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ABSTRACT

Many multivariate forecasters model additive effects well but miss non-additive
interactions among temporal bases, variables, and exogenous drivers, which harms
long-horizon accuracy and attribution. We present TIM, an all-MLP forecaster de-
signed from the ANOVA/Hoeffding target: the regression function is decomposed
into main effects and an orthogonal interaction component. TIM assigns the in-
teraction to a DCN-style cross stack that explicitly synthesizes bounded-degree
polynomial crosses with controllable CP rank, while lightweight branches cap-
ture main effects. Axis-wise linear self-attention (time and variables) transports
information without increasing polynomial degree and maintains linear time and
memory complexity. A decomposition regularizer encourages orthogonality and
yields per-component attributions. We establish degree and rank guarantees and a
risk identity showing that the additive error gap equals the energy of the interac-
tion subspace. On long-term multivariate benchmarks, TIM matches or surpasses
state-of-the-art accuracy with transparent cross-term explanations.

1 INTRODUCTION

Long-sequence time series forecasting (LSTF) is central to applications such as weather predic-
tion (Ahamed & Cheng, 2024), traffic management (Zhao, 2019), equipment monitoring (Zhou et al.,
2021), and power consumption analysis (Hebrail & Berard, 2006). In these domains, models must
capture both short-term fluctuations and long-range dependencies under non-stationary dynamics.
Transformers, with their attention mechanisms, have recently driven progress by capturing complex
temporal and cross-variable patterns. However, their quadratic time and memory complexity hin-
ders scalability, and their performance often degrades on very long horizons, limiting robustness in
precisely the settings where LSTF is most needed.

Motivated by these limitations, the community has explored a broader landscape of architectures.
RNNs (Damaševičius et al., 2024; De et al., 2024) provide sequential efficiency but struggle with
long-term memory. State-space models (SSMs) (Rangapuram et al., 2018; Auger-Méthé et al., 2021;
Newman et al., 2023; Orvieto et al., 2023) revive latent recurrence with improved memory, but at
the cost of intricate parameterization and domain-specific priors. Surprisingly, compact MLPs (Yi
et al., 2024; Zhang et al., 2022; Yeh et al., 2024; Zeng et al., 2023) often achieve competitive re-
sults, though they usually lack explicit mechanisms for modeling multivariate interactions. These
approaches, despite their diversity, reveal a persistent trade-off between scalability, expressivity, and
architectural simplicity.

Alongside architectural families, several strategies seek to enhance forecasting. Decomposition-
based methods (Wu et al., 2021; Zhou et al., 2022; Bandara et al., 2020; Hao & Liu, 2024) aim to
disentangle trend and seasonal components, while channel-independent versus channel-dependent
(CI/CD) designs (Liang et al., 2023; Nie et al., 2023; 2024) seek a balance between parameter ef-
ficiency and cross-channel expressivity. Many recent designs can in fact be viewed as implicitly
emphasizing additive effects (e.g., per-variable trends or seasonalities), while leaving interaction ef-
fects (cross-variable and cross-temporal dependencies) less explicitly modeled. Yet these strategies
provide only partial remedies and remain vulnerable to non-stationarity, evolving seasonalities, or
sensor noise. These limitations highlight the need for a principled decomposition that explicitly
separates main and interaction effects within a lightweight and robust forecasting framework.
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We present Time-series Interaction Machine (TIM), an all-MLP forecaster explicitly aligned with
the ANOVA/Hoeffding decomposition. Unlike prior models that handle additive and interaction
effects implicitly, TIM separates them by design: lightweight branches capture main effects, while
a DCN-style cross stack models the orthogonal non-additive interaction subspace. Concretely:

• Efficiency. TIM achieves linear time and memory complexity via axis-wise linear self-
attention (time and variables) combined with DCN-based feature crossing, while keeping
parameters comparable to compact MLP baselines.

• Expressivity. The cross stack synthesizes bounded-degree polynomial crosses among tem-
poral bases, lagged variables, and exogenous inputs (Theorem 2). Group-wise masking
ensures higher-order terms correspond to genuine cross-channel interactions (Theorem 3),
and low-rank cross maps provide controllable CP rank (Corollary 1).

• Interpretability & Stability. A decomposition regularizer enforces orthogonality between
main effects and interactions, enabling component-wise attribution and stabilizing training.
Our risk identity further shows that the error gap of additive models equals the energy of
the interaction subspace (Appendix Theorem 1).

In summary, TIM is designed to be efficient, expressive, and interpretable. By aligning its architec-
ture with a principled decomposition of additive and interaction effects, it scales linearly, explicitly
models both main trends and cross-variable dependencies, and grounds its design in theory, offering
a robust and transparent solution for long-sequence forecasting.

2 PRELIMINARIES AND METHODS

2.1 MATHEMATICAL LOGIC AND DECOMPOSITION ALIGNMENT

We design the architecture to match the population ANOVA/Hoeffding decomposition in Equa-
tion equation 2. The main-effect modules parameterize fB

t , fX
t , fZ

t , and the cross branch param-
eterizes the non-additive interaction components fBX

t , fBZ
t , fXZ

t , fBXZ
t . The cross stack yields

bounded-degree polynomials (Theorem 2); with group-wise masks it generates interaction-only
monomials (Theorem 3). Its degree-d coefficients admit a CP/Khatri–Rao factorization with control-
lable rank (Corollary 1). These properties support order-wise and path-wise attribution and justify
a decomposition regularizer that encourages orthogonality between temporal bases and interaction
components.

2.2 AXIS-WISE LINEAR SELF-ATTENTION: FUNCTIONAL RELATION AND ROLE

We employ linear self-attention along the time axis and the variable axis to propagate information
efficiently. Let queries/keys/values be qt, ks, vs ∈ Rdh per head and adopt a positive feature map
ϕ : Rdh → Rr. Linear attention computes

Attn(qt, {ks, vs}s) =
ϕ(qt)

⊤(∑
s ϕ(ks) v

⊤
s

)
ϕ(qt)⊤

(∑
s ϕ(ks)

) .

This mechanism efficiently propagates information along both temporal and variable axes. Impor-
tantly, as we show in Appendix B.3, axis-wise linear self-attention preserves the polynomial degree
and mask constraints imposed by the cross stack, thereby acting as a stable transport operator with-
out introducing new higher-order interactions. Having established this theoretical safeguard, we
now view linear attention from a functional perspective: the context equals a kernel smoother with
kernel K(t, s) = ϕ(qt)

⊤ϕ(ks) and normalization.

Along time, this induces a data-adaptive, positive semidefinite temporal kernel that mixes the win-
dow {t− L+1, . . . , t} in linear time via associative pre-aggregation

∑
s ϕ(ks) and

∑
s ϕ(ks)v

⊤
s .

Along variables, an analogous kernel mixes channels at each time. This factorization preserves
linear time–memory complexity and complements the cross branch: (i) it transports low-/mid-order
cross features across distant lags and channels without increasing polynomial degree; (ii) it improves
gradient flow and information routing across long contexts; and (iii) it leaves the order/rank control
to the cross stack, keeping identifiability intact.

2
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2.3 GENERAL ARCHITECTURE

According to Li et al. (2023), our model, like many others, consists of three key components: RevIN,
a reversible normalization layer; an MLP; and a linear projection layer that generates the final predic-
tion results. In our proposed architecture, MLP is used to extract time series features. In subsequent
modules, we will employ a decomposition method to enable our model to learn from multivari-
ate interaction features, temporal characteristics of the time series, and decomposed components,
respectively. The full architecture of TIM can be found in Figure 1.

Figure 1: Overall TIM Architecture. TIM consists of three key components: Feat Fusion, which
extracts multivariate interaction features; Time Fusion, which models temporal shifts across time
points; and a residual modelling component for temporal, multivariable, or noise effects. The outputs
of these modules—XFeat, XTime, and XRes—are combined to produce the final forecast, which is
then passed through a linear projection layer and inverse-transformed via RevIN to scale it back to
the target domain for the prediction horizon.

2.4 FUSION ARCHITECTURE IN TIM

Most LSTF systems rely on seasonal–trend data-side decompositions Bandara et al. (2020); Hao
& Liu (2024); Wu et al. (2021); Zeng et al. (2023), which can be brittle on long, nonstationary
sequences. We instead adopt a model-side decomposition aligned with the ANOVA/Hoeffding tar-
get: (i) main temporal effects, (ii) non-additive multivariate interactions, and (iii) a residual adapter.
TIM realizes these with three fusion branches that share the same backbone but differ in input–output
shapes.

• Feat Fusion (interaction branch). A DCN-style cross stack generates bounded-degree
crosses among lagged variables, temporal bases, and exogenous inputs, yielding multivari-
ate interaction features Xfeat. Group-wise masks enforce that higher-order terms represent
genuine cross-group interactions, capturing the non-additive (interaction) component.

• Time Fusion (additive branch). Per-time snapshots are processed along the time axis
(linear self-attention or MLP fusion) to capture temporal shifts and main additive effects,
yielding Xtime.

• Res Fusion (residual branch). The remaining variation is modeled by a lightweight
adapter that captures residual structure not explained by main or interaction effects, produc-
ing Xres. A decomposition regularizer encourages orthogonality among the three branches.

The model composes these components as

Y = Xfeat + Xtime + Xres,

followed by a linear projection to the prediction horizon and an inverse RevIN transform back to the
target domain. This design keeps interactions explicit and attributable, captures temporal evolution
without fragile pre-decomposition, and maintains linear time–memory complexity through axis-wise
processing.
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2.5 LINEAR ATTENTION GATED UNIT FOR FEATURE EXTRACTION

We provide a detailed analysis of the TIME FUSION, FEAT FUSION, and RES FUSION modules for
time-series feature extraction. Although these modules differ in input–output organization, they all
share the same feature extraction algorithm based on the Linear Attention Gated Unit (LAGU).

Specifically, the TIME FUSION and RES FUSION modules operate on per-variable temporal se-
quences with tensors X ∈ RT×H , where T is the sequence length and H the hidden dimension.
By contrast, the FEAT FUSION module processes feature-wise snapshots with tensors X ∈ RF×H ,
where F denotes the number of variables. Despite these architectural differences, all three branches
apply the same gated linear attention mechanism for representation learning.

Algorithm 1 Fusion Architecture for Time Fusion, Feat Fusion and Res Fusion
Require: Input X0 ∈ RF×H . Number of Layers N . Sigmoid function denoted as σ. Concatenate

function denoted as cat. Linear layer mappings from the dimension 2*dim to dim, denoted as
combine and gate.

Ensure: Output XL ∈ RF×H

1: Initialize Xi = X0

2: for i = 1 to N do
3: Compute y = WiXi + b1 {y ∈ RF×H}
4: Compute residual res = W̃i(Xi − y) + b2 {res ∈ RF×H}
5: Concatenate xcat = cat(y, res) {xcat ∈ RF×2H}
6: Apply ELU activation xelu = ELU(xcat) + 1
7: Gate and combine xout = combine(xelu) · σ(gate(xelu))
8: Update X1 = X0 · xout {x1 ∈ RF×H}
9: Apply Dropout X1 = Dropout(X1)

10: Update Xi = Xi +X1 {xi ∈ RF×H}
11: end for
12: return Xi

Time Fusion, Feat Fusion and Res Fusion share the same architecture described in Algorithm 1.
The design objective of the TIME FUSION module is to leverage linear attention for extracting
temporal features, as supported by our mathematical derivations. In conventional linear attention,
weights are derived by computing similarities between Query and Key vectors. However, they are
obtained through element-wise multiplication with the input X0. This formulation enables linear
self-attention while progressively mapping temporal sequences from the latent space of the source
domain into the state space of the target domain. Without residual connections, the update rule can
be expressed as:

XN = X0 +
N∑
i=1

D(X0 ◦ (ELU(WiXi−1 + bi) + 1)) , (1)

where ◦ denotes the Hadamard product (element-wise multiplication) and D(·) represents dropout.

Dropout can be interpreted as an implicit gating mechanism that randomly discards neurons, akin
to the suppression of irrelevant information in attention. Although it does not explicitly implement
gating, its effect resembles that of attention weight distributions. To make the model more responsive
to state changes, we introduce a residual structure that facilitates the capture of temporal transitions.

As shown in Algorithm 1, the input–output dimensions of the TIME FUSION and RES FUSION
modules remain consistent, with tensors X ∈ RT×H , where T is the sequence length and H the
hidden dimension. In contrast, the FEAT FUSION module applies a matrix transposition before
processing, so that the residual structure operates along the feature dimension F . This effectively
expands the representation from RH×F to RH×2F . Despite this reconfiguration, the self-attention
mechanism within the module remains effective, now learning dependencies across variables at each
temporal position and enabling a richer understanding of cross-feature interactions.

2.6 OVERALL-ARCHITECTURE OF TIM

Having examined the details of each branch in our feature/temporal/residual decomposition
paradigm, we now summarize the overall workflow of TIM in Algorithm 2. This unified view illus-
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trates how the additive (temporal), interaction (feature), and residual components collaborate within
a lightweight, all-MLP framework. The resulting pipeline highlights how principled decomposition,
residual correction, and projection are integrated to form a complete forecasting architecture.

Algorithm 2 TIM Overall Workflow
Require: Input look-back series Xin ∈ RL×F , where L is the context length and F the number of

variables; prediction horizon P ; hidden dimension H .
Ensure: Forecast Y ∈ RP×F

X ← Normalize(Xin)
X ← Transpose(X) {X ∈ RF×L}
X ← TimeEncoder(X) {X ∈ RF×H}
Xtime ← TIME FUSION(X) {additive (main) effects}
Xfeat ← Transpose(FEAT FUSION(Transpose(X))) {interaction effects}
Xres ← RES FUSION(X −Xtime −Xfeat) {residual correction}
Y ← Xtime +Xfeat +Xres {Y ∈ RF×H}
O ← Proj(Y ) {O ∈ RF×P }
O ← Transpose(O)

Ŷ ← DeNormalize(O)

return Ŷ ∈ RP×F

3 ANOVA-ALIGNED CROSS-DECOMPOSITION FOR TIM

Goal. We align the TIM architecture with the population regression target

f⋆
t := E

[
Yt | Bt, X̃t, Z̃t

]
,

where Bt ∈ RdB are temporal bases (Fourier/polynomial), X̃t ∈ RDL stacks D series over a
lookback of length L, Z̃t ∈ REL stacks exogenous lags, and x

(0)
t = [B⊤

t , X̃⊤
t , Z̃⊤

t ]⊤.

3.1 POPULATION TARGETS AND THE “NON-ADDITIVE” INTERACTION

Define zero-mean subspaces in L2(Pt):

HB
t = {g(Bt) : Eg = 0}, HX

t = {h(X̃t) : Eh = 0}, HZ
t = {q(Z̃t) : Eq = 0}.

Pairwise and triple interaction subspaces are

HBX
t = {r(Bt, X̃t) : E[r | Bt] = E[r | X̃t] = 0}, HBZ

t , HXZ
t , HBXZ

t analogously.

Theorem 1 (Time-indexed Hoeffding / ANOVA). Let µt = E[Yt]. There exist unique components

fB
t ∈ HB

t , fX
t ∈ HX

t , fZ
t ∈ HZ

t , fBX
t ∈ HBX

t , fBZ
t ∈ HBZ

t , fXZ
t ∈ HXZ

t , fBXZ
t ∈ HBXZ

t

such that
f⋆
t = µt + fB

t + fX
t + fZ

t + fBX
t + fBZ

t + fXZ
t + fBXZ

t , (2)
and the components are pairwise orthogonal in L2(Pt). In particular,

fBX
t = E[Yt | Bt, X̃t]− E[Yt | Bt]− E[Yt | X̃t] + E[Yt].

The orthogonal projection of f⋆
t onto any chosen subset is the unique MSE-optimal approximation.

Proof: Appendix B.1.

3.2 ANOVA/HOEFFDING IN A NUTSHELL AND RELEVANCE TO MTS

ANOVA/Hoeffding is the orthogonal expansion of a regression function into main effects and inter-
actions for chosen groups. For (Bt, X̃t, Z̃t), it yields the unique decomposition equation 2. This
is apt for multivariate time-series: (i) it separates global temporal structure (Bt) and marginal per-
variable lag structure (X̃t, Z̃t) from cross-group dependencies; (ii) it provides stable, L2-orthogonal
attribution; and (iii) it sets a principled target: the cross branch parameterizes the orthogonal com-
plement (interactions).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.3 WHY EXPLICITLY MODEL THE non-additive PART?

By a Pythagorean identity (Appendix Lemma 1), for any additive predictor µt + gBt + gXt + gZt , the
excess risk over the Bayes risk equals the L2 energy of the interaction remainder:

E
[∥∥Yt − (µt + gBt + gXt + gZt )

∥∥2]− E
[∥∥Yt − f⋆

t

∥∥2] =
∥∥fBX

t + fBZ
t + fXZ

t + fBXZ
t

∥∥2
L2(Pt)

.

Thus, if the non-additive component is nonzero, ignoring interactions is suboptimal.

Architectural alignment. We parameterize main effects fB
t , fX

t , fZ
t with lightweight modules,

and interactions fBX
t , fBZ

t , fXZ
t , fBXZ

t with the cross branch.

3.4 CROSS REPRESENTATION ON WINDOWED INPUTS

The DCN-style cross stack at time t is

x
(ℓ+1)
t = x

(ℓ)
t + Diag(x

(0)
t )

(
Wℓx

(ℓ)
t + bℓ

)
, ℓ = 0, . . . , k − 1. (3)

Theorem 2 (Bounded degree). Each coordinate of x(k)
t is a multivariate polynomial of total degree

at most k+1 in (Bt, X̃t, Z̃t). Proof: Appendix B.2.

Theorem 3 (Interaction-only under masks). If within-group blocks of Wℓ are zero for groups B,
X̃ , Z̃, then any degree-≥ 2 monomial in x

(k)
t involves variables from at least two distinct groups.

Proof: Appendix B.2.

3.5 COEFFICIENT TENSORS AND CONTROLLABLE CAPACITY

For homogeneous parts set bℓ = 0. Fix an output coordinate j; let C(d)
t,j be the degree-d coefficient

tensor.

Theorem 4 (Explicit coefficient formula).
C

(d)
t,j [α1, . . . , αd] =

∑
0≤ℓ1<···<ℓd−1≤k−1

(Wℓd−1
)j,αd

· · · (Wℓ1)α2,α1 .

Proof: Appendix B.4.

Corollary 1 (CP-rank bound under low-rank cross maps). If Wℓ = UℓV
⊤
ℓ with rank(Wℓ) ≤ rℓ,

then

RCP(C
(d)
t,j ) ≤

∑
ℓ1<···<ℓd−1

d−1∏
m=1

rℓm ≤
(

k

d− 1

)
r d−1.

Proof: Appendix B.4.

3.6 RELATION TO TRUNCATED POLYNOMIAL KERNELS

Let Φ≤D(x
(0)
t ) list all monomials in (Bt, X̃t, Z̃t) of degree ≤ D.

Theorem 5 (Inclusion into degree-≤ D polynomials). With D = k+1, each coordinate of x(k)
t is

a linear functional of Φ≤D(x
(0)
t ). Proof: Appendix B.5.

Proposition 1 (Strict containment by parameter dimension). If the number of free parameters
P in {Wℓ, bℓ} satisfies P < M(D), then the realized family is a strict subset of all degree-≤ D
polynomials. Proof: Appendix B.5.

3.7 EXPRESSIVITY GAPS WE CLOSE

Theorem 6 (Additive projection failure for multiplicative truth). Under Bt ⊥ X̃t and centering,
if Yt = β u(Bt)v(X̃t) + εt, the additive projection is zero, while a degree-2 cross term represents
the signal. Proof: Appendix B.6.

Theorem 7 (Separation-rank lower bound for variable–lag kernels). For selection-type variable–
lag couplings K, sep-rank(K) ≥ |S|. Proof: Appendix B.6.
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4 EXPERIMENTS

4.1 DATASET DESCRIPTION

We evaluate our model on eight widely used benchmarks: the ETT datasets with four subsets
(ETTh1, ETTh2, ETTm1, ETTm2), as well as Weather, Solar-Energy, Electricity, and Traffic Zhou
et al. (2021); Zeng et al. (2023); Hebrail & Berard (2006); Zhao et al. (2019). These datasets provide
robust testbeds for assessing long-horizon forecasting performance.

4.2 MAIN RESULT

In our experimental setup for model evaluation, we have standardized the parameters across all
models to ensure a fair comparison on a uniform platform. Specifically, we have fixed the input
dimension to 96 and varied the prediction horizon for time series forecasting, encompassing lengths
of [96, 192, 336, 720]. This approach allows for a comprehensive assessment of model perfor-
mance under different forecasting scenarios. To measure various variables on a consistent scale,
we compute the Mean Squared Error (MSE) and Mean Absolute Error (MAE) on the normalized
data provided by Revin (Kim et al. (2021)). Additional details regarding the experimental settings,
encompassing training specifics and hyperparameters, are furnished in the Appendix. The experi-
ments were implemented using PyTorch (Paszke et al. (2019)) and executed on a single NVIDIA
4090 GPU with 24GB of memory.

For the smaller-scale datasets, such as ETT and Exchange, we have adopted a consistent set of
hyperparameters to facilitate a rigorous comparison. Specifically, we have set the number of hidden
layers (d model) to 4, the number of encoder layers (e layers) to 2, the dropout rate to 0.25, and
the learning rate to 1e-3. These configurations have been chosen to balance model complexity and
computational efficiency, aiming to achieve optimal performance on the specified datasets.

By adhering to these standardized parameters and experimental protocols, we aim to provide a robust
and unbiased evaluation of the different models under investigation, enabling a more meaningful
comparison of their strengths and limitations within the context of time series forecasting.

We select 7 SOTA baseline studies. We are focusing on both MLP-based and Transformer-based
methods. We added DLinear (Zeng et al. (2023)), RLinear (Li et al. (2023)), TSMixer (Ekambaram
et al. (2023)) and TimeMixer (Wang et al. (2024)). We also added PatchTST (Nie et al. (2023)) and
iTransformer (Liu et al. (2024)). All SOTAs used Revin (Kim et al. (2021)) as normalization layer.

Results of the main experiments are reported in Table 1 and Table 3. The best outcomes are shown in
red bold, with the second-best underlined in blue, facilitating direct comparison. Our model consis-
tently outperforms existing state-of-the-art (SOTA) methods, achieving strong results on long-term
forecasting and multivariate prediction with a lightweight MLP backbone. These gains stem from
our decomposition framework, which separates forecasting signals into additive and non-additive
subspaces. The temporal branch captures additive (main) effects, the feature branch models cross-
variable interactions, and the residual branch stabilizes optimization. This explicit separation allows
both trend-like dynamics and complex dependencies to be effectively represented, explaining the
consistent improvements across datasets. The integration of linear self-attention further supports
scalable temporal modeling while maintaining efficiency, enabling TIM to balance accuracy and
complexity more effectively than prior architectures.

4.3 ABLATION STUDY

To verify the effectiveness of each TIM component, we conducted a detailed ablation study on
the proposed feature/time/residual decomposition paradigm. The results are reported in Table 4.
The prefix “wo” (used as a subscript) denotes “without,” indicating the exclusion of specific mod-
ules during evaluation. The best results are highlighted in bold red, while the second-best are
underlined in blue, providing a clear comparison of different configurations.

The ablation results confirm that each branch is indispensable, consistent with our theoretical per-
spective that forecasting can be decomposed into additive (main) and non-additive (interaction) com-
ponents with an additional residual correction. Notably, the Time and Res branches share the same
architecture but differ in operational sequence and input formulation, namely Timewo and Reswo.

7
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Table 1: Multivariate forecasting results with prediction lengths in {96, 192, 336, 720} for eight
benchmark datasets and fixed lookback length 96. Results are averaged from all prediction lengths.
Avg means further averaged by subsets. Full results are listed in Table 3

.
Models TIM DLinear PatchTST FreTS RLinear TSMixer TimeMixer iTransFormer TimesNet
(Mean) Ours 2023 2023 2024 2023 2023 2024 2024 2023

Metric mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae

ETTh1 0.434 0.433 0.452 0.447 0.440 0.442 0.464 0.447 0.443 0.431 0.456 0.446 0.465 0.450 0.448 0.443 0.531 0.491

ETTh2 0.377 0.402 0.526 0.498 0.379 0.405 0.448 0.457 0.385 0.407 0.396 0.414 0.368 0.398 0.382 0.407 0.429 0.434

ETTm1 0.382 0.397 0.404 0.408 0.444 0.457 0.432 0.438 0.409 0.400 0.401 0.406 0.403 0.411 0.404 0.406 0.620 0.580

ETTm2 0.272 0.318 0.337 0.388 0.281 0.328 0.284 0.328 0.287 0.328 0.290 0.332 0.298 0.338 0.291 0.334 0.333 0.351

electricity 0.172 0.268 0.210 0.296 0.223 0.2327 0.206 0.294 0.215 0.293 0.183 0.282 0.179 0.278 0.175 0.270 0.313 0.384

solar AL 0.244 0.271 0.327 0.397 0.244 0.349 0.268 0.322 0.356 0.350 0.257 0.292 0.268 0.298 0.239 0.280 0.197 0.244
traffic 0.469 0.292 0.626 0.386 0.500 0.287 0.556 0.365 0.624 0.375 0.510 0.348 0.506 0.335 0.462 0.307 0.640 0.348

weather 0.241 0.270 0.266 0.318 0.248 0.275 0.249 0.278 0.269 0.288 0.246 0.276 0.261 0.284 0.252 0.277 0.273 0.291

1st count 5 4 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 1

In Timewo, the model learns temporal transitions across transposed multivariate slices, whereas in
Reswo, it processes univariate time series as tokens to capture cross-variable dependencies.

The Feat branch, aligned with the interaction component, embeds multiple variables into each tem-
poral token, allowing the model to capture delayed events and heterogeneous physical measure-
ments. However, without the complementary additive signal, this design risks entangling variate-
specific patterns too early, sometimes yielding ineffective attention maps.

Conversely, the Time branch focuses on the additive structure, embedding time points of individual
series into variate tokens to strengthen multivariate correlations. This explains why the Reswo setting
still achieves performance close to the full model—its residual signal partly compensates for missing
additive effects—yet remains inferior to the complete decomposition.

Finally, while prior work has cautioned against dataset-specific tailoring due to overfitting risks Li
et al. (2024), our ablation experiments demonstrate that across most benchmarks the full TIM con-
sistently achieves the best performance. This validates our principled decomposition: each branch
contributes uniquely to disentangling additive, interaction, and residual components, and together
they yield a unified, stable, and theoretically grounded architecture for long-sequence forecasting.

4.4 MODEL EFFICIENCY

We compare the training memory consumption and runtime of TIM against recent state-of-the-art
models. Our results consistently show that TIM achieves superior efficiency in both GPU memory
utilization and execution time, benefiting from its all-MLP backbone and linear-time propagation.
Figure 2 illustrates the trade-off between model size and predictive accuracy: the horizontal axis
denotes Mean Squared Error (MSE), the vertical axis represents the logarithm of parameter count,
and marker size indicates floating-point operations (FLOPs). Despite having a parameter count
comparable to other advanced approaches, TIM achieves substantially lower MSE across predic-
tion lengths. This advantage arises from its decomposition-based architecture: the temporal branch
captures additive effects efficiently, the feature branch models non-additive interactions beyond stan-
dard MLPs, and the residual branch stabilizes optimization. As a result, TIM not only avoids the
quadratic overhead of Transformer attention but also surpasses conventional MLP baselines in rep-
resentational capacity. Together, these properties enable TIM to balance efficiency and expressivity
more effectively than existing architectures, achieving strong predictive accuracy with a stream-
lined, resource-efficient design. To further substantiate this advantage, we compare the asymptotic
time and memory complexities of different architectures in Table 2. As shown, Transformers incur
quadratic cost in sequence length L, while MLP baselines scale poorly with hidden dimension H .
In contrast, TIM attains linear complexity in both L and the number of variables F , while explicitly
modeling additive and interaction effects. This demonstrates that TIM combines the scalability of
linear models with the expressivity of cross-feature architectures, providing a principled and efficient
solution for long-sequence forecasting.

8
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Table 2: Asymptotic training complexity with batch size B, sequence length L, hidden dimension
H , #variables F , DCN depth k, and cross-map rank r.

Model Time Complexity Memory Complexity

Transformer (self-attention) O(B L2H) O(B L2)
Linear Transformer O(B LH) O(B LH)
Standard MLP O(B LH2) O(B LH)
TIM (ours) O

(
B (L+ k F r)H

)
O
(
B (L+ F + k r)H

)

Figure 2: Parameters vs Model performance (MSE). We reported the experiment This figure
presents the experimental results for our models across various prediction lengths (pred len) on the
ETTh1 dataset. Notably, our all-MLP TIM has achieved SOTA performance while possessing a
significantly smaller number of parameters compared to transformer-based models. The horizontal
axis represents the logarithmic scale of model parameters (MB), and the vertical axis indicates the
model performance measured by Mean Squared Error (MSE). For clarity in presentation, we applied
a square root transformation to the model’s parameter size, expressed in megabytes (MB).

5 CONCLUSION AND FUTURE WORK

In this paper, we presented TIM, a lightweight forecaster that achieves state-of-the-art performance
in long-sequence time series forecasting while maintaining low computational and memory com-
plexity. Through a principled feature/time/residual decomposition, TIM explicitly models both ad-
ditive and interaction effects with minimal overhead, making it particularly suitable for resource-
constrained environments.

Our experiments across diverse benchmarks demonstrate that this decomposition not only improves
predictive accuracy but also enhances stability and interpretability. In particular, our theoretical risk
analysis and empirical ablations reveal that a substantial portion of the forecasting signal lies in the
non-additive interaction subspace. By aligning the architecture with this subspace and controlling
interaction order and rank, TIM achieves consistent accuracy gains together with clear, component-
wise attribution.

While TIM demonstrates strong efficiency and accuracy, further improvements are needed to cap-
ture higher-order dependencies and adapt to non-stationary dynamics. Future work will focus on
enriching the modeling of the interaction subspace and developing adaptive mechanisms that pre-
serve efficiency while extending expressivity. By advancing along these directions, we aim to further
strengthen the predictive power and practical applicability of TIM in real-world forecasting scenar-
ios.

9
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A APPENDIX

B PROOFS FOR SECTION 3

B.1 PROOFS OF ANOVA/HOEFFDING STATEMENTS

Proof of Theorem 1. Fix t. Work in L2(Pt) with inner product ⟨U, V ⟩ = E[UV ]. Let u :=

f⋆
t − µt. Define the projection operators ΠBu = E[u | Bt] − E[u], ΠXu = E[u | X̃t] − E[u],
ΠZu = E[u | Z̃t] − E[u]. Set fB

t = ΠBu, fX
t = ΠXu, fZ

t = ΠZu, and fBX
t = E[u |

Bt, X̃t] − fB
t − fX

t , fBZ
t = E[u | Bt, Z̃t] − fB

t − fZ
t , fXZ

t = E[u | X̃t, Z̃t] − fX
t − fZ

t ,
fBXZ
t = u−fB

t −fX
t −fZ

t −fBX
t −fBZ

t −fXZ
t . These satisfy the required conditional-centering

constraints and are pairwise orthogonal by the tower property. Uniqueness and MSE optimality
follow from orthogonal projection. □

B.2 PROOFS FOR CROSS DEGREE AND MASKS

Lemma (one-step degree growth). If each coordinate of u is a polynomial of degree ≤ D, then
Diag(x

(0)
t )(Wu+ b) has degree ≤ D+1. Proof. Wu is degree ≤ D; multiplication by Diag(x

(0)
t )

adds one; Diag(x
(0)
t )b is degree 1. □

Proof of Theorem 2. Induct on ℓ in equation 3 with base x
(0)
t (degree 1); apply the lemma at each

step. □

Proof of Theorem 3. Any degree-≥ 2 term includes a factor Diag(x
(0)
t )Wℓu. Fix an output coordi-

nate j in group G ∈ {B, X̃, Z̃}. Since WGG
ℓ = 0, the contributing coordinate of u lies in a different

group G′ ̸= G. Multiplication by the j-th entry of x(0)
t injects a variable from G, while u contains

a variable from G′, producing a cross-group monomial. Composition preserves this property. □

B.3 LINEAR ATTENTION PRESERVES THE CROSS-DETERMINED POLYNOMIAL DEGREE

Proposition 1 (Degree preservation of axis-wise linear attention). Let us(x
(0)) ∈ RH denote the

output of the DCN-style cross stack at position s, where each coordinate of us is a polynomial in
x(0) = [B⊤

t , X̃⊤
t , Z̃⊤

t ]⊤ of total degree at most D (hence bounded by the cross depth). Consider
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axis-wise linear attention with feature map ϕ : Rdh → Rr and define

yt =
ϕ(qt)

⊤
(∑

s ϕ(ks) v
⊤
s

)
ϕ(qt)⊤

(∑
s ϕ(ks)

) with vs = Wv us.

Assume the following:

(A1) (Value linearity) vs = Wvus is linear in us; thus deg(vs) ≤ D.
(A2) (No multiplicative feedback) The attention output yt is used additively outside the cross

stack, without multiplicative gating or feedback into the cross recursion.
(A3) (Group separation) Queries/keys are affine maps of variables from a group G disjoint from

the cross pathway inside DCN (e.g., a main-effect stream): qt = Aqzt+aq , ks = Akzs+ak
with z· ∈ σ(G). Within DCN, group-wise zero-block masks are enforced so that z· does
not multiplicatively couple inside the cross recursion.

(A4) (PSD kernel smoothing with u-independent normalizer) ϕ is a fixed linear (or affine) posi-
tive feature map, and the normalizer ct := ϕ(qt)

⊤ ∑
s ϕ(ks) depends only on z· but not on

{us}, ensuring that c−1
t does not turn {us} into rational functions.

Then each coordinate of yt is an affine functional of {us}s; in particular, the total polynomial degree
of yt in x(0) is at most D.

Proof. From (A1), vs is linear in {us} and deg(vs) ≤ D. From (A3)–(A4), both Mt :=
ϕ(qt)

⊤ ∑
s ϕ(ks) and the normalizer ct depend only on z· and are independent of {us}. Hence

yt = c−1
t ϕ(qt)

⊤
(∑

s

ϕ(ks)Wv u
⊤
s

)
is a linear functional of {us}. A linear operator cannot increase the maximum polynomial degree
of its inputs, so deg(yt) ≤ D. By (A2), this linear transformation is not fed back into the cross
recursion, and therefore does not trigger a new multiplicative chain in the DCN cross stack. □

Corollary 1 (Mask-preserving property under linear attention). Under the assumptions of
Proposition 1 and the within-group zero-block masks for the cross matrices {Wℓ}, any degree-≥ 2
monomial that appears in yt must already appear in some us. In particular, axis-wise linear attention
does not synthesize new within-group higher-order monomials and preserves the “interaction-only”
nature enforced by the masks.

Proof. By Proposition 1, yt is a linear combination of {us} with coefficients depending only on
z·, so there is no multiplicative coupling with {us}. Thus the monomial set of yt is contained in
the linear span of the monomial sets of {us}, and no new higher-order terms can be created. Mask
constraints guarantee that all degree-≥ 2 monomials in {us} are cross-group interactions, and linear
combinations preserve this property. □

Discussion (when the bound can fail). If (A3) or (A4) is violated—for instance, if ϕ depends
nonlinearly on {us} or if the normalizer ct involves u—then yt may become a rational function
of {us} and introduce higher-order terms. If (A2) is violated (e.g., feeding the attention output
multiplicatively back into the cross recursion), then the total polynomial degree increases by at least
one. These conditions delineate the “safe zone” where linear attention acts as PSD kernel smoothing
plus group separation with additive usage, in which case it only transports features linearly without
raising the maximum polynomial degree determined by the DCN cross stack.

B.4 PROOFS FOR COEFFICIENT TENSORS AND CP-RANK

Proof of Theorem 4. Write Tℓ(u) = Diag(x
(0)
t )(Wℓu + bℓ) and expand x

(k)
t =

(∏0
ℓ=k−1(I +

Tℓ)
)
x
(0)
t . Retaining degree-d terms corresponds to m = d−1 occurrences of Wℓ and one multipli-

cation by a coordinate of x(0)
t , yielding the chain formula. □

Corollary 1 (CP-rank bound). Assume Wℓ = UℓV
⊤
ℓ with rank at most rℓ. For a fixed chain, the

contribution is a sum of
∏

m rℓm rank-1 outer products across the d index modes. Summing over all
chains gives the bound; the looser bound uses r = maxℓ rℓ. □
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B.5 PROOFS FOR POLYNOMIAL-KERNEL RELATIONS

Proof of Theorem 5. By Theorem 2, x(k)
t has degree ≤ D = k+1 in (Bt, X̃t, Z̃t); hence each

coordinate is a linear combination of monomials in Φ≤D(x
(0)
t ). □

Proof of Proposition 1. Let V be the M(D)-dimensional space spanned by Φ≤D. The parameteri-
zation map has dimension at most P ; when P < M(D) it cannot cover an open subset of V , so the
family is proper. □

B.6 PROOFS FOR EXPRESSIVITY GAPS

Proof of Theorem 6. Assume Bt ⊥ X̃t and E[u(Bt)] = E[v(X̃t)] = 0. For any g(Bt),
⟨Yt, g(Bt)⟩ = β E[u(Bt)g(Bt)]E[v(X̃t)] = 0; similarly for h(X̃t). Therefore the L2 projection
onto {g + h} is zero. A degree-2 cross monomial containing u(Bt)v(X̃t) represents the signal. □

Proof of Theorem 7. Index X̃t by (i, τ) with i ∈ {1, . . . , D} and τ ∈ {0, . . . , L − 1}. Let
Eij be the D × D unit matrix at (i, j) and T∆ the L × L Toeplitz lag-∆ indicator. Then K =∑

(i,j,∆)∈S αij∆(Eij ⊗ T∆). Vectorizing gives
∑

cij∆ vec(Eij) vec(T∆)
⊤ = 0 only if cij∆ = 0

for all indices. Thus sep-rank(K) ≥ |S|. □

B.7 RISK DECOMPOSITION IDENTITIES (WHY INTERACTIONS MATTER)

Lemma 1 (Pythagorean identity). Let f⋆
t = µt + fB

t + fX
t + fZ

t + fBX
t + fBZ

t + fXZ
t + fBXZ

t
be the orthogonal decomposition. Then for any gBt ∈ HB

t , gXt ∈ HX
t , gZt ∈ HZ

t ,

E
[∥∥Yt−(µt+gBt +gXt +gZt )

∥∥2] = E
[
∥Yt−f⋆

t ∥2
]
+∥fB

t −gBt ∥22+∥fX
t −gXt ∥22+∥fZ

t −gZt ∥22+∥fBX
t +fBZ

t +fXZ
t +fBXZ

t ∥22.

Theorem 1 (Additive risk gap equals interaction energy). The additive model that minimizes the
LHS equals µt + fB

t + fX
t + fZ

t ; its excess risk over the Bayes risk equals ∥fBX
t + fBZ

t + fXZ
t +

fBXZ
t ∥2L2(Pt)

. □

C RELATED WORK

C.1 PROBLEM STATEMENT

In the context of multivariate time series analysis, let X = {x(c)
1 , . . . , x

(c)
L }Ff=1 denote a collection

of F feature channels, where each channel c comprises an independent sequence of L observations
within a look-back window. The channel index f will be omitted in subsequent discussions for
simplicity. The objective of the forecasting task is to predict the future values of the time series
over the next pred len time steps, denoted as X̂L+1:L+P , based on the historical data X1:L, where
pred len is abbreviated as P . This prediction is achieved through a forecasting function F (·), which
is instantiated as an MLP-based model in this study. Our primary goal is to mitigate the high com-
putational cost and performance degradation associated with long-term data and to enhance model
prediction capabilities through multivariable feature interaction and long-term series distribution
migration modelling. This approach seeks to improve the forecasting outcome X ′, specifically by
minimizing the error between the predicted values X ′ (i.e., F (X1:L) and the true future values
X̂L+1:L+P . Traditionally, time series data are usually subjected to batch normalization before being
input into prediction models. However, recent research has highlighted the efficacy of utilizing a
reversible instance normalization (RevIN: Kim et al. (2022)) in addressing the challenges posed by
distribution shifts in time-series forecasting problems.

C.2 TEMPORAL MODELING FOR LSTF

In the realm of Long Short-Term Forecasting (LSTF) tasks, Transformer-based and MLP-based
models have emerged as the preeminent backbones due to their exceptional temporal modelling ca-
pabilities. Deviating from the Vanilla Transformer (Ashish (2017)), recent research has advanced
the field significantly. Notably, Informer (Zhou et al. (2021)) introduced an innovative strategy

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

whereby timestamps are encoded as supplementary positional encodings through the deployment of
learnable embedding layers. This advancement, along with subsequent works such as Autoformer
(Wu et al. (2021)) and FEDformer (Zhou et al. (2022)), has firmly established these foundational
architectures as widely acknowledged solutions for addressing LSTF challenges. Subsequent en-
deavours have introduced iTransformer, a variant that ingeniously applies the attention mechanism
and feed-forward network on inverted dimensions. This innovation not only diversifies the Trans-
former family but also propels its performance to new heights, further demonstrating the potential
and adaptability of Transformer-based models in handling complex tasks. Furthermore, the MLPs
(Oreshkin et al. (2019); Challu et al. (2023)) achieve favourable performance in both forecasting
performance and efficiency for LSTF tasks. Previous research has demonstrated that MLPs can
achieve the same top level of performance as Transformers in long-term sequential forecasting tasks
using trend season decomposition methods (Zeng et al. (2023)). Recent research on TimeMixer
(Wang et al. (2024)) has elegantly capitalized on disentangled multiscale series, leveraging them
effectively in both the past extraction and future prediction phases. This approach has demonstrated
remarkable achievements, consistently attaining state-of-the-art performances across both long-term
and short-term forecasting tasks, while also exhibiting favourable run-time efficiency, underscoring
its practical significance and efficiency in real-world applications.

Traditional sequential models, such as Recurrent Neural Networks (RNNs), frequently encounter is-
sues of gradient vanishing or gradient explosion when dealing with long time series, rendering them
challenged in capturing long-range dependencies. The Attention mechanism, by directly computing
the relevance between any two positions within the sequence, can mitigate this problem to some
extent, enabling the model to process long sequence data more effectively. By incorporating the
Attention mechanism, the model is able to dynamically allocate more importance or “focus” on the
most relevant parts of the input sequence, regardless of their positions within the sequence. The fol-
lowing equation can formulate the classic attention mechanism, particularly within the framework
of self-attention or transformer-based models, Q typically represents the “Query”, K denotes the
“Key”, and V stands for the “Value”. we ignore the normalization term for simplicity.

Attention(Q,K, V ) = softmax(QKT )V (4)

In classical attention mechanisms, both spatial and temporal complexities scale with O(n2), where n
represents the sequence length. Consequently, as n increases significantly, the computational burden
on Transformer models becomes prohibitively high. Recently, extensive research has focused on
addressing this issue by reducing the computational cost of Transformer models. These efforts
include various techniques such as Sparse Attention (Wu et al. (2020); Zhang et al. (2024)), and
quantization. Additionally, modifications to the attention architecture have been explored to reduce
its complexity to O(n log(n)) or even O(n), thereby improving the scalability and efficiency of
Transformer models for processing longer sequences.

C.3 LINEAR ATTENTION

The Attention mechanism of equation 4 can be rewritten in the following way:

Attention(Q,K, V )i =

∑n
j=1 exp (q

⊤
i kj)vj∑n

j=1 exp (q
⊤
i kj)

=

∑n
j=1 sim(qi, kj)vj∑n
j=1 sim(qi, kj)

(5)

Previous research (Wang et al. (2018)) had pointed out that if we use sim(qi, kj) = ϕ(qi)
⊤φ(kj)

to simplify the calculation of attention, then the complexity problem of attention mechanism should
be mitigated. ϕ(x), φ(x) are defined as ϕ(x) = φ(x) = elu(x) + 1, where elu(x) denotes the
Exponential Linear Unit (as introduced by Clevert (2015)). The additional “+1” term ensures that
the similarity term remains positive. From the perspective of the result, equation 5 expresses that
the core logic of the attention mechanism lies in focusing on everything and the key points. It can be
seen from the weighted sum expression of the Attention formula that the self-attention mechanism
can help to model the entire time series and automatically help the model focus on the local feature.

In our work, we harness the merits of the linear attention mechanism to explicitly model the multi-
variable interaction across the entire time series of individual variables, as well as the evolving
features within cross-sectional multi-variable data. This approach endows our model with several
advantageous characteristics, including reduced computational complexity, minimized storage re-
quirements, the capability to model the global time series, localized feature attention, and the profi-
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ciency to handle multi-variable relationships. We will delve deeper into the intricate architecture of
our model in the subsequent method section.

C.4 FEATURE FUSION

To leverage linear attention effectively in capturing both the multi-variable interactions across the
entire time series of individual variables and the evolving features within cross-sectional multi-
variable data, our approach aims to extract meaningful global information from the time series
and accurately represent the intricate multi-variable relationships. This process is non-trivial and
frequently necessitates intricate manual feature engineering or an exhaustive search procedure. Pre-
vious work Wang et al. (2017) introduces a novel cross-network that is more efficient in learning
certain bounded-degree feature interactions when it keeps the benefits of MLPs without extra com-
plexity. This enables our model to comprehensively analyze and understand the dynamics within
and across variables over time.

C.5 EXPERIMENT SETTING

To ensure a fair comparison across all models on a uniform platform (the time-series-library), we
have standardized the parameters. Specifically, we have fixed the input dimension at 96 and varied
the prediction horizon for time series forecasting, with lengths including 96, 192, 336, and 720. The
batch size was set to 32, the learning rate to 1e-3, the model dimension (d model) to 512, and the
dropout rate to 0.1.
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C.6 MAIN RESULT

Table 3: Multivariate forecasting results with prediction lengths in {96, 192, 336, 720} for eight
benchmark datasets and fixed lookback length 96. Our proposed model, ComplexFormer, has
achieved state-of-the-art (SOTA) performance across 25 tasks based on the Mean Squared Error
(MSE) metric, and on 20 tasks when evaluated using the Mean Absolute Error (MAE) metric. While
TIM demonstrates strong performance across various benchmarks, primarily due to its low compu-
tational complexity and cross-layer architecture, further improvements can be made to enhance its
ability to capture intricate multivariate relationships, particularly in datasets with a large number of
variables and extended time series.

Models TIM DLinear PatchTST FreTS RLinear TSMixer TimeMixer iTransFormer TimesNet
Ours 2023 2023 2024 2023 2023 2024 2024 2023

Metric mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae mse mae

E
T

T
h1

96 0.367 0.391 0.386 0.399 0.383 0.402 0.400 0.409 0.385 0.393 0.384 0.403 0.408 0.413 0.384 0.403 0.408 0.426
192 0.424 0.425 0.434 0.428 0.435 0.431 0.455 0.440 0.436 0.422 0.444 0.435 0.457 0.442 0.434 0.431 0.496 0.475
336 0.472 0.446 0.482 0.460 0.470 0.452 0.496 0.460 0.476 0.442 0.491 0.460 0.505 0.467 0.482 0.457 0.512 0.484
720 0.471 0.469 0.504 0.502 0.479 0.476 0.506 0.481 0.478 0.467 0.505 0.485 0.492 0.478 0.491 0.482 0.708 0.580

AVG 0.434 0.433 0.452 0.447 0.440 0.442 0.464 0.447 0.443 0.431 0.456 0.446 0.465 0.450 0.448 0.443 0.531 0.491

E
T

T
h2

96 0.289 0.342 0.329 0.384 0.292 0.344 0.298 0.348 0.290 0.340 0.304 0.353 0.293 0.342 0.302 0.352 0.343 0.378
192 0.374 0.393 0.435 0.448 0.373 0.395 0.382 0.399 0.378 0.395 0.402 0.409 0.375 0.394 0.379 0.399 0.449 0.432
336 0.419 0.430 0.563 0.526 0.417 0.431 0.426 0.436 0.430 0.439 0.444 0.445 0.398 0.424 0.418 0.430 0.468 0.459
720 0.427 0.444 0.775 0.634 0.434 0.450 0.448 0.457 0.442 0.453 0.436 0.450 0.406 0.432 0.427 0.447 0.457 0.467

AVG 0.377 0.402 0.526 0.498 0.379 0.405 0.448 0.457 0.385 0.407 0.396 0.414 0.368 0.398 0.382 0.407 0.429 0.434

E
T

T
m

1 96 0.315 0.357 0.345 0.371 0.377 0.424 0.358 0.394 0.350 0.368 0.321 0.361 0.333 0.368 0.337 0.371 0.429 0.454
192 0.361 0.383 0.383 0.394 0.417 0.439 0.399 0.411 0.388 0.386 0.370 0.388 0.376 0.393 0.376 0.388 0.593 0.572
336 0.386 0.402 0.414 0.414 0.465 0.466 0.433 0.439 0.419 0.406 0.415 0.414 0.408 0.418 0.423 0.414 0.679 0.601
720 0.469 0.446 0.474 0.453 0.517 0.501 0.538 0.509 0.480 0.440 0.497 0.461 0.493 0.464 0.480 0.449 0.780 0.692

AVG 0.382 0.397 0.404 0.408 0.444 0.457 0.432 0.438 0.409 0.400 0.401 0.406 0.403 0.411 0.404 0.406 0.620 0.580

E
T

T
m

2 96 0.172 0.253 0.186 0.282 0.176 0.261 0.180 0.262 0.182 0.265 0.183 0.267 0.183 0.267 0.184 0.268 0.188 0.268
192 0.233 0.294 0.270 0.347 0.242 0.305 0.247 0.306 0.247 0.306 0.249 0.309 0.260 0.318 0.252 0.312 0.288 0.324
336 0.292 0.333 0.362 0.414 0.303 0.344 0.304 0.342 0.309 0.344 0.310 0.347 0.309 0.346 0.317 0.352 0.343 0.360
720 0.391 0.392 0.527 0.507 0.402 0.402 0.406 0.402 0.408 0.400 0.417 0.407 0.438 0.420 0.411 0.405 0.512 0.450

AVG 0.272 0.318 0.337 0.388 0.281 0.328 0.284 0.328 0.287 0.328 0.290 0.332 0.298 0.338 0.291 0.334 0.333 0.351

el
ec

tr
ic

ity

96 0.144 0.241 0.195 0.277 0.206 0.309 0.184 0.271 0.198 0.274 0.156 0.258 0.153 0.253 0.146 0.244 0.351 0.405
192 0.164 0.259 0.194 0.280 0.214 0.321 0.188 0.277 0.198 0.277 0.174 0.274 0.169 0.270 0.162 0.256 0.293 0.375
336 0.173 0.271 0.208 0.297 0.218 0.325 0.203 0.294 0.212 0.293 0.187 0.288 0.184 0.285 0.180 0.274 0.290 0.373
720 0.205 0.301 0.243 0.330 0.254 0.352 0.248 0.335 0.254 0.326 0.216 0.309 0.209 0.305 0.213 0.305 0.317 0.383

AVG 0.172 0.268 0.210 0.296 0.223 0.2327 0.206 0.294 0.215 0.293 0.183 0.282 0.179 0.278 0.175 0.270 0.313 0.384

so
la

r
A

L 96 0.213 0.241 0.285 0.372 0.223 0.328 0.250 0.308 0.305 0.329 0.214 0.264 0.234 0.279 0.203 0.256 0.189 0.257
192 0.234 0.266 0.316 0.393 0.246 0.353 0.268 0.328 0.344 0.348 0.257 0.292 0.277 0.306 0.233 0.271 0.193 0.234
336 0.261 0.287 0.352 0.413 0.260 0.365 0.285 0.336 0.386 0.364 0.280 0.307 0.284 0.307 0.266 0.304 0.200 0.238
720 0.267 0.289 0.355 0.411 0.246 0.350 0.269 0.315 0.389 0.358 0.278 0.304 0.278 0.300 0.254 0.286 0.207 0.248

AVG 0.244 0.271 0.327 0.397 0.244 0.349 0.268 0.322 0.356 0.350 0.257 0.292 0.268 0.298 0.239 0.280 0.197 0.244

tr
af

fic

96 0.447 0.277 0.650 0.398 0.475 0.277 0.542 0.357 0.646 0.386 0.487 0.338 0.472 0.316 0.427 0.299 0.593 0.333
192 0.458 0.287 0.599 0.371 0.489 0.278 0.537 0.358 0.599 0.362 0.496 0.338 0.494 0.328 0.451 0.302 0.631 0.349
336 0.471 0.292 0.607 0.375 0.500 0.291 0.553 0.363 0.607 0.366 0.514 0.349 0.518 0.347 0.464 0.304 0.664 0.353
720 0.503 0.310 0.648 0.398 0.535 0.302 0.590 0.380 0.645 0.385 0.541 0.368 0.540 0.350 0.506 0.324 0.673 0.359

AVG 0.469 0.292 0.626 0.386 0.500 0.287 0.556 0.365 0.624 0.375 0.510 0.348 0.506 0.335 0.462 0.307 0.640 0.348

w
ea

th
er

96 0.155 0.200 0.196 0.255 0.165 0.211 0.167 0.213 0.193 0.232 0.159 0.208 0.160 0.207 0.168 0.211 0.194 0.233
192 0.204 0.246 0.238 0.297 0.212 0.253 0.241 0.272 0.236 0.268 0.214 0.254 0.226 0.265 0.214 0.254 0.240 0.270
336 0.262 0.289 0.283 0.333 0.268 0.292 0.269 0.295 0.288 0.304 0.273 0.294 0.286 0.307 0.273 0.296 0.292 0.307
720 0.345 0.344 0.348 0.385 0.346 0.344 0.346 0.346 0.359 0.350 0.349 0.348 0.372 0.358 0.351 0.347 0.364 0.353

AVG 0.242 0.270 0.266 0.318 0.248 0.275 0.249 0.278 0.269 0.288 0.246 0.276 0.261 0.284 0.252 0.277 0.273 0.291
1st count 25 21 0 0 2 5 0 0 0 6 0 0 3 3 5 1 5 4

C.7 CODE OF ETHICS

We have read and understood the ICLR Code of Ethics, as outlined on the conference website. We
fully acknowledge the importance of adhering to these ethical guidelines throughout all aspects of
my participation in ICLR, including paper submission, reviewing, and discussions.
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Table 4: Ablation Study
TIM Ours Timewo Reswo Featwo

pred len mse mae mse mae mse mae mse mae

E
T

T
h1

96 0.367 0.391 0.379 0.398 0.379 0.397 0.378 0.396
192 0.424 0.425 0.438 0.428 0.436 0.427 0.433 0.426
336 0.472 0.446 0.493 0.459 0.481 0.449 0.482 0.451
720 0.471 0.469 0.497 0.477 0.494 0.478 0.492 0.476

AVG 0.436 0.435 0.452 0.440 0.448 0.438 0.446 0.437

E
T

T
h2

96 0.289 0.342 0.291 0.343 0.292 0.344 0.292 0.344
192 0.374 0.393 0.377 0.394 0.375 0.394 0.377 0.394
336 0.419 0.430 0.418 0.431 0.417 0.430 0.417 0.430
720 0.427 0.444 0.431 0.446 0.432 0.447 0.430 0.446

AVG 0.377 0.402 0.379 0.404 0.379 0.404 0.379 0.403

E
T

T
m

1

96 0.315 0.357 0.320 0.360 0.318 0.357 0.327 0.365
192 0.361 0.383 0.366 0.385 0.361 0.381 0.364 0.384
336 0.386 0.402 0.412 0.411 0.397 0.405 0.401 0.408
720 0.469 0.446 0.495 0.452 0.456 0.441 0.454 0.442

AVG 0.382 0.397 0.398 0.402 0.383 0.396 0.387 0.400

E
T

T
m

2

96 0.172 0.253 0.176 0.259 0.170 0.254 0.175 0.258
192 0.233 0.294 0.234 0.297 0.238 0.298 0.238 0.299
336 0.292 0.333 0.295 0.337 0.299 0.338 0.301 0.339
720 0.391 0.392 0.400 0.398 0.395 0.395 0.398 0.396

AVG 0.272 0.318 0.276 0.323 0.276 0.321 0.278 0.323

el
ec

tr
ic

ity

96 0.144 0.241 0.156 0.255 0.152 0.253 0.169 0.269
192 0.164 0.259 0.174 0.271 0.170 0.269 0.181 0.275
336 0.173 0.271 0.190 0.289 0.186 0.287 0.197 0.290
720 0.205 0.301 0.219 0.312 0.213 0.311 0.234 0.320

AVG 0.172 0.268 0.185 0.282 0.180 0.280 0.195 0.288

tr
af

fic

96 0.447 0.277 0.473 0.313 0.474 0.306 0.492 0.311
192 0.458 0.287 0.474 0.317 0.482 0.316 0.506 0.326
336 0.471 0.292 0.482 0.317 0.492 0.320 0.519 0.332
720 0.503 0.310 0.520 0.344 0.538 0.342 0.554 0.343

AVG 0.469 0.292 0.487 0.323 0.497 0.321 0.518 0.330
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