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ABSTRACT

How can we effectively learn to make decisions when there are no ground-truth
counterfactual observations? We propose an end-to-end learning approach to the
contextual stochastic optimization problem under decision-dependent uncertainty.
We propose both exact methods and efficient sampling-based methods to implement
our approach. We also introduce a new class of two-stage stochastic optimiza-
tion problems to the end-to-end learning framework. Here, the first stage is an
information-gathering problem to decide which random variable to “poll” and
gain information about before making a second-stage decision based off of it. We
provide theoretical analysis showing (1) that optimally minimizing our proposed
objective produces optimal decisions and (2) generalization bounds between in-
sample and out-of-sample cost. We computationally test the proposed approach
on multi-item assortment problems where demand is affected by cross-item com-
plementary and supplementary effects. Overall, our method outperforms other
benchmarks by more than 15% and performs best in high noise, across any cost
configuration, and when given sufficient data. We also introduce an experiment for
the information-gathering problem on a real-world electricity generation problem.
We show our method proposes decisions with more than 7% lower cost than other
decision-making methods.

1 INTRODUCTION

We consider the general problem of contextual stochastic optimization under decision-dependent
uncertainty. Often in decision-making one is faced with a two-step problem: first to predict some
unknown quantity/random variable such as product demand, and second to make an operational
decision based off of this such as allocating inventory. We will consider settings in which this
operational decision-making process is well-defined through traditional optimization-based methods
as is common in many applications ranging from pricing, to inventory allocation, to scheduling. In
this paper we consider that the random variable is dependent on the decision made. For example, the
demand (random variable) of a product will change depending on the price (the decision) set. We
refer to this as endogenous uncertainty.

Here, the predictive model needs to take the decision as an input as well as additional features.
In order to make a decision, one would need to optimize over the predictive model’s input. This
brings several challenges. (1) The more complex the learning model, the more difficult to optimize.
Linear-like models are most tractable, but provide less predictive power. On the other hand, neural
networks or random forests with more predictive power are significantly more expensive to optimize
over. (2) When optimizing over the entire input space, it becomes easy to choose decisions that are
far out-of-sample and for which the model has poor predictive power. This may result in decisions
with significantly worse objective than predicted. As an example for pricing, the actual demand
could be significantly lower than predicted. This is especially problematic when there is sparse or
limited data. Moreover, it is often unclear what aspect of the distribution to predict. For instance,
while one is interested in maximizing mean reward, it is generally not optimal to choose the decision
which maximizes the reward of the mean counterfactual outcome. We will see this explicitly in the
following sections as well as the experimental section. We introduce an approach to jointly predict
and optimize in this endogenous setting which learns a prediction aligned with expected cost.
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Existing end-to-end frameworks (all under exogenous random variables) are not able to tackle the
single-stage endogenous problem The traditional end-to-end formulation requires knowledge of the
outcome or value of a decision taken. When the uncertainty is independent of the decision taken,
one can simply use the data as the ground truth. For example, demand is independent of supply in a
warehouse. Therefore, for any decision taken based off of a learned demand prediction, one can then
calculate the cost using the realized demand observed in the data. This cost is then used as the loss
for the demand prediction problem. However, when the uncertainty depends on the decision, one can
no longer take this approach since one does not have access to counterfactual information. That is,
we do not have knowledge about what would have happened if a different action were taken.

This endogenous end-to-end problem is also closely connected to information-gathering problems
which have not been studied under the end-to-end learning framework to date. In this class of
problems, there is an initial stage before the prediction and decision-making step where one is
allowed to gather information about some of the random variables ahead of time. For example, one
can send out a survey or set up a poll to better understand demand at a particular location. Given
this new information, one can then make more informed predictions about the rest of the random
variables (for e.g. demand at the remaining locations), and subsequently make a more informed
decision. If demand across locations is correlated, one can gain significant information from polling
a single location. As a first stage, one must decide which location to poll, observe information
about this location, then make a new prediction and a decision for all locations conditioned on this
new observation. So, there are three questions (1) which random variable should we poll (2) what
predictions to make conditioned on observing this chosen variable and (3) what decision to make
based off of these predictions.

In contrast to the first endogenous uncertainty setting we presented, the random variables here are not
dependent on the decisions we take. However, our knowledge of the random variable does depend on
the first stage polling decision we must make. We extend our proposed method for end-to-end learning
with endogenous random variables to this two-stage information-gathering setting. In this paper, we
propose a new method of applying the end-to-end ideology to this setting of endogenous uncertainty
and the closely related information-gathering problem. We present the following contributions:

1. We formulate an end-to-end, or joint prediction and optimization, approach when the realizations
of uncertainty are dependent on the decisions taken. The objective is to train a model whose
corresponding predictions on in-sample decisions have task-based reward close to the observed
reward in-sample. See section 2.

2. We provide theoretical analysis showing that (1) optimally minimizing our proposed objective
produces optimal decisions and (2) convergence bounds on the generalization gap with respect to
the amount of training data used and model complexity. Overall, the generalization gap between
in-sample and out-of-sample cost decreases as 1/

√
N where N is the amount of training data.

3. Due to the non-convex nature of the end-to-end objective, we provide mixed-integer optimization
formulations, as well as a computationally efficient sampling-based approach. See Appendix A.

4. We extend our proposed method to the information-gathering problem. This is a combination of
both traditional end-to-end methods under exogenous variables in the second-stage problem and
under endogenous variables in the first stage problem. This two-stage problem class has not been
studied under the end-to-end learning setting to date.

5. Finally, we show computational experiments on a multi-item assortment optimization problem
where the demand of a product is dependent on decisions taken for all other items due to comple-
mentary or supplementary effects. We show the end-to-end approach improves significantly on
traditional two-stage methods. We also consider an electricity generation and scheduling problem.
Here we make an initial forecast, and must decide on the optimal time to update the forecast. This
involves learning how to balance the benefits of waiting for more accurate information against the
costs of delaying decisions. See section 4.

Related Work. Within the space of end-to-end offline contextual stochastic optimization there has
been relatively little work in the case of endogenous uncertainty for general optimization problems.
For instance, Bertsimas & Koduri (2022) primarily focuses on exogenous uncertainty and briefly
mentions endogenous uncertainty as an extension by adding the historical decision as an additional
feature to use to learn the outcome. However, this does not take into account the pitfalls we mentioned
earlier. Endogenous uncertainty has been studied primarily for specific problems such as pricing Liu
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& Zhang (2023) where demand naturally changes according to price, or a facility location problem
Basciftci et al. (2021) where demand changes depending on where a facility is placed. However
these take significantly different approaches from ours, not learning any parameteric model to predict
uncertainty, or ignoring learning goals from that of decision making (an aspect we refer to as two-
stage, or predict-then-optimize). Within the scope of exogenous uncertainty, where the decision
does not affect the uncertainty, there is a variety of work addressing different classes of objective
functions and single or two-stage/multi-stage problems. This includes the work of Elmachtoub &
Grigas (2022), Amos & Kolter (2017), Agrawal et al. (2019) and more. We refer the reader to surveys
Kotary et al. (2021); Sadana et al. (2023) for a more comprehensive survey.

Online learning and multi-armed bandit problems also have a similar problem setting. For example,
contextual linear bandits Chu et al. (2011) or more recently the estimation-to-decision-making meta-
algorithm Foster & Rakhlin (2020) focus on learning the decision-dependent reward of actions.
There are a variety of extensions relevant to our work, like continuous action spaces, Majzoubi et al.
(2020), Krishnamurthy et al. (2020) or large action space Dulac-Arnold et al. (2015) in reinforcement
learning. Even more similar to our scenario is offline learning or offline reinforcement learning
Lange et al. (2012), Levine et al. (2020). In the end-to-end setting we consider, we are given more
information about the problem structure than in usual bandit/RL problems. Specifically, there is
some intermediate random variable that one observes (such as demand, while reward corresponds to
revenue) for a given action (such as inventory allocation). Our approach makes explicit use of this
additional structure and this is one of the main reasons we observe better performance than methods
that directly learn reward. Work on performative learning, such as Perdomo et al. (2020), focuses
on how predictions themselves may affect observations (such as how traffic predictions will affect
driver behavior and hence traffic itself). This work focuses on how the distribution shifts over time,
depending on how predictions are made.

In contrast to more common reward-learning approaches, we consider the offline, not the online
learning setting. Learning the relationship between decisions and the intermediate random variable
also has additional advantages. Specifically, we may have additional domain knowledge about this
relationship. For example, demand of a product is generally a monotonically decreasing function of
price. This additional structure can be imposed on the learning process. However, learning revenue
directly as a function of price does not exhibit such structure we can take advantage of. We give a
more in-depth comparison with other methods in the next section.

The problem we consider is essentially a contextual stochastic programming problem with decision-
dependent uncertainty. In the non-contextual case, there has been significant work on developing
methods to solve these complex problems. See for example Goel & Grossmann (2006), Dupacová
(2006). These are difficult-to-solve problems, even in the no-context case when explicitly knowing
the distribution of the random variable. The main advantage of an end-to-end approach is in reducing
this complexity. Instead of making a distributional prediction of the relationship between decision
and the random variable, we make a deterministic one. One can view our end-to-end approach as
learning which deterministic prediction will lead to the same decision compared to when making a
distributional one. We prove in proposition 2.1 such a prediction does exist under mild assumptions.

Versions of the information-gathering problem have been studied as well. The most closely related
line of work is in the area of value of information by Howard (1966). This aims to decide the
amount a decision maker would be willing to pay for information prior to making a decision. This
notion of value information is particularly relevant in reinforcement learning applications, deciding
which actions to explore to gain the most useful information (for e.g. Arumugam & Van Roy 2021).
This work still differs significantly as ours also considers the specific structure of the objective and
intermediate random variables as we explained previously.

2 PROBLEM SETTING AND RELATED END-TO-END LEARNING LITERATURE

We first formally describe the problem. One wishes to makes decisions w ∈ P in feasible region
P ⊂ Rd. Associated with this decision is an objective g(w, z) which is a function of a random
variable z ∈ Rp dependent on the decision w itself and additional contextual information x. We
say z is distributed according to some unknown distribution Z(w,x). We give two example. (1)
w is the price chosen for a product and z is the uncertain demand that depends on the price. Then,
g(w, z) = w · z. And (2) Assortment: Uncertain demand z depends on the shelf-space inventory w
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displayed. Now consider the objective to minimize g(w, z) = max{z−w, 0}+ c ·w for paying a
backorder cost for each unit of unfulfilled demand, and a unit cost of c for procuring each unit.

We are given offline data consisting of information (x1,w1, z1), . . . , (xN ,wN , zN ) of features xn,
decisions wn (which are potentially suboptimal) and observed uncertainty zn ∼ Z(wn,xn). Finally,
our objective is to learn some function f(w,x) that predicts some statistic of the uncertainty/random
variable z in such a way that the corresponding decisions have maximum objective. Given f , and
some out-of-sample feature x, one takes decision given by finding w that maximizes the objective:

ŵ(x) = argmax
w∈P

g(w, f(w,x)). (1)

One is interested in learning some relationship between decisions w, features x, and the random
variable z. Ideally, we would have access to some function f∗(w,x) for which

g(w, f∗(w,x)) = Ez∼Z(w,x)[g(w, z)]. (2)

Then, solving equation 1 using f∗ would exactly find the optimal solution. A-priori, it is unclear
whether such an f∗ exists in the first place. We show f∗ indeed exists in proposition 2.1. The proof
can be found in Appendix B.
Proposition 2.1. For continuous objective functions g(w, z) with respect to z, there exists ẑ in the
convex hull of the support of Z(w,x) so that

g(w, ẑ) = Ez∈Z(w,x)[g(w, z)]. (3)

We propose in this paper to learn a model which predicts some statistical function of the uncertainty
(z) so that the resulting objective value/reward of the historical decisions best matches the observed
historical reward. That is, we observe zn under decision wn and features xn, with reward g(wn, zn).
Our goal is to match this with predicted reward g(wn, f(wn,xn)). Therefore, our objective is

f̂end-to-end = argmin
f∈F

N∑
n=1

(g(wn, f(wn,xn))− g(wn, zn)))2 (4)

where F is the hypothesis class of functions f we learn from. Finally, once f̂end-to-end is learned,
we can solve problem equation 1 to make decisions. Problem equation 4 can be solved directly
by gradient descent. We provide exact methods of solving it by mixed-integer programs and other
approximation methods that may be of interest in Appendix A, although we use traditional gradient
descent for simplicity in the experiments.

Convergence. For f̂end-to-end to converge to the true f∗ as the amount of data grows, we need the
hypothesis class itself to be rich enough to contain f∗. In proposition 2.1 we showed that an f∗

does exist in the first place. We can increase the complexity of F as needed to achieve better results.
However, given limited data, increasing the complexity of F can also worsen out-of-sample accuracy.
We bound this in the following theorem. We will first formally define the complexity of the hypothesis
by Rademacher complexity.
Definition 2.2 (Multidimensional Rademacher Complexity). The empirical Rademacher com-
plexity of the hypothesis class of functions F : (w,x) → Rd is given by RN (F) =

E{(wn,xn)}N
n=1

Eσ

[
supf∈F

1
N

∑N
n=1

∑d
k=1 σnkfk(w

n,xn)
]

where σnk are i.i.d. variables uni-
formly sampled from {−1, 1} (also known as Rademacher variables).

Finally, we show the following bounds.

Theorem 2.3. For any function f ∈ F , we define out-of-sample error/loss l and the empirical loss l̂
over a random sample of N datapoints (w1,xn, zn), n = 1, . . . , N

l(f) = Ew,z,x[(g(w, f(w,x))− g(w, z))
2
], l̂(f) =

N∑
n=1

(g(wn, f(wn,xn))− g(wn, zn)))2.

For any L-Lipschitz function g (with respect to z), g(w, z) ∈ [0, 1]∀w ∈ P and all z which we
assume has bounded support of Z(w,x), then we have with probability 1− δ,

l(f) ≤ l̂(f) + 2L
√
2RN (F) +

(
8 log 2/δ

N

)2

. (5)
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For many hypothesis classes F , we can bound RN (F) by a term that converges to 0 as N → ∞ and
at a rate O(1/

√
N) for common function classes like linear functions. See for example Bartlett &

Mendelson (2002). So, the overall generalization gap decreases at a O(1/
√
N) rate.

In the experiments in section 4, we will benchmark against reward-learning methods (methods that
only predict final reward instead of intermediate random variable z). This is a more complex mapping
to learn and we see find that indeed these reward-learning methods underperform. Next, we will
compare this methodology against the traditional exogenous case in section 2.1. Here, the random
variable z is independent of decisions w and is only affected by features x. As in the exogenous
end-to-end setting, the goal of f̂ is to remove the need to compute an expectation, and approximate it
with a point forecast. Once f̂end-to-end is learned, we solve (1) to make decisions.

2.1 COMPARISON WITH OTHER APPROACHES

Learning the mean. We remark that it is crucial to learn an f̂ with this task-based loss. The
common approach in ML would be to learn a model which learns the mean of the distribution of z.
That is, minimize the mean-squared error between predictions and historical observations. We will
denote this as a two-stage approach, first predicting z independent of the task loss g, then optimizing
for the optimal decision. The two-stage predictor, f̂2-stage, is a predictor of the mean E[z]. The
issue arises in the second stage when optimizing. In general E[g(w, z)] ̸= g(w,E[z]) when g is
non-linear in z. Therefore, optimizing maxw∈P g(w, f̂2-stage(w,x)) would be a proxy for optimizing
maxw∈P g(w,Ez∼Z(w,x)[z]) but not the true objective which is maxw∈P Ez∼Z(w,x)g(w, z).

Learning reward directly. Many methods in online learning such as contextual bandits or rein-
forcement learning learn the reward function directly, instead of the intermediate random variable z.
This removes the issues in the previous section about learning the mean of z since here we directly
optimize the reward. However, there are several computational downsides to reward-learning. Here,
we learn a mapping r(w,x) ≈ Ez∼Z(w,x)[g(w, z)] while only observing wn,xn and g(wn, zn)
and not zn itself or the structure of the function g. Directly learning the reward function requires
a more complex class of predictors to capture this relationship compared to an end-to-end method.
Simplifying the predictor class r is crucial as the complexity of r directly impacts the difficulty of
solving maxw∈P r(w,x) in large/continuous action space. Our approach allows for simpler model
classes while still capturing the same complexity in modeling Ez∼Z(w,x)[g(w, z)]. We further see
this explicitly in the numerical computations, see section 4.

Distinction from exogenous case Finally, we describe and compare against the setting under
exogenous random variables. We will also use this methodology in conjunction with ours in the
two stage information-gathering setting which we will introduce in section 3. The first stage is
endogenous, while the second is exogenous. For ease of comparison, we denote all parameters
in the exogenous case with a bar. Here one observes features x and corresponding realizations of
uncertainty z̄ coming from a distribution Z̄(x) that depends only on x. On the other hand, in the
endogenous case, z depends on both x and w. The objective in the exogenous case is

max
w∈P

Ez̄∼Z̄(x)[g(w, z̄)]. (6)

Computing this expectation is difficult. So, one goal of an end-to-end approach is to replace this with
a point forecast which produces the same decision and objective value. The objective is to learn a
point forecast f̄(x) to replace the distribution Z̄(x). Replacing Z̄(x) with the deterministic f̄(x) in
problem equation 6 give us maxw∈P g(w, f̄(x)) which is computationally much simpler to solve.
Given a point forecast z = f̄(x) denote the optimal corresponding decision by w∗(z):

w∗(z̄) = argmax
w∈P

g(w, z̄). (7)

We would like to learn an f̄ for which

Ez̄∼Z̄(x)

[
g(w∗(f̄(x)), z̄)

]
≈ max

w∈P
Ez̄∼Z̄(x)[g(w, z̄)] (8)

which allows us to replace Z̄(x) with f̄(x) in equation 6. This is similar to our proposed objective
equation 2. Under exogenous variables, the common data-driven objective is to learn a model f̄
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which maximizes the reward/objective of the corresponding decisions w∗(f̄(x)) that it takes. See for
example Elmachtoub & Grigas (2022). Given data (xn, z̄n)Nn=1, we wish to solve

f̂exo = argmax
f

N∑
n=1

g(w∗(f̄(xn)), z̄n). (9)

After learning some f̂exo (for the exogenous case) one then takes decisions w∗(f̂exo(x)). In the
endogenous setting, we predict a point statistic of the uncertainty so that the predicted reward for
any action taken (including historical ones) are close to their realization. In contrast, here in the
exogenous case, we are predicting a statistic of the uncertainty so that the value of the optimal
decision given a point forecast is close to the optimal expected reward. The methodology used for
the exogenous case cannot be applied to the endogenous case because it would require one to have
access to counterfactual information. The objective value of the decision w∗(f̂exo(x)) cannot be
evaluated because it was not taken historically, and we hence we do not have any information on the
random variable z that would depend on the decision. In the exogenous case, z does not depend on
the decision, so we can indeed evaluate the decision cost by using historically observed z.

3 APPLICATION TO INFORMATION GATHERING

Here we consider a novel application of the end-to-end method to a class of 2-stage optimization prob-
lems with information-gathering. As an example, consider a multi-warehouse inventory allocation
problem. In the first stage, we can choose a single location to poll to learn the demand for the next
time period. In the second stage, we must (1) predict the demand at all other locations, conditioned
on our previous observation from the poll then (2) decide how much inventory to allocate at all
warehouses. We note that this is different from traditional 2- or multi-stage stochastic optimization
problems. There, the first stage is some operational decision (for e.g. inventory allocation in a
warehouse), and then in the second stage some additional information is revealed (such as demand).
In our setting, there is a deliberate initial action to decide which additional information to reveal
ahead of time (for e.g. before allocating inventory, we can poll one location to know exact demand).

One approach would be to learn a model that predicts, for every location, the expected cost that results
from polling it. This simplifies the problem but hides the structure behind it and makes the learning
problem more complex, requiring a richer class of functions to approximate it. We explicitly observe
the advantage of using the problem structure while learning an end-to-end model in the experiments.

Formally, we are given exogenous random variables z = (z1, . . . , zd), independent of the decisions
that we take. In the first stage, the decision space will consist of choosing some index w ∈ P =
{1, . . . , d} to survey, or gain more information about, the wth entry of z, namely zw. This could
be more general beyond observing a single value, for example observing multiple values. We will
see this in an experiment in section 4. But we will keep this simple here for the sake of notation.
As another example, this could correspond to setting up a survey to learn more about the demand
of the wth product. In the second stage, we make a prediction for the remaining random variables,
conditioned on the observation of zw. Note this prediction does depend on the decision we initially
took to survey the wth random variable. In the second stage, we are given some auxiliary decision
variables v ∈ V with objective function g(v, z). In short, the entire process is as follows:

1) For an out-of-sample point x, we make a decision w to observe zw ∼ Zw(x).
2) Given the observation zw, the full vector z is distributed according to Z(x)|Zw(x)=zw .
3) We are now given some second-stage decision-making problem with variables v ∈ V with
objective g(v, z) and we wish to make decision v minimizing expected cost:

min
v∈V

Ez∼Z(x)|Zw(x)=zw
[g(v, z)]. (10)

4) Ultimately, we wish to know which observational decision w will minimize overall loss:

min
w∈P

Ezw∼Zw(x)

[
min
v∈V

Ez∼Z(x)|Zw(x)=zw
[g(v, z)]

]
. (11)

In terms of data, we observe n points (xi, wi, zi), i = 1 . . . , n where zi is distributed according to an
(unknown) distribution Z(xi). Given decision wi, we observe the realization of ziwi before making
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Algorithm 1 End-to-end information-gathering

Learn model p(x, zw) to predict z conditioned on observing zw.
Learn p by solving equation 14 with gradient descent.
Compute gradients ∂v∗(z)/∂z using any method from previous work such as Donti et al. (2017),

Cristian et al. (2023), Amos & Kolter (2017).
Learn point forecast f(w,x) by solving equation 17 by gradient descent.
For out-of-sample x, choose decision w by solving equation 18.
For out-of-sample x and decision w, observe zw. And take second-stage decision v∗(p(x, zw)).

the second-stage decision. To train we proceed as follows. We first begin by simplifying the inner
expectation in equation 10. After making a decision w of observing zw, we can make a forecast
for some statistic of the distribution Z(x)|Zw(x)=zw . Let p(x, zw) denote this prediction for all of z
conditioned on observing zw as well as features x. In particular, we are now in a similar setting as the
traditional end-to-end problem. For example, given forecast p(x, zw) for product demand, we then
need to solve an optimization problem to optimize the inventory allocation. That is, we take decision

v∗(p(x, zw)) = argmin
v∈V

g(v, p(x, zw)). (12)

Essentially, we will learn these point forecasts p(x, zw) in order to remove the expectations from
problem equation 11. This is similar to the traditional end-to-end framework in equation 8.

i) We first learn p(x, zw) to predict z conditioned on observing zw for the wth random variable. We
want such a p to approximate equation 10. That is, we need

g(v∗(p(x, zw)), z) ≈ min
v∈V

Ez∼Z(x)|Zw(x)=zw
[g(v, z)]. (13)

We learn such a p by solving the following empirical risk minimization problem, similar to equation 9:

min
p

n∑
i=1

g(v∗(p(xi, ziwi)), zi). (14)

ii) Now, substituting equation 13 into equation 11 our final problem simplifies to
min
w

Ezw∼Zw(x)[g(v
∗(p(x, zw)), z)]. (15)

This problem now falls under our end-to-end framework with endogenous random variables because
the objective function depends on p(x, zw) which in turn depends on the first-stage decision w. So,
similar to equation 2, we wish to learn a single point forecast f(w,x) to replace the expectation over
z. That is, our goal is to learn a function f so that

g
(
v∗
(
p(x, fw(w,x))

)
, f(w,x)

)
≈ Ezw∼Zw(x)[g(v

∗(p(x, zw)), z)]. (16)

We replace z with a point forecast f(w,x). To learn f we use a version of our method in equation 4:

min
f

n∑
i=1

(
g
(
v∗
(
p(xi, fwi(wi,xi))

)
, f(wi,xi)

)
− g
(
v∗
(
p(xi, ziwi))

)
, zi
))2

. (17)

iii) Finally, for an out-of-sample x, we make decisions by solving

argmin
w

g
(
v∗
(
p(x, fw(w,x))

)
, f(w,x)

)
. (18)

In practice, we cannot observe zw before making decision w, so in equation 17 and equation 18 we
“observe” the wth entry of the predicted f(w,x) instead. Algorithm 1 provides a concise description.

4 COMPUTATIONAL EXPERIMENTS

We present two experiments. The first is a single stage assortment problem where demand depends on
inventory allocation. Second, we consider a two-stage electricity scheduling problem on real-world
data. First, one makes a preliminary demand forecast, then plans to reschedule at a chosen time t.
This t must be chosen ahead of time. Afterwards, given observations up to time t, one makes a new
forecast for the remaining time.
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Assortment Optimization For the assortment optimization problem we are given a set of K
products, and we must decide the amount w = (w1, . . . , wK) of each product to stock. The demand
of a product type depends on its own stock as well as the stock of every other item. Given a
decision w and demand realization z = (z1, . . . , zK) for each product, the cost is by g(w, z) =∑K

k=1 b ·max{zk −wk, 0}2 + h ·max{wk − zk, 0}2. There is a backorder unit cost b for unfulfilled
demand and holding unit cost h unused inventory. Further, we suppose demand of one item also
depends on the presence of other items nearby. This cross-item effect is common in practice.
For example, pairs of items may act as substitutes: if there is not enough of one item, customers
may switch to another. Or they may act as complements: demand in one item decreases if the
price of the other increases. We assume the demand of an item is a function of the stock of all
other items. Each item k has a base demand α∗

k and some perturbation based on the other items
zk = max{(α∗

k +
∑

j ̸=k β
∗
k · wk)

2 + δ, 0} where δ is gaussian noise with variance dictated by the
noise level in the next experiments. The max term ensures non-negative demand. We assume a
quadratic relationship between items and demand to consider a more complex learning problem.

Methods: We compare against the following methods (1) a predict-then-optimize method, also known
as a two-stage method, which train a model to learn the uncertainty (demand in this case) as a function
of actions (inventory in this case). (2) A cost-learning method which trains a model to learning cost
directly as a function of w. This does not take into account the intermediate demand data or the
structure of the cost function. It only observes the final cost of a decision. (3) Similar to method (2),
we predict cost using a gaussian process method instead. (4a) A K-NN-based method which, for any
action, approximates cost by computing the average of the costs of the K-nearest neighboring actions.
(4b) A K-NN method which instead predicts demand then makes decisions by solving equation 1. (5)
We use our proposed method, solving equation 4. Each of the methods (1), (2), (5) use the same model
architecture for making predictions. We use a feedforward neural network with a fully-connected
layer of width 50. Each method is trained with the same parameters until convergence.

Setup: We evaluate the approaches by constructing 20 datasets by randomly iniatalizing the parameters
of α, β as described earlier. We report two metrics: the average percentage error from optimality of
each method on the 20 datasets (evaluated as the average of (c−OPT )/OPT where c is the cost
of each method and OPT is the optimal cost), as well as the standard deviation of these errors. We
compute these metrics as vary various parameters: (i) the amount of training data available, (ii) the
backorder cost to holding cost ratio, (iii) the amount of noise in the data, (iv) the width of the neural
network. For brevity, we report these metrics for our approach and the next best method. Full results
for all methods can be found in appendix C.1.

Network Depth
Depth Our Approach Cost Learner

10 1.67 ± 0.674 1.676 ± 0.602
30 2.15 ± 0.05 2.15 ± 1.103

100 0.157 ± 0.01 0.99 ± 0.712
500 0.165 ± 0.09 0.11 ± 0.207
1000 0.166 ± 0.09 0.09 ± 0.02

Table 1: Network depth results.

Noise
Noise
Level

Our Approach
(width 50)

Cost Learner
(Width 500) K-NN (4b)

0.0 0.008 ± 0.02 0.025 ± 0.06 0.002 ± 0.004
0.1 0.014 ± 0.01 0.033 ± 0.08 0.012 ± 0.022
0.2 0.038 ± 0.01 0.034 ± 0.01 0.074 ± 0.064
0.3 0.092 ± 0.03 0.111 ± 0.07 0.143 ± 0.130
0.4 0.157 ± 0.04 0.182 ± 0.08 0.283 ± 0.147
0.5 0.230 ± 0.02 0.366 ± 0.23 0.391 ± 0.174

Table 2: Noise results.
Training Data

Data 100 200 300 400 500 600 700 800 900 1000

Our Approach 2.83 1.33 0.04 0.02 0.03 0.02 0.02 0.01 0.02 0.02
KNN (4b) 0.10 0.10 0.16 0.17 0.18 0.13 0.12 0.13 0.12 0.13
KNN (4a) 0.44 0.40 0.34 0.32 0.31 0.29 0.21 0.25 0.17 0.17

reward-learning 2.36 2.55 2.31 1.78 2.11 1.79 1.90 1.10 1.15 0.69
gaussian process 1.76 2.05 1.78 1.98 1.41 1.83 1.70 1.55 1.87 1.48

two-stage 3.43 2.40 2.78 2.90 2.72 2.73 2.91 3.16 3.15 2.86

Table 3: Network depth average error (standard deviations can be found in Table 5).

In terms of parameters, we use the following setup for each set of experiments: 400 training datapoints,
with 10,000 test samples to compute average cost for each decision, a backorder cost of 1, holding
cost of 1, a noise level of 0.5. Each of the four experiments (i), (ii), (iii), (iv) described above will
vary one of these parameters as shown in Tables 1-3 while keeping the rest of the parameters fixed.
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Results: See Tables 1-3 for results. Full plots can be found in the appendix in section C.1. Overall,
our method outperforms all other methods in high noise, across any backorder cost configuration,
and when given sufficient data. We gain a few key take-aways from each of the experiments. From
experiment (i) having enough data is crucial. We see a consistent improvement in our approach
as data increases until it plateaus around 300 datapoints and onwards. The remaining approaches
all continue to improve slowly, but even at 1000 datapoints do not reach the same level of cost as
ours. See Figure 5 for a clear illustration. From experiment (ii) our method performs best across all
backorder cost choices. See Table 6 in the appendix for full results. Finally from the noise experiment
(iii), as we increase the noise level, our approach performs better than all other methods. This happens
for several reasons. The main issue with two-stage approaches (methods (1) and (4b) described
above) is the mismatch in objective — they predict the mean of the demand distribution, but this is
generally the incorrect statistic to predict. For example, if we want to learn some f(w) to predict
demand, we wish that g(w, f(w)) is close to Ez∼Dg(w, z). Since g(w, z) is not linear in z, we find
that Ezg(w, z) ̸= g(w,E[z]). However, when noise is low (and in particular when there is no noise
at all), the objectives do match. As we increase noise, the benefit of our approach is strongly visible.
The end-to-end approach learns a model f which aligns g(w, f(w)) with Ezg(w, z). On the other
hand, a cost-learning method (like methods (2), (3), (4a)) performs worse since one needs to learn a
more complex map, whereas our approach only needs to learn a demand function. For instance, the
cost learning method using a neural network with hidden layer width 500 still performs worse than
our approach using a width of only 50. Full results can be found in Figure 4. Finally, (iv), we find
that our approach outperforms all other methods even with a lower complexity model. For instance,
using a depth of only 30, our proposed method reaches the same average cost as the cost-learning
method which is only able to achieve this with depth 1000. Full results can be found in Figure 3.
Standard deviations can be found in Table 5.

Electricity scheduling: information-gathering We now consider the information-gathering setting
introduced in section 3. We consider an electricity generation scheduling problem using data from
PJM, an electricity routing company coordinating the movement of electricity throughout 13 states.
The goal is to make a generation schedule and decide on the amount of electricity to generate hour
per hour, over the next 24 hours. We consider the problem in two stages. First, we make an initial
forecast for the 24 hours dependent only on feature information for that day. Then we decide on a
time w to update the schedule. Up to time w, we use the initial forecast to generate electricity, then
given the new observations of true demand up to time w we regenerate this forecast and generation
schedule for the rest of the day. See figure 1 for an illustration of the sequence of events. There is
now a balancing act in deciding what hour w to change the schedule. If we wait longer, we gain a
better estimate of future demand, however we also use a worse forecast up to the waiting time w.
Finally, we define the objective function. The operator incurs a unit cost γe for excess generation and
a cost γs for shortages. The cost of generating v1, . . . , v24 while true demand is z1, . . . , z24 is given
by g(v, z) =

∑24
i=1 γs max{zi − vi, 0}+ γe max{vi − zi, 0}.

Methods: Full details can be found in Appendix C.2. There are three components for each model: (1)
how to make the initial forecast, (2) which time w to choose, (3) how to update the forecast given
w. We first introduce two baselines which always choose w = 0, so they never observe any of the
day’s demand, and only use their initial forecast. (1) We consider a predict-then-optimize approach,
where we learn a demand function independent of the decision-making step. We refer to this as
“Predict then optimize.” (2) We learn an end-to-end model which aims to directly minimize decision
cost g as in equation 6. We refer to this as “Vanilla E2E” (vanilla end-to-end). We then introduce
baselines that choose w in different ways, including our proposed approach. Each of these methods
use the same model for the initial forecast, and for making the updated forecast (components (1)
and (3) above). We choose the vanilla end-to-end method for this initial forecast since it performs
significantly better than the 2-stage method. We only vary the method to decide w. The goal is to

Figure 1: Electricity scheduling: sequence of actions.
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Method Average
difference

Median
cost

% Endo. E2E
Wins

Predict then optimize 710% 0.588 66%
Vanilla E2E 55% 0.339 90%
Cost Learner 7.5% 0.220 71%
Endogenous E2E 0% 0.204 100%
Random 21% 0.264 88%
Single action 20% 0.261 81%

Optimal -7.9% 0.187 NA

Table 4: Electricity scheduling: cost comparison across methods.

highlight the differences in objective cost resulting from various methods of choosing w. Here we
train a model p to predict future demand given observations z1, . . . , zw, as well as features x. Note
that here we observe all variables up to time w, which is different than in section 3 where we observe
a single variable. Up to time w, the baseline decisions are made by the vanilla end-to-end approach.
After time w, the schedule is made according to p, based on true demand up to time w.

We have three baselines for methods on choosing w. (1) choosing a (uniformly) random action w. We
refer to this as “Random.” (2) We fix a single w for all data points (choosing this best w from training
data). We refer to this as “Single action.” Finally, (3) the optimal in-hindsight decision w which
may change for every out-of-sample data point x. We refer to this as “Optimal.” We will denote our
proposed method to decide w as “Endogenous E2E” (endogenous end-to-end). This entails solving
eq. equation 17 by gradient descent for f and choosing decision w by solving eq. equation 18. As a
final baseline, we also compare against a more traditional approach: for each decision w and features
x, predict directly the loss/cost of this decision. This does not take into account the structure of the
problem and simply minimizes mean-squared error between predicted cost and observed cost of each
action on the training data. We refer to this as “Cost Learner.” Results: In table 4, we report the
average difference between decision cost of our method and the other methods for each datapoint.
Our approach is 7.5% better than the cost-learning method and less than 8% worse than optimal on
average. We also measure the median cost of each method, as well as the percentage of test datapoints
on which our approach performs better than every other approach. For example, our method only
outperforms the predict-then-optimize method 66% of the time, indicating this method does well
on some data, but on also performs significantly more poorly on others, likely where it proposes a
shortage (not knowing that a shortage is significantly worse than excess, since mean-squared error
loss is unaware of this). In addition, we also plot the cost distribution of each method on the test
data in Figure 2 alongside the optimal cost distribution. We observe that our proposed method most
closely aligns with the optimal cost everywhere. Knowing the additional structure of the problem,
our approach can better learn it.

Conclusion This paper introduces an end-to-end, or joint prediction and optimization, framework
for contextual stochastic optimization problems with decision-dependent uncertainty as well as for a
class of two-stage information-gathering problems. This work introduces two new broad problem
classes to the end-to-end framework. We evaluate our proposed method on two experiments, including
one using real-world electricity demand data, and show it consistently outperforms other baselines.

Figure 2: Cost distribution of each method. From left to right: endogenous E2E, single action,
random, cost-learner.
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REPRODUCIBILITY STATEMENT

All experiments and implementations of our methods can be found in the supplementary material.
This includes data, model hyperaparameter choices and so on. The appendix contains significant
detail on the implementation as well, both of our method and of the baselines we compare against.
We clearly state whether the baselines and datasets were from pre-existing papers which have publicly
available code and data. Finally, all theoretical results in the main paper have complete proofs in the
appendix as well as additional algorithmic methods.
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A ALGORITHMIC METHODS

A.1 EXACT REFORMULATION

We turn to an important discussion on the difficulty and the methods to solve the learning problems
presented in the earlier sections. The main difficulty in solving equation 4 is its non-convexity. Note
that each term term (g(wn, z)− rn)

2 is a non-convex function of z whenever g(w, z) is non-linear
in z. We first present an exact integer optimization-based formulation for solving the non-convex
problem, then a more efficient sampling-based approximation. In the former exact case, we will
assume that g is piece-wise linear and convex, while in the latter we make no such assumption.

We first formulate equation 4 as a mixed-integer quadratic optimization problem. Let g be the
maximum (in the case of convex g) of K linear functions g1, . . . , gK so that

g(w, z) = max
k=1,...,K

gk(w, z) (19)

The rest of the argument also follows through if we assume that g is the minimum of K linear
functions instead. As examples, the joint pricing and inventory allocation and assortment examples in
the beginning of section 2 have this structure. Now, equation 4 can be formulated as:

min
f,v,y

N∑
n=1

vn subject to (20)

vn ≥ (gk(wn, f(wn, xn))− g(wn, zn))
2 −M(1− yn,k)

gk(wn, f(wn, xn)) ≥ gj(wn, f(wn, xn))−M(1− yn,k)

K∑
k=1

yn,k = 1,∀n, and yn,k ∈ {0, 1}.

The binary variable yn,k is forced to equal 1 for any f such that g is equal to gk. We have
gk(wn, f(wn, xn)) ≥ gj(wn, f(wn, xn)) for all j = 1, . . . ,K for exactly one index k, hence
we can set yn,k = 1 and the constraints hold. For every other k, the constraints do not hold. However,
since yn,k = 0 the constraint gk(wn, f(wn, xn)) ≥ gj(wn, f(wn, xn)) − M do hold for large
enough M . Finally, we force exactly one yn,k to equal 1 by

∑
k yn,k = 1.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Finally, vn is simply equal to (gk(wn, f(wn, xn))− g(wn, zn))
2 for the appropriate k where gk =

g. Indeed, for yn,k = 1, the first constraint becomes equivalent to vn ≥ (g(wn, f(wn, xn)) −
g(wn, zn))

2. Since the objective function is to minimize
∑

n vn, it follows that vn will take the
smallest possible value which will be equal to the maximum of all g((wn, f(wn, xn))−g(wn, zn))

2−
M(1 − yn,k). Whenever yn,k = 0, the constraints can essentially be ignored since they impose
a smaller lower bound. So the maximum is achieved at k for which yn,k = 1, making vn =
(g(wn, f(wn, xn))− g(wn, zn))

2.

If f(w, x) is a linear function, then the above formulation is a mixed integer quadratic-convex
optimization problem and can be solved by off-the-shelf solvers. Of course, one can use augmented
features and kernel functions to increase the expressivity of the prediction model while remaining
linear.

A.2 SAMPLING APPROXIMATION

While exact, the formulation presented in the previous subsection is intractable as the amount of data
increases. Here we provide two sampling-based approaches that are computationally more efficient,
albeit do not guarantee optimality.

Perturbing the mean-squared predictor: (1) First compute the two-stage approximator (by
solving minθ

∑
(fθ(wn, xn)−zn)

2) and let θ̂ be the weights found. (2) For each sample s = 1, . . . , S,
perturb the weights θ̂ by some random gaussian noise δs to produce a sample θs = θ̂ + δs. (3)
Perform gradient descent using each sample θs as an initialization point. Choose the model with the
best in-sample task-based loss.

Iterative learning: (1) First, create new smaller datasets, with the kth one containing the first k ·D
datapoints (x1, w1, z1), . . . , (xk·D, wkD, zkD) where k = 1, . . . ,K = N/D. (2) For k = 1, apply
the previous method by sampling from perturbing the mean-squared predictor. Let θ1 be the final
model. (3) For k > 1, use θk−1 as the initial model, generate S new samples by perturbing θk−1,
then apply gradient descent to minimize task-based loss. Choose θk with the best loss from these.
Finally, (4) return the model with θD.

The iterative learning method is essentially a super-set of the first method. We observe it provides
generally better results as well in the numerical experiments. Intuitively, this makes sense: as we add
more data, we fine-tune the previous model learned. Moreover, this is also useful when data arrives
online. One observes data up to a time point, then make a new decision, then observe the outcome.
This new observation becomes a new datapoint that can be used for training.

Algorithm 2 Endogenous end-to-end

Learn point forecast f(w,x) by solving equation 4.
If g piece-wise linear, solve by exact method (see equation 20).
Else, solve by sampling method in A.

For out-of-sample x, take decisions by solving equation 1.
If P , small, solve by enumerating all w ∈ P .
Otherwise solve by gradient descent, or traditional optimization methods.
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B PROOFS

Proof of Proposition 2.1. Consider two values z1 and z2 so that

g(w, z1) ≤ Ez∈Z(w,x)[g(w, z)] ≤ g(w, z2). (21)

Since g is a continuous function with respect to z, there must exist a convex combination of z1, z2,
say ẑ so that

g(w, ẑ) = Ez∈Z(w,x)[g(w, z)]. (22)

Proof of Theorem 2.3. The results of Bartlett & Mendelson (2002) can be applied directly to the
composite cost function c(ẑ) = (g(w, ẑ)− y)2 where for simplicity we use y to replace the constant
g(w, z). The loss of a model f ∈ F is given by the c ◦ f = c(f(w,x)). Theorem 8 of Bartlett &
Mendelson (2002) gives us

l(f) ≤ l̂(f) + RN (c ◦ F) +

(
8 log 2/δ

N

)1/2

. (23)

Next, using the vector contraction inequality from Bartlett & Mendelson (2002), we can further
bound the Rademacher complexity by

RN (c ◦ F) ≤
√
2λRN (F) (24)

where the cost function c(ẑ) = (g(w, ẑ)− y)2 is λ-Lipschitz with respect to ẑ. It remains to bound
λ. Any continuously differentiable function over a compact domain is Lipschitz continuous with
Lipschitz constant equal to the maximum magnitude of the derivative over that domain. In our case,
g(·, ·) ∈ [0, 1].

We can further decompose c(ẑ) into c1 ◦ c2 where c1(z
′) = (z′)2 and c2(ẑ) = g(w, ẑ) − y. The

Lipschitz constant of c(ẑ) is then bounded by the product of the Lispchitz constants of c1 and c2. By
assumption (in theorem 2.3), g is L-Lipschitz and hence so is c2(ẑ). Moreover, z′ = c1(ẑ) ∈ [−1, 1]
since both g(·, ·) and y are in [0, 1]. Next, c1 is 2-Lipschitz since its gradient is 2z′ and its greatest
magnitude is |2z′| ≤ 2 over z′ ∈ [−1, 1]. Therefore, λ ≤ 2 · L. This combined with equation 24 and
equation 23 proves our theorem.
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C EXPERIMENTS

Here we give more details on the experiments as well as the exact formulations used for these
problems.

C.1 ASSORTMENT

We provide full results of the experiment results from section 4.

Figure 3: Average percent difference of each method from optimality as network width increases.

Figure 4: Average cost of each method across noise levels.
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Figure 5: Results of average cost for all methods as data increases.

Data Two-Stage Cost-Learning KNN (4a) KNN (4b) Gaussian Process Our Approach
100 3.43 ± 1.12 2.36 ± 0.99 0.44 ± 0.29 0.10 ± 0.12 1.76 ± 0.68 2.83 ± 1.44
200 2.40 ± 1.56 2.55 ± 0.93 0.40 ± 0.22 0.10 ± 0.13 2.05 ± 0.97 1.33 ± 1.84
300 2.78 ± 1.00 2.31 ± 0.67 0.34 ± 0.21 0.16 ± 0.17 1.78 ± 0.82 0.04 ± 0.06
400 2.90 ± 1.01 1.78 ± 0.96 0.32 ± 0.17 0.17 ± 0.16 1.98 ± 1.12 0.02 ± 0.03
500 2.72 ± 1.20 2.11 ± 0.85 0.31 ± 0.31 0.18 ± 0.23 1.41 ± 0.64 0.03 ± 0.03
600 2.73 ± 1.24 1.79 ± 0.92 0.29 ± 0.18 0.13 ± 0.12 1.83 ± 1.01 0.02 ± 0.03
700 2.91 ± 1.22 1.90 ± 1.52 0.21 ± 0.19 0.12 ± 0.09 1.70 ± 0.79 0.02 ± 0.03
800 3.16 ± 1.17 1.10 ± 0.75 0.25 ± 0.18 0.13 ± 0.09 1.55 ± 0.72 0.01 ± 0.02
900 3.15 ± 1.43 1.15 ± 0.74 0.17 ± 0.13 0.12 ± 0.09 1.87 ± 0.78 0.02 ± 0.03

1000 2.86 ± 1.25 0.69 ± 0.56 0.17 ± 0.14 0.13 ± 0.13 1.48 ± 0.78 0.02 ± 0.03

Table 5: Average error and standard deviations as training data increases.

Backorder
Cost Two-Stage Cost-Learning KNN (4a) KNN (4b) Gaussian Process Our Approach

3 2.56 ± 0.86 1.84 ± 0.57 0.35 ± 0.25 0.12 ± 0.15 1.45 ± 0.62 0.01 ± 0.02
5 2.71 ± 1.14 2.48 ± 0.81 0.35 ± 0.24 0.12 ± 0.15 1.45 ± 0.62 0.001 ± 0.00
7 2.70 ± 0.83 3.15 ± 0.96 0.35 ± 0.24 0.12 ± 0.15 1.45 ± 0.62 0.001 ± 0.00

Table 6: Average percentage error from optimality and standard deviations as backorder cost increases.

C.2 INFORMATION-GATHERING: ELECTRICITY SCHEDULING

We use a similar set-up for the problem as in Donti et al. (2017). This paper only considered the pure
single-stage end-to-end task, and not the two-stage problem we are considering here with information
gathering. Nevertheless, we use the same data, model architecture, and similar problem parameters
which we describe here.

The set-up: We are asked to decide/plan on the amount of electricity to generate each hour for the
next 24 hours. We denote these decisions by v1, . . . , v24. Given a demand realization of z1, . . . , z24,
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the cost of the decision is

gz(v) =

24∑
i=1

γs max{zi − vi, 0}+ γe max{vi − zi, 0}. (25)

Each day, we are given contextual information xn and demand observation dn. As features, we use
the past day’s electrical load as well as temperature, and the temperature forecast for the current
day. In addition, we use non-linear functions of the temperature, one-hot-encodings of holidays
and weekends, and yearly sinusoidal features. Like the paper Donti et al. (2017), we use a 2-layer
feed-forward network, both hidden layers having width 200, and an additional residual connection
from the input to the output. This linear layer is initialized by first solving a linear regression problem
to predict demand (this is done independently of the objective g).

This is the original single-stage end-to-end problem. In our setting we also consider the possibility
to update the schedule as the day progresses. Each day, we must decide ahead of time a particular
hour to regenerate the schedule. We denote this decision by w ∈ {0, 1, . . . , 24}. For the first w hours
of the day, we use the original decisions made the day before. After observing z1, . . . , zw, we then
make a new forecast conditioned on these observations, and make a new decision based off of this for
the remaining hours w + 1, . . . , 24.

Methods: The base prediction model for each method is the same across all approaches. We use the
two-layer network described in the above paragraphs. Let F denote this architecture and the set of
models/weights using this architecture. Any model f ∈ F takes as input features x and outputs a
vector in R24

≥0 for each hour of the next day.

1. Two-Stage: This is a simple regression model which predicts demand as a function of
features x. That is, we train

f2-stage = argmin
f∈F

N∑
n=1

(f(xn)− zn)2. (26)

Then, for an out-of-sample x, we simply set decisions v1, . . . , vn according to f2-stage(x).
2. Vanilla End-to-End: Here the objective is to directly minimize the cost of the decisions we

take. So, instead of minimizing mean-squared error, the objective is to minimize cost:

fend-to-end = argmin
f∈F

N∑
n=1

g(f(xn), zn). (27)

Again, we take decisions decisions v1, . . . , vn according to f2-stage(x).
3. Learning p: Before describing the remaining methods, we first focus on the model

p(x, z1, . . . , zw). Here, we have chosen to wait until hour w, then we observe z1, . . . , zw.
Given these, would like to make a new forecast for the remaining hours of the day. This
forecast is given by p(x, z1, . . . , zw). Since the input length of p̂ varies with w, we take the
full vector z as input (which always has fixed length 24) and mask the time points from
w + 1 to 24. Moreover, p̂ still outputs the full 24 time points, but the loss function will only
be evaluated on time points w + 1 to 24.
We first use the initial vanilla end-to-end predictions as a baseline. Let these be fend-to-end(x).
Then, the model p will predict a perturbation to this baseline, dependent only on the new
observations z1, . . . , zw. Specifically, let

p(x, z1, . . . , zw) = fend-to-end(x) + p̂(z1, . . . , zw) (28)

and we wish to learn this p̂(z1, . . . , zw). For our experiments, we let p̂ be a single hidden
layer network of width 200 with relu activation.
At each batch of training, the loss function is given by

1

24− w
gw+1,...,24(fend-to-end(x) + p̂(z1, . . . , zw), z) (29)

where at each batch, we randomly choose a different w and gw+1,...,24(ẑ, z) denotes the
objective function evaluated only on time points starting from w + 1 (since there is no need
to evaluate on the first w time points). The leading term 1/(24 − w) is meant to take the
average cost per hour.
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4. Random action: We now consider a model which randomly chooses w for every datapoint.
There are two shceduling decisions: (1) the schedule up to time w and (2) the schedule after
time w. The initial schedule is determined by the vanilla end-to-end method, then given
observations z1, . . . , zw at time w, we use the model p(x, z1, . . . , zw) to decide the rest of
the schedule. Let ẑ denote this combined schedule. The cost of the action is then determined
by g(ẑ, z).

5. Single action: Here we choose a single fixed across w across all datapoints. We choose this
action to be the one that results in the lowest cost on training data. We determine the cost of
an action w in the same way as for the random action method above.

6. Optimal action: For every datapoint, we compute the cost of every possible action w =
0, . . . , 24 and choose the best one.

7. Endogenous end-to-end: We now train a model fe(x, w) with the goal that using this as
a point forecast when making decision w. Here, the superscript e denotes endogenous, to
separate from previous functions like fend-to-end, f2-stage. This is done as follows.

i. We make a point forecast fe(w,x).
ii. Given point forecast, we predict p(x, fe

1 (x, w), . . . , f
e
w(x, w)) for time points after

time w.
iii. For ground truth, we would observe z1, . . . , zw. We would use this instead of

fe
1 (x, w), . . . , f

e
w(x, w) when making a forecast for the second stage. That is, we

would predict p(x, z1, . . . , zw) instead.
iv. The second-stage schedule is given by p(x, fe

1 (x, w), . . . , f
e
w(x, w)) while the schedule

given ground truth observations is given by p(x, z1, . . . , zw). The loss function is then
the squared difference between the cost of these decisions. Specifically, this is

(gw+1,...,24(p(x, f
e
1 (x, w), . . . , f

e
w(x, w)), f

e(x, w))− g(p(x, z1, . . . , zw), z))
2

(30)
where again gw+1,...,24(ẑ, z) only evaluates the loss starting at time point w + 1,
omitting the first w.

v. Again, at every batch, we randomly choose some fixed w for all datapoints in the batch.
Now, given learned f and p, we must make a decision according to equation 18. When
applied to the electricity scheduling problem, we solve

min
w∈{0,...,24}

g1,...,w(fend-to-end(x), f
e(w,x))+

gw+1,...,24(p(w, f
e
1 (w,x), . . . , f

e
w(w,x)), f

e(w,x))
(31)

where the first term evaluates predicted cost of the initial schedule before time w and the
second term evaluates predicted cost on the schedule after time w.

8. Cost learner: Here the model learns the cost of each action w given x. That is, a model
fcost(w) wich predicts

fcost(x, w) ≈ g1,...,w(fend-to-end(x), z) + gw+1,...,24(p(w, z1, . . . , zw), z) (32)

the cost of using the vanilla end-to-end schedule up to time w, and then the p schedule after
time w. To make decisions, we choose w which minimizes fcost(x, w).

9. Evaluate on test data: Finally, for any decision w, we evaluate as follows on test data.
We use the base vanilla end-to-end schedule for the first w time points. We then observe
the ground truth z1, . . . , zw and make predictions p(x, z1, . . . , zw) to make the rest of the
schedule. Formally, the cost is

g1,...,w(fend-to-end(x), z) + gw+1,...,24(p(w, z1, . . . , zw), z), (33)

exactly the same as the cost-learner’s target above.

The full code is available in the supplementary files.
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