62

The contributions of this paper consist of three parts,63

• We proposes a method, MarketFCNet, to approximate the contextual market equilibrium in64

which the number of buyers is large.65

• We proposes Nash Gap to quantify the deviation of the given allocation and price pair from66

the market equilibrium.67

• We conduct extensive experiments, demonstrating promising performance on the approxi-68

mation measure and running time compared with existing methods.69

2 Related Works70

The history of market equilibrium arises from microeconomics theory, where the concept of com-71

petitive equilibrium [51, §10] was proposed, and the existence of market equilibrium is guaranteed72

in a general setting [3, 61]. Eisenberg and Gale [28] first considered the linear market case, and73

proved that the solution of EG-convex program constitutes a market equilibrium, which lays the74

polynomial-time algorithmic foundations for market equilibrium computation. Eisenberg [27] later75

showed that EG program also works for a class of CCNH utility functions. Shmyrev program later is76

also proposed to solve market equilibrium with linear utility with a perspective shift from allocation77

to price [57], while Cole et al. [14] later found that Shmyrev program is the dual problem of EG78

program with a change of variables. There are also a branch of literature that consider computational79

perspective in more general settings such as indivisible goods [54, 19, 20] and piece-wise linear80

utility [60, 33, 34].81

There are abundant of works that present algorithms to solve the market equilibrium and shows82

the convergence results theoretically [13]. Gao and Kroer [30] discusses the convergence rates of83

first-order algorithms for EG convex program under linear, quasi-linear and Leontief utilities. Nan84

et al. [52] later designs stochastic optimization algorithms for EG convex program and Shmyrev85

program with convergence guarantee and show some economic insight. Jalota et al. [42] proposes an86

ADMM algorithm for CCNH utilities and shows linear convergence results. Besides, researchers87

are more engaged in designing dynamics that possess more economic insight. For example, PACE88
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dynamic [32, 48, 65] and proportional response dynamic [63, 66, 12], though the original idea of89

PACE arise from auction design [16, 15].90

With the fast growth of machine learning and neural network, many existing works aim at resolving91

economic problem by deep learning approach, which falls into the differentiate economy framework92

[26]. A mainstream is to approximate the optimal auction with differentiable models by neural93

networks [25, 29, 36, 55]. The problem of Nash equilibrium computation in normal form games94

[22, 50, 23] and optimal contract design [62] through deep learning also attracts researchers’ attentions.95

Among these methodologies, transformer architecture [50, 21, 47] is widely used in solving economic96

problems.97

To the best of our knowledge, no existing works try to approximate market equilibrium through deep98

learning. Besides, although some literature focuses on low-rank markets and representative markets99

[46, 45], our works firstly propose the concept of contextual market. We believe that our approach100

will pioneer a promising direction for large-scale contextual market equilibrium computation.101

3 Contextual Market Modelling102

In this section, we focus on the model of contextual market equilibrium in which goods are assumed to103

be divisible. Let the market consist of n buyers, denoted as 1, ..., n, and m goods, denoted as 1, ...,m.104

We denote [k] as the abbreviation of the set {1, 2, . . . , k}. Each buyer i ∈ [n] has a representation bi,105

and each good j ∈ [m] has a representation gj . We assume that bi belongs to the buyer representation106

space B, and gj belongs to the good representation space G. For a buyer with representation b ∈ B,107

she has budget B(b) > 0. Denote Y (g) > 0 as the supply of good with representation g. Although108

many existing works [30] assume that each good j has unit supply (i.e. Y (g) ≡ 1 for all g ∈ G)109

without loss of generality, their results can be easily generalized to our settings.110

An allocation is a matrix x = (xij)i∈[n],j∈[m] ∈ Rn×m
+ , where xij is the amount of good j allocated111

to buyer i. We denote xi = (xi1, . . . , xim) as the vector of bundle of goods that is allocated to buyer112

i. The buyers’ utility function is denoted as u : B × Rm
+ → R+, here u(bi;xi) denotes the utility of113

buyer i with representation bi when she chooses to buy xi. We denote ui(xi) as an equivalent form114

of u(bi;xi) and often refer them as the same thing. Similarly, B(bi), Y (gj) and Bi, Yj are often115

referred to as the same thing, respectively.116

Let p = (p1, . . . , pm) ∈ Rm
+ be the prices of the goods, the demand set of buyer with representation117

bi is defined as the set of utility-maximizing allocations within budget constraint.118

D(bi;p) := argmax
xi

{
u(bi;xi) | xi ∈ Rm

+ , ⟨p,xi⟩ ≤ B(bi)
}
. (1)

A contextual market is a 4-tuple:M = ⟨n,m, (bi)i∈[n], (gj)j∈[m]⟩, where buyer utility u(bi;xi) is119

known given the information of the market. We also assume budget function B : B → R+ represents120

the budget of buyers and capacity function Y : G → R+ represents the supply of goods. All of121

u, B and Y are assumed to be public knowledge and excluded from a market representation. This122

assumption mainly comes from two aspects: (1) these functions can be learned from historical data123

and (2) budgets and supplies can be either encoded in b and g in some way.124

The market equilibrium is represented as a pair (x,p), x ∈ Rn×m
+ , p ∈ Rm

+ , which satisfies the125

following conditions.126

• Buyer optimality: xi ∈ D(bi,p) for all i ∈ [n],127

• Market clearance:
∑n

i=1 xij ≤ Y (gj) for all j ∈ [m], and equality must hold if pj > 0.128

We say that ui is homogeneous (with degree 1) if it satisfies ui(αxi) = αui(xi) for any xi ≥ 0 and129

α > 0 [53, §6.2]. Following existing works, we assume that uis are CCNH utilities, where CCNH130

represents for concave, continuous, non-negative, and homogeneous functions[30]. For CCNH131

utilities, a market equilibrium can be computed using the following Eisenberg-Gale convex program132

(EG):133

max

n∑
i=1

Bi log ui(xi) s.t.

n∑
i=1

xij ≤ Yj , x ≥ 0. (EG)

Theorem 3.1 shows that the market equilibrium can be represented as the optimal solution of (EG).134
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Theorem 3.1 (Gao and Kroer [30]). Let ui be concave, continuous, non-negative and homogeneous135

(CCNH). Assume ui(1) > 0 for all i. Then, (i) (EG) has an optimal solution and (ii) any optimal136

solution x to (EG) together with its optimal Lagrangian multipliers p∗ ∈ Rm
+ constitute a market137

equilibrium, up to arbitrary assignment of zero-price items. Furthermore, ⟨p∗,x∗
i ⟩ = Bi for all i.138

Based on Theorem 3.1, it’s easy to find that we can always assume
∑

i∈[n] xij = Yj while preserving139

the existence of market equilibrium, which states as follows.140

Proposition 3.2. Following the assumptions in Theorem 3.1. For the following EG convex program141

with equality constraints,142

max

n∑
i=1

Bi log ui(xi) s.t.

n∑
i=1

xij = Yj , x ≥ 0. (2)

Then, an optimal solution x∗ together with its Lagrangian multipliers p∗ ∈ Rm
+ constitute a market143

equilibrium. Moreover, assume more that for each good j, there is some buyer i such that ∂ui

∂xij
> 0144

always hold whenever ui(xi) > 0, then all prices are strictly positive in market equilibrium. As a145

consequence, Equation (EG) and Equation (2) derive the same solution.146

We leave all proofs to Appendix B. Since the additional assumption in Proposition 3.2 is fairly weak,147

without further clarification, we always assume the conditions in Proposition 3.2 hold and the market148

clearance condition becomes
∑

i∈[n] xij = Y (gj), ∀j ∈ [m].149

4 MarketFCNet150

In this section, we introduce the MarketFCNet (denoted as Market Fully-Connected Network)151

approach to solve the market equilibrium when the number of buyers is large and potentially infinite.152

MarketFCNet is a sampling-based methodology, and the key point is to design an unbiased estimator153

of an objective function whose solution coincides with the market equilibrium. The main advantage154

is that it has the potential to fit the infinite-buyer case without scaling the computational complexity.155

Therefore, MarketFCNet is scalable with the number of buyers varies.156

4.1 Problem Reformulation157

Following the idea of differentiable economics [26], we consider parameterized models to represent158

the allocation of good j to buyer i, denoted as xθ(bi, gj), and call it allocation network, where θ is the159

network parameter. Given buyer i and good j, the network can automatically compute the allocation160

xij = xθ(bi, gj). The allocation to buyer i is represented as xi = xθ(bi, g) and the allocation161

matrix is represented as x = xθ(b, g). Then the market clearance constraint can be reformulated as162 ∑
i∈[n] xθ(bi, gj) = Y (gj),∀j ∈ [m] and the price constraint can be reformulated as xθ(b, g) ≥ 0.163

Let b be uniformly distributed from B = {bi : i ∈ [n]}, then the EG program (EG) becomes,164

max
xθ

OBJ(xθ) = Eb[B(b) log u(b;xθ(b, g))]

s.t. Eb[xθ(b, gj)] = Y (gj)/n,∀j ∈ [m]

xθ(b, g) ≥ 0

(EG-FC)

For simplicity, we take Y (gj)/n ≡ 1 for all gj .165

4.2 Optimization166

The second constraint in (EG-FC) can be easily handled by the network architecture (for example,167

network with a softplus layer σ(x) = log(1 + exp(x)). As for the first constraint, from Theorem 3.1,168

we know the prices of goods are simply the Lagrangian multipliers for the first constraint in (EG-FC).169

Therefore, we employ the Augmented Lagrange Multiplier Method (ALMM) to solve the problem170

(EG-FC). We define Lρ(xθ, λ) as the Lagrangian, which has the form:171

Lρ(xθ;λ) =−OBJ(xθ) +

m∑
j=1

λj (Eb[xθ(b, gj)]− 1) +
ρ

2

m∑
j=1

(Eb[xθ(b, gj)]− 1)
2

(3)
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Figure 1: Training process of MarketFCNet. On each iteration, the batch of M independent buyers
are drawn. each buyer and each good are represented as k-dimension context. The (i, j)’th element in
the allocation matrix represents the allocation computed from i’th buyer and j’th good. MarketFCNet
training process alternates between the training of allocation network and prices. The training of
allocation network need to achieve an unbiased estimator L̂ρ(xθ;λ) of the loss function Lρ(xθ;λ),
followed by gradient descent. The training of prices need to get an unbiased estimator ∆̂λj of ∆λj ,
followed by ALMM updating rule λj ← λj + βt∆̂λj .
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Directly computing the objective function seems intractable due to the potentially infinite data size.172

Therefore, we follow the framework in learning theory culture that we only guarantee to achieve an173

unbiased gradient of the objective function [1, 8]. The training process of MarketFCNet is presented174

in Figure 1.175

To finish the ALMM algorithm, we need to obtain unbiased estimators of following two expressions.176

• An unbiased estimator of Lρ(xθ;λ).177

• An unbiased estimator of ∆λj , where ∆λj is given by ∆λj = ρ (Eb[xθ(b, gj)]− 1).178

Unbiased estimator of ∆λj We aim to obtain an unbiased estimator of Eb[xθ(b, gj)]. By apply-179

ing Monte Carlo method, we can choose batch size M and sample b1, b2, ..., bM ∼ U(B), then180

1
M

∑M
i=1 xθ(bi, gj) forms an unbiased estimator.181

Unbiased estimator of Lp(xθ;λ) For OBJ(xθ) and the second term, the technique to achieve an182

unbiased estimator is similar. u(b;xθ(b, g)) in OBJ(xθ) can be calculated directly by summing over183

all goods. For the last term, notice that184

(Eb [xθ(b, gj)]− 1)
2
= (Eb [xθ(b, gj)]− 1) · (Eb′ [xθ(b

′, gj)]− 1) (4)

Therefore, we can sample b1, ..., bM , b′1, ..., b
′
M ∼ U(B) and compute185

ρ

2
· 1

M

M∑
i=1

m∑
j=1

(xθ(bi, gj)− 1) · (xθ(b
′
i, gj)− 1) (5)

which provides an unbiased estimator for the last term, capturing the squared deviation of output186

allocations from the constraint.187

5 Performance Measures of Market Equilibrium188

In this section, we propose Nash Gap to measure the performance of an approximated market189

equilibrium and show that Nash Gap preserves the economic interpretation for market equilibrium. To190

introduce Nash Gap, we first introduce two types of welfare, Log Nash Welfare and Log Fixed-price191

Welfare in Definition 5.1 and Definition 5.2, respectively.192
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Definition 5.1 (Log Nash Welfare). The Log Nash Welfare (abbreviated as LNW) is defined as193

LNW(x) =
1

Btotal

∑
i∈[n]

Bi log ui(xi), (6)

where Btotal =
∑

i∈[n] Bi is the total budgets for buyers.194

Notice that LNW(x) is identical to the objective function in Equation (EG), differing only in the195

constant term coefficient.196

Definition 5.2 (Fixed-price and Log Fixed-price Welfare). We define the fixed-price utility for buyer197

i as,198

ũ(bi;p) = max
xi

{u(bi;xi) | xi ∈ Rm
+ , ⟨p,xi⟩ ≤ B(bi)} (7)

which represents the optimal utility that buyer i can obtain at the price level p, regardless of the199

market clearance constraints. The Log Fixed-price Welfare (abbreviated as LFW) is defined as the200

logarithm of Fixed-price Welfare,201

LFW(p) =
1

Btotal

∑
i∈[n]

Bi log ũi(p) (8)

Based on these definitions, we present the definition of Nash Gap.202

Definition 5.3 (Nash Gap). We define Nash Gap (abbreviated as NG) as the difference of Log Nash203

Welfare and Log Fixed-price Welfare, i.e.204

NG(x,p) = LFW(p)− LNW(x) (9)

5.1 Properties of Nash Gap205

To show why NG is useful in the measure of market equilibrium, we first observe that,206

Proposition 5.4 (Price constraints). If (x,p) constitute a market equilibrium, the following identity207

always hold,208 ∑
j∈[m]

pjYj =
∑
i∈[n]

Bi (10)

Below, we state the most important theorem in this paper.209

Theorem 5.5. Let (x,p) be a pair of allocation and price. Assuming the allocation satisfies market210

clearance and the price meets price constraint, then we have NG(x,p) ≥ 0.211

Moreover, NG(x,p) = 0 if and only if (x,p) is a market equilibrium.212

Theorem 5.5 show that Nash Gap is an ideal measure of the solution concept of market equilibrium,213

since it holds following properties,214

• NG(x,p) is continuous on the inputs (x,p).215

• NG(x,p) ≥ 0 always hold. (under conditions in Theorem 5.5)216

• NG(x,p) = 0 if and only if (x,p) meets the solution concept.217

• The computation of NG does not require the knowledge of an equilibrium point (x∗,p∗)218

Since some may argue that NG(x,p) is not intuitive to understand, we consider some more intuitive219

measures, the Euclidean distance to the market equilibrium, i.e., ||x − x∗|| and ||p − p∗||, as220

well as the difference on Weighted Social Welfare, |WSW(x)−WSW(x∗)|, where WSW(x) :=221 ∑
i∈[n]

Bi

Btotal
ui(xi), and show the connection between NG and these intuitive measures.222

Proposition 5.6. Under some technical assumptions (which is presented in Appendix B.4), if223

NG(x,p) = ε, we have:224

• ||p− p∗|| = O(
√
ε).225
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• ||xi − x∗
i || = O(

√
ε) for all i.226

• |WSW(x)−WSW(x∗)| = O(ε).227

Finally, we give a saddle-point explaination for Nash Gap.228

Corollary 5.7. Within market clearance and price constraint, we have229

min
p

LFW(p) = max
x

LNW(x) (11)

Corollary 5.7 provides an economic interpretation for GAP. Market equilibrium can be seen as the230

saddle point over social welfare, and the social welfare for x can be actually implemented while231

the social welfare for p is virtual and desired by buyers. Nash Gap measures the gap between the232

“desired welfare” and the “implemented welfare” for buyers.233

5.2 Measures in General Cases234

Since NG only works for (x,p) that satisfies market clearance and price constraints, we generalize235

the measure of NG to a more general case, which need to give a measure for all positive (x,p).236

We first notice that any equilibrium must satisfy the conditions of market clearance and price237

constraint, we first make a projection on arbitrary positive (x,p) to the space where these constraints238

hold. Specifically, if we let239

αj =
Vj∑
i xij

, x̃ij = xij · αj β =

∑
i Bi∑

j Vjpj
, p̃j = β · pj (12)

then (x̃, p̃) satisfies these constraints and we consider NG(x̃, p̃) as the equilibrium measure.240

Besides, we also need to measure how far is the point (x,p) to the space within the conditions of241

market clearance and price constraint. we propose following two measurement, called Violation of242

Allocation (abbreviated as VoA) and Violation of Price (abbreviated as VoP), respectively.243

VoA(x) :=
1

m

∑
j

| logαj |, VoP(p) := | log β| (13)

From the expressions of VoA and VoP, we know that these two constraints hold if and only if244

VoA(x) = 0 and VoP(p) = 0.245

We argue that this projection is of economic meaning. If (x,p) constitute a market equilibrium246

and we scale budget with a factor of β, then (x, βp) constitute a market equilibrium in the new247

market. Similarly, if we scale the value for each buyer with factor 1/α (here α can be a vector in248

Rm
+ ) and capacity with factor α, then, (αx, 1

αp) constitute a market equilibrium in the new market.249

These instances are evidence that market equilibrium holds a linear structure over market parameters.250

Therefore, a linear projection can eliminate the effect from linear scaling, while preserving the effect251

from orthogonal errors.252

Notice that x = x̃ and p = p̃ if and only if VoA(x) = 0 and VoP(p) = 0, respectively. From253

Theorem 5.5 We can easy derive following statements:254

Proposition 5.8. For arbitrary x ∈ Rn×m
+ ,p ∈ Rm

+ , we have VoA(x) ≥ 0,VoP(p) ≥255

0,NG(x̃, p̃) ≥ 0 always hold. Moreover, (x,p) is a market equilibrium if and only if VoA(x) =256

VoP(p) = NG(x̃, p̃) = 0.257

Proposition 5.8 is a certificate that VoA(x),VoP(p),NG(x̃, p̃) together form a good measure for258

market equilibrium. Therefore, in our experiments we compute these measures of solutions and259

prefer a lower measure without further clarification.260

6 Experiments261

In this section, we present empirical experiments that evaluate the effectiveness of MarketFCNet.262

Though briefly mentioned in this section, we leave the details of baselines, implementations, hyper-263

parameters and experimental environments to Appendix C.264
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Table 1: Comparison of MarketFCNet with baselines: n = 1, 048, 576 buyers and m = 10 goods.
The GPU time for MarketFCNet represents the training time and testing time, respectively.

Methods NG VoA VoP GPU Time

Naïve 3.65e-1 0 0 3.57e-3

EG 2.17e-2 2.620e-1 7.031e-2 197

EG-m 2.49e-4 6.01e-2 9.77e-2 100

FC 1.63e-3 1.416e-2 6.750e-3 43.6; 9.63e-2

6.1 Experimental Settings265

In our experiments, all utilities are chosen as CES utilities, which captures a wide utility class266

including linear utilities, Cobb-Douglas utilities and Leontief utilities and has been widely studied in267

literature [59, 4]. CES utilities have the form,268

ui(xi) =

 ∑
j∈[m]

vαijx
α
ij

1/α

with α ≤ 1. The fixed-price utilities for CES utility is derived in Appendix A.269

In order to evaluate the performance of MarketFCNet, we compare them mainly with a baseline that270

directly maximizes the objective in EG convex program with gradient ascent algorithm (abbreviated271

as EG), which is widely used in the field of market equilibrium computation. Besides, we also272

consider a momentum version of EG algorithm with momentum β = 0.9 (abbreviated as EG-m). We273

move the details of all baselines, experimental environments and implementations of algorithms to274

Appendix C.1 and Appendix C.2.275

We also consider a naïve allocation and pricing rule (abbreviated as Naïve), which can be regarded as276

the benchmark of the experiments:277

xij = 1, pj =

∑
i∈[n] Bi

mVj
, for all i, j (14)

In the following experiments, MarketFCNet is abbreviated as FC. Notice that Naïve always gives an278

allocation that satisfies market clearance and price constraints, while EG, EG-m and FC do not.279

6.2 Experiment Results280

Comparing with Baselines We choose number of buyers n = 1, 048, 576 = 220, number of items281

m = 10, CES utilities parameter α = 0.5 and representation with standard normal distribution as282

the basic experimental environment of MarketFCNet; We consider NG(x̃, p̃),VoA(x),VoP(p) and283

the running time of algorithms as the measures. Without special specification, these parameters are284

default settings among other experiments. Results are presented in Table 1. From these results we285

can see that the approximations of MarketFCNet are competitive with EG and EG-m and far better286

than Naïve, which means that the solution of MarketFCNet are very close to market equilibrium.287

MarketFCNet also achieve a much lower running time compared with EG and EG-m, which indicates288

that these methods are more suitable to large-scale market equilibrium computation. In following289

experiments, VoA and VoP measures are omitted and we only report NG and running time.290

Experiments in different parameters settings In this experiments, the market scale is chosen as291

n = 4, 194, 304 and m = 10. We consider experiments on different distribution of representation,292

including normal distribution, uniform distribution and exponential distribution. See (a) and (b)293

in Figure 2 for results. We also consider different α in our experimental settings. Specifically,294

our settings consist of: 1) α = 1, the utility functions are linear; 2) α = 0.5, where goods are295

substitutes; 3) α = 0, where goods are neither substitutes or complements; 4) α = −1, where goods296

are complements. More detailed results are shown in (c) and (d) Figure 2. The performance of297

MarketFCNet is robust in both settings.298
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Figure 2: The Nash Gap and GPU running time for different algorithms: MarketFCNet, EG and
EG-m. Different colors represent for different algorithm. Market size is chosen as n = 4, 194, 304
buyers and m = 10 goods.
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Figure 3: The Nash Gap and GPU running time for different algorithms: MarketFCNet, EG and
EG-m. Different colors represent for different algorithm. Market size is chosen as n = 218, 220, 222

buyers and m = 5, 10, 20 goods.
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(b) GPU running time on different mar-
ket size, n = 218, 220, 222 buyers and
m = 5, 10, 20 goods.

Different market scale for MarketFCNet In this section we ask that how market size (here n299

and m) will have impact on the efficiency of MarketFCNet. We set m = 5, 10, 20 and n = 218 =300

262, 114, 220 = 1, 048, 576, 222 = 4, 194, 304 as the experimental settings. For each combination301

of n and m, we train MarketFCNet and compared with EG and EG-m, see results in Figure 3. As302

the market size varies, MarketFCNet has almost the same Nash Gap and running time, which shows303

the robustness of MarketFCNet method over different market sizes. However, as the market size304

increases, both EG and EG-m have larger Nash Gaps and longer running times, demonstrating that305

MarketFCNet is more suitable to large-scale contextual market equilibrium computation.306

7 Conclusions and Future Work307

This paper initiates the problem of large-scale contextual market equilibrium computation from a deep308

learning perspective. We believe that our approach will pioneer a promising direction for large-scale309

contextual market equilibrium computation.310

For future works, it would be promising to extend these methods to the case when only the number of311

goods is large, or both the numbers of goods and buyers are large, which stays a blank throughout our312

works. Since many existing works proposed dynamics for online market equilibrium computation,313

it’s also promising to extend our approaches to tackle the online market setting with large buyers.314

Besides, both existing works and ours consider sure budgets and values for buyers, and it would be315

interesting to extend the fisher market and equilibrium concept when the budgets or values of buyers316

are stochastic or uncertain.317

9



References318

[1] Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5319

(4-5):185–196, 1993.320

[2] Kenneth J Arrow. An extension of the basic theorems of classical welfare economics. In321

Proceedings of the second Berkeley symposium on mathematical statistics and probability,322

volume 2, pages 507–533. University of California Press, 1951.323

[3] Kenneth J Arrow and Gerard Debreu. Existence of an equilibrium for a competitive economy.324

Econometrica: Journal of the Econometric Society, pages 265–290, 1954.325

[4] Kenneth J Arrow, Hollis B Chenery, Bagicha S Minhas, and Robert M Solow. Capital-labor326

substitution and economic efficiency. The review of Economics and Statistics, pages 225–250,327

1961.328

[5] Santiago Balseiro, Christian Kroer, and Rachitesh Kumar. Contextual standard auctions with329

budgets: Revenue equivalence and efficiency guarantees. Management Science, 69(11):6837–330

6854, 2023.331

[6] Siddhartha Banerjee, Vasilis Gkatzelis, Artur Gorokh, and Billy Jin. Online nash social welfare332

maximization with predictions. In Proceedings of the 2022 Annual ACM-SIAM Symposium on333

Discrete Algorithms (SODA), pages 1–19. SIAM, 2022.334

[7] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.335

In Proceedings of the 26th annual international conference on machine learning, pages 41–48,336

2009.337

[8] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings338

of COMPSTAT’2010: 19th International Conference on Computational StatisticsParis France,339

August 22-27, 2010 Keynote, Invited and Contributed Papers, pages 177–186. Springer, 2010.340

[9] Simina Brânzei, Yiling Chen, Xiaotie Deng, Aris Filos-Ratsikas, Søren Frederiksen, and Jie341

Zhang. The fisher market game: Equilibrium and welfare. In Proceedings of the AAAI342

Conference on Artificial Intelligence, volume 28, 2014.343

[10] Jonathan Brogaard, Terrence Hendershott, and Ryan Riordan. High-frequency trading and price344

discovery. The Review of Financial Studies, 27(8):2267–2306, 2014.345

[11] Eric Budish. The combinatorial assignment problem: Approximate competitive equilibrium346

from equal incomes. Journal of Political Economy, 119(6):1061–1103, 2011.347

[12] Yun Kuen Cheung, Richard Cole, and Yixin Tao. Dynamics of distributed updating in fisher348

markets. In Proceedings of the 2018 ACM Conference on Economics and Computation, pages349

351–368, 2018.350

[13] Richard Cole and Lisa Fleischer. Fast-converging tatonnement algorithms for one-time and351

ongoing market problems. In Proceedings of the Fortieth Annual ACM Symposium on Theory352

of Computing, pages 315–324, 2008.353

[14] Richard Cole, Nikhil Devanur, Vasilis Gkatzelis, Kamal Jain, Tung Mai, Vijay V Vazirani,354

and Sadra Yazdanbod. Convex program duality, fisher markets, and nash social welfare. In355

Proceedings of the 2017 ACM Conference on Economics and Computation, pages 459–460,356

2017.357

[15] Vincent Conitzer, Christian Kroer, Debmalya Panigrahi, Okke Schrijvers, Nicolas E Stier-Moses,358

Eric Sodomka, and Christopher A Wilkens. Pacing equilibrium in first price auction markets.359

Management Science, 68(12):8515–8535, 2022.360

[16] Vincent Conitzer, Christian Kroer, Eric Sodomka, and Nicolas E Stier-Moses. Multiplicative361

pacing equilibria in auction markets. Operations Research, 70(2):963–989, 2022.362

[17] Michael Curry, Alexander R Trott, Soham Phade, Yu Bai, and Stephan Zheng. Finding general363

equilibria in many-agent economic simulations using deep reinforcement learning. 2021.364

10



[18] Michael Curry, Tuomas Sandholm, and John Dickerson. Differentiable economics for random-365

ized affine maximizer auctions. arXiv preprint arXiv:2202.02872, 2022.366

[19] Xiaotie Deng, Christos Papadimitriou, and Shmuel Safra. On the complexity of equilibria. In367

Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, pages 67–71,368

2002.369

[20] Xiaotie Deng, Christos Papadimitriou, and Shmuel Safra. On the complexity of price equilibria.370

Journal of Computer and System Sciences, 67(2):311–324, 2003.371

[21] Zhijian Duan, Jingwu Tang, Yutong Yin, Zhe Feng, Xiang Yan, Manzil Zaheer, and Xiaotie Deng.372

A context-integrated transformer-based neural network for auction design. In International373

Conference on Machine Learning, pages 5609–5626. PMLR, 2022.374

[22] Zhijian Duan, Wenhan Huang, Dinghuai Zhang, Yali Du, Jun Wang, Yaodong Yang, and Xiaotie375

Deng. Is nash equilibrium approximator learnable? In Proceedings of the 2023 International376

Conference on Autonomous Agents and Multiagent Systems, pages 233–241, 2023.377

[23] Zhijian Duan, Yunxuan Ma, and Xiaotie Deng. Are equivariant equilibrium approximators378

beneficial? In Proceedings of the 40th International Conference on Machine Learning, ICML’23.379

JMLR.org, 2023.380

[24] Zhijian Duan, Haoran Sun, Yurong Chen, and Xiaotie Deng. A scalable neural network for381

DSIC affine maximizer auction design. 2023. URL https://openreview.net/forum?id=382

cNb5hkTfGC.383

[25] Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David Parkes, and Sai Srivatsa Ravindranath.384

Optimal auctions through deep learning. In International Conference on Machine Learning,385

pages 1706–1715. PMLR, 2019.386

[26] Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David C Parkes, and Sai Srivatsa Ravin-387

dranath. Optimal auctions through deep learning: Advances in differentiable economics. Journal388

of the ACM (JACM), 2023.389

[27] Edmund Eisenberg. Aggregation of utility functions. Management Science, 7(4):337–350,390

1961.391

[28] Edmund Eisenberg and David Gale. Consensus of subjective probabilities: The pari-mutuel392

method. The Annals of Mathematical Statistics, 30(1):165–168, 1959.393

[29] Zhe Feng, Harikrishna Narasimhan, and David C Parkes. Deep learning for revenue-optimal394

auctions with budgets. In Proceedings of the 17th International Conference on Autonomous395

Agents and Multiagent Systems, pages 354–362, 2018.396

[30] Yuan Gao and Christian Kroer. First-order methods for large-scale market equilibrium computa-397

tion. Advances in Neural Information Processing Systems, 33:21738–21750, 2020.398

[31] Yuan Gao and Christian Kroer. Infinite-dimensional fisher markets and tractable fair division.399

Operations Research, 71(2):688–707, 2023.400

[32] Yuan Gao, Alex Peysakhovich, and Christian Kroer. Online market equilibrium with application401

to fair division. Advances in Neural Information Processing Systems, 34:27305–27318, 2021.402

[33] Jugal Garg, Ruta Mehta, Vijay V Vazirani, and Sadra Yazdanbod. Settling the complexity of403

leontief and plc exchange markets under exact and approximate equilibria. In Proceedings of404

the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 890–901, 2017.405

[34] Jugal Garg, Yixin Tao, and László A Végh. Approximating equilibrium under constrained406

piecewise linear concave utilities with applications to matching markets. In Proceedings of407

the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2269–2284.408

SIAM, 2022.409

[35] Jonathan Goldman and Ariel D Procaccia. Spliddit: Unleashing fair division algorithms. ACM410

SIGecom Exchanges, 13(2):41–46, 2015.411

11

https://openreview.net/forum?id=cNb5hkTfGC
https://openreview.net/forum?id=cNb5hkTfGC
https://openreview.net/forum?id=cNb5hkTfGC


[36] Noah Golowich, Harikrishna Narasimhan, and David C Parkes. Deep learning for multi-facility412

location mechanism design. In International Joint Conferences on Artificial Intelligence, pages413

261–267, 2018.414

[37] Xue-Zhong He and Shen Lin. Reinforcement learning equilibrium in limit order markets.415

Journal of Economic Dynamics and Control, 144:104497, 2022.416

[38] Howard Heaton, Daniel McKenzie, Qiuwei Li, Samy Wu Fung, Stanley Osher, and Wotao Yin.417

Learn to predict equilibria via fixed point networks. arXiv preprint arXiv:2106.00906, 2021.418

[39] Edward Hill, Marco Bardoscia, and Arthur Turrell. Solving heterogeneous general equilibrium419

economic models with deep reinforcement learning. arXiv preprint arXiv:2103.16977, 2021.420

[40] Zhiyi Huang, Minming Li, Xinkai Shu, and Tianze Wei. Online nash welfare maximization421

without predictions. In International Conference on Web and Internet Economics, pages422

402–419. Springer, 2023.423

[41] Devansh Jalota and Yinyu Ye. Stochastic online fisher markets: Static pricing limits and adaptive424

enhancements. arXiv preprinted arXiv:2205.00825, 2023.425

[42] Devansh Jalota, Marco Pavone, Qi Qi, and Yinyu Ye. Fisher markets with linear constraints:426

Equilibrium properties and efficient distributed algorithms. Games and Economic Behavior,427

141:223–260, 2023.428

[43] Nils Kohring, Fabian Raoul Pieroth, and Martin Bichler. Enabling first-order gradient-based429

learning for equilibrium computation in markets. In International Conference on Machine430

Learning, pages 17327–17342. PMLR, 2023.431

[44] Christian Kroer. Ai, games, and markets. 2023. https://www.columbia.edu/~ck2945/432

files/main_ai_games_markets.pdf.433

[45] Christian Kroer and Alexander Peysakhovich. Scalable fair division for’at most one’preferences.434

arXiv preprint arXiv:1909.10925, 2019.435

[46] Christian Kroer, Alexander Peysakhovich, Eric Sodomka, and Nicolas E Stier-Moses. Comput-436

ing large market equilibria using abstractions. In Proceedings of the 2019 ACM Conference on437

Economics and Computation, pages 745–746, 2019.438

[47] Ningyuan Li, Yunxuan Ma, Yang Zhao, Zhijian Duan, Yurong Chen, Zhilin Zhang, Jian Xu,439

Bo Zheng, and Xiaotie Deng. Learning-based ad auction design with externalities: The frame-440

work and a matching-based approach. In Proceedings of the 29th ACM SIGKDD Conference on441

Knowledge Discovery and Data Mining, pages 1291–1302, 2023.442

[48] Luofeng Liao, Yuan Gao, and Christian Kroer. Nonstationary dual averaging and online fair443

allocation. Advances in Neural Information Processing Systems, 35:37159–37172, 2022.444

[49] Yuxuan Lu, Qian Qi, and Xi Chen. A framework of transaction packaging in high-throughput445

blockchains. arXiv preprint arXiv:2301.10944, 2023.446

[50] Luke Marris, Ian Gemp, Thomas Anthony, Andrea Tacchetti, Siqi Liu, and Karl Tuyls. Tur-447

bocharging solution concepts: Solving nes, ces and cces with neural equilibrium solvers.448

Advances in Neural Information Processing Systems, 35:5586–5600, 2022.449

[51] Andreu Mas-Colell, Michael Dennis Whinston, Jerry R Green, et al. Microeconomic theory,450

volume 1. Oxford University Press New York, 1995.451

[52] Tianlong Nan, Yuan Gao, and Christian Kroer. Fast and interpretable dynamics for fisher452

markets via block-coordinate updates. arXiv preprint arXiv:2303.00506, 2023.453

[53] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic game theory,454

2007. Book available for free online, 2007.455

[54] Christos Papadimitriou. Algorithms, games, and the internet. In Proceedings of the Thirty-third456

Annual ACM Symposium on Theory of Computing, pages 749–753, 2001.457

12

https://www.columbia.edu/~ck2945/files/main_ai_games_markets.pdf
https://www.columbia.edu/~ck2945/files/main_ai_games_markets.pdf
https://www.columbia.edu/~ck2945/files/main_ai_games_markets.pdf


[55] Jad Rahme, Samy Jelassi, Joan Bruna, and S Matthew Weinberg. A permutation-equivariant458

neural network architecture for auction design. In Proceedings of the AAAI Conference on459

Artificial Intelligence, volume 35, pages 5664–5672, 2021.460

[56] Weiran Shen, Sébastien Lahaie, and Renato Paes Leme. Learning to clear the market. In461

International Conference on Machine Learning, pages 5710–5718. PMLR, 2019.462

[57] Vadim I Shmyrev. An algorithm for finding equilibrium in the linear exchange model with fixed463

budgets. Journal of Applied and Industrial Mathematics, 3:505–518, 2009.464

[58] The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 1972. No-465

belprize.org. Nobel Prize Outreach AB 2024, Sun. 28 Jan 2024. https://www.nobelprize.466

org/prizes/economic-sciences/1972/summary/.467

[59] Hal R Varian and Hal R Varian. Microeconomic analysis, volume 3. Norton New York, 1992.468

[60] Vijay V Vazirani and Mihalis Yannakakis. Market equilibrium under separable, piecewise-linear,469

concave utilities. Journal of the ACM (JACM), 58(3):1–25, 2011.470

[61] Leon Walras. Elements of pure economics. Routledge, 2013.471

[62] Tonghan Wang, Paul Dütting, Dmitry Ivanov, Inbal Talgam-Cohen, and David C Parkes.472

Deep contract design via discontinuous piecewise affine neural networks. arXiv preprint473

arXiv:2307.02318, 2023.474

[63] Fang Wu and Li Zhang. Proportional response dynamics leads to market equilibrium. In475

Proceedings of the Thirty-ninth Annual ACM Symposium on Theory of Computing, pages476

354–363, 2007.477

[64] Ruitu Xu, Yifei Min, Tianhao Wang, Michael I Jordan, Zhaoran Wang, and Zhuoran Yang.478

Finding regularized competitive equilibria of heterogeneous agent macroeconomic models via479

reinforcement learning. In International Conference on Artificial Intelligence and Statistics,480

pages 375–407. PMLR, 2023.481

[65] Zongjun Yang, Luofeng Liao, and Christian Kroer. Greedy-based online fair allocation with482

adversarial input: Enabling best-of-many-worlds guarantees. arXiv preprint arXiv:2308.09277,483

2023.484

[66] Li Zhang. Proportional response dynamics in the fisher market. Theoretical Computer Science,485

412(24):2691–2698, 2011.486

13

https://www.nobelprize.org/prizes/economic-sciences/1972/summary/
https://www.nobelprize.org/prizes/economic-sciences/1972/summary/
https://www.nobelprize.org/prizes/economic-sciences/1972/summary/


Appendix487

A Derivation of Fixed-price Utility for CES Utility Functions 14488

B Omitted Proofs 16489

C Additional Experiments Details 22490

A Derivation of Fixed-price Utility for CES Utility Functions491

In this section we show the explicit expressions of Fixed-price Utility for CES utility functions.492

We first consider the case α ̸= 0, 1,−∞. The optimization problem for consumer i is:493

max
xij ,j∈[m]

ui(xi) =

 ∑
j∈[m]

vαijx
α
ij

1/α

(15)

s.t.
∑
j∈[m]

xijpj = Bi (Budget Constraint)

xij ≥ 0 (16)

Not hard to verify that in an optimal solution with Equation (Budget Constraint), Equation (16)494

always holds, therefore we omit this constraint in our derivation.495

We write the Lagrangian L(xi, λ)496

L(xi, λ) = ui(xi) + λ(Bi −
∑
j∈[m]

xijpj) (17)

By ∂L
∂xij

= 0, we have497

∂ui

∂x∗
ij

(xi) = λpj (18)

We derive that498

∂ui

∂xij
(xi) =

1

α

 ∑
j∈[m]

vαijx
α
ij

1/α−1

· αvαijxα−1
ij (19)

vαijx
α−1
ij =cpj · · · let c = λ ·

 ∑
j∈[m]

vαijx
α
ij

1/α−1

(20)

x∗
ij =

v
α

1−α

ij

c
1

1−α · p
1

1−α

j

(21)

Taking (21) into (Budget Constraint), we get499

Bi =
∑
j∈[m]

v
α

1−α

ij

c
1

1−α

· p−
α

1−α

j (22)

c
1

1−α =
1

Bi

∑
j∈[m]

(
vij
pj

) α
1−α

(23)
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Taking Equation (23) into Equation (21), we get500

x∗
ij =

v
α

1−α

ij

p
1

1−α

j

· Bi

c0
(24)

where c0 =
∑

j∈[m]

(
vij
pj

) α
1−α

501

Taking Equation (24) into Equation (15), we finally have502

ui(x
∗
i ) =

[
vαijx

α
ij

] 1
α

=

 ∑
j∈[m]

vαij
v

α2

1−α

ij

p
α

1−α

j

cα0


=

 ∑
j∈[m]

(
vij
pj

) α
1−α

cα0


=Bic

1−α
α

0

log ũi(p) = log ui(x
∗
i ) = logBi +

1− α

α
log c0

(25)

For α = 1, by simple arguments we know that consumer will only buy the good that with largest503

value-per-cost, i.e., vij/pj . Therefore, we have504

log ũi(p) = logBi + logmax
j

vij
pj

(26)

For α = 0, we have log ui(xi) =
1
vt

∑
j∈[m] vij log xij where vt =

∑
j∈[m] vij .505

Similarly, we have506

cpj =
∂ log ui

∂xij
=

vij
xij

(27)

x∗
ij =

vij
cpj

(28)

By solving budget constraints we have c = vt
Bi

, and therefore, x∗
ij =

vijBi

pjvt
and507

log ui(x
∗
i ) =

1

vt

∑
j∈[m]

(vij log
vijBi

pjvt
) (29)

= logBi +
∑
j∈[m]

vij
vt

log
vij
pjvt

(30)

For α = −∞, we can easily know that vijx∗
ij ≡ c for some c. By solving budget constraint we have508 ∑

j∈[m]

cpj
vij

= Bi (31)

c = Bi

 ∑
j∈[m]

pj
vij

−1

(32)

log ũi(p) = log c = logBi − log
∑
j∈[m]

pj
vij

(33)
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Above all, the log Fixed-price Utility for CES functions is509

log ũi(p) =


logBi +maxj log

vij
pj

for α = 1

logBi +
∑

j∈[m]
vij
vt

log
vij
pjvt

for α = 0

logBi − log
∑

j∈[m]
pj

vij
for α = −∞

logBi +
1−α
α log c0 others

(34)

B Omitted Proofs510

B.1 Proof of Proposition 3.2511

We consider Lagrangian multipliers p and use the KKT condition. The Lagrangian becomes512

L(p,x) =
∑
i

Bi log ui(xi)−
∑
j

pj(
∑
i

xij − Yj) (35)

and the partial derivative of xij is513

∂L(p,xi)

∂xij
=

Bi

ui(xi)

∂ui

∂xij
− pj (36)

By complementary slackness of xij ≥ 0, we have514

Bi

ui(xi)

∂ui

∂xij
≤ pj for all i (37)

By theorem 3.1, we know that if (x,p) is a market equilibrium, we must have ui(xi) > 0 for all i,515

and by condition in Proposition 3.2, we can always select buyer i such that ∂ui

∂xij
> 0. Therefore, we516

have pj > 0.517

As a consequence, pj > 0 indicates that
∑

j xij = Vj by market clearance condition.518

B.2 Proof of Proposition 5.4519

Consider the market equilibrium condition ⟨p∗,x∗
i ⟩ = Bi, we have

∑
j pjxij = Bi. sum over this520

expression, we have
∑

i

∑
j pjxij =

∑
i Bi. Then,

∑
j pj

∑
i xij =

∑
i Bi. Notice that we have521 ∑n

i=1 xij = Yj in market equilibrium, so
∑

j pjYj =
∑

i Bi, that completes the proof.522

B.3 Proof of Theorem 5.5523

Proof of Theorem 5.5. Denote (x,p) as the market equilibrium, p as the price for goods and x∗
i (p)524

as the optimal consumption set of buyer i when the price is p.525

We have following equation:526 ∑
j

xijpj =Bi (38)

xi ∈x∗
i (p) (39)∑

i∈[n]

xij =Yj (40)

ui(p) =ui(xi), ∀p ∈ Rm
+ , ∀xi ∈ x∗

i (p) (41)

From Proposition 5.4 we know
∑

i∈[n] Bi =
∑

j∈[m] Yjpj .527

Let p′ be some price for items such that
∑

j∈[m] Yjp
′
j =

∑
i∈[n] Bi. Let x′

i ∈ x∗
i (p

′) and B′
i =528

⟨p′,xi⟩. We know that529 ∑
i∈[n]

B′
i = ⟨p′,

∑
i∈[n]

xi⟩ = ⟨p′,Y ⟩ =
∑
i∈[n]

Bi (42)
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For consumer i, xi costs B′
i at price p′, thus Bi

B′
i
xi costs Bi at price p′. Besides, x′

i also costs Bi for530

price p′, and x′ is the optimal consumption for buyer i. Then we have531

ui(p
′) = ui(x

′
i) ≥ ui(

Bi

B′
i

xi) =
Bi

B′
i

ui(xi) (43)

where the last equation is from the homogeneity(with degree 1) of utility function.532

Taking logarithm and weighted sum with Bi, we have533 ∑
i∈[n]

Bi log ui(p
′) ≥

∑
i∈[n]

Bi log
Bi

B′
i

+
∑
i∈[n]

Bi log ui(xi) (44)

Take Btotal =
∑

i∈[n] Bi, the first term in RHS becomes534 ∑
i∈[n]

Bi log
Bi

B′
i

(45)

=Btotal

∑
i∈[n]

(
Bi

Btotal
log

Bi/Btotal

B′
i/Btotal

)
(46)

=Btotal · KL(
B

Btotal
|| B′

Btotal
) (47)

≥ 0 (48)

Therefore,535 ∑
i∈[n]

Bi log ui(p
′) ≥

∑
i∈[n]

Bi log ui(xi) (49)

For x′ that satisfies market clearance, by optimality of EG program(EG), we have536 ∑
i∈[n]

Bi log ui(xi) ≥
∑
i∈[n]

Bi log ui(x
′
i) (50)

Equation (49) and Equation (50) together complete the proof of the first part.537

If (x,p) constitutes a market equilibrium, it’s obvious that LFW(p) and LNW(x) are identical,538

therefore NG(x,p) = 0.539

On the other hand, if (x,p) is not a market equilibrium, but NG(x,p) = 0, it means that the KL540

convergence term must equal to 0, and Bi = B′
i for all i, which means that xi costs buyer i with541

money Bi and xi are in the consumption set of buyer i. Since (x,p) is not a market equilibrium,542

there is at least one buyer that can choose a better allocation x′
i to improve her utility, therefore543

improve LFW(p), and it cannot be the case that LFW(p) = LNW(x), which makes a contradiction.544

545

B.4 Proof of Proposition 5.6546

We leave the formal presentation of Proposition 5.6 and proofs to three theorems below.547

Lemma B.1. Assume that ui(xi) is twice differentiable and denote H(xi) as the Hessian matrix of548

ui(xi). If following hold:549

• H(x∗
i ) has rank m− 1550

• ||xi − x∗
i || = ε for some i551

• x∗
i > 0552

then we have OPT− LNW(x) = Ω(ε2).553
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Lemma B.2. Denote ũi(p, Bi) and x∗
i (p, Bi) as the maximum utility buyer i can get and the554

corresponding consumption for buyer i when her budget is Bi and prices are p. If following hold:555

• ||p− p∗|| = ε556

• x∗
i (p, Bi) is differentiable with p.557

• HX := (
∑

i∈[n]

∂x∗
ij

∂pk
(p∗, Bi))j,k∈[m] has full rank.558

then we have LFW (p)−OPT = Ω(ε2).559

Remark B.3. It’s worth notice that H(x∗
i ) can not has full rank m, since ui(x) is assumed to be560

homogeneous and thus linear in the direction x. Therefore, we have H(xi)xi = 0 for all xi.561

Let Ci = {xi ∈ Rm
+ : ⟨p,xi⟩ = Bi} be the consumption set of buyer i, since xi can not be parallel562

with Ci, the condition that H(x∗
i ) has rank m− 1 means that, H(xi) is strongly concave at point x∗

i563

on the consumption set Ci.564

Besides, we emphasize that the conditions in Lemma B.1 and Lemma B.2 are satisfied for CES utility565

with α < 1.566

Corollary B.4. Under the assumptions in Lemma B.1 and Lemma B.2, if NG(x,p) = ε, we have:567

• ||p− p∗|| = O(
√
ε)568

• ||xi − x∗
i || = O(

√
ε) for all i569

Proof of Corollary B.4. A direct inference from Lemma B.1 and Lemma B.2, notice that NG = ε570

indicates that OPT− LNW(x) ≤ ε and LFW(p)−OPT ≤ ε.571

Corollary B.4 states that, for a pair of (x,p) that satisfy market clearance and price constraints, a572

small Nash Gap indicates that the point (x,p) is close to the equilibrium point (x∗,p∗), in the sense573

of Euclidean distance.574

Lemma B.5. Assume following hold:575

• buyers have same utilities at x∗, i.e. ui(x
∗
i ) = uj(x

∗
j ) ≡ c for all i, j576

• ||xi − x∗
i || ≤ ε for all i577

then, we have |WSW(x)−WSW(x∗)| = O(ε2).578

Remark B.6. These conditions can be held when buyers are homogeneous, i.e., Bi = Bj and579

ui(x) = uj(x) for all i, j,x ∈ Rm
+ . Besides, consider buyers with same budgets, these conditions580

can also be held if the market has some “equivariance property”, e.g., there is a n-cycle permutation of581

buyers ρ and permutation of goods τ , such that ui(xi) = uρ(i)(τ(xρ(i))) for all i and τ(Y1, ..., Ym) =582

(Y1, ..., Ym).583

Corollary B.7. Under the assumptions in Lemma B.1 and Lemma B.5, if NG(x,p) = ε, we have584

• |WSW(x)−WSW(x∗)| = O(ε).585

Proof. A direct inference from Lemma B.1 and Lemma B.5.586

B.4.1 Proof of Lemma B.1587

Proof of Lemma B.1. We observe that588

OPT− LNW(x) =
∑
i∈[n]

Bi [log ui(x
∗
i )− log ui(xi)]
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Consider the Taylor expansion of log ui(xi) and ui(xi):589

log ui(xi) = log ui(x
∗
i ) +

1

ui(x∗
i )
(ui(xi)− ui(x

∗
i ))

− 1

2ui(x∗
i )

2
(ui(xi)− ui(x

∗
i ))

2

+O((ui(xi)− ui(x
∗
i ))

3)

ui(xi) =ui(x
∗
i ) +

∂ui

∂xi
(x∗

i )(xi − x∗
i )

+
1

2
(xi − x∗

i )
TH(x∗

i )(xi − x∗
i ) +O(||xi − x∗

i ||3)

Notice that ||xi − x∗
i || = ε, we have590

log ui(xi) = log ui(x
∗
i )

+
1

ui(x∗
i )
[
∂ui

∂xi
(x∗

i )(xi − x∗
i ) · · · ε term (51)

+
1

2
(xi − x∗

i )
TH(x∗

i )(xi − x∗
i )] · · · ε2 term (52)

− 1

2ui(x∗
i )

2

(
∂ui

∂xi
(x∗

i )(xi − x∗
i )

)2

· · · ε2 term (53)

+O(ε3)

We next deal with Equation (51) to Equation (53) separately.591

Derivation of Equation (51) Since x∗
i solves the buyer i’s problem, we must have592

∂ui

∂xi
(x∗

i ) = λip
∗ (54)

where λi is the Lagrangian Multipliers for buyer i.593

We also know that ui(xi) is homogeneous with degree 1, by Euler formula, we derive594

⟨∂ui

∂xi
(xi),xi⟩ = ui(xi) (55)

Combine Equation (54) and Equation (55) and take xi = x∗
i , we derive595

λi⟨p∗,x∗
i ⟩ =ui(x

∗
i )

λi =
ui(x

∗
i )

Bi

∂ui

∂xi
(x∗

i ) =
ui(x

∗
i )

Bi
p∗

Sum up over i for Equation (51), we have596 ∑
i∈[n]

Bi
1

ui(x∗
i )

∂ui

∂xi
(x∗

i )(xi − x∗
i )

=p
∑
i∈[n]

(xi − x∗
i )

=0 · · · by market clearance

(56)

Derivation of Equation (52) and Equation (53) Combining Equation (52) and Equation (53), we597

have598

Bi

2ui(x∗
i )
(xi − x∗

i )
TH(x∗

i )(xi − x∗
i )−

1

2Bi
(xi − x∗

i )
T (p∗p∗T )(xi − x∗

i )

=
1

2Bi
(xi − x∗

i )
T (

B2
i

ui(x∗
i )
H(x∗

i )− p∗p∗T )(xi − x∗
i )
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Denote H0(x
∗
i ) =

B2
i

ui(x∗
i )
H(x∗

i )− p∗p∗T , next we assert that H0(x
∗
i ) is negative definite.599

Since H(x∗
i ) and −p∗p∗T are negative semi-definite, H0(x

∗
i ) must be negative semi-definite with600

rank(H0(x
∗
i )) ≥ m− 1.601

Let λ1 ≤ λ2 ≤ · · · ≤ λm−1 < λm = 0 be eigenvalues and v1, ..., vn = x∗
i be eigenvectors602

of H(x∗
i ). If rank(H0(x

∗
i )) = m − 1, it means that x∗

i has to be eigenvectors of −p∗p∗T with603

eigenvalue 0. However, we have −p∗p∗Tx∗
i = −Bip

∗ ̸= 0, which leads to a contradiction.604

Therefore, we have rank(H0(x
∗
i )) = m and H0(x

∗
i ) is negative definite, we denote λi

1 ≤ ...,≤605

λi
n < 0 as the eigenvalues of H0(x

∗
i ), and k as the universal lower bound for |λi

n|, then we have that,606

1

2
(xi − x∗

i )
TH0(x

∗
i )(xi − x∗

i ) ≤ −
k

2
ε2 (57)

By combining Equation (56) and Equation (57), we have607

OPT− LNW(x) =−
∑
i∈[n]

Bi

[
1

2Bi
(xi − x∗

i )
TH0(x

∗
i )(xi − x∗

i )

]
+O(ε3)

≥k

2
ε2 +O(ε3)

=Ω(ε2)

(58)

608

B.4.2 Proof of Lemma B.2609

Proof of Lemma B.2. The proof is similar with Appendix B.4.1 by using Taylor expansion technique.610

Before that, we first derive some identities.611

By Roy’s identity, we have612

∂ũi

∂pj
(p, Bi) = −x∗

ij(p, Bi)
∂ũi

∂Bi
(p, Bi)

Since u(xi) is homogeneous with xi, it’s easy to derive that613

∂ũi

∂Bi
(p, Bi) =

ũi(p, Bi)

Bi

Above all,614

∂ũi

∂pj
(p, Bi) = −

1

Bi
x∗
ij(p, Bi)ũi(p, Bi)

Besides,615

∂2ũi

∂pj∂pk
(p, Bi) =

1

B2
i

x∗
ij(p, Bi)x

∗
ik(p, Bi)ũi(p, Bi)

− 1

Bi

x∗
ij(p, Bi)

∂pk
ũi(p, Bi)

Next we consider the Taylor expansion,616

log ũi(p) = log ũi(p
∗)

+
1

ũi(p∗)
[
∂ũi

∂p
(p∗)(p− p∗) · · · ε term (59)

+
1

2
(p− p∗)THp(p− p∗)] · · · ε2 term (60)

− 1

2ũi(p∗)2

[
∂ũi

∂p
(p∗)(p− p∗)

]2
· · · ε2 term (61)

+O(ε3)

where Hp is the Hessian matrix for ũi(p).617
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Derivation of Equation (59) We have618 ∑
i∈[n]

Bi
1

ũi(p∗)
⟨∂ũi

∂p
(p∗), (p− p∗)⟩

=
∑
i∈[n]

⟨x∗
i , (p− p∗)⟩

=⟨1, (p− p∗)⟩ · · · by market clearance
=0 · · · by price constraints

Derivation of Equation (60) and Equation (61) These expressions become619

1

2ũi(p∗)
[
1

B2
i

ũi(p
∗)⟨x∗

i ,p− p∗⟩2 − 1

Bi
ũi(p

∗)(p− p∗)T (
∂x∗

ij

∂pk
(p∗, Bi))j,k∈[m](p− p∗)]

− 1

2ũi(p∗)2
ũi(p

∗)2

B2
i

⟨x∗
i ,p− p∗⟩2

=
1

2Bi
(p− p∗)T (

∂x∗
ij

∂pk
(p∗, Bi))j,k∈[m](p− p∗)

Summing up over i, we derive that620

LFW(p)−OPT =
∑
i∈[n]

Bi
1

2Bi
(p− p∗)T (

∂x∗
ij

∂pk
(p∗, Bi))j,k∈[m](p− p∗) +O(ε3)

=
1

2
(p− p∗)THX(p− p∗) +O(ε3)

Since p∗ gets the minimum of LFW(p), we must have that HX is positive semi-definite. Together621

with HX has full rank, we know that HX is positive definite. Denote λm as the minimum eigenvalues622

of HX , we have623

LFW(p)−OPT ≥ε2λm

2
+O(ε3)

=Ω(ε2)

624

B.4.3 Proof of Lemma B.5625

Proof of Lemma B.5. Notice that626

WSW(x) = WSW(x∗) +
∑
i∈[n]

⟨∂WSW

∂xi
(x∗

i ), (xi − x∗
i )⟩+O(ε2)

We have627

∂WSW

∂xi
(x∗

i )

=Bi
∂ui

∂xi
(x∗

i )

=Bi
ui(x

∗
i )

Bi
p∗

=cp∗

Therefore,628

WSW(x) =WSW(x∗) +
∑
i∈[n]

c⟨p∗,xi − x∗
i ⟩+O(ε2)

=WSW(x∗) +O(ε2) · · ·market clearance
which completes the proof.629

630
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C Additional Experiments Details631

C.1 More about baselines632

EG program solver (abbreviated as EG) We propose the first baseline algorithm EG. Recall the633

Eisenberg-Gale convex program(EG):634

max
1

n

n∑
i=1

Bi log ui(xi) s.t.
1

n

n∑
i=1

xij = 1, x ≥ 0. (62)

We use the network module in pytorch to represent the parameters x ∈ Rn×m
+ , and softplus activation635

function to satisfy x ≥ 0 automatedly. We use gradient ascent algorithm to optimize the parameters636

x. For constraint 1
n

∑
i∈[n] xij = 1, we introduce Lagrangian multipliers λj and minimize the637

Lagrangian:638

Lρ(x;λ) =−
1

n

∑
i∈[n]

Bi log ui(xi) +
∑
j∈[m]

λj

 1

n

∑
i∈[n]

xij − 1

 (63)

+
ρ

2

∑
j∈[m]

 1

n

∑
i∈[n]

xij − 1

2

(64)

The updates of λ is λj ← λj + βtρ
(

1
n

∑
i∈[n] xij − 1

)
, here βt is step size, which is identical with639

that in MarketFCNet. The algorithm returns the final (x,λ) as the approximated market equilibrium.640

EG program solver with momentum (abbreviated as EG-m) The program to solve is exactly641

same with that in EG. The only difference is that we use gradient ascent with momentum to optimize642

the parameters x.643

C.2 More Experimental Details644

Without special specification, we use the experiment settings as follows. All experiments are con-645

ducted in one RTX 4090 graphics cards using 16 CPUs or 1 GPU. We set dimension of representations646

of buyers and goods to be d = 5. Each elements in representation is i.i.d from N (0, 1) for normal647

distribution (default) contexts, U [0, 1] for uniform distribution contexts and Exp(1) for exponential648

distribution contexts. Budget is generated with B(b) = ||b||2, and valuation in utility function is649

generated with v(b, g) = softplus(⟨b, g⟩), where softplus(x) = log(1 + exp(x)) is a smoothing650

function that maps each real number to be positive. α in CES utility are chosen to be 0.5 by default.651

MarketFCNet is designed as a fully connected network with depth 5 and width 256 per layer. ρ is652

chosen to be 0.2 in Augmented Lagrange Multiplier Method and the step size βt is chosen to be 1√
t
.653

We choose K = 100 as inner iteration for each epoch, and training for 30 epochs in MarketFCNet.654

For EG and EG-m baselines, we choose the inner iteration K = 1000 when n > 1000 and K = 100655

when n ≤ 1000 for each epoch. Baselines are enssembled with early stopping as long as NG is lower656

than 10−3. Both baselines are optimized for 30 epochs in total.657

We use Adam optimizer and learning rate 1e− 4 to optimize the allocation network in MarketFCNet.658

When computing ∆λj in MarketFCNet, we directly compute ∆λj rather than generate an unbiased659

estimator, since it does not cost too much to consider all buyers for one time. For those baselines,660

we use gradient descent to optimize the parameters following existing works, and the step size is661

fine-tuned to be 1e+2 for α = 1, n > 1000; 1e+3 for α < 1, n > 1000 and 1 for α < 1, n ≤ 1000662

and 0.1 for α = 1, n ≤ 1000 for better performances of the baselines. Since that Lagrangian663

multipliers λ ≤ 0 will indicate an illegal Nash Gap measure, therefore, we hard code EG algorithm664

such that it will only return a result when it satisfies that the price λj > 0 for all good j. All baselines665

are run in GPU when n > 1000 and CPU when n ≤ 1000.1666

1We find in the experiments when market size is pretty large, baselines run slower on CPU than on GPU and
this phenomenon reverses when market size is small. Therefore, the hardware on which baselines run depend on
the market size and we always choose the faster one in experiments.
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NeurIPS Paper Checklist667

1. Claims668

Question: Do the main claims made in the abstract and introduction accurately reflect the669

paper’s contributions and scope?670

Answer: [TODO][Yes]671

Justification: [TODO]672

Guidelines:673

• The answer NA means that the abstract and introduction do not include the claims674

made in the paper.675

• The abstract and/or introduction should clearly state the claims made, including the676

contributions made in the paper and important assumptions and limitations. A No or677

NA answer to this question will not be perceived well by the reviewers.678

• The claims made should match theoretical and experimental results, and reflect how679

much the results can be expected to generalize to other settings.680

• It is fine to include aspirational goals as motivation as long as it is clear that these goals681

are not attained by the paper.682

2. Limitations683

Question: Does the paper discuss the limitations of the work performed by the authors?684

Answer: [TODO][Yes]685

Justification: [TODO]We discuss the limitations in Section 7.686

Guidelines:687

• The answer NA means that the paper has no limitation while the answer No means that688

the paper has limitations, but those are not discussed in the paper.689

• The authors are encouraged to create a separate "Limitations" section in their paper.690

• The paper should point out any strong assumptions and how robust the results are to691

violations of these assumptions (e.g., independence assumptions, noiseless settings,692

model well-specification, asymptotic approximations only holding locally). The authors693

should reflect on how these assumptions might be violated in practice and what the694

implications would be.695

• The authors should reflect on the scope of the claims made, e.g., if the approach was696

only tested on a few datasets or with a few runs. In general, empirical results often697

depend on implicit assumptions, which should be articulated.698

• The authors should reflect on the factors that influence the performance of the approach.699

For example, a facial recognition algorithm may perform poorly when image resolution700

is low or images are taken in low lighting. Or a speech-to-text system might not be701

used reliably to provide closed captions for online lectures because it fails to handle702

technical jargon.703

• The authors should discuss the computational efficiency of the proposed algorithms704

and how they scale with dataset size.705

• If applicable, the authors should discuss possible limitations of their approach to706

address problems of privacy and fairness.707

• While the authors might fear that complete honesty about limitations might be used by708

reviewers as grounds for rejection, a worse outcome might be that reviewers discover709

limitations that aren’t acknowledged in the paper. The authors should use their best710

judgment and recognize that individual actions in favor of transparency play an impor-711

tant role in developing norms that preserve the integrity of the community. Reviewers712

will be specifically instructed to not penalize honesty concerning limitations.713

3. Theory Assumptions and Proofs714

Question: For each theoretical result, does the paper provide the full set of assumptions and715

a complete (and correct) proof?716

Answer: [TODO][No]717
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Justification: [TODO]The answer is [Yes] except for Theorem 3.1. Theorem 3.1 is a718

restated theorem of Gao and Kroer [30] and we do not cover that proof in this paper.719

Guidelines:720

• The answer NA means that the paper does not include theoretical results.721

• All the theorems, formulas, and proofs in the paper should be numbered and cross-722

referenced.723

• All assumptions should be clearly stated or referenced in the statement of any theorems.724

• The proofs can either appear in the main paper or the supplemental material, but if725

they appear in the supplemental material, the authors are encouraged to provide a short726

proof sketch to provide intuition.727

• Inversely, any informal proof provided in the core of the paper should be complemented728

by formal proofs provided in appendix or supplemental material.729

• Theorems and Lemmas that the proof relies upon should be properly referenced.730

4. Experimental Result Reproducibility731

Question: Does the paper fully disclose all the information needed to reproduce the main ex-732

perimental results of the paper to the extent that it affects the main claims and/or conclusions733

of the paper (regardless of whether the code and data are provided or not)?734

Answer: [TODO][Yes]735

Justification: [TODO]We present the experimental details in Appendix C.736

Guidelines:737

• The answer NA means that the paper does not include experiments.738

• If the paper includes experiments, a No answer to this question will not be perceived739

well by the reviewers: Making the paper reproducible is important, regardless of740

whether the code and data are provided or not.741

• If the contribution is a dataset and/or model, the authors should describe the steps taken742

to make their results reproducible or verifiable.743

• Depending on the contribution, reproducibility can be accomplished in various ways.744

For example, if the contribution is a novel architecture, describing the architecture fully745

might suffice, or if the contribution is a specific model and empirical evaluation, it may746

be necessary to either make it possible for others to replicate the model with the same747

dataset, or provide access to the model. In general. releasing code and data is often748

one good way to accomplish this, but reproducibility can also be provided via detailed749

instructions for how to replicate the results, access to a hosted model (e.g., in the case750

of a large language model), releasing of a model checkpoint, or other means that are751

appropriate to the research performed.752

• While NeurIPS does not require releasing code, the conference does require all submis-753

sions to provide some reasonable avenue for reproducibility, which may depend on the754

nature of the contribution. For example755

(a) If the contribution is primarily a new algorithm, the paper should make it clear how756

to reproduce that algorithm.757

(b) If the contribution is primarily a new model architecture, the paper should describe758

the architecture clearly and fully.759

(c) If the contribution is a new model (e.g., a large language model), then there should760

either be a way to access this model for reproducing the results or a way to reproduce761

the model (e.g., with an open-source dataset or instructions for how to construct762

the dataset).763

(d) We recognize that reproducibility may be tricky in some cases, in which case764

authors are welcome to describe the particular way they provide for reproducibility.765

In the case of closed-source models, it may be that access to the model is limited in766

some way (e.g., to registered users), but it should be possible for other researchers767

to have some path to reproducing or verifying the results.768

5. Open access to data and code769

Question: Does the paper provide open access to the data and code, with sufficient instruc-770

tions to faithfully reproduce the main experimental results, as described in supplemental771

material?772
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to access the raw data, preprocessed data, intermediate data, and generated data, etc.787

• The authors should provide scripts to reproduce all experimental results for the new788
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• At submission time, to preserve anonymity, the authors should release anonymized791

versions (if applicable).792

• Providing as much information as possible in supplemental material (appended to the793
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the797

results?798

Answer: [TODO][Yes]799
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• The answer NA means that the paper does not include experiments.802
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that is necessary to appreciate the results and make sense of them.804
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material.806

7. Experiment Statistical Significance807
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Justification: [TODO]Since the difference between baselines and our method is promi-811
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run with given experimental conditions).821
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• It should be clear whether the error bar is the standard deviation or the standard error825

of the mean.826
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