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Abstract
Communities in networks are groups of nodes that are more densely

connected to each other than to the rest of the network, forming

clusters with strong internal relationships. When nodes have sensi-

tive attributes, such as demographic groups in social networks, a key

question is whether nodes in each group are equally well-connected

within each community. We model connectivity fairness through

group modularity, an adaptation of modularity that accounts for

group structures. We introduce two versions of group modular-

ity grounded on different null models and present fairness-aware

community detection algorithms. Finally, we provide experimental

results on real and synthetic networks, evaluating both the group

modularity of community structure in networks and our fairness-

aware algorithms.
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1 Introduction
Networks are essential for representing and analyzing intercon-

nected systems across different domains, such as in social, col-

laboration, and citation settings. Nodes in networks often form

communities, i.e., subsets of nodes that are more tightly connected

with each other than with nodes outside the community [14, 24].

Connections in networks play a pivotal role in shaping opinions

and influencing decision-making processes [13, 36]. In this paper,

we study the fairness of connections within network communities.

Algorithmic fairness has been the center of much current re-

search [11, 28, 30, 31]. In a broad sense, fairness is addressed either

at the level of individuals, or at the level of groups of individuals

[12, 33]. In most networks, nodes have attributes, forming groups,

where nodes have the same values in one or more of their attributes.

For example, in a social network, groups of nodes often correspond
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to demographic groups formed based on gender, age, or race. We

consider fairness at the level of such groups.

Most previous research in group fairness of communities asks

that the representation of groups within each community is bal-

anced [7, 9, 23]. In this paper, we shift the focus from nodes to con-

nections. We ask the key question, whether each group is equally

well-connected within each community. For example, consider a

collaboration network. Do women in the network participate in an

equitable number of connections within the formed communities?

The strength of connections within each community is vital for

minorities to be heard, and influence others.

To model fairness of connections, we use modularity. Modularity

is a measure of the quality of community structures in networks

that quantifies the strength of the division of a network into com-

munities by comparing the density of edges within communities to

the expected density in a random graph [10, 29]. We introduce a

variation of modularity, termed group modularity, that considers
the density of edges of nodes belonging to a specific group. We con-

sider two different random graph models. One agnostic to the group

each node belongs to, and one that takes into account the group. In

addition, we propose a diversity-based variation of modularity that

looks only at connections between nodes belonging to different

groups and we address its relationship to group fairness. Diversity

of connections is important in addressing filter bubbles, and echo

chambers, i.e., cases where individuals in a network are exposed

only to opinions similar to their own often leading to reinforcing

confirmation bias and polarization [13, 20, 27].

To locate fair community structures in a networks, we propose

a fairness-aware community detection algorithm. The algorithm

builds on the Louvain algorithm [6, 32], an agglomerative hierar-

chical method, where sets of nodes are successively merged to form

larger communities such that modularity increases. In the proposed

fairness-aware algorithms, the criterion for merging communities

takes into account the fairness and diversity of the communities.

To evaluate our approach, we present experimental results using

both synthetic and real networks. The goal of our experimental eval-

uation is multi-fold. First, we ask whether community structures

are fair and diverse and what are the factors that affect fairness and

diversity. Then, we evaluate the trade-off between the quality and

the fairness and diversity of communities found by our commu-

nity detection algorithms and compare the efficacy of the proposed

models.

The remainder of the this paper is structured as follows. In Sec-

tion 2, we introduce our model for fairness in communities, and in

Section 3, we present the fairness-aware Louvain algorithm. Exper-

imental results are reported in Section 4, related work in Section 5,

while Section 6 concludes the paper.

2 Group-based Modularity Fairness
Let 𝐺 = (𝑉 , 𝐸) be an undirected graph, where 𝑉 is the set of nodes

and 𝐸 ⊆ 𝑉 ×𝑉 is the set of edges. We assume that nodes in𝑉 belong

to groups based on the value of one of their sensitive attributes.
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We call red the protected value for this attribute. The red group,

denoted by 𝑅, 𝑅 ⊆ 𝑉 , is the subset of nodes with red value. The

blue group, denoted by 𝐵, 𝐵 ⊆ 𝑉 , 𝐵 ∪𝑅 = 𝑉 and 𝐵 ∩𝑅 = ∅, contains
the remaining nodes. We will use 𝜙 to denote the ratio of the red

nodes in the overall population, that is, 𝜙 =
|𝑅 |
|𝑉 | .

Assume that the nodes of the graph are partitioned into a set

C = {𝐶
1
,𝐶2, . . .𝐶𝑘 } of 𝑘 communities. We will use 𝐶𝐵

𝑖
and 𝐶𝑅

𝑖
re-

spectively for the blue and red nodes in community 𝐶𝑖 .

Most previous research on group fairness focuses on node-based

notions of community fairness [9, 23] that seek to maintain a bal-

anced representation of the groups in each community, where the

red balance of a community𝐶𝑖 ∈ C is defined as: 𝐵𝑅 (𝐶𝑖 ) =
|𝐶𝑅

𝑖
|

|𝐶𝑖 | −𝜙 .
Given that network processes, including opinion formation, in-

formation propagation, and diffusion, primarily occur through in-

teractions along the edges of the network [13, 36], in this paper, we

look into group fairness from the edge perspective. To this end, we

adopt a modularity-based approach.

Modularity measures the divergence between the number of

intra-communities edges from the expected such number assuming

a null model [10, 29]. The most commonly used null model is a

random graph where the expected degree of each node within the

graph is equal to the actual degree of the corresponding node in the

real network. Specifically, the modularity of community C𝑖 , 𝑄 (C𝑖 ),
is defined as [29]:

𝑄 (𝐶𝑖 ) =
1

2𝑚

©«
∑︁
𝑢∈𝐶𝑖

∑︁
𝑣∈𝐶𝑖

𝐴𝑢𝑣 −
𝑘𝑢 𝑘𝑣

2𝑚

ª®¬ (1)

where 𝐴 is the adjacency matrix of 𝐺 ,𝑚 the number of edges in

𝐺 and 𝑘𝑢 , 𝑘𝑣 the degree of node 𝑢, and 𝑣 respectively. Modularity

provides a measure of how well nodes in a community are con-

nected with each other. Negative values indicate less connections

than expected, while positive values indicate more connections.

2.1 Group Modularity
Our goal is to ensure that red nodes are well connected within each

community. Thus, for each red node 𝑢 in 𝐶𝑖 we take the difference

between the actual number of its intra-community edges and the

expected such number. We call this measure red modularity.
As before, the expected number of connections is estimated

assuming as null model a random graph that preserves the degrees

of nodes in 𝐺 . Using this null model, red modularity, 𝑄𝑅 (𝐶𝑖 ) is
defined as:

𝑄𝑅 (𝐶𝑖 ) =
1

2𝑚

∑︁
𝑢∈𝐶𝑅

𝑖

∑︁
𝑣∈𝐶𝑖

(
𝐴𝑢𝑣 −

𝑘𝑢 𝑘𝑣

2𝑚

)
. (2)

We define similarly the blue modularity 𝑄𝐵 (𝐶𝑖 ). We refer to red

and blue modularity collectively as group modularity.
Note that if we consider the whole graph as a single community

both the red and blue modularity are zero. In general, positive

values in a community mean that the nodes with the corresponding

color are more connected in the community than expected.

We define group modularity unfairness by comparing the red and

blue modularity:

Definition 2.1. For a community 𝐶𝑖 ∈ C, the modularity unfair-

ness of 𝐶𝑖 , 𝑢 (𝐶𝑖 ), is defined as:

𝑢 (𝐶𝑖 ) = 𝑄𝑅 (𝐶𝑖 ) −𝑄𝐵 (𝐶𝑖 ) .

Negative values of 𝑢 (𝐶𝑖 ) indicate unfairness towards the red

group, that is, the fact that the red nodes are less well-connected

within the community than the blue ones. Positive values indicate

the opposite.

We also consider diversity within each community by consider-

ing the edges that connect nodes of different color, let us call these

edges diverse edges,. Note that the expected number of diverse

nodes cannot be estimated using the same null model, since to do

so, we need to know the color of both endpoints of each edge. Thus,

in this case, the expected number of diverse edges uses as null

model a random bipartite graph with edges only between nodes

of different color that preserves the degrees of the nodes in the

original graph 𝐺 . Diversity modularity (𝐷𝑅𝐵
), or simply diversity,

is defined as:

𝐷𝑅𝐵 (𝐶𝑖 ) =
1

2𝑚

∑︁
𝑢∈𝐶𝑅

𝑖

∑︁
𝑣∈𝐶𝐵

𝑖

(
𝐴𝑢𝑣 −

𝑘𝑢 𝑘𝑣

𝑚

)
. (3)

If we consider the whole graph as a single community, then

diversity is a non positive value. In this case, the larger the value of

𝐷𝑅𝐵
the more diverse the network.

Simplifying the forms. Let 𝑋 = {𝑅, 𝐵} and 𝑌 = {𝑅, 𝐵}. We use 𝐼𝑛𝑖

to denote the number of intra-community edges in 𝐶𝑖 , 𝐼𝑛
𝑋
𝑖
, the

number of intra-community edges in 𝐶𝑖 with at least one endpoint

belonging to group 𝑋 , and 𝐼𝑛𝑋𝑌
𝑖

the number of intra-community

edges with one endpoint in group 𝑋 and one endpoint in group 𝑌 .

We also use 𝐾𝑖 for the sum of degrees of all nodes in 𝐶𝑖 , and 𝐾
𝑋
𝑖

for the sum of degrees of all nodes in 𝐶𝑖 that belong to group 𝑋 .

With simple manipulations, we get:

𝑄𝑅 (𝐶𝑖 ) =
1

2𝑚

(
2𝐼𝑛𝑅𝑅𝑖 + 𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑖𝐾
𝑅
𝑖

2𝑚

)
(4)

𝑢 (𝐶𝑖 ) =
𝐼𝑛𝑅𝑅

𝑖
− 𝐼𝑛𝐵𝐵

𝑖

𝑚
−

(𝐾𝑅
𝑖
)2 − (𝐾𝐵

𝑖
)2

(2𝑚)2
(5)

𝐷𝑅𝐵 (𝐶𝑖 ) =
1

2𝑚

(
𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑅
𝑖
𝐾𝐵
𝑖

𝑚

)
(6)

2.2 Labeled Group Modularity
We now consider a null model which is not agnostic of the color of

edge endpoints. For a node 𝑢, let 𝑘𝑅𝑢 be the number of edges to red

nodes and 𝑘𝐵𝑢 be the number of edges to blue nodes, 𝑘𝑅𝑢 + 𝑘𝐵𝑢 = 𝑘𝑢 .

In the following, 𝑘𝑅𝑢 and 𝑘𝐵𝑢 are respectively called the red degree

and blue degree of node 𝑢.

We consider as null model a random graph where both the ex-

pected red degree and blue degree of each node within the graph is

equal to the actual red degree and blue degree of the corresponding

node in the real network 𝐺 . Formally, let 𝑃𝑢𝑣 be the probability of

creating an edge between nodes 𝑢 and 𝑣 . Let𝑚𝑅𝑅 be the number

of red-red edges,𝑚𝑅𝐵 the number of red-blue edges and𝑚𝐵𝐵 the

number of blue-blue edges. We have that 𝑃𝑢𝑣 = 𝑘𝑅𝑢 𝑘
𝑅
𝑣 /2𝑚𝑅𝑅 , for

red nodes 𝑢, 𝑣 ∈ 𝑅, 𝑃𝑢𝑣 = 𝑘𝐵𝑢 𝑘𝐵𝑣 /2𝑚𝐵𝐵 for blue nodes 𝑢, 𝑣 ∈ 𝐵, and
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𝑃𝑢𝑣 = 𝑘𝐵𝑢 𝑘
𝑅
𝑣 /𝑚𝑅𝐵 for red-blue nodes 𝑢 ∈ 𝑅 and 𝑣 ∈ 𝐵. For any

node 𝑢, it holds that
∑

𝑣∈𝑅 𝑃𝑢𝑣 = 𝑘
𝑅
𝑢 and

∑
𝑣∈𝐵 𝑃𝑢𝑣 = 𝑘

𝐵
𝑢 .

We define the labeled red modularity 𝑄𝑅
𝐿
(𝐶𝑖 ) by taking again the

difference between the actual number of intra-community edges

involving red nodes, and the expected such number, but now con-

sidering the color (or, in general, label) of both endpoints.

𝑄𝑅
𝐿 (𝐶𝑖 ) =

1

2𝑚
(
∑︁

𝑢∈𝐶𝑅
𝑖

∑︁
𝑣∈𝐶𝐵

𝑖

(𝐴𝑢𝑣 −
𝑘𝐵𝑢 𝑘

𝑅
𝑣

𝑚𝑅𝐵
)

+
∑︁

𝑢∈𝐶𝑅
𝑖

∑︁
𝑣∈𝐶𝑅

𝑖

(𝐴𝑢𝑣 −
𝑘𝑅𝑢 𝑘

𝑅
𝑣

2𝑚𝑅𝑅
)) .

(7)

We define similarly the labeled blue modularity 𝑄𝐵
𝐿
(𝐶𝑖 ). We refer

to labeled red and labeled blue modularity collectively as labeled
group modularity.

Again, if we consider the whole graph as a single community

both the labeled red and labeled blue modularity are zero. In gen-

eral, positive values in a community mean that the nodes with the

corresponding color are more connected in the community than

expected.

We define labeled modularity unfairness by comparing the red

and blue labeled modularity.

Definition 2.2. For a community 𝐶𝑖 ∈ C, the labeled modularity

unfairness of 𝐶𝑖 , 𝑢𝐿 (𝐶𝑖 ), is defined as:

𝑢𝐿 (𝐶𝑖 ) = 𝑄𝑅
𝐿 (𝐶𝑖 ) −𝑄

𝐵
𝐿 (𝐶𝑖 ) .

Negative values of 𝑢𝐿 (𝐶𝑖 ) indicate unfairness towards the red
group, that is, the fact that the red nodes are less well-connected

within the community than the blue ones. Positive values indicate

the opposite.

We define labeled diversity modularity, or simply labeled diversity,
as follows:

𝐷𝑅𝐵
𝐿 (𝐶𝑖 ) =

1

2𝑚

©«
∑︁

𝑢∈𝐶𝑅
𝑖

∑︁
𝑣∈𝐶𝐵

𝑖

(
𝐴𝑢𝑣 −

𝑘𝐵𝑢 𝑘
𝑅
𝑣

𝑚𝑅𝐵

)ª®®¬ . (8)

In this case, the labeled diversity of the whole graph is zero. Pos-

itive diversity values in a community indicate that the community

is more diverse than expected.

Simplifying the forms. We use 𝐾𝑋𝑌
𝑖

, with 𝑋 ∈ {𝑅, 𝐵}, to denote

the sum of the degrees of all nodes of color 𝑋 that belong to 𝐶𝑖 to

any node of color 𝑌 . With simple manipulations, we get:

𝑄𝑅
𝐿 (𝐶𝑖 ) =

1

2𝑚

(
2 𝐼𝑛𝑅𝑅𝑖 + 𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑅𝐵
𝑖
𝐾𝐵𝑅
𝑖

𝑚𝑅𝐵
−

(𝐾𝑅𝑅
𝑖

)2

2𝑚𝑅𝑅

)
(9)

𝑢𝐿 (𝐶𝑖 ) =
𝐼𝑛𝑅𝑅

𝑖
− 𝐼𝑛𝐵𝐵

𝑖

𝑚
−

(𝐾𝑅𝑅
𝑖

)2 − (𝐾𝐵𝐵
𝑖

)2

4𝑚𝑚𝑅𝐵
(10)

𝐷𝑅𝐵
𝐿 (𝐶𝑖 ) =

1

2𝑚

(
𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑅𝐵
𝑖
𝐾𝐵𝑅
𝑖

𝑚𝑅𝐵

)
(11)

Discussion. Note that both diversity and labeled diversity are

symmetric, that is, it holds that𝐷𝑅𝐵 (𝐶𝑖 ) = 𝐷𝐵𝑅 (𝐶𝑖 ), and𝐷𝑅𝐵
𝐿

(𝐶𝑖 ) =
𝐷𝐵𝑅
𝐿

(𝐶𝑖 ).
Also, communities whose edges are all diverse have zero modu-

larity unfairness and zero labeled modularity unfairness, e.g., they

are fair under both definitions of unfairness. However, the opposite

does not necessarily holds, that is, there be communities that are

fair but not diverse.

3 Fairness-Aware Community Detection
In this section, we present our fairness-aware community detection

algorithm. Our algorithm is based on the well-known Louvain

algorithm that identifies communities in networks by optimizing

modularity [6, 10, 32].

The algorithm follows a hierarchical agglomerative approach,

starting with each node forming its own community. The orig-

inal Louvain algorithm joins together two communities whose

merge produces the largest increase in modularity 𝑄 (Eq. 1). The

fairness-aware algorithm uses two-criteria: two communities are

joined if (1) modularity increases and (2) a group fairness criterion

(𝐹𝐶) is met. For 𝐹𝐶 , we consider different approaches using either

the non-labeled and the labeled group modularity, namely: (a) the

fairness-gain approach where we ask that unfairness decreases (Eq.

5, or 10), (b) the group-increase approach, where we ask that the

group modularity of the group towards which the network is unfair

increases (Eq. 4, or 9), and (c) the diversity-increase approach where

we ask that diversity increases (Eq. 6, or 11).

The algorithm works in two phases that are repeated iteratively.

In the first phase, the algorithm computes for each node 𝑢 the gain

in modularity and 𝐹𝐶 when removing 𝑢 from its current commu-

nity and placing it to each of its neighboring communities. This

process is applied repeatedly and sequentially and stops when a

local maxima is reached, i.e., when no individual move can increase

both modularity and 𝐹𝐶 .

In the second phase, the algorithm constructs a new graph whose

nodes are now the communities found during the first phase. The

weights of the edges between two nodes are the sum of the weights

of the edges in the corresponding two communities. Edges between

the nodes inside each community are modeled with a self-loop

whose weight is the sum of the weights of these edges. Once the

second phase completes, the first phase may be now applied to the

resulting weighed graph, and then followed by the second phase.

The iterations continue until there are no more changes and a

modularity maximum is attained.

We assume that each edge 𝑒 is associated with a weight, 𝑤 (𝑒).
Thus, 𝑘 (𝑢) = ∑

𝑣,(𝑢,𝑣) ∈𝐸 𝑤 (𝑢, 𝑣), 𝑘𝑋 (𝑢) =∑
(𝑢,𝑣) ∈𝐸,𝑣∈𝑋 𝑤 (𝑢, 𝑣) and

correspondingly the adjacency matrix is weighted. The following

lemma (proof in the Appendix) estimates the change in red mod-

ularity Δ𝑄𝑅
𝑢→𝐶𝑖

, blue modularity Δ𝑄𝐵
𝑢→𝐶𝑖

and diversity Δ𝐷𝑅𝐵
𝑢→𝐶𝑖

when an isolated red node moves to a community.

Lemma 3.1. When an isolated red node 𝑢 ∈ 𝑅 is moved to commu-
nity 𝐶𝑖 , the difference Δ𝑄𝑅

𝑢→𝐶𝑖
in red modularity is:

Δ𝑄𝑅
𝑢→𝐶𝑖

=
1

2𝑚

©«2

∑︁
𝑣∈𝐶𝑖 ,𝑣∈𝑅

𝑤 (𝑢, 𝑣) +
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

𝑘𝑢 (𝐾𝑖 + 𝐾𝑅
𝑖
)

2𝑚

ª®¬
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the difference Δ𝑄𝐵
𝑢→𝐶𝑖

in blue modularity is:

Δ𝑄𝐵
𝑢→𝐶𝑖

=
1

2𝑚

©«
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

𝑘𝑢𝐾
𝐵
𝑖

2𝑚

ª®¬
and the difference Δ𝐷𝑅𝐵

𝑢→𝐶𝑖
in diversity is:

Δ𝐷𝑅𝐵
𝑢→𝐶𝑖

=
1

2𝑚

©«
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

𝑘𝑢𝐾
𝐵
𝑖

𝑚

ª®¬
Similar formulas hold when moving a blue node to 𝐶𝑖 .

The following lemma (proof in the Appendix) estimates the

change in labeled red Δ𝑄𝑅
𝐿,𝑢→𝐶𝑖

, labeled blue modularity Δ𝑄𝐵
𝐿,𝑢→𝐶𝑖

and labeled diversity Δ𝐷𝑅𝐵
𝐿,𝑢→𝐶𝑖

when an isolated red node moves

to a community.

Lemma 3.2. When an isolated red node 𝑢 ∈ 𝑅 is moved to commu-
nity 𝐶𝑖 , the difference Δ𝑄𝑅

𝐿,𝑢→𝐶𝑖
in labeled red modularity is:

Δ𝑄𝑅
𝐿,𝑢→𝐶𝑖

=
1

2𝑚
(2

∑︁
𝑣∈𝐶𝑖 ,𝑣∈𝑅

𝑤 (𝑢, 𝑣) +
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣)

−
𝑘𝐵𝑢𝐾

𝐵𝑅
𝑖

𝑚𝑅𝐵
+
𝑘𝑅𝑢𝐾

𝑅𝑅
𝑖

𝑚𝑅𝑅
)

the difference Δ𝑄𝐵
𝐿,𝑢→𝐶𝑖

in labeled blue modularity is:

Δ𝑄𝐵
𝐿,𝑢→𝐶𝑖

=
1

2𝑚

©«
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

𝑘𝐵𝑢𝐾
𝐵𝑅
𝑖

𝑚𝑅𝐵

ª®¬
and the difference Δ𝐷𝑅𝐵

𝐿,𝑢→𝐶𝑖
in labeled diversity is:

Δ𝐷𝑅𝐵
𝐿,𝑢→𝐶𝑖

=
1

2𝑚

©«
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

𝑘𝐵𝑢𝐾
𝐵𝑅
𝑖

𝑚𝑅𝐵

ª®¬
Similar formulas hold when moving a blue node to 𝐶𝑖 . In the

Appendix, we also present formulas applicable when merging com-

munities.

4 Experiments
The goal of our experiments is to address the following research

questions (RQ):

RQ1 What are the characteristics of a network that contribute to

unfairness and lack of diversity within communities?

RQ2 Under which network conditions and throughwhatmodifica-

tions of fairness-aware Louvain algorithms can improvement

in both notions of fairness be attained?

RQ3 How effective are the two definitions of unfairness and di-

versity in quantifying their respective measure and consecu-

tively in improving fair community detection?

To address these questions we conducted experiments on both

synthetic and real datasets.

4.1 Datasets
4.1.1 Synthetic Datasets. To study the factors that may lead to un-

fairness, we use amodel based on the stochastic blockmodel [19, 23]

to create networks with nodes of different colors and connectivity

behavior. The model has three important parameters: (1) Parameter

Algorithm 1 Fairness-Aware Louvain

Input: Graph 𝐺 (𝑉 , 𝐸,𝐴) where 𝑉 is the set of vertices, 𝐸 is the

set of edges and 𝐴 is the attributes of each node in the graph

Output: List of 𝑁 clusters detected.

repeat
Assign every vertex 𝑣 ∈ 𝑉 to a singleton community

Calculate the modularity 𝑄

for each vertex 𝑣 ∈ 𝑉 do
for each 𝑢 in neighbors of 𝑣 do

Calculate the modularity gain Δ𝑄 and fairness criterion

change Δ𝑄𝐹𝐶 from the removal of 𝑣 from its current

community and placement in the community of each

neighbor.

if modularity increases and 𝐹𝐶 is met then
Move 𝑣 to neighboring community

end if
end for

end for
Create a new "super-nodes" from the communities found on

previous step. The new 𝑉 set is those "super-nodes".

Recalculate the weight of the edges between these new "meta-

nodes".

until there is no improvement

𝜙 controls the size imbalance between the different groups. In a

perfectly node-balanced network, 𝜙 = 0.5; smaller values make the

red group the minority one. (2) Parameter 𝑝𝑐 controls the prob-

ability of intra-community edges. In a random network with no

community structure, 𝑝𝑐 = 0.5; communities appear as 𝑝𝑐 increases.

(3) Parameter 𝑝ℎ controls the probability of same color edges, i.e.,

homophily. Values of 𝑝ℎ larger than 0.5 result in homophily, while

smaller than 0.5 result in heterophily. When 𝑝ℎ = 0.5, we have

neutrality.

We start by an initial assignment of nodes in 𝑘 communities

and then generate edges between the nodes. Note that the actual

number of communities created may differ from 𝑘 , depending on

the values of the other parameters. An edge (𝑢, 𝑣) is generated with
probability 𝑝 (𝑢, 𝑣) defined as follows:

𝑝 (𝑢, 𝑣) =



𝑝𝑐 𝑝ℎ, if 𝑢 and 𝑣 are in the same cluster

and have the same color

(1 − 𝑝𝑐 ) 𝑝ℎ, if 𝑢 and 𝑣 are in different clusters

and have the same color

𝑝𝑐 (1 − 𝑝ℎ), if 𝑢 and 𝑣 are in the same cluster

and have different colors

(1 − 𝑝𝑐 ) (1 − 𝑝ℎ), if 𝑢 and 𝑣 are in different clusters

and have different colors

We also consider an asymmetric case, where we have different

homophily probabilities, 𝑝𝑅
ℎ
and 𝑝𝐵

ℎ
, for the red and the blue nodes

respectively. When generating edge 𝑝 (𝑢, 𝑣), we use 𝑝𝑅
ℎ
if 𝑢 ∈ 𝑅, and

𝑝𝐵
ℎ
if 𝑢 ∈ 𝐵.
Table 1 summarizes the parameters. We study the influence of

size imbalance (𝑝𝑅 ) and homophily (𝑝ℎ). In each case, we vary one
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Table 1: Synthetic Dataset Characteristics

Parameter Meaning Default

𝑁 Number of nodes 1000

𝜙 Ratio of red nodes 0.5

𝑙 Avg node degree 5

𝑘 Initial number of communities 5

𝑝ℎ , 𝑝
𝑅
ℎ
, 𝑝𝐵

ℎ
Homophily 0.5

𝑝𝑐 Prob. of intra-community edge 0.9

of the parameters and use the default values for the other. We run

each experiment 10 times and report average values.

4.1.2 Real datasets. We study the following real datasets:

• Pokec1 Nodes are the users of the Pokec social network

and edges are friendship relationships between them. We

consider the gender attribute (Pokec-g) and the age attribute
(Pokec-a) as sensitive attributes. For the age attribute, we
remove nodes that have no value for this attribute, or the

value was not a possible value for age. We create two groups

based on whether the user is over 30 years old or not.

• Deezer2 Nodes are Deezer users from European countries

and edges are mutual follower relationships between them.

• Facebook3 The dataset consists of friends list from Face-

book. We consider the gender attribute Facebook-g and

the concentration attribute Facebook-c. The concentration
attribute corresponds to the users that have chosen a spe-

cialized field of study within their major.

• Twitch4 Nodes are twitch users and edges are mutual fol-

lower relationship between them.

The network characteristics are summarized in Table 2. We also

report homophily values that indicate the tendency of nodes to con-

nect with nodes with similar attributes, in our case, with the same

color. We report separately the homophily of the red nodes (𝑅ℎ)

and the homophily of the blue nodes (𝐵ℎ). Red homophily (𝑅ℎ) is

computed as the ratio of the number of the actual edges connecting

two red nodes and the expected number of such edges (estimated

as 𝜙2
). 𝑅ℎ > 1 indicate homophily, while 𝑅ℎ < 1 heterophily (ten-

dency to connect with nodes of the opposite color). Similarly, we

compute the blue homophily (𝐵ℎ) as the ratio of number of the

actual edges between two blue nodes and the expected number of

such edges (estimated as (1 − 𝜙)2
).

4.2 Evaluation Results
To evaluate our approach on synthetic datasets, we create both

symmetric and asymmetric datasets. Our goal is to examine how

different group distributions and homophily patterns impact the

performance of our algorithms.

We created datasets based on three distinct values of 𝜙 :

• Red minority 𝜙 = 0.2, where the red group is underrepre-

sented relative to the blue group.

1
https://snap.stanford.edu/data/soc-Pokec.html

2
https://snap.stanford.edu/data/feather-deezer-social.html

3
http://snap.stanford.edu/data/ego-Facebook.html

4
https://snap.stanford.edu/data/twitch_gamers.html

• Balanced groups 𝜙 = 0.5, where the red and blue groups are

evenly represented.

• Red majority group 𝜙 = 0.8, where the red group forms the

majority.

In addition to the group ratio, we adjust the homophily param-

eter 𝑝ℎ , which controls the likelihood of nodes within the same

group to connect. We explore values of 𝑝ℎ in the range from 0.1

to 0.9, capturing from strongly heterophilic (𝑝ℎ = 0.1) to strongly

homophilic (𝑝ℎ = 0.9) networks. We create symmetric datasets,

where the same homophily is assigned to both groups, allowing us

to evaluate networks where both groups follow similar connectivity

patterns. We also create asymmetric datasets, where the homophily

parameter between the red and blue groups is different. In this case,

we fix the homophily of the red group to be neutral (𝑝𝑅
ℎ
= 0.5), and

we vary the homophily of the blue group 𝑝𝐵
ℎ
, from 0.1 (heterophilic)

to 0.9 (homophilic).

To address RQ1, we apply the original Louvain algorithm on

each of the synthetic networks; the results are shown in the first

row of Figures 1 (symmetric) and 2 (asymmetric). Our analysis

reveals significant correlation between unfairness and diversity

and the homophily and group size of a network. Specifically, higher

homophily is associated with increased unfairness and reduced

diversity, as nodes tend to connect with nodes of the same type,

which reinforces group isolation within communities.

The most favorable outcomes for both network fairness and

diversity occur when group sizes are balanced, and homophily is

moderate, allowing for more cross-group interactions (Figure 2(c)).

The highest levels of unfairness are observed when both groups

exhibit high homophily. As both red and blue homophily increase,

the unfairness metric moves further from zero, which indicates

that both groups are predominantly forming internal connections,

leading to high segregation between groups.

In the cases of group size disparity, we observe distinct patterns

based on the homophily levels of the minority and majority groups.

When the minority group has neutral homophily, we observe that

fairness declines as the majority group becomes more homophilic,

with unfairness values becoming increasingly negative. On the

contrary, when the larger group has neutral homophily we find that

the unfairness metric remains closer to zero, and diversity remains

relatively high across most homophily levels of the minority group.

This pattern is also evident when Louvain is applied on the

real world networks The detected communities are evaluated on

the proposed metrics for diversity and unfairness, with the results

presented in Table 3. In particular, we find that networks with high

groups size disparities, such as Pokec-a and Facebook-c, exhibit

high levels of unfairness within the detected communities.

To investigate RQ2, we evaluate several fairness-aware versions

of the Louvain algorithm, incorporating the concepts of fairness-

gain, group-increase, and diversity-increase introduced in Section

3. The minority group-increase modifications proved consistently

to be the most effective in identifying fairer communities. We use

the prefix 𝐿 for methods that use the labeled group modularity. In

this study, we assume that the minority group is represented by the

red group, and for our experiments, we refer to the corresponding

methods as Red and L-Red. Rows 2 and 3 of Figures 1 and 2 show

the results of the Red and L-Red methods on the synthetic networks.
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Table 2: Network characteristics, 𝐾𝑋 : average degrees, Rh (Bh): red (blue) homompily.

Network #Nodes #Edges Attribute #Red nodes #Blue nodes 𝐾𝑅 𝐾𝐵 𝐾𝑅𝑅 𝐾𝐵𝐵 𝐾𝑅𝐵
Rh Bh 𝜙

Pokec-g 1,632,636 22,301,602 Gender 804,335 828,301 26.33 28.28 5.18 6.39 15.49 0.770 0.922 0.492

Pokec-a 1,632,636 22,301,602 Age 239,785 1,392,851 15.95 29.27 0.79 13.40 2.47 0.394 1.149 0.146

Deezer 28,281 92,752 Gender 12,538 15,743 6.34 6.73 1.41 1.96 2.79 0.972 1.07 0.443

Facebook-g 4,039 88,234 Gender 1,533 2,506 45.75 42.42 10.24 13.48 15.45 1.236 0.995 0.378

Facebook-c 4,039 88,234 Education 367 3,672 31.38 44.92 2.94 21.18 2.54 1.481 1.066 0.090

Twitch 168,114 6,797,557 Maturity 79,033 89,081 88.25 74.31 24.57 19.80 34.69 1.292 0.924 0.470

Table 3: Communities formed by the original Louvain.

Network Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g 41 0.716 -0.031 -0.031 0.180 0.192

Pokec-a 39 0.713 -0.589 -0.589 0.050 0.055

Deezer 89 0.683 -0.103 -0.101 0.141 0.160

Facebook-g 16 0.834 -0.167 -0.175 0.152 0.181

Facebook-c 16 0.834 -0.725 -0.722 0.038 0.042

Twitch 23 0.420 0.001 -0.004 0.043 0.090

Table 4: Communities formed by the fairness-aware Louvain using the red gain (Red method).

Network Method Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g Red 58,369 0.695 -0.019 -0.019 0.178 0.191

Pokec-a Red 179,082 0.616 -0.490 -0.490 0.052 0.056

Deezer Red 2,945 0.593 0 0 0.146 0.162

Facebook-g Red 204 0.818 -0.149 -0.157 0.154 0.181

Facebook-c Red 1,462 0.592 -0.480 -0.479 0.040 0.043

Twitch Red 5,396 0.394 0.005 0 0.042 0.087

Both methods achieve reduction in unfairness, but at the cost of

an increase in the number of communities. This pattern is also

observed in the real-world datasets (Tables 4 and 10), particularly

in networks with high group size imbalance, such as Pokec-a. A

similar trade-off is evident in Table 8 where the results of a Louvain

modification that aims at enhancing community diversity are pre-

sented. While the algorithm improves diversity in most networks,

such as Deezer (0.157) and Twitch (0.053), it also leads to a notable

increase in the number of communities. This further underscores

the challenge of balancing the goal of improving network fairness

and maintaining cohesive network structures. Additional results

with other methods are found in the Appendix.

For the final research question RQ3, we found that while all al-

gorithms successfully improve their respective fairness objectives,

they often lead to an increase in the number of communities (sec-

ond and third rows of Figures 2 and 1). Notably, we find that the

Red modification is more effective at decreasing unfairness and

ensuring equitable distribution of edges across groups, particularly

in high homophily networks with group size disparity. However

this improvement comes at the cost of an increase in the num-

ber of communites and a reduction in modularity. In contrast, the

L-Red modifications are more effective in preserving high mod-

ularity while limiting the number of communities, especially in

cases of group size disparity. However, it achieves a more moderate

improvement in fairness.

5 Related Work
Fairness in machine learning has received considerable attention

[11, 28, 30, 31]. At a high-level, fairness models are distinguished

based on whether fairness is addressed at the level of individuals or

at the level of groups of individuals [12, 33]. In this paper, we study

the specific problem of group fairness of communities in networks.

Community detection is similar to the more general problem of

clustering defined as the task of grouping a set of objects in clusters

such that the objects in the same cluster are more similar to each

other than to those in other clusters [21]. In the case of communities,

nodes are grouped so that nodes inside each community, i.e, cluster,

are more tightly connected with each other than with nodes outside

the community [14]. Next, we place our work in the context of

previous work on defining and ensuring fairness in community

detection and clustering.

As opposed to our approach that defines fairness based on node

connections, most group fairness definitions are based on balancing

the representation of each group within each cluster. The balanced

approach to fairness in clustering was introduced in the seminal

work of fairlets [9] to ensure that each protected group must have

approximately equal representation in each cluster. The approach

has been extended along various directions, such as to support scal-

ability and distributed processing [2, 5, 7], more than one protected

group [4] and parametric fair representation [3]. Another model of

fairness based on proportionality does not assume the existence of
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Table 5: Communities formed by the fairness-aware Louvain using the labeled red gain (L-Red method).

Network Method Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g L-Red 1,440 0.691 -0.024 -0.023 0.172 0.188

Pokec-a L-Red 7,645 0.658 -0.531 -0.531 0.057 0.058

Deezer L-Red 323 0.649 -0.061 -0.059 0.142 0.164

Facebook-g L-Red 17 0.830 -0.162 -0.169 0.152 0.182

Facebook-c L-Red 21 0.822 -0.711 -0.0707 0.039 0.043

Twitch L-Red 526 0.384 0.004 -0.015 0.022 0.084

Table 6: Communities formed by the fairness-aware Louvain to improve diversity (various methods used).

Network Method Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g Blue 41,273 0.705 -0.038 -0.038 0.181 0.194

Pokec-a Red 179,082 0.616 -0.490 -0.0490 0.052 0.057

Deezer Diversity 5,366 0.567 -0.063 -0.062 0.157 0.173

Facebook-g Red 204 0.818 -0.149 -0.157 -0.154 0.182

Facebook-c Red 1,462 0.592 -0.480 -0.479 0.041 0.043

Twitch Blue 1,299 0.401 -0.005 -0.007 0.053 0.088
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Figure 1: Symmetric Datasets

protected groups but seeks fair treatment for any subset of points

[8]. Specifically, when clustering 𝑛 points with 𝑘 centers, any 𝑛/𝑘
points are entitled to form their own cluster if there is another

center that is closer in distance for all 𝑛/𝑘 points. A related notion

but for individual fairness was studied in [25] based on a previous

formulation of the fair facility allocation problem.

A general definition of individual fairness in graph mining is that

similar nodes should receive similar output. Applying this definition

to graph clustering means that similar nodes should receive similar

cluster assignments [22]. Given a similarity matrix that encodes the

pair-wise similarity between nodes, this definition results in each

node having most of its neighbors in this graph in the same cluster.

The approach was extended in [35] for multiview graph clustering.
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Figure 2: Asymmetric Datasets

Yet another approach assumes the existence of a representation

graph between nodes and asks that the neighbors of each node are

proportionately represented in each cluster [17, 18].

In terms of fairness definition in clustering, another view is to

ask that the quality of clustering is the same for each group. This

approach is taken in the socially fair 𝑘-means clustering approach

that seeks to minimize the maximum of the average 𝑘-means ob-

jective applied to each group [15] and in equitable clustering that
seeks to minimize the distance of each point to its nearest center

[1]. In a sense, group modularity follows this view, since its goal

is maintaining good clustering quality in terms of intra-cluster

connectivity for each group.

In contrast to previous work, in this paper, we define community

fairness through group modularity. Modularity has been refined to

promote mixed links, i.e., links connecting nodes of different color

in link recommendations [27]. This refinement is similar to our

definition of diversity under the first null model. Red modularity

using the first null model was also introduced in the short paper [26].

The other definitions of group fairness as well as the fairness-aware

algorithms are novel in this paper.

Finally, in terms of algorithms for graph clustering, in this paper,

we propose a modularity-based algorithm. Most previous work on

addressing fairness considers algorithms based on spectral cluster-

ing. Most often fairness is achieved by adding fairness constraints

to spectral clustering. Work in [23] adds constraints to spectral

clustering for balancing nodes and is extended in [34] for scala-

bility. Work in [22, 35] imposes individual fairness using spectral

clustering of the adjacency matrix combined with the similarity

matrix. Spectral-based approaches are also followed in [16–18].

6 Conclusions
In many real-world networks, communities are formed, where

nodes in each community are more tightly connected with the

nodes inside their community than with the nodes outside their

community. In this paper, we studied the fairness of such commu-

nities. Specifically, given that the nodes in a network belong to

different groups, we examine whether the nodes of each group

are equally well connected within the communities. To capture

the fairness of communities, we proposed group modularity, an

adaptation of the well known network modularity. We also used

modularity to study the diversity of communities, i.e., the percent-

age of inter-group edges within each community. We proposed a

fairness-aware Louvain-based algorithm that detects communities

with good modularity, and fairness, or diversity. Our experimental

evaluation showed the effects of homophily and size discrepancy

in the fairness and diversity of the formed communities.

Our modularity-based metrics of fairness and diversity are or-

thogonal to the community detection algorithms used and as future

work, we plan to investigate alternative approaches to community

detection. Another direction for future work is understanding the

evolution of community fairness and diversity through time and

investigating approaches for improving the fairness and diversity

of communities, for example, through appropriate link recommen-

dations.
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A Appendix
A.1 Fairness-Aware Modularity detection

Proof of Lemma 3.1.

Proof. Let 𝐶𝑢 be the single node community the red node 𝑢

belongs to before 𝑢 is moved to 𝐶𝑖 . Moving 𝑢 only affects the mod-

ularity and diversity of 𝐶𝑢 and 𝐶𝑖 .

Before moving 𝑢, it holds:

𝑄𝑅 (𝐶𝑢 ) = − 1

2𝑚

(
𝑘2

𝑢

2𝑚

)
Before moving 𝑢:

𝑄𝑅 (𝐶𝑖 ) =
1

2𝑚

(
2𝐼𝑛𝑅𝑅𝑖 + 𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑖𝐾
𝑅
𝑖

2𝑚

)
After moving 𝑢:

𝑄𝑅 (𝐶𝑖 ) =
1

2𝑚
(2
𝐼𝑛𝑅𝑅

𝑖
+ 2

∑
𝑣∈𝐶𝑖 ,𝑣∈𝑅 𝑤 (𝑢, 𝑣) + 𝐼𝑛𝑅𝐵

𝑖
+ ∑

𝑣∈𝐶𝑖 ,𝑣∈𝐵 𝑤 (𝑢, 𝑣)
𝑚

−
(𝐾𝑖 + 𝑘𝑢 ) (𝐾𝑅

𝑖
+ 𝑘𝑢 )

2𝑚
)

Subtracting the before from the after values, we get Δ𝑄𝑅
𝑢→𝐶𝑖

.

For the blue modularity of𝐶𝑢 , before moving𝑢, we have𝑄𝐵 (𝐶𝑢 )
is 0.

Before moving 𝑢:

𝑄𝐵 (𝐶𝑖 ) =
1

2𝑚

(
2𝐼𝑛𝐵𝐵𝑖 + 𝐼𝑛𝐵𝑅𝑖 −

𝐾𝑖𝐾
𝐵
𝑖

2𝑚

)
After moving 𝑢:

𝑄𝐵 (𝐶𝑖 ) =
1

2𝑚

©«2𝐼𝑛𝐵𝐵𝑖 + 𝐼𝑛𝐵𝑅𝑖 +
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

(𝐾𝑖 + 𝑘𝑢 )𝐾𝐵
𝑖

2𝑚

ª®¬
Subtracting the before from the after values, we get Δ𝑄𝐵

𝑢→𝐶𝑖
.

The diversity of 𝐶𝑢 before moving 𝑢 is 0.

Before moving 𝑢:

𝐷𝑅𝐵 (𝐶𝑖 ) =
1

2𝑚

(
𝐼𝑛𝑅𝐵𝑖 −

𝐾𝑅
𝑖
𝐾𝐵
𝑖

𝑚

)
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After moving 𝑢:

𝐷𝑅𝐵 (𝐶𝑖 ) =
1

2𝑚

©«𝐼𝑛𝑅𝐵𝑖 +
∑︁

𝑣∈𝐶𝑖 ,𝑣∈𝐵
𝑤 (𝑢, 𝑣) −

(𝐾𝑅
𝑖
+ 𝑘𝑢 )𝐾𝐵

𝑖

𝑚

ª®¬
Subtracting the before from the after values, we get Δ𝐷𝑅𝐵

𝑢→𝐶𝑖
. □

Merging Communities. With similar manipulations, we get the

red gain Δ𝑄𝑅
𝐶𝑖→𝐶𝑖

. of merging two communities, community 𝐶𝑖

and community 𝐶 𝑗 .

Let𝑊𝑋𝑌 be the number of edges between nodes of color 𝑋 in

community 𝐶𝑖 and nodes of color 𝑌 in community 𝐶 𝑗 . Let 𝐾𝑖 be

the sum of degrees of all nodes in community𝐶𝑖 , 𝐾
𝑋
𝑖

be the sum of

the degrees of all node of color 𝑋 in community𝐶𝑖 and 𝐾
𝑋𝑌
𝑖

be the

sum of the 𝑌 -colored degrees of the 𝑋 -colored nodes in community

𝐶𝑖 .

Δ𝑄𝑅
𝐶𝑖→𝐶 𝑗

=
1

2𝑚

(
2𝑊𝑅𝑅 +𝑊𝑅𝐵 −

𝐾𝑖𝐾
𝑅
𝑗
+ 𝐾𝑗𝐾

𝑅
𝑖

2𝑚

)
Proof of Lemma 3.2.

Proof. Again, let 𝐶𝑢 be the single node community of the red

node. Moving 𝑢 only affects the modularity and diversity of𝐶𝑢 and

𝐶𝑖 .

Before moving 𝑢, it holds:

𝑄𝑅
𝐿 (𝐶𝑢 ) = − 1

2𝑚

( (𝑘𝑅𝑢 )2

2𝑚𝑅𝑅

)
Before moving 𝑢, it holds:

𝑄𝑅
𝐿 (𝐶𝑖 ) =

1
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𝑖
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−
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𝑖
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)
After moving 𝑢, it holds:

𝑄𝑅
𝐿 (𝐶𝑖 ) =

1

2𝑚
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Subtracting the before from the after values, we get Δ𝑄𝑅
𝐿,𝑢→𝐶𝑖

.

The blue modularity 𝑄𝐵
𝐿
(𝐶𝑢 ) of 𝐶𝑢 , before moving 𝑢 is 0.

Before moving 𝑢, it holds:

𝑄𝑅
𝐿 (𝐶𝑖 ) =

1

2𝑚

(
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After moving 𝑢, it holds:

𝑄𝑅
𝐿 (𝐶𝑖 ) =

1

2𝑚
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Subtracting the before from the after values, we get Δ𝑄𝐵
𝐿,𝑢→𝐶𝑖

.

The diversity of 𝐶𝑢 before moving 𝑢 is 0.

Before moving 𝑢:

𝐷𝑅𝐵
𝐿 (𝐶𝑖 ) =
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After moving 𝑢:

𝐷𝑅𝐵
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Subtracting the before from the after values, we get Δ𝐷𝑅𝐵

𝐿,𝑢→𝐶𝑖
.

□

Merging Communities (labeled modularity). With similar manip-

ulations, we get the labeled red gain, Δ𝑄𝑅
𝐿,𝐶𝑖→𝐶𝑖

. of merging two

communities, community 𝐶𝑖 and community 𝐶 𝑗 .

Δ𝑄𝑅
𝐿,𝐶𝑖→𝐶 𝑗

=
1
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(
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𝑖
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𝑗

𝑚𝑅𝐵
−
𝐾𝑅𝑅
𝑖
𝐾𝑅𝑅
𝑗
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)
A.2 Additional Experiments
This section presents the experimental evaluation of various fairness-

aware modifications of the Louvain algorithm on both synthetic

and real-world networks. The objective of these experiments is to

assess the effectiveness of these modified algorithms in improv-

ing fairness and diversity within the detected communities, while

preserving the overall quality of the community structure.

In Tables 7-12, we present results on the real datasets using

additional fairness-aware Louvain algorithms.

In Figures 3 and 4 , we present results on synthetic datasets using

the diversity gain and labeled diversity gain methods.
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Table 7: Communities formed by the fairness-aware Louvain using the red gain (Red method).

Network Method Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g Red 58,369 0.695 -0.019 -0.019 0.178 0.191

Pokec-a Red 179,082 0.616 -0.490 -0.490 0.052 0.056

Deezer Red 2,945 0.593 0 0 0.146 0.162

Facebook-g Red 204 0.818 -0.149 -0.157 0.154 0.181

Facebook-c Red 1,462 0.592 -0.480 -0.479 0.040 0.043

Twitch Red 5,396 0.394 0.005 0 0.042 0.087

Table 8: Communities formed by the fairness-aware Louvain using the diversity gain (Diversity method).

Network Method Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g Diversity 110,564 0.678 -0.025 -0.024 0.178 0.191

Pokec-a Diversity 309,777 0.580 -0.454 -0.455 0.063 0.062

Deezer Diversity 5,366 0.567 -0.063 -0.062 0.157 0.173

Facebook-g Diversity 159 0.821 -0.154 -0.163 0.153 0.181

Facebook-c Diversity 229 0.728 -0.617 -0.615 0.040 0.43

Twitch Diversity 7,011 0.367 0.004 0 0.052 0.093

Table 9: Communities formed by the fairness-aware Louvain using the fairness-gain gain (Fairness method).

Network Method Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g Fairness 42 0.713 -0.031 -0.031 0.179 0.179

Pokec-a Fairness 36 0.709 -0.586 -0.586 0.049 0.055

Deezer Fairness 68 0.681 -0.102 -0.101 0.140 0.140

Facebook-g Fairness 17 0.823 -0.166 -0.171 0.146 0.179

Facebook-c Fairness 12 0.794 -0.688 -0.684 0.034 0.041

Twitch Fairness 26 0.422 0.002 0.001 0.039 0.091

Table 10: Communities formed by the fairness-aware Louvain using the labeled red gain (L-Red method).

Network Method Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g L-Red 1,440 0.691 -0.024 -0.023 0.172 0.188

Pokec-a L-Red 7,645 0.658 -0.531 -0.531 0.057 0.058

Deezer L-Red 323 0.649 -0.061 -0.059 0.142 0.164

Facebook-g L-Red 17 0.830 -0.162 -0.169 0.152 0.182

Facebook-c L-Red 21 0.822 -0.711 -0.0707 0.039 0.043

Twitch L-Red 526 0.384 0.004 -0.015 0.022 0.084

Table 11: Communities formed by the fairness-aware Louvain using the labeled diversity gain (L-Diversity method).

Network Method Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g L-Diversity 140,789 0.632 -0.022 -0.021 0.162 0.181

Pokec-a L-Diversity 461,703 0.535 -0.414 -0.415 0.047 0.055

Deezer L-Diversity 6,079 0.542 -0.058 -0.059 0.137 0.165

Facebook-g L-Diversity 213 0.773 -0.146 -0.151 0.128 0.171

Facebook-c L-Diversity 1,478 0.575 -0.469 -0.471 0.034 0.040

Twitch L-Diversity 7,070 0.381 0 -0.005 0.015 0.085
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Table 12: Communities formed by the fairness-aware Louvain using the labeled fairness-gain (L-Fairness).

Network Method Communities Modularity Unfairness L-Unfairness Diversity L-Diversity

Pokec-g L-Fairness 34 0.713 -0.031 -0.032 0.179 0.191

Pokec-a L-Fairness 36 0.714 -0.591 -0.591 0.051 0.055

Deezer L-Fairness 98 0.687 -0.104 -0.102 0.140 0.162

Facebook-g L-Fairness 15 0.834 -0.167 -0.175 0.152 0.181

Facebook-c L-Fairness 16 0.834 -0.725 -0.722 0.038 0.042

Twitch L-Fairness 22 0.423 0.001 -0.001 0.042 0.091
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Figure 3: Symmetric Datasets
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Figure 4: Asymmetric Datasets
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