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Abstract

In cross-domain few-shot classification (CFC), recent works mainly focus on
adapting a simple transformation head on top of a frozen pre-trained backbone
with few labeled data to project embeddings into a task-specific metric space
where classification can be performed by measuring similarities between image
instance and prototype representations. Technically, an assumption implicitly
adopted in such a framework is that the prototype and image instance embeddings
share the same representation transformation. However, in this paper, we find
that there naturally exists a gap, which resembles the modality gap, between the
prototype and image instance embeddings extracted from the frozen pre-trained
backbone, and simply applying the same transformation during the adaptation
phase constrains exploring the optimal representations and shrinks the gap between
prototype and image representations. To solve this problem, we propose a simple
yet effective method, contrastive prototype-image adaptation (CoPA), to adapt
different transformations respectively for prototypes and images similarly to CLIP
by treating prototypes as text prompts. Extensive experiments on Meta-Dataset
demonstrate that CoPA achieves the state-of-the-art performance more efficiently.
Meanwhile, further analyses also indicate that CoPA can learn better representation
clusters, enlarge the gap, and achieve minimal validation loss at the enlarged gap.
The project repository of CoPA is available at:https://github.com/tmlr-group/CoPA.

1 Introduction
Cross-domain few-shot classification [49] (a.k.a. CFC) aims at learning to perform classification
on tasks sampled from previously unseen domains with only a few labeled data. Recent works [12,
34, 29, 30], which aims at fast adapting a light model on top of the frozen pre-trained backbones for
feature selection or transformation, has shown impressive generalization capability on CFC tasks.

Typically, URL [29], a representative work of this genre, proposes to fast fine-tune a linear transfor-
mation head on top of a frozen pre-trained backbone with the nearest centroid classifier loss [47]. The
ultimate goal of URL is to project embeddings into a space where classification can be performed via
measuring the similarity between representations of prototypes and image instances. Technically, an
assumption implicitly adopted in URL is that the prototype and image instance embeddings share the
same representation transformation (see the upper subfigure of Fig. 2) during the adaptation phase.
Intuitively, however, prototype and image instance embeddings depict different levels of information.
Specifically, the embeddings of an image instance encode the instance-level information from the
given image, while the embeddings of a prototype contain some abstract and higher-level information
that is commonly shared among image instances within the corresponding class yet discriminative
from other classes. Thus, applying the same representation transformation as URL might constrain
models from exploring the optimal representations respectively for prototypes and image instances.
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Figure 1: There naturally exists a gap between pro-
totype and image instance embeddings, but apply-
ing the same transformation shrinks such a gap.
Fig.(a) shows that there naturally exists a gap, which
resembles the “modality” gap in visual language mod-
els, between prototype and image instance embed-
dings extracted from a frozen pre-trained backbone.
However, Fig.(b) shows that the gap between the repre-
sentations of prototypes and image instances is shrunk
after applying the same representation transformation
to both the image instance and prototype embeddings.

In this paper, we first conduct an analysis
to validate the intuition that prototypes and
image instances describe different levels of
information. Specifically, following Liang
et al. [32], we visualize the distributions of
prototype and instance embeddings extracted
from a frozen pre-trained backbone and mea-
sure the Euclidean distance between the cen-
troids of the normalized prototype and image
instance embeddings. According to Fig. 1(a),
the UMAP [37] visualization indicates that
there naturally exists a gap, which resem-
bles the modality gap demonstrated by Liang
et al. [32] in visual language models (VLMs,
e.g. CLIP [42]), between prototype and im-
age instance embeddings. However, after
applying the same representation transforma-
tion to both prototype and image instance
embeddings as done in URL [29], we ob-
serve that the gap is numerically shrunken
(see Fig. 1(b)). Moreover, by visualizing the
cluster distribution of data samples (see Figs. 3(b) and 3(c)), we further find that applying the same
representation transformation to both prototype and image instance embeddings may fail to learn
compact and clear representation clusters. With all these empirical results taken into consideration,
two aspects can be summarized here: (1) there does exist a gap between the prototype and image
instance embeddings extracted from the frozen backbone; (2) the shared representation transformation
tends to shrink the gap between the learned prototype and image instance representations and may
potentially result in the failure of learning clear and compact representation clusters for classes in the
task. Our further investigation into the URL framework in Section 3.3 indicates that applying the
same transformation, on the one hand, removes the discriminative information in gradients. On the
other hand, our empirical results further reveal that applying the shared transformation constrains
learning representations where the gap between prototypes and image instances is preserved.

Previous work [32] has demonstrated that contrastive loss helps preserve the modality gap and further
contributes to improving the generalization performance of downstream tasks. Thus, in this paper,
we propose a simple yet effective method, contrastive prototype-image adaptation (CoPA), to adapt
different transformations for prototype and image embeddings similarly to CLIP [42] by treating
prototypes as text prompts. In this way, the discriminative information in gradients can be preserved
in different parameters, and the optimal transformations, where the gap between prototype and image
representations is held, can be explored in the function space constructed by the two transformations.

Extensive experiments on the representative Meta-Dataset benchmark [49] under several task settings
demonstrate that CoPA can achieve the state-of-the-art performance with less time consumption and
learn more clear and compact representation clusters. In addition, further analysis reveals that the
global minimum of the validation loss is achieved at the enlarged gap, which implies the enlargement
of the gap is a process of exploring representation distributions for better generalization performance.

Our Contribution. In this paper, our contributions can be summarized in the following 4 parts:
• We validate there naturally exists a gap, which resembles the modality gap, between

prototype and image instance embeddings extracted from a frozen backbone in Section 3.2.
• Our analyses in Section 3.2 reveal that the shared representation transformation shrinks the

gap between prototype and image instance representations. Our investigation into the URL
in Section 3.3 indicates that applying the same transformation removes the discriminative
information in gradients and constrains learning representations where the gap is preserved.

• To solve this problem, in Section 4, we propose a simple yet effective method, contrastive
prototype-image adapation (CoPA), to adapt two different transformations for prototypes
and image instances as done in CLIP via substituting text prompts with prototypes.

• Extensive results reveal that CoPA can achieve the state-of-the-art performance on Meta-
Dataset [49] (Section 5.1), enlarge the gap to achieve the global minimum of the validation
loss (Section 5.2), and learn more compact image representation clusters (Section 5.2).
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2 Preliminary

Few-shot Task Generation. Consider a meta dataset S = {Si}ni=1, where n is the number of
sub-datasets in S. The sub-datasets in meta dataset satisfy that Si ∩ Sj = ∅, for ∀Si,Sj ∈ S.
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Figure 2: The upper subfigure shows the URL
pipeline which applies the same transformation
to both prototype and image instance embeddings.
The bottom subfigure shows the pipeline of CoPA,
which tries to adapt two different representation
transformation heads respectively for prototypes
and image instances in the way of CLIP via substi-
tuting text prompts with prototype embeddings.

Each sub-dataset Si is split into three disjoint
subsets, which are training set Dtr

i , validation
set Dval

i and test set Dtest
i . Consistent with

typical supervised learning paradigm, the meta
dataset S is divided into two disjoint parts re-
spectively for model training and evaluation.
The datasets, in which training sets are used for
pre-training, are called seen domains while the
remaining datasets, which are only available for
evaluation, are called unseen domains. Thus,
the meta dataset can be alternatively expressed
as S = Sseen ∪ Sunseen, Sseen ∩ Sunseen = ∅,
where the notations Sseen and Sunseen respec-
tively denote the seen and the unseen domains.

Typically, a cross-domain few-shot classifica-
tion task with vary-way vary-shot is randomly
sampled in an episodic way. To be specific, at
the beginning of each learning episode, a new
task T = {DT ,QT } is sampled from a specific
sub-dataset of the meta dataset Si ∈ S, where
DT = {(xs

i , y
s
i )}

|DT |
i=1 denotes the support set of the sampled task, which is used for model training

and QT = {(xq
i , y

q
i )}

|QT |
i=1 denotes the query set of the task that is used for model evaluation.

Problem Formulation. In this paper, we follow the pre-training framework adopted in previous
works [12, 34, 29, 30] and build our method upon a frozen pre-trained backbone.

Consider a frozen pre-trained backbone fϕ∗ : Rdin → Rdout that is parameterized with a set of
optimal parameters ϕ∗ and a trainable fine-tuning module hθ : Rdout → Rdout that is parameterized
with θ. Given a set of support data DT = {(xi, yi)}|DT |

i=1 , we then can obtain a set of representations
Z = {(zi, yi)}|DT |

i=1 , where zi = hθ(fϕ∗(xi)), from the frozen pre-trained backbone and the
fine-tuning module. The ultimate goal of the pre-training framework is learning a set of optimal
task-specific parameters θ∗ from the given support data so that better generalization performance
can be achieved on the query data in the task. To be specific, following previous works [34, 29], the
learning problem is formulated as minimizing a nearest centroid classifier (NCC) loss [47]:

L(θ) = − 1

|DT |

|DT |∑
i=1

log(p(yi = c|zi; θ)). (1)

where p(y = c|z; θ) = ed(z,cc)∑
c′ e

d(z,c′) denotes the likelihood of a sample z belonging to its class c, d(·, ·)
denotes a measure, such as negative Euclidean distance function or cosine similarity function, to
describe the similarity between samples and prototypes. In this paper, we follow URL [29] and adopt
cosine similarity as the measure. Moreover, cc denotes the prototype of class c, which is generated
with all available samples in the class c and formulated as: cc = 1

|Cc|
∑

z∈Cc
z, Cc = {zi|yi = c}.

3 Revisit the Previous Adaptation Strategy

In this section, we first revisit the adaptation strategy applied in the previous work and uncover an
implicitly adopted assumption that the prototype and image instance representations are transformed
with the same (linear) transformation. However, prototypes intuitively depict different levels of
information from image instances. Then, we empirically demonstrate that there naturally exists a gap
between prototype and image instance embeddings. Our further investigation into URL reveals that
applying the same transformation to prototypes and images removes the discriminative information
in gradients and constrains learning compact representation clusters where the gap is preserved.
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3.1 An Assumption of Previous Adaptation Strategy

In previous works [29, 30] that are based on prototypes, cross-domain few-shot classification is
typically formulated as a maximum likelihood estimation problem as mentioned in Eq. (1). The
ultimate goal of this problem is to learn a set of representations such that classification can be
performed by measuring the similarity between representations of image instances and prototypes.

Typically, the prototype of each class is calculated with all instances within the class (see Section 2 for
concrete details). Assume that the transformation is defined as a linear transformation parameterized
with Θ ∈ Rdout×dout , then the calculation of the prototype c of the class set C can be formulated as:

c =
1

|C|
∑
x∈C

(fϕ∗(x)Θ)︸ ︷︷ ︸
Instance Representations

=

(
1

|C|
∑
x∈C

fϕ∗(x)

)
︸ ︷︷ ︸

Prototype Embeddings

Θ.
(2)

Since the representation transformation is usually linear, the average of image instance representations
(the second part) is equivalent to the representation transformation of prototype embeddings (the third
part). Thus, it is easy to observe that an assumption is implicitly adopted in the URL framework:

Instance-level and prototype-level embeddings share the same representation transformation.

Intuitively, compared with image instance representations, the prototype representations contain
higher-level information which is commonly shared among the instances within the class yet dis-
criminative from that of other classes. Thus, there seems to exist a gap between prototypes and
images. Such an intuition motivates us to take a further step to explore whether such a gap exists
and what effect the shared representation transformation imposes on such a gap. To this end, we
perform a series of analyses on the prototype and image instance embeddings and their corresponding
transformed representations. In addition, we also investigate the mechanism of the adaptation strategy.

3.2 Empirical Analysis on Prototype and Image Instance

In this section, we conduct an analysis on the prototype and image instance embeddings and their
corresponding representations obtained from the same representation transformation. Specifically, the
embeddings are extracted from a frozen pre-trained ResNet-18 [18] backbone, and the representations
are transformed from the embeddings with a shared linear transformation model as done in URL [29].

“Modality” Gap between Prototype and Image Instance. According to Liang et al. [32], there exist
modality gaps between different modal embeddings, such as text and image embeddings extracted
from visual language models (e.g. CLIP), and preserving such modality gaps facilitates improving
the downstream performance. We notice that the prototypes, to some extent, play the same role as text
prompts. Specifically, both text prompts and prototypes depict the common concepts shared among
all images within the corresponding class yet discriminative from other classes. This observation
motivates us to validate whether such a “modality” gap exists between prototypes and image instances.

In this section, an empirical analysis is performed on the validation set of ImageNet [44]. Fol-
lowing Liang et al. [32], we define the gap as the difference between the centroids of normalized
prototype and image instance representations (embeddings) ∆⃗ := 1

|DT |
∑|DT |

i=1 zi − 1
NC

∑NC

j=1 cj ,

where |DT | denotes the size of support data representation set Z = {zi}|DT |
i=1 and NC denotes the

number of classes. More detailed validation results on other datasets are available in Appendix B.

We visualize the distributions of prototype and image instance embeddings with UMAP [37] in
Fig. 1(a). As shown in the figure, it is easy to observe that the prototype and image instance
embeddings are located in two completely separate regions of the feature space, and there naturally
exists a gap between prototype and image instance embeddings. Moreover, to verify the general
existence of such a gap, we conduct an analysis with 600 randomly sampled tasks on each of all 8
seen domain datasets in Meta-Dataset. The results are reported in Table 3 in Appendix B. The results
reveal that the gap also generally exists between prototype and instance embeddings in other datasets.

Larger Gap Facilitates Generalization. To further figure out the property of the prototype-image
gap, we conduct the same embedding shift experiment as done in previous work [32]. Specifically,
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Figure 3: (a). The global minimum validation loss is achieved when the “modality” gap is
enlarged. Fig. (a) depicts the validation loss landscape w.r.t the changes of the “modality” gap
between prototype and image instance embeddings. The validation loss fails to achieve the global
minimum at the original gap, and the global minimum can be achieved when the gap is enlarged.
(b)-(c). The shared representation transformation fails to learn compact instance representation
clusters. According to the visualization results of both prototype and image instance embeddings and
their representations obtained with the same representation transformation, compared to the prototype
and image instance embeddings extracted from the frozen pre-trained backbone (Fig. (b)), the shared
transformation fails to learn image instance representations which are well clustered (Fig. (c)).

we manually shift prototype and image instance embeddings by scaling the gap between two sets of
embeddings/representations to narrow or enlarge the gap and observe the change of validation loss.
The results are reported in Fig. 3(a). The X-axis depicts the size of the gap where the negative value
means the position of prototype and image embeddings are mutually replaced. From the figure, it is
easy to observe that the validation loss fails to achieve its global minimum at the original gap between
prototype and image instance embeddings. Interestingly, we can further observe that the global
minimum can be achieved by slightly enlarging the gap. This is consistent with the phenomenon
observed by Liang et al. [32]. Thus, an intuitive insight is that appropriately enlarging the gap between
the prototypes and image instances contributes to achieving better generalization performance.

From our perspective, the phenomenon that the larger gap facilitates improving the generalization
performance can be attributed to two aspects. On the one hand, each prototype is generated with all
instances within the class. Thus, data samples are naturally closer/more similar to the prototypes of
their own class. This potentially results in slight overfitting. Thus, when the gap is slightly enlarged,
it is equivalent to decreasing the similarity between prototypes and images. Such an enlargement, in
turn, helps alleviate the overfitting and further improve the generalization performance on downstream
tasks. On the other hand, as images and prototypes describe different levels of information, good
generalization performance can only be achieved when the embeddings are well aligned. Thus,
enlarging the gap can also be seen as exploring the optimal distributions of embeddings for alignment.

Drawbacks of Shared Transformation. In order to determine the effect of the shared representation
transformation on representation learning, we further analyze the prototype and image instance
representations obtained from the existing SOTA baseline, URL [29]. The visualization results are
respectively presented in Figs. 1(b) and 3(c). According to Fig. 1(b), we can observe that the gap
between prototype and image instance representations is numerically shrunken after applying the
same transformation to both prototype and image instance embeddings. Meanwhile, we can also
observe from Fig. 3(c) that URL fails to learn well-clustered representations for classes in the task.
All these results, to some extent, demonstrate the drawbacks of applying the shared transformation.

3.3 Further Exploration on Shared Transformation

In this section, we conduct a further investigation to explore the effect of the shared transformation.
Theorem 3.1. Let the measure d(·, ·) be the cosine similarity function. Given a set of normalized
finite support data representation Z = {(zi, yi)}ni=1, where ||z||2 = 1 for ∀z ∈ Z and NC classes
are included, then we have a lower bound of the NCC-based loss in Eq. (1):

L(θ) ≥− 1

n

n∑
i=1

z⊤
i cc +

α

n

n∑
i=1

∑
z′∈Z

z⊤
i z

′,

where z′ is an independent copy of samples in Z , Cc denotes sets of sample representations Cc =
{zi|yi = c}, and α is a constant that satisfies 0 ≤ α < 1/(NC |Cj |) for ∀j.
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The complete proof is available in Appendix G.1. Theorem 3.1 provides a lower bound of Eq. (1).
According to the bound, if we adopt the right side as the surrogate loss, solving Problem (1) is then
equivalent to simultaneously maximizing the similarities between instances and their corresponding
prototypes and minimizing the similarities among all samples. Moreover, since z⊤

i zj < z⊤
i zi for

∀j ̸= i, the second term can then be approximated as
∑

z∈Z z⊤z by omitting the similarity term
between different image instance representations. Then, we can reformulate Problem (1) as:

L(ΘP,ΘI) =−
1

|DT |
Tr
(
fϕ∗(X)ΘI(Y Y ⊤fϕ∗(X)ΘP)

⊤)+ α

|DT |
Tr
(
fϕ∗(X)ΘIΘ

⊤
I fϕ∗(X)⊤

)
,

where X ∈ R|DT |×dout and Y ∈ R|DT |×NC respectively denote the support image instances and the
corresponding one-hot labels, ΘP ∈ Rdout×dout and ΘI ∈ Rdout×dout denote the model parameters of
linear transformation heads respectively for prototype and image instance embeddings, Tr(·) denotes
the matrix trace operation. Y Y ⊤fϕ∗(X) ∈ R|DT |×dout denotes the prototypes which are expanded
to the same size of instance embeddings. In this way, the gradients w.r.t. ΘP and ΘI are:

∇ΘPL(ΘP,ΘI) = −
1

|DT |
Θ⊤

I fϕ∗(X)⊤Y Y ⊤fϕ∗(X),

∇ΘIL(ΘP,ΘI) = −
1

|DT |
Θ⊤

Pfϕ∗(X)⊤Y Y ⊤fϕ∗(X) +
2α

|DT |
Θ⊤

I fϕ∗(X)⊤fϕ∗(X).

According to the gradients above, we can observe that the gradients of ΘP depict the similarity
between instance representations and prototype embeddings while the gradients of ΘI depict the
similarity between prototype representations and instance embeddings. However, in the case of
the shared transformation (i.e., ΘP = ΘI = Θ), such differences are removed. Thus, the shared
transformation may potentially drop the discriminative information in gradients during the adaptation
phase. Meanwhile, the shared transformation also constrains the complexity of the function space, and
in turn, prevents exploring the optimal representation distributions for both prototypes and images.

Theorem 3.2 (The shared transformation). Consider a support data set DT = {(xi, yi)}|DT |
i=1

composed of NC classes and a frozen pretrained backbone fϕ∗ : Rdin → Rd parameterized
with the optimal parameters ϕ∗. Let Θ ∈ Rd×d be a shared linear transformation across the
prototype and image instance embeddings. Then, we can obtain the image instance representations
Z = {zi}|DT |

i=1 = {fϕ∗(xi)Θ}|DT |
i=1 , and the prototype representations C = {ci}NC

i=1, where ci =
1

|Ci|
∑

z′∈Ci
z′ = 1

|Ci|
∑

x′∈Ci
fϕ∗(x′)Θ. Then we can obtain the bounds of the representation gap:

m ∥Θ∥2F
∥∥∥∆⃗emb

∥∥∥2
2
≤

∥∥∥∥∥ 1

|DT |
∑
z∈Z

z − 1

NC

∑
c∈C

c

∥∥∥∥∥
2

2

≤M ∥Θ∥2F
∥∥∥∆⃗emb

∥∥∥2
2
,

where ∆⃗emb = 1
|DT |

∑
x∈DT

fϕ∗(x)− 1
NC

∑NC

b=1

(
1

|Cb|
∑

x′∈Cb
fϕ∗(x′)

)
denotes the gap between

prototype and image embeddings, m = min1≤i≤d cos
2(∆⃗emb,Θ

i) denotes the minimum value of
cos2(∆⃗emb,Θ

i), and M = max1≤j≤d cos
2(∆⃗emb,Θ

j) denotes the maximum of cos2(∆⃗emb,Θ
j).
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Figure 4: The change of the scale of
the upper bound of URL representa-
tion gaps during the adaptation.

The proof is provided in Appendix G.2.1. In Theorem 3.2, we
derive the bounds of the gap between prototype and image rep-
resentations learned from a shared linear transformation. For
simplicity, we only consider the unnormalized representations.
However, in practice, the gap is calculated with normalized
representations. According to the theorem, we find that the
bounds are closely related to the Frobenius norm of the trans-
formation matrix and the angle between the embedding gap
vector and the column vectors of the transformation matrix.

Theoretically, it is intractable to directly analyze the upper
bound of the gap between prototype and image representa-
tions. Thus, to determine the reason for the gap shrinkage, we
empirically track the change of the scale

√
M ∥Θ∥F on 600

randomly sampled tasks. The insight here is that the represen-
tation gap will not be larger than the embedding gap if the scale is smaller than 1.0. According to
curves in Fig. 4, we observe that the scale is consistently smaller than 1.0 in all cases. Thus, a shared
transformation cannot preserve the original gap between prototype and image instance embeddings.
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Table 1: Results on Meta-Dataset under the “train on all datasets” setting. Under the “train on
all datasets” setting, the first 8 datasets are treated as “seen domians” while the last 5 are treated as
“unseen domains”. Mean accuracy and 95% confidence interval are reported.

Datasets Main Results More Learning Modules
CNAPS S-CNAPS SUR URT Tri-M FLUTE URL CoPA TSA TA2-Net CoPA + TSA

ImageNet 50.8±1.1 58.4 ±1.1 56.2 ± 1.0 56.8 ± 1.1 58.6 ± 1.0 51.8 ± 1.1 57.3 ± 1.1 57.8 ± 1.1 57.4 ± 1.1 57.5 ± 1.1 57.8 ± 1.1
Omniglot 91.7±0.5 91.6 ± 0.6 94.1 ± 0.4 94.2 ± 0.4 92.0 ± 0.6 93.2 ± 0.5 94.1 ± 0.4 94.3 ± 0.5 94.7 ± 0.4 94.6 ± 0.4 94.6 ± 0.4
Aircraft 83.7±0.6 82.0 ± 0.7 85.5 ± 0.5 85.8 ± 0.5 82.8 ± 0.7 87.2 ± 0.5 88.2 ± 0.5 88.8 ± 0.5 88.9 ± 0.5 89.0 ± 0.5 89.3 ± 0.5
Birds 73.6±0.9 74.8 ± 0.9 71.0 ± 1.0 76.2 ± 0.8 75.3 ± 0.8 79.2 ± 0.8 80.2 ± 0.7 80.8 ± 0.8 80.8 ± 0.8 80.7 ± 0.8 81.2 ± 0.8
Textures 59.5±0.7 68.8 ± 0.9 71.0 ± 0.8 71.6 ± 0.7 71.2 ± 0.8 68.8 ± 0.8 76.2 ± 0.7 77.8 ± 0.7 77.1 ± 0.7 76.9 ± 0.7 77.8 ± 0.7
Quick Draw 74.7±0.8 76.5 ±0.8 81.8 ± 0.6 82.4 ± 0.6 77.3 ± 0.7 79.5 ± 0.7 82.2 ± 0.6 82.8 ± 0.6 82.2 ± 0.6 82.2 ± 0.6 82.7 ± 0.6
Fungi 50.2±1.1 46.6 ± 1.0 64.3 ± 0.9 64.0 ± 1.0 48.5 ± 1.0 58.1 ± 1.1 68.7 ± 1.0 69.5 ± 1.0 67.4 ± 1.0 68.1 ± 1.0 69.0 ± 1.0
VGG Flower 88.9±0.5 90.5 ± 0.5 82.9 ± 0.8 87.9 ± 0.6 90.5 ± 0.5 91.6 ± 0.6 91.9 ± 0.5 92.7 ± 0.5 92.5 ± 0.5 92.4 ± 0.5 93.0 ± 0.5

Traffic Sign 56.5 ±1.1 57.2 ± 1.0 51.0 ± 1.1 48.2 ± 1.1 63.0 ± 1.0 58.4 ± 1.1 63.3 ± 1.2 66.6 ± 1.1 83.5 ± 0.9 88.3 ± 0.8 88.5 ± 0.9
MSCOCO 39.4 ±1.0 48.9 ± 1.1 52.0 ± 1.1 51.5 ± 1.1 52.8 ± 1.1 50.0 ± 1.0 54.2 ± 1.0 56.3 ± 1.0 55.3 ± 1.1 49.9 ± 1.2 57.9 ± 1.0
MNIST - 94.6 ± 0.4 94.3 ± 0.4 90.6 ± 0.5 96.2 ± 0.3 95.6 ± 0.5 94.7 ± 0.4 95.2 ± 0.4 96.7 ± 0.4 97.0 ± 0.4 97.5 ± 0.4
CIFAR-10 - 74.9 ± 0.7 66.5 ± 0.9 67.0 ± 0.8 75.4 ± 0.8 78.6 ± 0.7 71.9 ± 0.8 73.0 ± 0.8 80.3 ± 0.8 76.6 ± 0.9 78.7 ± 0.8
CIFAR-100 - 61.3 ± 1.1 56.9 ± 1.1 57.3 ± 1.0 62.0 ± 1.0 67.1 ± 1.0 62.9 ± 1.0 63.4 ±1.0 70.6 ± 1.0 64.5 ± 1.2 70.9 ± 0.9

Average Seen 71.6 73.7 75.9 77.4 76.2 76.2 79.9 80.6 80.1 80.2 80.7
Average Unseen - 67.4 64.1 62.9 69.9 69.9 69.4 70.9 77.3 75.2 78.7
Average All - 71.2 71.3 71.8 73.8 73.8 75.8 76.8 79.2 78.3 79.9

Average Rank 10.3 8.7 8.7 7.1 7.9 7.8 4.5 3.0 3.1 3.3 2.6
1 For fairness, the results of URL, TSA, TA2-Net, and our proposed CoPA methods are reproduced with 5 random seeds, and we report the average of the 5

reproductions in the table. Particularly, although the reported performance of URL is lower than that in the original paper, the reproduction results are consistent
with those reported on their project website. The ranks are calculated only with the first 10 datasets and only with the methods mentioned above.

Table 2: Results on Meta-Dataset under the “train on ImageNet only” setting. Under the “train on
ImageNet only” setting, only ImageNet is treated as “seen domain” while the remaining as “unseen
domains”. Mean accuracy and 95% confidence interval are reported.

Datasets Main Results More Learning Modules
Finetune ProtoNets(large) BOHB FP-MAML AFP-MAML FLUTE URL CoPA TSA TA2-Net CoPA+TSA

ImageNet 45.8±1.1 53.7±1.1 51.9±1.1 49.5±1.1 52.8±1.1 46.9±1.1 57.3±1.1 57.7±1.1 57.7 ± 1.1 57.4 ± 1.1 57.5 ± 1.1

Omniglot 60.9±1.6 68.5±1.3 67.6±1.2 63.4±1.3 61.9±1.5 61.6±1.4 69.4±1.2 70.9±1.2 73.5 ± 1.2 72.8 ± 1.2 73.3 ± 1.2
Aircraft 68.7±1.3 58.0±1.0 54.1±0.9 56.0±1.0 63.4±1.1 48.5±1.0 57.6±1.0 61.6±1.0 65.1 ± 1.1 63.5 ± 1.0 64.9 ± 1.1
Birds 57.3±1.3 74.1±0.9 70.7±0.9 68.7±1.0 69.8±1.1 47.9±1.0 72.9±0.9 74.2±0.9 74.0 ± 0.9 73.8 ± 0.9 74.7 ± 0.9
Textures 69.0±0.9 68.8±0.8 68.3±0.8 66.5±0.8 70.8±0.9 63.8±0.8 75.2±0.7 77.0±0.7 76.8 ± 0.7 76.6 ± 0.7 77.6 ± 0.7
Quick Draw 42.6±1.2 53.3±1.0 50.3±1.0 51.5±1.0 59.2±1.2 57.5±1.0 57.9±1.0 61.3±1.0 64.6 ± 1.0 63.9 ± 1.0 64.7 ± 1.0
Fungi 38.2±1.0 40.7±1.2 41.4±1.1 40.0±1.1 41.5±1.2 31.8±1.0 46.2±1.0 48.0±1.1 46.8 ± 1.1 47.6 ± 1.1 48.3 ± 1.1
VGG Flower 85.5±0.7 87.0±0.7 87.3±0.6 87.2±0.7 86.0±0.8 80.1±0.9 86.9±0.6 88.9±0.6 89.8 ± 0.6 89.6 ± 0.6 90.6 ± 0.6
Traffic Sign 66.8±1.3 58.1±1.1 51.8±1.0 48.8±1.1 60.8±1.3 46.5±1.1 61.2±1.2 63.8±1.1 82.2 ± 0.9 87.7 ± 0.8 86.7 ± 0.9
MSCOCO 34.9±1.0 41.7±1.1 48.0±1.0 43.7±1.1 48.1±1.1 41.4±1.0 53.0±1.0 56.1±1.0 55.8 ± 1.0 51.3 ± 1.2 57.4 ± 1.0
MNIST - - - - - 80.8±0.8 86.2±0.7 87.3±0.7 93.6 ± 0.6 94.7 ± 0.5 95.1 ± 0.6
CIFAR-10 - - - - - 65.4±0.8 69.5±0.8 72.4±0.8 79.6 ± 0.8 76.1 ± 0.9 76.8 ± 0.8
CIFAR-100 - - - - - 52.7±1.1 62.0±1.0 62.7±1.0 70.6 ± 1.0 65.7 ± 1.1 68.9 ± 0.9

Average Seen 45.8 53.7 51.9 49.5 52.8 46.9 57.3 57.7 57.7 57.5 57.5
Average Unseen - - - - - 56.5 66.6 68.7 72.7 71.9 73.2
Average All - - - - - 55.8 65.9 67.7 71.6 70.8 72.0

Average Rank 9.3 7.2 8.0 9.0 7.1 10.1 5.3 4.1 2.5 3.2 2.2
1 The results on URL, TSA, TA2-Net and our proposed methods are reproduced with 5 random seeds and reported as the average of the 5 reproduction. The ranks

only consider the first 10 datasets and are calculated only with the methods in the table.

4 Contrastive Prototype-Image Adaptation

In this section, to address the problem mentioned above, we follow CLIP [42] and propose a simple yet
effective method, contrastive prototype-image adaptation (CoPA), to adapt different transformation
modules respectively for the prototypes and image instances in a similar way of contrastive learning.

Backbone Pre-training. We pre-train a ResNet-18 [18] in the same way as URL [29] as the backbone.
Specifically, 8 domain-specific backbones respectively for all seen domains are firstly pre-trained.
Then, a universal encoder is distilled from these backbones and frozen during the meta-test phase.

Contrastive Prototype-Image Adaptation. Briefly, CoPA aims to adapt two different transformation
models respectively for prototype and image instances by optimizing the symmetric cross-entropy
loss. The entire pipeline of CoPA resembles that of CLIP [42]. CoPA replaces the text prompts with
prototypes with the simple insight that both prototypes and text prompts depict some higher-level
concepts that are common among samples within a class yet discriminative from other classes.

Specifically, consider two representation transformation heads, hθP and hθI , respectively, for pro-
totypes and image instances. Given a support set DT = {X, Y }, where X ∈ R|DT |×dout de-
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Figure 5: (a). The gap between prototype and image instance representations is enlarged from 0.22 to
1.38 by CoPA. Such a phenomenon is consistent with that demonstrated by Liang et al. [32]. (b). The
clusters of image instance representations learned from CoPA. The more compact clusters reveal that
CoPA learns better instance representations. (c). The validation loss achieves its global minimum at
the gap learned by CoPA, which indicates that CoPA can improve the generalization performance.

notes the support data samples, while Y ∈ R|DT |×NC denotes the corresponding one-hot labels,
where NC denotes the number of classes, we can respectively obtain the prototype representations
ZP = hθP(Y Y ⊤fϕ∗(X)) and image instance representations ZI = hθI(fϕ∗(X)). Then, CoPA
learns the representations by minimizing the following symmetry cross entropy objective:

min
θP,θI
L(θP, θI) :=LCE(

1

τ
ZIZ

⊤
P , Ypseudo) + LCE(

1

τ
ZPZ

⊤
I , Ypseudo), (3)

where τ is a temperature coefficient, Ypseudo = [0, 1, ..., |DT | − 1] denotes the pseudo labels, and
LCE denotes the cross-entropy loss. The complete CoPA algorithm is presented in Algorithm 1.

Discussion. Two aspects are worth noticing in our proposed CoPA. On the one hand, two different
transformations are adopted in our proposed CoPA method. In this way, the discriminative information
in gradients is preserved in different sets of parameters. Besides, introducing different transformations
expands the function space, which further facilitates learning better prototype and image instance
representations. On the other hand, the contrastive learning objective, which has been demonstrated
to facilitate preserving the modality gap, is adopted as the learning objective. In particular, to match
this objective, we modify the prototype embeddings from Y ⊤fϕ∗(X) to Y Y ⊤fϕ∗(X) so that the
size of the prototype embeddings is consistent with that of image instance embeddings. Such a
modification further indicates the cluster structure of the given support data set. Thus, by minimizing
the symmetric cross entropy loss, the two transformations are encouraged to align the prototype and
image instance representations and learn more class-specific and discriminative representations.

5 Experiments

In this section, we evaluate CoPA on Meta-Dataset [49] under both “train on all datasets” and “train
on ImageNet only” settings with a series of tasks to answer the following questions: (1) Does CoPA
achieve better generalization performance? (2) Does CoPA benefit from extra learning modules? (3)
Why does CoPA perform better? Detailed experimental settings are available in Appendix E.

5.1 Main Results & Analysis

In this section, we evaluate the generalization performance of our proposed CoPA method on
Meta-Dataset under both “train on all datasets” and “train on ImageNet only” settings. In order to
demonstrate the effectiveness of CoPA, we compare CoPA against several currently state-of-the-art
baselines, including fo-Proto-MAML (FP-MAML) [49], ALFA+fo-Proto-MAML (AFP-MAML) [2],
CNAPs [43], Simple-CNAPs [3], SUR [12], URT [34], Tri-M [35], FLUTE [50], URL [29].

Train on All Datasets. We report the evaluation results under the “train on all datasets” setting in
Table 1. As shown in the table, it is easy to observe that CoPA achieves the best performance on 9
out of 13 datasets among all approaches and outperforms URL in all cases. Specifically, compared
with URL, our proposed CoPA method achieves 0.7%, 1.5%, and 1.0% improvements on average
respectively on seen, unseen, and all domains. It is also worthwhile to notice that CoPA performs
better on unseen domains. Specifically, our proposed CoPA method achieves 3.3%, 2.1%, and 1.1%
improvements respectively on Traffic Sign, MSCOCO, and CIFAR 10 datasets. Meanwhile, we also
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notice that CoPA achieves comparable or even better results on seen domains compared with TSA [30]
which plugs extra learning modules into the frozen backbone for more task-specific parameters.

Train on ImageNet Only. The results under the “train on ImageNet only” setting are reported in
Table 2. Briefly, CoPA achieves the best performance on 11 out of 13 datasets and consistently
outperforms URL in all cases. On average, CoPA achieves 0.4%, 2.1%, and 1.8% improvements
respectively on seen, unseen, and all domains. Moreover, the results also reveal that CoPA consis-
tently performs better on unseen domains. Specifically, CoPA achieve impressive improvements on
Omniglot (1.5%), Aircraft (4%), Birds (1.3%), Textures (1.8%), Quick Draw (3.4%), Fungi (1.8%),
VGG_Flower (2%), Traffic Sign (2.6%), MSCOCO (3.1%), MNIST (1.1%), CIFAR (2.9% & 0.7%).

Extra Learning Modules. We follow TSA [30] to plug extra trainable modules into the frozen
backbone.The results are reported respectively in Table 1 and 2. According to the table, we can
observe that CoPA benefits from these extra modules and achieves better performance than previous
state-of-the-art approaches (e.g., TSA and TA2-Net). CoPA + TSA outperforms 11 out of 13
datasets under the “train on all datasets” setting. Similarly, CoPA + TSA consistently achieves better
generalization performance on unseen domains.Specifically, CoPA + TSA achieves 5%, 2.6%, and
0.8% improvements respectively on Traffic Sign, MSCOCO, and MNIST datasets. Under the “train
on ImageNet only” setting, CoPA + TSA achieves the best performance on 7 out of 13 datasets.
Compared with TSA, CoPA + TSA achieves better performance on Birds (0.7%), Textures (0.8%),
Fungi (1.5%), VGG_Flower (0.8%), Traffic Sign (4.5%), MSCOCO (1.6%) and MNIST (1.5%).

5.2 Discussion: Why CoPA Performs Better?

In previous experiments, we have demonstrated that CoPA can achieve better generalization per-
formance. In this section, we aim to validate whether CoPA preserves the gap and learns better
representations. Further, we would like to explore why CoPA performs better than previous works.

More Results. To verify the effectiveness of CoPA, we conduct more analyses. Firstly, we investigate
the representation shift experiment to observe the gap between prototype and image representations.
As shown in 5(a), in contrast to URL, the gap between prototype and image representations learned via
CoPA is enlarged. Such a phenomenon demonstrates that CoPA can hold the gap between prototypes
and image instances. In addition, we further check the image instance representations learned with
CoPA. According to Fig. 5(b), the image representations are more clearly and compactly clustered
than Fig. 3(c). This case reveals that CoPA can facilitate learning more class-specific representations.

5.2.1 Ablation Study

The results reported above indicate that CoPA can enlarge the representation gap and learn well-
clustered image representations simultaneously. In order to further figure out why CoPA is able to
improve performance, in this section, we propose to conduct ablation studies on the two important
components of CoPA: the different transformations and SCE loss. The results are reported in Table 10.

0 10 20 30 40
Steps

1.3

1.4

1.5

1.6

1.7

Te
st

 L
os

s

URL
URL + 2Heads

(a) ImageNet

0 10 20 30 40
Steps

1.5

2.0

2.5

Te
st

 L
os

s

URL
URL + 2Heads

(b) CIFAR 100

Figure 6: Comparison of test losses of URL and
URL+2Heads on ImageNet and CIFAR100.

Ablation: Different Transformation Modules. As
we have discussed in Section 3.3, the shared trans-
formation may drop the discriminative information
in gradients. Thus, we propose to substitute the
shared transformation with the different transfor-
mations adopted in CoPA. As shown in the table,
although URL+2Heads achieves slightly better re-
sults in some cases, its performance drops in the
remaining cases. By plotting the test loss curves (cf.
Fig. 6), we can observe that overfitting takes place.

Ablation: SCE Loss. From the table, we can ob-
serve that URL with SCE loss achieves comparable
performance to the URL baseline in most datasets. Meanwhile, URL with SCE achieves significantly
better results on some datasets, such as Fungi and MSCOCO, in which URL baseline tends to overfit
(cf. Figs. 27(g) and 27(j)). This indicates that SCE loss can improve generalization performance. In
addition, we also replace the SCE loss with the NCC loss on CoPA. According to the results of “CoPA
+ NCC” shown in the table, it is easy to find that the performance in all cases drops drastically. For
example, the performance on Fungi and MSCOCO respectively decreases by 11.6% and 18.7%. All
these empirical results demonstrate that SCE loss facilitates improving generalization performance.
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5.2.2 Further Discussion

Effectiveness of Different Transformations. As aforementioned, an advantage of CoPA is applying
two different transformations respectively to prototype and image instance embeddings. The goal
of applying two different transformations in CoPA is to preserve the discriminative information of
gradients in different sets of parameters. Meanwhile, applying two different transformations also
increases the complexity of the hypothesis space, which contributes to reducing the approximation
error and learning representations in a more flexible way. However, simply increasing hypothesis
space complexity may also result in overfitting (cf. Fig. 6). According to Fig. 27, CoPA, which is
equipped with SCE loss, benefits from the increased complexity and achieves better performance.

Essence of Gap Enlargement. In Fig. 3(a), we observe that the global minimum of the validation loss
can be achieved by slightly enlarging the gap between prototype and images. Meanwhile, according to
Fig. 5(c), the validation loss achieves its global minimum at the enlarged gap learned with CoPA. As
aforementioned, we conjecture that the reasons for the phenomenon that gap enlargement facilitates
generalization mainly include two aspects: representation alignment and overfitting alleviation.

We first start with representation alignment. Typically, representation alignment is performed with
SCE loss. Specifically, we omit the temperature coefficient τ and simply rewrite Eq. (3) as:

LSCE = − 1

|DT |

|DT |∑
i=1

log
exp(z⊤

i ci)∑|DT |
j=1 exp(z⊤

i cj)
− 1

|DT |

|DT |∑
i=1

log
exp(c⊤i zi)∑|DT |

j=1 exp(c⊤i zj)
. (4)

Theorem 5.1. Given a set of normalized finite support data representation Z = {(zi, yi)}ni=1 and a
set of normalized prototype representations C = {ci}ni=1, where ||z||2 = 1 for ∀z ∈ Z and ||c||2 = 1
for ∀c ∈ C, then we are able to obtain a lower bound of SCE loss in Eq. (4):

LSCE ≥ −
2

n

n∑
i=1

z⊤
i ci +

2

n

n∑
i=1

NC∑
k=1

|Ck|
n

z⊤
i ck,

where Ck denotes the set of support data of the class k and NC denotes the number of classes.

The proof is in Appendix G.3. According to Theorem 5.1, we find that the lower bound of SCE loss
plays a similar role to that of NCC loss. In detail, the lower bound aims at maximizing the similarity
between each sample and its corresponding prototype while minimizing the similarities between the
sample and all prototypes. When minimizing the lower bound as the surrogate loss, the second term,
which measures the similarities between image and prototype representations, is minimized. Thus,
the Euclidean distances between representations of prototypes and images (i.e., the gap) are enlarged.

An interesting point is that the similarities between images and prototypes are minimized with the
weights calculated based on the size of Ck. Differently, in NCC loss, the weights are fixed to 1

NC
for

all cases. Thus, the similarities between samples and the prototypes involving more samples will be
significantly reduced. Consequently, the gap between images and prototypes tends to be enlarged.

For the overfitting, on the one hand, the potential overfitting discussed in Section 3.2 is mitigated
by applying different transformations. On the other hand, the high similarities between samples and
prototypes may also result in overfitting. For example, in Fig. 3(a), the validation loss increases when
the gap is narrowed. However, as we have discussed above, minimizing SCE loss tends to reduce
such similarities. Thus, the gap enlargement also functions as a regularization to alleviate overfitting.

Therefore, with all aspects taken into consideration, the essence of CoPA is a representation alignment
of prototypes and images, in which a balance between learning discriminative representations and
achieving better generalization performance, is explored in a more flexible hypothesis space.

6 Conclusion
In this paper, we validate that there naturally exists a gap, which resembles the modality gap in visual
language models, between prototype and image instance embeddings, and uncover that the shared
transformation shrinks such a gap and constrains the learning of well-clustered representations. In
order to solve these problems, we propose CoPA to adapt different transformations respectively for
prototype and image instances via optimizing SCE loss. Empirical results on Meta-Dataset reveal
that CoPA can achieve state-of-the-art performance. Our further analyses indicate that the essence of
CoPA is a representation alignment, where a balance between learning discriminative representations
and achieving better generalization performance is explored in a more flexible hypothesis space.
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Limitations

In this paper, in order to solve the problem that the shared transformation adopted in previous works
potentially hurts the discriminative information in gradients and constrains learning representations
where the gap is preserved, we propose to fine-tune two different transformations respectively for
prototype and image instances in the same way of CLIP by treating the prototypes as text prompts.

One potential limitation of our proposed CoPA method is the symmetric cross-entropy. Symmetric
cross entropy loss is commonly applied in contrastive learning. In contrastive learning, the batch
size of the data samples is an important issue for better downstream tasks. Larger batch size usually
means better downstream performance. We also notice this phenomenon in this paper. Although
CoPA can still achieve relatively better performance, the performance tends to degrade when the size
of the data batch becomes small. Thus, this constrains the application of CoPA to some extent.

Broader Impact

In this paper, we find that there exists a gap, which resembles the modality gap in visual language
models, between prototype and instance embeddings. An intuition of such a phenomenon is that
prototypes are generated with all data samples within a specific class and consequently can be
treated as an abstract concept of all data samples in the class. From this perspective, the prototype
information plays the same role as text prompts in visual language models to some extent. Thus, our
work provides a direction that we can extract some abstract concept information from the available
single modal data and then train/adapt models with such information in some appropriate way, such
as contrastive learning, to learn more discriminative and useful representation for downstream tasks.
Since visual information is more diverse than texts, we think it will be a promising and feasible
way of developing general models for various kinds of visual tasks. Based on this, there are many
potential societal consequences of our work, none of which we feel must be specifically highlighted.

A Related Work

Cross-domain few-shot classification. Cross-domain few-shot classification is a learning paradigm
that aims at learning to perform classification on previously unseen data and domains by merely fast
training a model on several labeled training data. Generally, the cross-domain few-shot classification
problem can be seen as an extension of conventional few-shot classification problem [52, 14, 47, 6].
The main difference between conventional and cross-domain few-shot classification lies in the
domains for evaluation. In the conventional few-shot classification setting, a model is trained and
evaluated on the same dataset (domain), where the distribution is invariant. However, in the cross-
domain few-shot classification setting, a model is trained on the training sets of several datasets
with different distributions and then evaluated on the test sets of datasets that are used for training
as well as the datasets that have never been observed during the training/adaptation phase. Thus,
compared with the conventional few-shot classification task, the cross-domain few-shot classification
task is much more challenging since there exist distribution gaps between the training and previously
unseen test datasets. Currently, all existing works regarding cross-domain few-shot classification
are mainly based on conventional meta-learning methods, such as Prototypical Networks [47] and
MAML [14]. The former is famous for its strong ability to learn effective inductive bias while the
latter is impressive for its flexibility of adaptation to new tasks. Generally, the existing works can be
divided into two different types according to their ways of training the backbones and classifiers.

Some of the existing works train the model from scratch with a sequence of few-shot tasks in the same
way as conventional few-shot learning frameworks. A typical case of this kind of learning paradigm
is Proto-MAML [49]. Specifically, Proto-MAML proposes to train a model with the modified
Prototypical loss in the same way as MAML to take advantage of the strengths of the two frameworks.
We would like to note that Prototypical loss plays an important role in current cross-domain few-shot
classification research. The reason behind this is that the tasks adopted in cross-domain few-shot
classification tasks are usually sampled with varied numbers of classes and shots [49]. In this case, it
is infeasible to train a classifier in the same way as the conventional meta-learning framework, where
a parameterized classifier is initialized with a fixed number of classes. In addition to Proto-MAML,
more works are proposed to solve cross-domain few-shot classification tasks. CNAPs [43] proposes to
generate parameters with feature-wise linear modulation (a.k.a., FiLM [41]) for task-specific modules
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in their model. However, a potential problem of CNAPs is that the Euclidean distance adopted in
the loss implicitly assumes that each cluster is distributed according to a unit normal. This may
further result in misclassification of data points. Based on this observation, SimpleCNAPs [3] further
proposes a non-parametric classifier from the perspective of class-covariance-based distance metric to
improve the classification performance of the original CNAPs method. Moreover, Doersch et al. [10]
notice that the representations learned via the Prototypical Network framework may only represent
the observed data yet discard the information that might contribute to the recognization of out-of-
distribution classes. Thus, in order to solve this problem, they further propose CrossTransformer to
leverage query image information in pixel-level during the adaptation steps via an attention module.

Different from the learning frameworks that train the entire pipeline from scratch, the other kinds
of methods usually respectively pre-train one or several domain-specific backbones on all available
datasets during the training phase in a conventional supervised learning paradigm. Then, during the
evaluation phase, the prior knowledge in these pre-trained backbones is transferred to the new tasks
through representation fusion or representation adaptation. In cross-domain few-shot classification
community, SUR [12] firstly proposes to select relevant features from the 8 pre-trained backbones to
represent the data of the given new task via a vector. Later, URT [34] further proposes to quickly
train a multi-head transformer on top of 8 pre-trained backbones to learn to select features for
unseen data. Besides, Triantafillou et al. [50] proposes to treat the convolutional layers in a model
as universal templates while treating the batch normalization layers as the domain-specific modules.
Thus, FLUTE is proposed to pre-train a set of universal weights and several domain-specific BN
modules and then train a small model to learn to combine these BN layers and transfer the prior
knowledge to the new tasks. Although leveraging pre-trained backbones is able to take advantage of
high-quality representations learned from previous domains, it is quite time-consuming to perform
several forward passes during both training and evaluation phases. In order to solve this concern, Li
et al. [29] proposes URL to distill the prior knowledge of all 8 pre-trained backbones in one single
backbone. Then, during the test phase, a simple linear layer is fast fine-tuned on top of the distilled
multi-domain backbone to transfer the priori to the unseen domains. Later, TSA [30] is proposed to
enhance URL via plugging more learnable residual modules into the frozen pre-trained backbone
to learn more task-specific features for unseen data. Meanwhile, recent work TA2-Net [16] notices
that different tasks prefer different learnable modules and proposes to train an Action Generation
Network in the way of reinforcement learning to learn to select the optimal module for each task.

Contrastive loss and contrastive learning. The ultimate goal of contrastive learning is to learn dis-
criminative and robust representations at the instance level by comparing two augmented counterparts
of an image. In practice, the goal is realized through contrastive loss which focuses on maximizing
the similarity between positive pairs while minimizing the similarity between negative pairs.

Compared with early contrastive loss [8, 17, 46], the current contrastive loss is constructed upon a
batch of data, where the number of negative samples is larger than that of positive samples. Such
contrastive loss was first proposed by Sohn [48] as multi-class N-pair loss and then improved and
further explored by further works [5, 19, 7, 15, 55, 4]. Based on the InfoNCE, Li et al. [31] further
explores an alternative loss from the perspective of the Hilbert-Schmidt Independence Criterion
measure. Different from conventional unsupervised contrastive learning, Khosla et al. [23] proposes
a fully supervised contrastive learning paradigm, SupCon, via leveraging label information. To be
specific, in conventional unsupervised contrastive learning, only the augmented counterparts of an
image are treated as positive images. However, in supervised contrastive learning, all images that
share the same “general” concept are treated as positive samples. The ultimate goal of SupCon is
to pull normalized embeddings from the same class closer than embeddings from different classes.
Then, with the emergence of pre-trained vision language models, such as CLIP [42], embeddings that
are generated from other modalities are treated as supervised information and have shown impressive
power in multi-modality learning fields. From our perspective, SupCon and CLIP share the same
core. The key difference is that SupCon learns representations by comparing each sample with all
other samples within the same class while CLIP learns to align the representations of each image
sample with the representations of text information that are more “general” than a set of images.

Multi-modal contrastive representation learning. Multi-modality learning [21, 28, 54, 56] is
a learning paradigm that aims at aligning representations extracted from different data modalities,
such as text and images. Since the emergence of CLIP [42] has shown impressive performance on
downstream tasks, more and more attention has been attracted to this research topic. Recently, Liang
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Figure 7: “Modality” gaps between prototypes and images on some other datasets. We selected
a part of the visualization results regarding the “modality” gap between embeddings and learned
representations of prototypes and image instances. It is easy to observe that URL shrinks the gap
while CoPA enlarges the gap between the prototype and image instance representations.

et al. [32] argues that there exists a modality gap between different modal data and theoretically
demonstrates this from the perspective of cone effect [38, 13]. Further, Liang et al. [32] demonstrates
that such a modality gap contributes to the downstream performance on zero-shot learning tasks. In
this work, following Liang et al. [32], we find that such kind of “modality” gap also exists between
prototype and instance embeddings in the context of single modality data, and applying the same
transformation to both of these two kind of embeddings shrinks such a gap. In order to solve this
problem, we propose CoPA to adapt two different transformation heads respectively for prototypes
and instances in the way of CLIP where text prompts are substituted with prototype embeddings.

B Detailed Study on Gaps between Prototypes and Images

As we have mentioned in the previous section, a prototype is typically calculated with all available
data samples (images) within the class. Thus, compared to image instances, the prototypes contain
representative representations, which are commonly shared among image instances within the class.
From this perspective, we notice that the prototypes play a similar role to the text prompts adopted in
visual language models (e.g., CLIP [42]). The text prompts describe the general and representative
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Table 3: Average gaps between prototype and image instance embeddings/representations. The
results are the average value of the gaps of 600 random tasks under “train on all datasets” settings.

Gaps ImageNet Omniglot Aircraft Birds Textures QuickDraw Fungi VGG_Flower

||∆̄embed|| 0.19 0.11 0.12 0.12 0.14 0.14 0.14 0.14
||∆̄URL|| 0.17 0.09 0.08 0.07 0.07 0.06 0.06 0.06
||∆̄CoPA|| 0.60 0.42 0.55 0.54 0.54 0.54 0.56 0.59

information of a category. Thus, we conjecture that the prior information respectively contained in
prototypes and image instances is at different levels. To be specific, image instance representations
are encoded with instance-level information closely related to the contents in the given image while
prototype representations are a set of class-specific representations. According to the visualizations
in [32], the image and text prompt embeddings extracted from visual language models are located in
completely separated areas of the feature space. In that work, the reason for such a phenomenon is
attributed to the different kinds of modalities of the input data. Thus, the gap between the clusters of
the extracted text and image embeddings is correspondingly called the modality gap.

As aforementioned, the prototype resembles the text prompt to some extent since both of them describe
some high-level information commonly shared among images within a class. Thus, similar to the
modality gap, there might also exist some type of gap between prototype and image representations.
To further determine our intuition, in this section, we propose to conduct an analysis to figure out
whether the gap between the prototype and image instance embeddings/representations exists.

Analysis Settings. To examine the gap between prototypes and image instances, we follow Liang
et al. [32] to measure the Euclidean distance between the prototypes and image instances embed-
dings/representations. To be specific, in the analysis, tasks are first randomly sampled from the
validation set of a specific dataset, such as ImageNet [44], and the corresponding embeddings are
obtained by feeding support data of the tasks into a frozen pre-trained ResNet-18 backbone. Then,
the prototype for each class in the task is calculated as a mean of all support data within the class
following previous works [47, 49, 43, 3, 12, 34, 29, 30]. By respectively applying URL [29] and our
proposed CoPA methods on the extracted embeddings, the corresponding representations are obtained.
Finally, we reduce the dimension of the prototype and image representations via some dimension
reduction tools, such as UMAP [37], and visualize the results. The results are visualized in Figs. 1,
5(a), 7, and 19. According to the visualization results, there are several interesting phenomena:

• According to Figs. 1(a), 7(a), 7(d), 7(g), 7(j), and the results of other datasets (Fig. 19),
it is easy to observe that the prototype and image instance embeddings extracted from a
frozen pre-trained backbone tend to be located in different regions of the feature space.
This phenomenon is consistent with what happens in visual language models [32]. It also
demonstrates the aforementioned intuition that prototype and image instance data describe
the information at different levels and should be treated differently during the adaptation.

• Then, according to Figs. 1(b), 7(b), 7(e) and 7(k), we can observe that the “modality” gap
is shrunken after applying URL, which imposes an assumption that the same represen-
tation transformation is applied to both prototype and image instance embeddings. This
phenomenon demonstrates that sharing the same transformation between prototypes and
image instances potentially damages the distribution differences between the prototypes and
image instances and in turn removes the differences of semantic information between them.

• Finally, according to Figs. 5(a), 7(c), 7(f) and 7(l), we can observe that the representations
learned from our proposed CoPA method preserve the “modality” gap and the gap is
further enlarged compared with the gap between the embeddings. As claimed in Liang
et al. [32], the enlargement of the gap contributes to the improvements in generalization
performance. According to our empirical results in Tables 1 and 2, CoPA achieves the SOTA
performance and significantly outperforms URL and URL + TSA, which is consistent with
the conclusion. Thus, we can further say that it is the gap between prototype and image
instance representations that facilitates CoPA to achieve better empirical performance.

In addition to these visualization results, we take a further step to validate whether this phenomenon
is common among all tasks of all seen domain datasets. To this end, we collect the results of
the gaps of the extracted embeddings and the representations respectively learned from URL and
CoPA among 600 randomly sampled tasks under the “train on all datasets” task setting with the
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Figure 8: Analysis results of three kinds of prototypes: “Max”, “Max Sample” and “Average”
prototypes on ImageNet dataset. (a). Average accuracy of URL with three kinds of prototypes on
ImageNet dataset. The results are obtained by averaging 5 reproductions with different random seeds
(i.e. 41-45). (b). The distribution of both positive and negative similarities with the “Max” prototype.
(c). The distribution of both positive and negative similarities with the “Max Sample” prototype. (d).
The distribution of both positive and negative similarities with the “Average” prototype.

random seed 42 on the validation sets of all seen domain datasets. The results are reported in
Table 3. The gaps are calculated following Liang et al. [32]. Given a set of normalized support data
embeddings/representations {zi}|DT |

i=1 and a set of normalized prototypes generated from the support
data {cj}NC

j=1, the gap is calculated as the difference between the averaged prototypes and images:

∆⃗ :=
1

|DT |

|DT |∑
i=1

zi −
1

NC

NC∑
j=1

cj .

Thus, in this way, with the normalized prototype and image instance embeddings/representations, the
“modality” gap is further defined as the Euclidean distance between the two sets of embeddings/repre-
sentations ||∆⃗||, where || · || denotes the Euclidean distance.

According to the results reported in Table 3, it is easy to observe that URL consistently shrinks the
gaps between prototypes and image instances over all datasets while CoPA consistently enlarges the
gaps. These results indicate that URL undermining the “modality” gaps while CoPA preserving and
enlarging the gaps is not an occasional case. It commonly happens across all domains.

C Detailed Study on Prototype Selection

In this paper, in order to select the most appropriate prototypes for CoPA, we conduct an analysis to
perform prototype selection. Generally, the prototype for each class ought to contain the most general
and discriminative information regarding the class. To this end, three kinds of prototypes are selected
as candidates. We will provide detailed descriptions and analyses of them in the following parts.

C.1 Introduction of Three Prototypes

Max Prototype. The “Max” prototype is defined as the sample that is composed of the largest
features in each dimension among all support data embeddings extracted from a frozen backbone.
The pseudo codes are provided in the following:

import torch

def max_prototype(X:torch.tensor , Y:torch.tensor):
’’’
Args:

X: shape: [n_samples , n_dims], the support data embeddings;
Y: shape: [n_samples ,], the support data labels.

Return:
max_protos: torch.tensor , shape: [n_classes , n_dims ].

’’’
n_way = len(Y.unique ())
max_protos = torch.zeros(n_way , X.shape[-1]).type_as(X.dtype)
for i in range(n_way):

max_proto[i], _ = X[(Y == i), :].max(dim=0)
return max_protos
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Max Sample Prototype. The “Max Sample” prototype is the data sample that has the highest
similarities over all other samples within its class set. The pseudo codes are provided in the following:

import torch

def max_sample_prototype(X:torch.tensor , Y:torch.tensor):
’’’
Args:

X: shape: [n_samples , n_dims], the support data embeddings;
Y: shape: [n_samples ,], the support data labels.

Return:
maxsample_protos: torch.tensor , shape: [n_classes , n_dims ].

’’’
n_way = len(Y.unique ())
maxsample_protos = torch.zeros(n_way , X.shape[-1]).type_as(X.dtype

)
for i in range(n_way):

class_samples = X[(Y == i), :]
num_samples = class_samples.shape[0]
normed_samples = class_samples / class_samples.norm(dim=1,

keepdim=1)
similarity_mat = normed_samples @ normed_samples.t()
max_proto[i] = class_samples[torch.argmax(similarity_mat.sum(1

), :]
return maxsample_protos

Average Prototype. The “Average” prototype is the typical prototype adopted in previous few-shot
classification works and calculated as the average vector of all support data embeddings extracted
from a frozen pre-trained backbone within the given class. The pseudo codes are as the following:

import torch
import torch.nn.functional as F

def avg_prototype(X:torch.tensor , Y:torch.tensor):
’’’
Args:

X: shape: [n_samples , n_dims], the support data embeddings;
Y: shape: [n_samples ,], the support data labels.

Return:
avg_protos: torch.tensor , shape: [n_classes , n_dims ].

’’’
one_hot_labels = F.one_hot(Y) # shape: [n_samples , n_classes]
avg_protos = Y.t() @ X / Y.t().sum(dim=1, keepdim=True)

return avg_protos

C.2 Analysis Settings & Results

Settings. The analysis regarding prototype selection is performed on the support data embeddings (of
tasks sampled from the validation set of seen domain datasets) extracted from the frozen pre-trained
backbone. The results are obtained from 600 randomly sampled with the random seed 42. Specifically,
for each sampled task, the support data are fed into the backbone for the corresponding embeddings.
Then, the prototype embeddings for each class are calculated respectively. With the support data and
prototype embeddings, we measure two kinds of similarity. The first one is the similarity between
each support data sample and the prototype that it belongs to. We call such kind of similarity “positive
similarity”. The other one is the similarity between each sample and the prototypes of other classes.
We call such kind of similarity “negative similarity”. The density of both kinds of similarity of the
three prototypes (over all seen domain datasets) are visualized in Fig. 8 and Figs. 12 - 18.

Results. As aforementioned, the prototype should contain information that is commonly shared
among samples within the class while distinctive from other classes. In other words, such a prototype
has high similarity with the samples within the class while low similarity with the samples from
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other classes. Thus, for prototypes that depict the representative features of the classes, the positive
similarity should be as large as possible while the negative similarity should be as small as possible.

According to the results on ImageNet dataset shown in Fig. 8, the comparison of the three kinds
of prototypes mainly includes two parts. On the one hand, the numerical results of the few-shot
classification task are evaluated respectively with the three prototypes. On the other hand, the
distributions of “positive similarity” and “negative similarity” are respectively measured.

From the perspective of numerical results, it is easy to observe that the “Average” prototype achieves
the best empirical generalization performance on ImageNet and outperforms the “Max” and the
“Max Sample” prototypes. In addition, the “Average” prototype also achieves the best results in
positive similarity distribution with an average positive similarity of 0.79 (see Fig. 8(d)). Interestingly,
the “Max Sample” prototype, which owns the highest similarity over all other samples, obtains the
lowest positive similarity, even smaller than the “Max” prototype. We conjecture the reason for this
phenomenon is that the “Max Sample” prototype does not contain the common features shared in its
class though it owns the highest similarity among all other samples within its class. Thus, with all
aspects taken into consideration, we select the “Average” prototype for our proposed CoPA.

D Detailed Task Settings

In this section, we intend to provide comprehensive and concrete details about the task settings
adopted in the experiment section of our paper. Specifically, we mainly introduce the dataset (i.e.
Meta-Dataset [49]), and the vary-way vary-shot classification task setting in this section.

D.1 Introduction of Meta-Dataset

Meta-Dataset is a dataset composed of several datasets that are easy and free to access. It spans a
variety of visual concepts with different degrees of fine grain (e.g. from hand-writing to natural sce-
narios). It was first proposed by Triantafillou et al. [49] for cross-domain few-shot classification tasks
and has been a popular and mainstream benchmark in this field. Originally, Meta-Dataset only con-
tained 10 datasets, which are ILSVRC_2012 (a.k.a. ImageNet) [44], Omniglot [26], FGVC_Aircraft
(Aircraft) [36], CUB_200-2011 (CU_Birds) [53], Describable Textures (DTD/Textures) [9], Qucik
Draw [22], FGVCx Fungi (Fungi) [45], VGG_Flower [39], Traffic Sign [20], MSCOCO [33]. Later,
MNIST [27], CIFAR-10 [25] and CIFAR-100 [25] are further contained by Bateni et al. [3].

In practice, there are two mainstream settings widely applied in the existing works [49, 43, 3, 10, 12,
34, 29, 30]. The first setting is the “train on all datasets” setting. In this setting, 8 datasets, including
ImageNet, Omniglot, Aircraft, Birds, Textures, Quick Draw, Fungi, and VGG_Flower, are selected
as seen domains while the remaining datasets are treated as unseen domains. In contrast, the other
setting, the “train on ImageNet only” setting, only takes ImageNet as the seen domain while all other
datasets are treated as unseen domains. In this paper, we report results under both task settings. In
particular, if there is no further declaration, the default task setting is the “train on all datasets” setting.

D.2 Brief Introduction of Vary-Way Vary-Shot Task Settings

Vary-way vary-shot classification task setting is first proposed in Meta-Dataset [49] to mimic the
most common situations, where the number of classes and the number of samples in each class are
randomly determined, in the real world. Thus, the samples in these tasks are imbalancedly distributed.
Such task setting is widely adopted in many previous works [43, 3, 10, 50, 12, 34, 29, 30, 16].
Different from the conventional few-shot classification task setting, where the numbers of classes and
shots are invariant in each task, vary-way vary-shot task setting adopted in cross-domain few-shot
classification is much more challenging due to the imbalanced data and the uncertain task structure.

Roughly, the generation process of vary-way vary-shot task mainly includes two steps: class sampling
and data point sampling. To be specific, the first step is sampling classes from a specific dataset.
Given a dataset, the number of classes is randomly determined with some probability distribution in
the interval [5, Nmax], where Nmax denotes the maximum number of classes of the dataset. In the
context of Meta-Dataset, the Nmax is usually set either 50 or as many classes as there are available.

After the number of classes is determined, a set of classes is uniformly sampled from the given
dataset. Then, the number of data points for each class is assigned in a random way. Concretely, the
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Table 4: Comparisons of CoPA respectively with linear transformation head and visual Transformation
under both “train on all datasets” and “train on ImageNet only” settings. Mean accuracy and 95%
confidence interval are reported. All results are the average of 5 reproductions with seeds 41-45.

Datasets train on all datasets train on ImageNet only
CoPA + Linear CoPA + ViT CoPA + Linear CoPA + ViT

ImageNet 57.8±1.1 57.7±1.1 57.7±1.1 57.4±1.1
Omniglot 94.3±0.5 94.3±0.4 70.9±1.2 70.5±1.2
Aircraft 88.8±0.5 88.8±0.5 61.6±1.0 59.7±1.0
Birds 80.8±0.8 80.8±0.8 74.2±0.9 74.0±1.0
Textures 77.8±0.7 77.4±0.7 77.0±0.7 76.6±0.7
Quick Draw 82.8±0.6 82.8±0.6 61.3±1.0 58.7±1.0
Fungi 69.5±1.0 69.4±1.0 48.0±1.1 47.2±1.1
VGG Flower 92.7±0.5 92.6±0.5 88.9±0.6 88.3±0.7
Traffic Sign 66.6±1.1 68.8±1.1 63.8±1.1 68.2±1.1
MSCOCO 56.3±1.1 55.8±1.1 56.1±1.0 55.3±1.1
MNIST 95.2±0.4 95.2±0.5 87.3±0.7 89.7±0.7
CIFAR-10 73.0±0.8 72.7±0.8 72.4±0.8 72.1±0.8
CIFAR-100 63.4±1.0 63.2±1.0 62.7±1.0 62.3±1.0

Algorithm 1 CoPA Algorithm.
Input: pre-trained backbone fϕ∗ , number of inner iterations n, learning rate η, linear transforma-
tion heads hθP and hθI , temperature coefficient τ .
Output: the optimal parameters for linear transformation heads θ∗P and θ∗I .
# Sample a task
Sample a new support data set DT = {X, Y };
Generate pseudo labels Ypseudo = {0, 1, ..., |DT | − 1};
# Performing contrastive prototype-image adaptation
for i = 1 to n do

Obtain the prototype and instance representations:
ZP = hθP(Y Y ⊤fϕ∗(X));
ZI = hθI(fϕ∗(X));

Compute SCE loss L(θP, θI) in Eq. (3);
Update parameters:

θP ← θP − η∇θPL(θP, θI);
θI ← θI − η∇θIL(θP, θI);

end for

first step in data point sampling is determining the number of query data. In the vary-way vary-shot
task setting proposed in Meta-Dataset [49], the number of query data for each class is fixed to the
same number (e.g. 10). The number of query data ought to be no more than half of all available data
in the given class so that at least 50% of the data can be preserved as support data. Then, based on
the number of query data, the support data are sampled from the remaining data with the constraint
that the total number of the entire support data (of all classes) should be no more than 500. The
number of support data for each class is determined by the size of support data and a set of random
scalars sampled from a given interval. In this way, a task with random numbers of classes and shots
is sampled from a given dataset. More concrete details are available in the Meta-Dataset article [49].

E Detailed Implementation Settings

In this section, we provide detailed implementation settings, including backbone pre-training, model
structures, adaptation module initialization, hardware information, and other hyperparameter settings
(e.g. learning rate & weight decay), for the convenience of reproducing our proposed CoPA method.

E.1 Pre-trained Backbones

In this paper, our proposed CoPA method is built upon a ResNet-18 backbone [18] as done in previous
works [12, 34, 29]. For the pre-trained backbone used in the “train on ImageNet only” setting, the
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backbone is pre-trained in the same way as proposed in SUR [12]. Specifically, the backbone is
trained with stochastic gradient descent optimizer and cosine annealing with a learning rate 3× 10−2.
The momentum is set to 0.9 and the weight decay is set to 7× 10−4. In addition, the batch size is 64
and the total number of learning iterations is 480,000. All images are reshaped to the size of 84×84.

Moreover, for the universal backbone that is used in the “train on all datasets” setting, we follow
URL [29] to distill a ResNet-18 backbone from models that are respectively pre-trained on 8 single
datasets. The distilled model is also pre-trained with SGD optimizer (learning rate is set to 3× 10−2

and weight decay is set to 7× 10−4) and cosine annealing as well with 240,000 learning iterations.
The details of single domain backbone pre-training are available in appendices of URL [29].

E.2 Architecture of Visual Transformer

In addition to the linear transformation head, we also evaluate our method on visual Transformer
(i.e. ViT) [11] to figure out whether the proposed CoPA method benefits from complex and powerful
learning modules. In our experimental setting, the visual Transformer we adopted is composed of a
single self-attention block. Specifically, each visual Transformer model only contains one attention
block followed by a LayerNorm layer [1] and a linear layer. All layers in the ViT, including query,
key, value heads, and the linear transformation head, are formulated as 512 × 512 matrices.

E.3 Module Initialization

During the meta-test phase, the adaptation modules (i.e. trainable learning modules) are re-initialized
for the adaptation of new tasks at the beginning of each episode. Specifically, all linear layers will be
re-initialized to an identity matrix with the size of 512 × 512. Besides, in the visual Transformer
case, the weight and bias of the LayerNorm layer are respectively set to 1.0 and 0.0, all class tokens
are re-initialized to 0.0, and all position embeddings are re-initialized with a normal distribution
N (0, 0.02). In particular, in CoPA + TSA case, the trainable learning modules plugged into the
pre-trained backbone are re-initialized to all-ones matrices with a scale coefficient 1e− 4.

E.4 Optimization

In our method, the optimizer adopted during adaptation is Adam optimizer [24]. For each adaptation
episode, the total number of iterations is 50 for linear transformation and 40 for visual Transformer.
For linear head, the learning rate is set to 5e-3 for Traffic Sign and MNIST datasets while 1e-3 for the
remaining datasets. The weight decay is set to 0.1 for all datasets except for Traffic Sign and MNIST.
For the visual Transformer, the learning rate is set to 1e-3 for Traffic Sign and MNIST and 1e-4 for
other datatsets. The weight decay is set to 0.1 for all datasets except Traffic Sign and MNIST.

E.5 Hardware & Random Seeds

All experiments in this paper are conducted with an NVIDIA GeForce RTX 3090 GPU. To make sure
that all experimental results are reproducible and the comparisons are fair, all results of our proposed
CoPA method and other reproduced methods are the average of 5 reproductions with the random
seeds 41, 42, 43, 44, 45. The GPU memory that is required for running our method is about 10 GB.

E.6 Task Specific Adapter Setting

Among all existing methods, as far as we know, the best results on cross-domain few-shot classification
tasks with respect to Meta-Dataset are reported by TSA [30]. Besides, recent work, TA2-Net [16],
can be seen as a further extension of TSA by adaptively selecting learning modules plugged into
the pre-trained backbone. Due to the extra trainable modules plugged into the frozen pre-trained
backbone, more task-specific knowledge can be learned to achieve better generalization performance.

In this paper, although our proposed CoPA method is able to achieve better generalization performance
than TSA on seen domains without having to add any extra learning modules on the pre-trained
backbone, there still exist obvious performance gaps on unseen domains. We conjecture that the
improvements over unseen domains significantly rely on the extra learning modules. Thus, to verify
this conjecture, we followed TSA to plug some extra learning modules into the pre-trained backbone
to combine our proposed CoPA with TSA strategy. However, since TSA consumes large amounts
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of time compared with URL in practice (about 30s/iter), concerning efficiency, we only plugged
learning modules on the second and third residual blocks of the pre-trained ResNet-18 backbone.

In our implementation of CoPA + TSA case, we optimize the learning modules and transformation
heads with Adam optimizer as well. To be specific, the learning rate of the two transformation heads
is set to 5e− 3 for Traffic Sign, MNIST, CIFAR-10, and CIFAR-100 datasets while 1e− 3 for the
remaining datasets. For learning modules plugged into the pre-trained backbones, the learning rate is
set to 2.5e − 3 for Traffic Sign, MNIST, CIFAR-10 and CIFAR-100 datasets while 1e − 4 for the
remaining datasets. Except for Traffic Sign and MNIST, the weight decay is set to 0.1.

E.7 Reproduction of State-of-the-art Methods

In this paper, for fair comparisons between our proposed CoPA method and current state-of-the-art
methods, such as URL, TSA, and TA2-Net, we ran both CoPA and those existing methods with the
same 5 random seeds and reported the average of 5 reproduction experiments as the final results. All
results of these methods reported in our paper can be reproduced by setting the seed in the bash file.

F More Experimental Results

F.1 CoPA with More Complex Modules

Similar to CLIP [42], which performs contrastive learning via two Transformers [51, 11] with text
and image data pairs, the proposed CoPA method in this paper fine-tunes two different modules
respectively for prototype and image instance embeddings by substituting the text prompts with
prototypes. However, the modules adopted in the main results are two linear transformations. It is not
clear whether applying more complex modules contributes to the performance. Thus, in this section,
we similarly evaluate the performance of CoPA with two visual Transformer (ViT) heads [11].

The implementation details of ViT are available in Appendix E.2. The comparison of performance
between CoPA + ViT and CoPA + Linear is reported in Table 4. According to the results in the table,
we can observe that the performance changes between CoPA + Linear and CoPA + ViT are slight
under both “train on all datasets” and “train on ImageNet only” settings. Such a phenomenon reveals
that the proposed CoPA method is not sensitive to the complexity of model architectures.

F.2 Fewer Shot Classification Tasks.

In this section, we follow previous works [49] to evaluate our proposed CoPA method on fewer-
shot classification tasks. Different from the vary-way vary-shot task setting mentioned above, the
fewer-shot classification task contains fewer data samples in each task and thus is more challenging.

F.2.1 Fewer-shot Experiments

In addition to the vary-way vary-shot task setting adopted in the main results section, some other
task settings, such as 5-way 1-shot and vary-way 5-shot, are also widely adopted in previous
works [14, 47, 49, 29, 30]. Compared with the vary-way vary-shot task setting, 5-way 1-shot and
vary-way 5-shot tasks are more challenging since fewer data samples are included in the support set
of each task. For example, in the vary-way 5-shot task setting, although the number of classes is still
randomly determined at the beginning of each episode, the number of data samples (i.e. shot) is fixed
to 5. Similarly, in the 5-way 1-shot task setting, both the numbers of classes and data samples in each
class are respectively fixed to 5 and 1. In this section, in order to further explore the capability of
CoPA, we validate the performance of CoPA on both task settings aforementioned under the “train on
all datasets” setting for all datasets in Meta-Dataset. All results are reported in Tables 5 and 6.

Vary-way 5-shot. As shown in Table 5, compared with previous works, such as SimpleCNAPs [3],
SUR [12], URT [29] and URL [29], CoPA achieves the best performance on 7 out of 13 datasets and
ranks 3.2 among all approaches. In particular, CoPA outperforms URL, which CoPA is based on, on
9 out of 13 datasets, and achieves 0.2%, 0.5%, and 0.3% improvements on average respectively on
seen, unseen, and all domain cases. To be specific, CoPA respectively achieves better performance on
Omniglot (0.2%), Aircraft (0.4%), CU_Birds (0.2%), VGG_Flower (0.5%) and Traffic Sign (2.1%)
datasets. Meanwhile, we also notice that CoPA achieves better results than TSA, where extra trainable
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Table 5: Results under vary-way 5-shot task setting (under “Trained on all datasets” setting).
Mean accuracy, 95% confidence interval reported.

Datasets Vary-way 5-shot
Sim-CNAPS SUR URT URL CoPA TSA CoPA + TSA

ImageNet 47.2±1.0 46.7±1.0 48.6±1.0 47.8±1.0 47.6±1.0 47.0 ± 1.0 47.1 ± 1.0
Omniglot 95.1±0.3 95.8±0.3 96.0±0.3 95.8±0.3 96.0±0.3 96.4 ± 0.3 96.4 ± 0.3
Aircraft 74.6±0.6 82.1±0.6 81.2±0.6 83.9±0.5 84.3±0.5 84.6 ± 0.5 84.6 ± 0.5
Birds 69.6±0.7 62.8±0.9 71.2±0.7 76.1±0.7 76.3±0.6 76.3 ± 0.7 76.6 ± 0.6
Textures 57.5±0.7 60.2±0.7 65.2±0.7 66.8±0.6 66.9±0.6 66.4 ± 0.6 66.7 ± 0.6
Quick Draw 70.9±0.6 79.0±0.5 79.2±0.5 78.3±0.5 78.6±0.5 78.1 ± 0.5 78.3 ± 0.5
Fungi 50.3±1.0 66.5±0.8 66.9±0.9 68.7±0.9 68.8±0.9 68.5 ± 0.9 68.5 ± 0.9
VGG Flower 86.5±0.4 76.9±0.6 82.4±0.5 88.5±0.4 89.0±0.4 89.3 ± 0.4 89.3 ± 0.4

Traffic Sign 55.2±0.8 44.9±0.9 45.1±0.9 56.7±0.8 58.8±0.8 71.5 ± 0.5 80.0 ± 0.5
MSCOCO 49.2±0.8 48.1±0.9 52.3±0.9 51.3±0.8 50.9±0.8 52.0 ± 0.9 52.4 ± 0.8
MNIST 88.9±0.4 90.1±0.4 86.5±0.5 88.5±0.4 89.5±0.4 92.2 ± 0.3 94.8 ± 0.3
CIFAR-10 66.1±0.7 50.3±1.0 61.4±0.7 59.6±0.7 59.6±0.7 66.3 ± 0.7 65.7 ± 0.7
CIFAR-100 53.8±0.9 46.4±0.9 52.5±0.9 55.8±0.9 55.3±0.8 62.2 ± 0.8 63.1 ± 0.7

Average Seen 69.0 71.2 73.8 75.7 75.9 75.8 75.9
Average Unseen 62.6 56.0 59.6 62.3 62.8 68.8 71.2
Average All 66.5 65.4 68.3 70.6 70.9 73.1 74.1

Rank 5.6 5.9 4.4 3.9 3.2 2.8 2.2
1 Both the results on URL, TSA and CoPA are the average of 5 random seeds (41 - 45).

Table 6: Results under 5-way 1-shot task settings (under “Trained on all datasets” setting).
Mean accuracy, 95% confidence interval reported.

Datasets 5-way 1-shot
Sim-CNAPS SUR URT URL CoPA TSA CoPA + TSA

ImageNet 42.6±0.9 40.7±1.0 47.4±1.0 46.5±1.0 46.5±1.1 46.1 ± 1.0 46.3 ± 1.0
Omniglot 93.1±0.5 93.0±0.7 95.6±0.5 95.5±0.5 95.5±0.5 95.6 ± 0.5 95.7 ± 0.5
Aircraft 65.8±0.9 67.1±1.4 77.9±0.9 78.6±0.9 78.4±0.9 78.6 ± 0.9 78.9 ± 0.9
Birds 67.9±0.9 59.2±1.0 70.9±0.9 76.2±0.9 76.2±0.9 75.8 ± 0.9 75.8 ± 0.9
Textures 42.2±0.8 42.5±0.8 49.4±0.9 52.0±0.9 52.2±0.9 51.9 ± 0.9 52.0 ± 0.9
Quick Draw 70.5±0.9 79.8±0.9 79.6±0.9 79.1±0.9 79.1±0.9 78.9 ± 0.9 79.0 ± 0.9
Fungi 58.3±0.1 64.8±1.1 71.0±1.0 71.4±1.0 71.4±1.0 71.3 ± 1.0 71.4 ± 1.0
VGG Flower 79.9±0.7 65.0±1.0 72.7±1.0 80.3±0.8 80.3±0.8 80.5 ± 0.8 80.6 ± 0.8

Traffic Sign 55.3±0.9 44.6±0.9 52.7±0.9 57.4±0.9 58.4±0.9 57.3 ± 0.9 57.8 ± 1.0
MSCOCO 48.8±0.9 47.8±1.1 56.9±1.1 52.1±1.0 51.7±0.9 52.9 ± 1.0 52.1 ± 1.0
MNIST 80.1±0.9 77.1±0.9 75.6±0.9 73.3±0.8 73.4±0.8 75.1 ± 0.8 76.1 ± 0.8
CIFAR-10 50.3±0.9 35.8±0.8 47.3±0.9 48.6±0.8 48.4±0.8 49.2 ± 0.8 54.5 ± 0.8
CIFAR-100 53.8±0.9 42.9±1.0 54.9±1.1 61.5±1.0 61.3±1.0 62.4 ± 1.0 62.6 ± 1.0

Average Seen 65.0 64.0 70.6 72.5 72.5 72.3 72.5
Average Unseen 57.7 49.6 57.5 58.4 58.6 59.4 60.6
Average All 62.2 58.5 65.5 67.1 67.1 67.3 67.9

Rank 5.5 5.9 4.1 3.2 3.2 3.5 2.3
1 Both the results on URL, TSA and CoPA are the average of 5 random seeds (41 - 45).

learning modules are plugged into the frozen pre-trained backbones. Concretely, CoPA outperforms
TSA respectively on ImageNet (0.6%), Textures (0.5%), Quick Draw (0.4%), and Fungi (0.3%).

Moreover, we also evaluate the performance of CoPA + TSA on vary-way 5-shot tasks. According to
the results in the table, CoPA + TSA achieves the best performance on 8 out of 13 datasets and ranks
2.2 among all approaches. In general, CoPA + TSA obtains the similar performance on seen domains
to CoPA and TSA while significantly outperforms all other methods on unseen domains. Specifically,
compared with the state-of-the-art method TSA, CoPA + TSA achieves 8.5%, 0.4%, 2.6%, and 0.9%
improvements respectively on Traffic Sign, MSCOCO, MNIST, and CIFAR-100 datasets.
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Figure 9: Comparisons of test accuracy curves between URL, CoPA and CoPA + TSA under
5-way 1-shot task setting. The figures depict the comparison of validation accuracy between URL,
CoPA and CoPA + TSA under the 5-way 1-shot setting during the adaptation process. According to
these figures, it is easy to observe that overfitting tends to take place in all cases in URL and several
cases in CoPA during the adaptation process. The main reason is that the prototype of each class
under the 5-way 1-shot setting is calculated with only one data sample. Thus, such prototypes are too
biased to contain the comprehensive and useful information regarding the classes they belong to.

All these results demonstrate that our proposed CoPA is robust and able to achieve better generalization
performance compared with the existing approaches on CFC tasks even with fewer data samples.

5-way 1-shot. As to 5-way 1-shot task, it is a special case in the few-shot classification task since
the prototype of each class in this task setting is calculated with only one data sample. Thus, the
obtained prototypes may be more biased compared with those obtained in the vary-way vary-shot
and vary-way 5-shot task settings. Consequently, the 5-way 1-shot task is much more challenging.

According to the results reported in Table 6, it is easy to observe that our proposed CoPA achieves
comparable results compared with URL and ranks 3.2 among all approaches. To be concrete, CoPA
achieves the similar performance to URL on the seen domains while only outperforms URL on Traffic
Sign dataset among the unseen domains. As for TSA, we find that plugging more extra trainable
learning modules into the pre-trained backbone fails to improve the generalization performance
on the seen domains. However, the performance on the unseen domains benefits from these extra
learning modules. Specifically, although TSA fails to outperform our proposed CoPA on Traffic Sign
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Table 7: Study of the size of support set (Under “train on all dataset” settings).

Methods ImageNet Omniglot Aircraft Birds DTD QuickDraw Fungi VGG_Flower

Max 498 165 497 494 498 497 494 497
Min 6 5 5 6 6 16 7 5
Avg 364.9 49.7 340 312.3 282.3 428.0 252.5 276.3

dataset, it achieves better performance on other unseen domain datasets compared with URL and
CoPA. Moreover, in order to further explore our proposed CoPA method on 5-way 1-shot tasks, we
further evaluate the combination of CoPA and TSA (i.e. “CoPA + TSA” in the table). According to
the results reported in the table, we find that CoPA + TSA achieves the best performance on average
among all approaches and ranks 2.3. Compared with the original TSA, CoPA + TSA improves the
generalization performance on the seen domains and obtains comparable results to URL and CoPA.
On unseen domains, CoPA + TSA performs better than TSA. For example, CoPA + TSA increases
the performance on Traffic Sign, MNIST and CIFAR-10 respectively by 0.5%, 1.0%, and 5.3%.

One conjecture for the phenomenon that CoPA fails to outperform other approaches evidently in
most cases is that the prototype of each class generated under the 5-way 1-shot setting fails to contain
comprehensive and useful information that is representative enough to depict the general features
of the class since it is calculated with only one data sample. In this case, contrastive learning is
performed between two identical data samples and overfitting may take place. In order to validate
our conjecture, we plot the accuracy curves of URL, CoPA, and CoPA + TSA. The visualization
results are presented in Fig. 9. According to these figures, we can see that it is quite hard to perform
adaptation on tasks with extremely few labeled data samples and overfitting tends to take place. For
example, For datasets like Omniglot (Fig. 9(b)) and Aircraft (Fig. 9(c)), overfitting is obvious on both
URL and CoPA. Meanwhile, the application of CoPA even deteriorates the performance.

F.2.2 Study on Effect of Support Data Size

In this paper, due to the consideration of preserving the gap between prototypes and image instances,
we propose to adopt symmetric cross-entropy loss as the learning objective. Typically, the symmetric
cross-entropy loss is commonly applied in the contrastive learning framework.

An important issue in the conventional contrastive learning framework is the size of the data. As
demonstrated in previous works [5], the large batch size is the key to learning useful representations
for downstream tasks. Thus, we are also interested in the effect of the batch size of the data. However,
due to the task settings, such as the vary-way vary-shot setting, it is intractable to manipulate the
batch size via task sampling directly. Thus, we can approximately study the problem by comparing
the performance of CoPA respectively on vary-way vary-shot tasks and fewer-shot tasks since the
latter contains much fewer data samples in the support set.

First of all, we count the number of samples in 600 tasks randomly sampled from the validation set of
seen domain datasets (with the random seed 42). The results are reported in Table 7. According to the
table, we can observe that the difference between the minimum and the maximum of the support set
size is large. On average, in most cases, the average size of the support set is more than 200. These
results indicate that the number of data samples under vary-way vary-shot settings is not too small.

Then, we compared the performance of CoPA respectively on vary-way vary-shot tasks, vary-way
5-shot tasks, and 5-way 1-shot tasks. In vary-way vary-shot setting, which contains the most samples,
CoPA evidently achieves the best results. However, in vary-way 5-shot tasks, CoPA can still achieve
the best results on average, though it fails to outperform on some datasets. On 5-way 1-shot tasks, we
can obviously observe that CoPA achieves similar results to URL without absolute advantages.

Thus, we can see that the rule is not changed and the large batch size is still preferred in our proposed
method. Thus, a potential limitation of our proposed method is that CoPA may fail to achieve good
generalization performance with extremely few data samples.

F.3 Results of Analysis regarding Number of Parameters

In this paper, the original CoPA aims at fast fine-tuning two linear heads respectively for prototype and
image instance embeddings on top of the frozen pre-trained backbones in the same way as contrastive
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learning applied in CLIP [42]. Compared with previous works, such as URL [29] on which CoPA is
based, CoPA utilizes more model parameters. To be specific, the number of parameters contained in
the trainable modules of CoPA is twice those contained in the trainable module in the URL. Thus, in
this case, a concern that may be raised is whether the improvements in generalization performance on
CoPA result from more trainable parameters contained in the two linear transformation heads.

In order to figure out this question, we conduct an analysis to explore the effect of the number of
model parameters. To be specific, we compare CoPA with a variant of URL that includes the same
number of trainable model parameters under the “train on all datasets” setting. In the URL, only
a simple linear layer with the size of 512 × 512 is trained on support data for further few-shot
classification on query data. In order to increase the number of the number of parameters, we propose
to substitute the original linear transformation head in the URL with a simple two-layer MLP. The
MLP is designed with the structure of Linear–Batch Normalization–Linear. All linear layers
in the MLP model are with the size of 512 × 512. Then, the number of parameters is equal to CoPA.

The experimental results are reported in Table 9. According to these results, we can observe that
the combination of URL and MLP fails to outperform CoPA and even achieve worse results than
URL where fewer parameters are contained. These results demonstrate that simply adding more
parameters in the linear transformation head does not positively affect the generalization performance
since the implicit assumption about the shared transformation is not removed. The success of CoPA
is mainly based on the mechanism of CoPA, where the prototype and image instance representations
are explored respectively with different transformations by optimizing symmetric cross entropy loss.

F.4 Efficiency of CoPA.
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Figure 10: The comparison of run-
ning time between URL and CoPA.

Due to the two linear transformation heads, the number of pa-
rameters in CoPA is twice of that in URL. Assume that there
are N data samples with the dimension of Nd, the number
of classes is NC , then the size of a linear head is Nd × Nd.
For instance, in our experimental settings, Nd = 512 and the
size of the linear head is 512 × 512. Based on this, we list
the number of parameters and the computational complexity
of a forward pass (including representation transformations
with linear heads and inner products between samples and
prototypes) in Table 8. Notice that we did not take the com-
putation of feature extraction from the frozen backbone into
consideration. However, as shown in Fig. 10, CoPA is more
efficient than URL. The main reason for this phenomenon is
that CoPA calculates the prototypes at the beginning of each
episode and does not have to calculate prototypes repeatedly in each iteration as done in URL.

Table 8: Comparison of the number of parameters, the computational complexity of URL and CoPA.

Methods # Params Computational Complexity

URL N2
d N(NC +Nd)(N

2
d −Nd)

CoPA 2N2
d (NNd +NCNd + 2N2)(N2

d −Nd)

F.5 Ablation Study

In this section, we perform a series of ablation studies to evaluate the abilities of our proposed CoPA
method and determine the functions of the components, such as the SCE loss, adopted in the CoPA.

Symmetry Cross Entropy Loss. In our paper, we follow CLIP [42] and propose a simple yet
effective method, contrastive prototype-image adaptation (CoPA), to perform model adaptation on
prototype and image representation pairs via contrastive learning. The loss is the symmetry cross
entropy (SCE) loss, which is widely adopted in contrastive learning [40, 56]. To validate the effect of
SCE loss, we conducted an ablation study on SCE loss respectively on URL and CoPA methods.

To be specific, for URL, we replace the NCC loss with SCE loss and fine-tune the shared transfor-
mation head in the same way as URL. For CoPA, we substitute the SCE loss with NCC loss used in
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Table 9: Effect of the number of parameters (Under “Train on all dataset” settings).

Datasets URL URL + MLP CoPA

# Params 218 219 219

ImageNet 57.3±1.1 56.1±1.1 57.8±1.1
Omniglot 94.1±0.4 94.6±0.4 94.3±0.5
Aircraft 88.2±0.5 86.6±0.5 88.8±0.8
Birds 80.2±0.7 79.4±0.7 80.8±0.8
Textures 76.2±0.7 72.6±0.7 77.8±0.7
Quick Draw 82.2±0.6 81.7±0.6 82.8±0.6
Fungi 68.7±1.0 66.7±1.0 69.5±1.0
VGG Flower 91.9±0.5 91.5±0.5 92.7±0.5

Traffic Sign 63.3±1.2 54.5±1.1 66.6±1.1
MSCOCO 54.2±1.0 53.1±1.0 56.3±1.1
MNIST 94.7±0.4 92.5±0.4 95.2±0.4
CIFAR-10 71.9±0.8 70.9±0.8 73.0±0.8
CIFAR-100 62.9±1.0 60.6±1.0 63.4±1.1

Table 10: Ablation study on symmetry cross entropy loss and different transformation heads (Under
the “train on all dataset” setting).

Datasets URL URL + SCE URL + 2Heads CoPA CoPA + NCC

ImageNet 57.3±1.1 57.2±1.1 56.5±1.1 57.8±1.1 52.5±1.0
Omniglot 94.1±0.4 94.1±0.4 94.1±0.5 94.3±0.5 93.8±0.5
Aircraft 88.2±0.5 87.6±0.5 88.3±0.5 88.8±0.8 85.6±0.5
Birds 80.2±0.7 80.1±0.7 80.0±0.8 80.8±0.8 78.2±0.7
Textures 76.2±0.7 75.9±0.7 76.8±0.7 77.8±0.7 71.1±0.7
Quick Draw 82.2±0.6 82.2±0.6 82.1±0.6 82.8±0.6 80.9±0.6
Fungi 68.7±1.0 69.4±1.0 64.0±1.0 69.5±1.0 57.9±0.8
VGG Flower 91.9±0.5 91.9±0.5 91.3±0.5 92.7±0.5 85.0±0.6

Traffic Sign 63.3±1.2 62.3±1.2 62.0±1.1 66.6±1.1 41.5±1.2
MSCOCO 54.2±1.0 55.9±1.0 51.8±1.0 56.3±1.1 37.6±1.1
MNIST 94.7±0.4 94.9±0.4 94.7±0.5 95.2±0.4 93.4±0.5
CIFAR-10 71.9±0.8 72.5±0.8 71.7±0.8 73.0±0.8 65.0±0.7
CIFAR-100 62.9±1.0 62.8±1.0 62.7±1.0 63.4±1.1 58.4±0.9

previous frameworks [29, 30] and evaluate the invariant algorithm. Both experiments are conducted
under the “train on all datasets” setting on Meta-Dataset. The hyperparameter settings in the variant
CoPA algorithm are consistent with those in the CoPA. For fairness, all the results are the average of
5 experiments with different random seeds. The numerical results are reported in Table 10.

According to the table, on the one hand, URL+SCE loss achieves comparable performance on
most datasets, such as ImageNet and Omniglot. An interesting phenomenon is URL+SCE achieves
significantly better performance on some difficult datasets, such as Fungi and MSCOCO, where URL
tends to overfit the data. This observation indicates that SCE loss can alleviate the constraints to some
extent, but the assumption of the shared representation transformation still constrains its capability.
We think such a phenomenon is reasonable. In typical contrastive learning, such as SimCLR [5]
and BYOL [15], siamese networks are adopted to respectively perform representation encoding in
case of the collapse of the networks. Thus, the shared transformation may be naturally not good
at performing representation learning on two sets of data. Meanwhile, the performance of CoPA +
NCC drops significantly compared to CoPA. Thus, both two observations demonstrate that SCE loss
facilitates achieving better generalization performance in transformation model adaptation.

Different Representation Transformations. As aforementioned, previous works [29, 30] implicitly
assume that the same representation transformation is shared between prototype and image instance
embeddings. However, in this paper, both empirical results and analyses indicate that such an
assumption constrains the transformation models from learning desirable representations. To solve
the problem, we propose to simply apply different transformations respectively for prototypes and
images. In this part, we perform an ablation study to validate the effect of the different transformations.
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According to the reported results in the table, although better performance is achieved on some
datasets, such as Textures, URL+2Heads achieves comparable or even worse performance in other
cases. In order to further examine the reason for such a phenomenon, we plot the test loss curves in
Fig. 6. According to the figures, we can observe that overfitting takes place during the adaptation
phase. The overfitting phenomenon, to some extent, reflects that discriminative representations
are learned via two different transformations. This phenomenon conforms to our intuition that the
application of different transformations contributes to learning more discriminative representations.

Thus, with all these aspects taken into consideration, we find that the different transformations help
learn more discriminative representations respectively for prototypes and image instances. Meanwhile,
the SCE loss contributes to improving generalization performance. The combination of these two
techniques collaboratively facilitates achieving impressive empirical results on Meta-Dataset.

G Proof Results

In this section, we provide detailed proof of the theoretical results in the main paper.

G.1 Proof of Theorem 3.1

Proof. With Eq. (1), by replacing d(·, ·) with cosine similarity, we have:
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where z′ is the independent copy of z, Cj denotes the set of sample representations of class j. The
inequality sign is derived from Jesen’s Inequality. Then, with a constant that satisfies 0 ≤ α < 1

NC |Cj |
for ∀j, we further have:

L(θ) ≥ − 1
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G.2 Proof of the Bound of the Gaps

Lemma G.1. Consider a square matrix Θ = [Θ1,Θ2, ...,Θd] ∈ Rd×d, where Θi ∈ Rd is the i-th
column of Θ, and a vector v ∈ Rd. Then, we have:

min
1≤i≤d

cos2(v,Θi) ∥v∥22 ∥Θ∥
2
F ≤

∥∥v⊤Θ
∥∥2
2
≤ max

1≤j≤d
cos2(v,Θj) ∥v∥22 ∥Θ∥

2
F ,

where || · ||F and || · ||2 respectively denote the Frobenius and L2 norm and cos(·, ·) denotes the
cosine similarity function.
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Proof. We first expand the v⊤Θ term:∥∥v⊤Θ
∥∥2
2
=
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G.2.1 Proof of Theorem 3.2

Proof. First of all, we can observe that 1
|DT |

∑
z∈Z z and 1

NC

∑
c∈C c are d-dimension vectors.

Then, we can expand the representation gap:∥∥∥∥∥ 1
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Then, with Lemma G.1, we have the bounds of the gap between the prototype and image instance
representations:
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G.3 Proof of Theorem 5.1

Proof. We first calculate the first term of Eq. (4). Then, we have:
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Since each prototype is expanded by Y Y ⊤, there are |Ck| same vectors for each class k, where Ck
denotes the set of samples of class k. Thus, we further have:

− 1

|DT |

|DT |∑
i=1

log
exp(z⊤

i ci)∑|DT |
j=1 exp(z⊤

i cj)
≥ − 1

|DT |

|DT |∑
i=1

z⊤
i ci +

1

|DT |

|DT |∑
i=1

NC∑
k=1

|Ck|
|DT |

z⊤
i ck

Similarly, for the second term, we can obtain the same results. In detail,
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Combining the two results, since the support data size is n, we then have:
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Figure 11: Comparison of three prototypes on ImageNet.
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(c) “Average” Prototype
Figure 12: Comparison of three prototypes on Omniglot.
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(c) “Average” Prototype
Figure 13: Comparison of three prototypes on Aircraft.
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(c) “Average” Prototype
Figure 14: Comparison of three prototypes on CU_Birds.
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Figure 15: Comparison of three prototypes on DTD.
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(c) “Average” Prototype
Figure 16: Comparison of three prototypes on Quick Draw.
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Figure 17: Comparison of three prototypes on Fungi.
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Figure 18: Comparison of three prototypes on VGG Flower.
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Figure 19: “Modality” gaps between prototypes and images on some other datasets.
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(c) CoPA representation clusters
Figure 20: Embedding and representation clusters on Omniglot dataset.
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Figure 21: Embedding and representation clusters on Aircraft dataset.
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Figure 22: Embedding and representation clusters on CU_Birds dataset.
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Figure 23: Embedding and representation clusters on DTD dataset.
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Figure 24: Embedding and representation clusters on Quick Draw dataset.
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Figure 25: Embedding and representation clusters on Fungi dataset.
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Figure 26: Embedding and representation clusters on VGG Flower dataset.
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Figure 27: Generalization accuracy curves of Meta-Dataset with respect to the steps under ‘Train on
All Datasets’ setting. As shown in figures, CoPA and CoPA + TSA evidently achieve better learning
process and convergence performance compared with URL baseline.
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Appendix E.
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Answer: [Yes]
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
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