
A Multilingual Perspective Towards the Evaluation of Attribution Methods
in Natural Language Inference

Anonymous ACL submission

Abstract

Most evaluations of attribution methods focus001
on the English language. In this work, we002
present a multilingual approach for evaluating003
attribution methods for the Natural Language004
Inference (NLI) task in terms of plausibility005
and faithfulness properties. First, we introduce006
a novel cross-lingual strategy to measure faith-007
fulness based on word alignments, which elim-008
inates the potential downsides of erasure-based009
evaluations. We then perform a comprehen-010
sive evaluation of attribution methods, consid-011
ering different output mechanisms and aggre-012
gation methods. Finally, we augment the XNLI013
dataset with highlight-based explanations, pro-014
viding a multilingual NLI dataset with high-015
lights, which may support future exNLP stud-016
ies. Our results show that attribution methods017
performing best for plausibility and faithfulness018
are different.1019

1 Introduction020

The opaqueness of large pre-trained models such as021

BERT (Devlin et al., 2019) and GPT (Radford and022

Narasimhan, 2018) motivates the development of023

explanation methods (Wallace et al., 2020), which024

aim to attribute importance to particular input fea-025

tures (Ribeiro et al., 2016; Sundararajan et al.,026

2017; Springenberg et al., 2015; Bach et al., 2015),027

such as words in a textual input. Two main criteria028

for evaluating such methods are plausibility and029

faithfulness (Jacovi and Goldberg, 2020). Plausi-030

bility can be defined as the consistency between031

explanations and human expectations, while faith-032

fulness can be defined as the consistency between033

explanations and the underlying decision-making034

process of the model.035

Prior evaluations of attributions along these di-036

mensions (Atanasova et al., 2020; DeYoung et al.,037

2020; Ding and Koehn, 2021) suffer from several038

limitations. First, they have been limited in (a)039

1Our code is available in <HTTP://ANONYMIZED.

the range of considered attribution methods; and 040

(b) the mechanism of calculating the attributions. 041

Second, standard faithfulness evaluations such as 042

erasure-based (DeYoung et al., 2020) suffer from 043

the problem of out-of-distribution examples, where 044

examples presented to the model during attribution 045

are significantly different from those the model 046

has been trained on (Bastings and Filippova, 2020). 047

Third, prior plausibility evaluations are limited to 048

English-only datasets since there is a lack of multi- 049

lingual datasets with highlighted rationales. 050

In this work, we aim to fill this gap. Our main 051

contribution is a new framework for evaluating the 052

faithfulness of attribution methods. Inspired by 053

Jacovi and Goldberg (2020)’s criterion for faith- 054

ful explanations as giving similar explanations for 055

similar inputs, we propose to use cross-lingual sen- 056

tences (translations) as similar inputs. Given a mul- 057

tilingual model, we argue that faithful attributions 058

should point to words that are aligned in two trans- 059

lations of the same sentence. This approach avoids 060

out-of-distribution inputs by utilizing cross-lingual 061

sentences as naturally ocurring input perturbations. 062

We also eliminate the need for carefully crafted and 063

relatively small datasets since our method requires 064

only a multilingual parallel corpus. 065

We focus on Natural Language Inference (NLI) 066

as a case study, since it is a central task that has 067

been widely used as a test bed for attribution meth- 068

ods (Atanasova et al., 2020; DeYoung et al., 2020; 069

Jain and Wallace, 2019; Kim et al., 2020; Wiegreffe 070

and Marasović, 2021; Prasad et al., 2021). We com- 071

pare eight attribution methods, including different 072

mechanisms of computation varying the output and 073

the aggregation of input feature importance scores. 074

First, we experiment with the cross-lingual 075

XNLI dataset (Conneau et al., 2018) and multi- 076

lingual BERT (Devlin et al., 2019), and discover 077

large differences in the faithfulness of different at- 078

tribution methods. 079

Second, we find that certain attributions are more 080
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plausible and that the choice of computation mech-081

anism has a large effect in some cases. As far as082

we know, this is the first comprehensive study in-083

vestigating the effect of different types of outputs084

when evaluating attributions.085

Informed by our comprehensive evaluation, we086

augment the multilingual XNLI dataset (Conneau087

et al., 2018) with highlight-based explanations by088

extracting highlights for the English part of XNLI089

and projecting along word alignments to other lan-090

guages. We perform a plausibility evaluation with091

the resulting dataset, which we dub e-XNLI, and092

perform a human evaluation for a subset of the093

dataset to validate its adequacy.094

Finally, when comparing the ranking of attribu-095

tion methods by plausibility and faithfulness, we096

find that no single method performs best. Differ-097

ent methods have different pros and cons, and may098

therefore be useful in different scenarios. In sum-099

mary, this work provides:100

• A novel faithfulness evaluation framework.101

• A comprehensive evaluation of attribution102

methods, which may guide practitioners when103

applying such methods.104

• A dataset containing explanations in multiple105

languages for the NLI task, which may sup-106

port future multilingual exNLP studies.107

2 Background108

2.1 Properties for Evaluating Attributions109

Many properties have been defined to evaluate ex-110

planations with respect to different aspects. Plausi-111

bility and faithfulness (Jacovi and Goldberg, 2020),112

sufficiency (DeYoung et al., 2020), stability and113

consistency (Robnik-Sikonja and Bohanec, 2018),114

and confidence indication (Atanasova et al., 2020)115

are examples of such properties. As two prominent116

ones, we focus on faithfulness and plausibility.117

2.1.1 Faithfulness118

Faithfulness is the measure of how much an inter-119

pretation overlaps with the reasoning process of120

the model. In other words, if the scores given by121

an attribution method are compatible with the deci-122

sion process behind the model, that interpretation123

is considered faithful. Such compatability may be124

instantiated in different ways. For example, Ding125

and Koehn (2021) measure faithfulness through126

model consistency and input consistency. They127

measure model consistency by comparing attribu-128

tion scores of two different models, where one of129

them is the distilled version of the other. For input 130

consistency, they compare the attribution scores of 131

perturbed input pairs. Perturbing inputs or erasing 132

some parts from input is a widely-used technique 133

for faithfulness evaluation (Arras et al., 2017; Ser- 134

rano and Smith, 2019; DeYoung et al., 2020; Ding 135

and Koehn, 2021; Atanasova et al., 2020). The 136

basic idea behind these methods is to observe the 137

effect of changing or removing parts of inputs on 138

model output. For instance, if removing words with 139

high attribution scores changes the model output, 140

then the explanation is faithful. For these methods, 141

the change in prediction score is usually assumed 142

to be caused by deletion of the significant parts 143

from the input. However, the main reason might be 144

the out-of-distribution (OOD) inputs created by the 145

perturbations (Bastings and Filippova, 2020). The 146

dependence on perturbations that result in OOD in- 147

puts is the main drawback of common faithfulness 148

evaluation methods. In Section 3.1.1 we propose a 149

new evaluation that overcomes this drawback. 150

2.1.2 Plausibility 151

Plausibility is a measure of how much an ex- 152

planation overlaps with human reasoning (Ding 153

and Koehn, 2021). In particular, if an attribution 154

method tends to give higher scores to the part of 155

the inputs that affect the decision according to 156

humans, then it is plausible. In general, human- 157

annotated highlights (parts of the input) are used for 158

plausibility evaluation (Wiegreffe and Marasović, 159

2021), which we also follow in this work. However, 160

some recent studies use lexical agreement (Ding 161

and Koehn, 2021), human fixation patterns based 162

on eye-tracking measurements (Hollenstein and 163

Beinborn, 2021), and machine translation quality 164

estimation (Fomicheva et al., 2021). 165

2.2 Overview of Attribution Methods 166

In this work, we focus on the evaluation of local 167

post-hoc methods, which provide explanations to 168

the output of a model for a particular input by apply- 169

ing additional operations to the model’s prediction 170

(Danilevsky et al., 2020). Local post-hoc meth- 171

ods can be grouped into three categories: methods 172

based on gradients, perturbations, or simplification 173

(Atanasova et al., 2020). In gradient-based meth- 174

ods, the gradient of the model’s output with respect 175

to the input is used in various ways for calculating 176

attribution scores on the input. Perturbation-based 177

methods calculate attribution scores according to 178

the change in the model’s output after perturbing 179
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the input in different ways. Simplication-based180

methods simplify the model to assign attributions.181

For instance, LIME (Ribeiro et al., 2016) trains a182

simpler surrogate model covering the local neigh-183

borhood of the given input.184

The attribution methods we evaluate are as185

follows: InputXGradient (Shrikumar et al., 2017),186

Saliency (Simonyan et al., 2014), GuidedBackprop187

(Springenberg et al., 2015), and IntegratedGradi-188

ents (Sundararajan et al., 2017) as gradient-based189

methods; Occlusion (Zeiler and Fergus, 2014) and190

Shapley Value Sampling (Ribeiro et al., 2016) as191

perturbation-based; LIME (Ribeiro et al., 2016)192

as simplification-based; and Layer Activation193

(Karpathy et al., 2015). We provide details about194

these methods in Appendix B.195

2.3 Output Mechanisms and Aggregation196

Methods197

Most previous studies compute attributions when198

the output is the top predicted class. We also com-199

pare with the case when the output is the loss value200

calculated with respect to the gold label. More for-201

mally, let f(x(i)) denote the output of a classifica-202

tion layer, where x(i) is i-th instance of the dataset.203

Then, for the common cross-entropy loss, the loss204

output can be expressed as y(i)log(f(x(i))) and the205

top predicted class can be expressed max f(x(i)).206

Furthermore, some attribution methods, such as207

InputxGradient and Saliency, return importance208

scores for each dimension of each input word em-209

bedding, which need to be aggregated to obtain a210

single score for each word. While prior studies use211

different aggregation operations, namely mean and212

L2, we examine their effect exhaustively.213

Denote the importance score for the k-th dimen-214

sion of the j-th word embedding of x(i) as u
(i)
jk .215

Then we obtain an attribution score per word, ω(i)
xj

,216

using mean aggregation as follows:217

ω
(i)
xj

=
1

N

d∑
k=0

u
(i)
jk (1)218

where N is the number of words in the given se-219

quence and d is the number of dimensions for the220

embedding. Similarly, we define the attribution221

score per word using L2 aggregation as follows:222

ω
(i)
xj

=

√√√√ d∑
k=0

(u
(i)
jk )

2 (2)223

3 Methods 224

3.1 Faithfulness Evaluation 225

3.1.1 Crosslingual Faithfulness Evaluation 226

For faithfulness evaluation, erasure-based methods 227

examine the drop in prediction scores by removing 228

the important tokens from the input (Section 2.1.1). 229

On the other hand, the drop in the prediction scores 230

may be the result of the altered, out-of-distribution 231

inputs (Bastings and Filippova, 2020). To over- 232

come this problem, we design a new strategy to 233

evaluate faithfulness by relying on cross-lingual 234

models and datasets. Before diving into details, it 235

is useful to remind Corrolary 2 from Jacovi and 236

Goldberg (2020). 237

Corrolary 2 An interpretation system is unfaithful 238

if it provides different interpretations for similar 239

inputs and outputs. 240

The main intuition behind our method is to use 241

translation pairs to provide similar inputs to a sin- 242

gle model. In particular, we assume a multilin- 243

gual model that can accept inputs from different 244

languages, such as multilingual BERT (mBERT; 245

Devlin et al. 2019). Then, we can look at the attri- 246

bution scores of matching parts (words or phrases) 247

of the similar inputs. 248

This idea consists of several steps. First, we 249

construct translation pairs of which source and 250

target are English and another language, respec- 251

tively. Second, we calculate attribution scores for 252

instances in English and other languages. Third, 253

the attribution scores are aligned between source 254

and target through word alignments. Finally, attri- 255

bution scores calculated for English instances are 256

compared with the ones for corresponding words in 257

other languages by calculating the average Spear- 258

man correlation between aligned attribution scores. 259

By looking at the correlation between correspond- 260

ing parts of the inputs, we measure how consistent 261

the model is for similar inputs. Figure 1 illustrates 262

the cross-lingual faithfulness evaluation procedure. 263

More formally, let x(i)
c = ⟨x(i)c,1, x

(i)
c,2, . . . , x

(i)
c,n⟩ 264

denote the i-th instance of the dataset for language 265

c (out of C languages), where x
(i)
c,j stands for j- 266

th word of the instance. Let A = {(x(i)en,k, x
(i)
c,j) : 267

x
(i)
en,k ∈ x

(i)
en, x

(i)
c,j ∈ x

(i)
c } be set of words from 268

x
(i)
c that are aligned with words in the correspond- 269

ing English sentence, x(i)
en .2 Denote by ω

(i)
xc,j the 270

2We choose English as the reference language since our
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Figure 1: Illustration of cross-lingual faithfulness evaluation. (a) For any en–XX sentence pair (in this example,
English–Turkish), we pass each item of the pair through the cross-lingual model and attribution method, to get
attribution scores. (b) We extract word alignments by using awesome-align and (c) align scores for the words in
Turkish with the ones in the English language by summing the scores of corresponding Turkish words for each
English word. (d) Finally, we get two different distributions for the English sentence: the calculated attribution
scores and the aligned attribution scores. We compare them to evaluate faithfulness.

attribution score for word x
(i)
c,j and let ω

(i)
xc =271

⟨ω(i)
xc,1 , ω

(i)
xc,2 , . . . , ω

(i)
xc,n⟩. In order to align attribu-272

tion scores for instances from another languages273

with the English ones, we define the aligned attribu-274

tion score for each word in the reference language275

as the sum of the attribution scores of the corre-276

sponding words in the target language:277

ω(i)
xc,k

=
∑

(x
(i)
en,k

,x
(i)
c,j)∈A

ω(i)
xc,j

(3)278

By aligning scores, we obtain equivalent attribu-279

tion scores in the target language for each word in280

the source language. Finally, we define the cross-281

lingual faithfulness (ρ) of a dataset as the average282

Spearman correlation between attribution scores283

for English and aligned attribution scores for all284

other languages:285

ρ =
1

C − 1

1

M

∑
c ̸=en

M∑
i=0

ρ
ω
(i)
xen ,ω

(i)
xc

(4)286

The main advantage of this approach is in287

avoiding the OOD problem: Translation pairs form288

naturally occurring perturbations that are part of the289

model’s training distribution, unlike the synthetic290

inputs formed by erasure-based methods. We also291

reduce the language-specific bias by using trans-292

lations of the same sentence in different languages.293

cross-lingual model performs best on it and since the word
aligner we use was originally fine-tuned and evaluated on
en–XX language pairs.

3.1.2 Erasure-based Faithfulness Evaluation 294

To compare our method with erasure-based faithful- 295

ness evaluation methods, we report sufficiency and 296

comprehensiveness (DeYoung et al., 2020), which 297

are common metrics for erasure-based faithfulness 298

evaluation, for each attribution method. We stick to 299

their definitions and choices along the experiments. 300

Let m(x(i))j be the model output of the j-th 301

class for the i-th data point and r(i) be the most 302

important tokens to be erased, decided according 303

to attribution scores. Comprehensiveness measures 304

the drop in prediction probability after removing 305

the important tokens (higher values are better): 306

comprehensiveness = m(x(i))j −m(x(i)\r(i))j
(5) 307

Sufficiency measures the drop when only the im- 308

portant tokens are kept (lower values are better): 309

sufficiency = m(x(i))j −m(r(i))j (6) 310

r(i) is the top-kd words according to their attri- 311

bution scores, where kd depends on the dataset. 312

However, choosing an appropriate k can be tricky, 313

especially when human rationales are not available 314

to decide an average length. Also, the variable 315

kd makes scores incomparable across datasets. To 316

solve these issues, they propose Area Over Pertur- 317

bation Curve (AOPC) metrics for sufficiency and 318

comprehensiveness, where they define bins of to- 319

kens to be deleted. They calculate comprehensive- 320

ness and sufficiency when top tokens contained by 321
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each bin are deleted, then they obtain AOPC mea-322

sures by averaging the scores for each bin. Here we323

group the top 1%, 5%, 10%, 20%, 50% tokens into324

bins in the order of decreasing attribution scores.325

3.2 Plausibility Evaluation326

To evaluate the plausibility of attribution methods,327

we measure agreement with human rationales, fol-328

lowing Atanasova et al. (2020). This evaluation329

measures how much the attribution scores overlap330

with human annotations by calculating Mean Aver-331

age Precision (MAP) across a dataset. For each332

instance in the dataset, Average Precision (AP)333

is calculated by comparing attribution scores ω(i)334

with gold rationales, w(i), where ω(i) stands for the335

attribution scores calculated for the dataset instance336

x(i) and w(i) stands for the sequence of binary la-337

bels indicating whether the token is annotated as338

the rationale. For a dataset X = {x(i)|i ∈ [1,M ]},339

the MAP score is defined as:340

MAP(ω,X) =
1

M

∑
i∈[1,M ]

AP (w(i),ω(i)) (7)341

4 Experiments342

4.1 Faithfulness Experiments343

Experimental setup We use the XNLI dataset344

(Conneau et al., 2018) to construct translation pairs345

where source and target are English and other lan-346

guages, respectively. We use awesome-align (Dou347

and Neubig, 2021) to align attribution scores for348

the corresponding words in translation pairs.3 As349

a cross-lingual model, we fine-tune mBERT on350

the multiNLI dataset (Williams et al., 2018). For351

cross-lingual faithfulness evaluation, we only use352

the top-5 languages from XNLI where our fine-353

tuned mBERT performs best in zero-shot predic-354

tion. The cross-lingual performance of our model355

on all XNLI languages appears in Appendix A.356

4.1.1 Cross-lingual Faithfulness Experiments357

Table 1 shows cross-lingual faithfulness results for358

each attribution method, when computing attribu-359

tions with regard to top prediction or loss, and360

when aggregating input scores with L2 or mean361

aggregation. The results exhibit a large variation,362

indicating that our cross-lingual faithfulness evalu-363

ation is able to expose differences between attribu-364

tion methods. Activation with mean aggregation is365

the most faithful attribution method for both types366

of attribution calculation. We also observe that367

3We use the model provided by the authors, which was
multilingually fine-tuned without consistency optimization,
due to its good zero-shot performance.

Method
ρ

TP Loss

InputxGradient (µ) .0547 .0746
InputxGradient (L2) .6836 .6851
Saliency (µ) .6124 .6145
Saliency (L2) .6129 .615
GuidedBackProp (µ) .0034 .0015
GuidedBackProp (L2) .6129 .615
IntegratedGrads (µ) .1703 .2546
IntegratedGrads (L2) .5884 .5226
Activation (µ) .6882 .6882
Activation (L2) .6878 .6878
LIME .0733 .0943
Occlusion .1514 .306
Shapley .3418 .4454

Table 1: Cross-lingual faithfulness results: Average
correlations measured for different attribution methods
on the XNLI dataset. Attribution calculations are per-
formed with respect to the top prediction (TP) class and
the loss. Activation with mean aggregation (µ) is the
best performing method in both cases.

Figure 2: Comparison of cross-lingual faithfulness
along output and aggregation dimensions. L2 mostly
outperforms mean (µ) aggregation and calculations with
respect to the loss are the same or slightly better than
ones with respect to the top predicted class.

gradient-based attribution methods (first 8 rows in 368

Table 1) usually generate more faithful explana- 369

tions than perturbation-based ones (last two rows), 370

in line with prior work (Atanasova et al., 2020). 371

Figure 2 shows the effect of the aggregation 372

methods and output mechanisms on cross-lingual 373

faithfulness. For all cases, L2 aggregation outper- 374

forms the mean aggregation by large margins ex- 375

cept Saliency and Activation. While the score for 376

mean aggregation is very close to L2 aggregation 377

for Saliency, it is slightly better than L2 aggrega- 378

tion for Activation. Since Saliency returns the abso- 379

lute value, it does not contradict the general trend 380

for the effect of L2 aggregation on gradient-based 381
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attribution methods as in plausibility evaluation.382

Considering output mechanisms, calculating attri-383

bution scores with respect to loss is the same or384

slightly better than the ones with respect to the top385

predicted class in almost all cases. For Integrated386

Gradients with L2 aggregation and GuidedBack-387

prop with mean aggregation, calculating attribution388

scores with respect to the loss performs better.389

Recall that our cross-lingual faithfulness mea-390

sure averages correlations across languages (Eq. 4).391

To analyze the effect of languages, Table 2 shows392

correlations per language when averaged across all393

combinations of methods, outputs and aggregations.394

The results show little variation across languages,395

although languages with better NLI performance396

tend to yield more faithful explanations. Detailed397

results per language and attribution method are398

available in Appendix C.399

de es fr vi zh

ρ .43 .46 .45 .40 .37
F1 .72 .74 .74 .70 .70

Table 2: Cross-lingual faithfulness results (ρ) per lan-
guage averaged across all attribution methods on the
XNLI dataset, and NLI F1 scores for comparison.

4.1.2 Erasure-based Faithfulness Experiments400

Table 3 shows the results of erasure-based faith-401

fulness evaluation (comprehensiveness and suffi-402

ciency), for each attribution method. According403

to the results, InputxGradient with L2 aggregation404

is the most faithful attribution method in terms405

of comprehensiveness when the output is the top406

prediction class; Saliency and GuidedBackpropa-407

gation methods with L2 aggregation are the most408

faitful ones in terms of comprehensiveness when409

the output is the loss. For sufficiency, Activation410

seems to be the most faithful method for both cases.411

Interestingly, most of the results are quite similar412

and differences between methods are not as large413

as in the cross-lingual faithfulness evaluation.414

Figure 3 shows the effect of aggregation method415

and output mechanism on comprehensiveness. For416

all attribution methods, L2 outperforms mean ag-417

gregation except for Saliency with top prediction418

class as output. In almost all cases, calculating at-419

tribution scores with respect to loss is as good as420

or slightly better than calculating with respect to421

the top predicted class. For InputxGradient with422

L2 aggregation and Guided Backprop with mean423

aggregation, calculating attributions with respect424

Method
comp. ↑ suff. ↓
TP Loss TP Loss

InputxGradient (µ) .2849 .2964 .2666 .2423
InputxGradient (L2) .3222 .3148 .2358 .2613
Saliency (µ) .3139 .3184 .2259 .2319
Saliency (L2) .3098 .3206 .2383 .2377
GuidedBackprop (µ) .2737 .2052 .2817 .2862
GuidedBackprop (L2) .3098 .3206 .2383 .2377
IntegratedGrads (µ) .2128 .2586 .2881 .2134
IntegratedGrads (L2) .3021 .291 .2907 .2872
Activation (µ) .2402 .2402 .179 .179
Activation (L2) .3065 .3065 .333 .333
LIME .2449 .2493 .241 .2261
Occlusion .2986 .307 .2891 .2382
Shapley .3045 .3129 .2756 .2219

Table 3: Erasure-based faithfulness results: Average
AOPC comprehensiveness and sufficiency scores for dif-
ferent attribution methods on the English split of XNLI.
Attribution calculations are performed with respect to
the top predicted class (TP) and the loss. For comprehen-
siveness, InputxGradient with L2 aggregation performs
best when attributions are calculated with respect to top
prediction, while Saliency and Guided Backpropaga-
tion with L2 aggregation perform best when calculating
with respect to the loss. For sufficiency, Activation with
mean aggregation performs best in both cases.

Figure 3: Comparison of comprehensiveness results
along output and aggregation dimensions. L2 outper-
forms mean aggregation and calculations with respect
to the loss slightly outperform calculations with respect
to the top prediction class for most attribution methods.

to the loss performs better. 425

Figure 4 shows the effect of the aggregation 426

method and output mechanism on sufficiency. Un- 427

like comprehensiveness, mean aggregation outper- 428

forms L2 aggregation for most attribution methods 429

except for InputXGradient with top prediction as 430

output and both GuidedBackprop methods. Calcu- 431

lating attribution scores with respect to loss is the 432

same or slightly better than the ones with respect 433

to the top predicted class except GuidedBackprop 434

with mean aggregation, InputxGradient with L2 435

aggregation and Saliency with mean aggregation. 436
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Figure 4: Comparison of sufficiency results along output
and aggregation dimensions. Mean (µ) outperforms L2

aggregation and calculations with respect to loss slightly
outperform or are the same as those calculated with
respect to top prediction for most attribution methods.

4.1.3 Cross-lingual vs. Erasure-based437

Faithfulness438

The results of cross-lingual faithfulness and439

erasure-based metrics (comprehensiveness and suf-440

ficiency) differ in two main aspects:441

• Perturbation-based methods exhibit more faithful442

explanations when evaluated by erasure-based443

metrics than when evaluated by cross-lingual444

faithfulness. We interpret this pattern as a result445

of the OOD issue caused by erasure-based eval-446

uation, which unjustifiably favors perturbation-447

based attributions. The relative improvement448

for perturbation-based methods can be attributed449

to noise due to the OOD perturbations used for450

calculating comprehensiveness and sufficiency.451

• Erasure-based faithfulness metrics are unable to452

properly distinguish between different attribution453

methods, since the differences are dwarfed by the454

noise introduced by the OOD perturbations. The455

standard deviation of faithfulness scores across456

all attribution methods is 0.26 for cross-lingual457

faithfulness, but only 0.03 and 0.04 for compre-458

hensiveness and sufficiency, respectively.459

4.2 Plausibility Experiments460

Experimental Setup We use the e-SNLI dataset461

(Camburu et al., 2018) to obtain human annotations.462

As the classifier, we use a BERT-base model fine-463

tuned on the SNLI dataset (Bowman et al., 2015),464

provided by TextAttack (Morris et al., 2020).465

Results According to the results (Table 4),466

Saliency and GuidedBackprop with L2 aggrega-467

tion are the most plausible attribution methods for468

both types of attribution calculation, and Saliency469

with mean aggregation is one of the most plau-470

sible methods when attributing with respect to471

Method
MAP

TP Loss

InputxGradient (µ) .385 .392
InputxGradient (L2) .636 .643
Saliency (µ) .645 .655
Saliency (L2) .646 .655
GuidedBackProp (µ) .407 .410
GuidedBackProp (L2) .646 .655
IntegratedGrads (µ) .470 .339
IntegratedGrads (L2) .626 .639
Activation (µ) .230 .230
Activation (L2) .451 .451
LIME .451 .273
Occlusion .542 .277
Shapley .565 .268

Table 4: Plausibility results: MAP scores for different
attribution methods on the e-SNLI dataset. Attribu-
tion calculations are performed with respect to the top
prediction class (TP) and the loss. Saliency with both
aggregations and GuidedBackprop with L2 aggregation
are the best performing methods in both cases.

the loss. Similar to cross-lingual faithfulness re- 472

sults, we observe that gradient-based attribution 473

methods usually generate more plausible explana- 474

tions than perturbation-based ones, as in prior work 475

(Atanasova et al., 2020). 476

Figure 5 shows the effect of aggregation method 477

and output mechanism on plausibility. In all cases, 478

L2 outperforms mean aggregation by large margins 479

except for Saliency, where the score for mean ag- 480

gregation is very close to L2 aggregation. When we 481

consider that Saliency returns the absolute value, 482

which is analogous to L1 aggregation, the excep- 483

tion in the results makes sense. In almost all cases, 484

calculating attribution scores with respect to loss 485

is the same or slightly better than calculating with 486

respect to the top predicted class. For Integrated 487

Gradients with mean aggregation, Occlusion, and 488

LIME, calculating attribution scores with respect 489

to the loss performs better. 490

e-XNLI dataset Since prior studies for plausibil- 491

ity evaluation are limited to English-only datasets 492

for NLI task, we augment the XNLI dataset (Con- 493

neau et al., 2018) with highlight-based explanations 494

by utilizing the best attribution method for plausi- 495

bility according to our results. We extract rationales 496

from the English split of the XNLI dataset and align 497

them to other languages using awesome-align. For 498

extracting rationales, we binarize the continuous 499

7



Figure 5: Comparison of plausibility results along out-
put and aggregation dimensions. L2 outperforms mean
aggregation for all attribution methods and calculating
attributions with respect to loss is the same or slightly
better than with respect to the top predicted class.

Lang MAP Lang MAP Lang MAP

ar 0.663 es 0.766 th 0.932
bg 0.701 fr 0.739 tr 0.665
de 0.732 hi 0.604 ur 0.575
el 0.696 ru 0.686 vi 0.572
en 1.0 sw 0.58 zh 0.543

Table 5: Plausibility results: MAP scores measured on
the newly introduced e-XNLI dataset (using Saliency
with loss as output and L2 aggregation).

attribution scores with respect to the threshold that500

gives the best F1 score on the e-SNLI dataset. We501

choose Saliency with L2 aggregation and loss as502

output for calculating attribution scores since it is503

one of the two most plausible methods.504

To validate the automatically generated high-505

lights, we follow two approaches. First, we mea-506

sure the plausibility of the same attribution method507

used to extract rationales for those languages. This508

approach investigates whether the aligned ratio-509

nales are able to follow the same reasoning paths510

for each language. As Table 5 shows, the automat-511

ically aligned highlights in e-XNLI are similarly512

plausible explanations for most languages.513

Second, we perform a human evaluation on a514

subset of the created dataset. For four XNLI lan-515

guages, we sample 10 examples per label (30 total)516

and request annotators to evaluate the correctness517

of highlight by following the same procedure car-518

ried out in e-SNLI (Camburu et al., 2018). Then,519

we measure precision, recall, and F1 scores be-520

tween automatically generated highlights and those521

manually edited by human annotators. As Table 6522

shows, automatically generated highlights mostly523

agree with human reasoning.524

Language Precision Recall F1

ar .64 .73 .68
en .79 .78 .79
ru .93 .78 .85
tr .77 .71 .74

Table 6: Human evaluation for a sample of e-XNLI:
Precision, recall and F1 scores for four languages.

We make the e-XNLI dataset publicly available 525

under MIT license at <HTTP://ANONYMIZED> 526

to facilitate research on explainable NLP in a mul- 527

tilingual setting. 528

5 Conclusion 529

We introduce a novel cross-lingual strategy to eval- 530

uate the faithfulness of attribution methods, which 531

eliminates the out-of-distribution input problem 532

of common erasure-based faithfulness evaluations. 533

Then, we perform a comprehensive comparison of 534

different attribution methods having different char- 535

acteristics in terms of plausibility and faithfulness. 536

The experiments show that there is no one-size-fits- 537

all solution for local post-hoc explanations. Our 538

results highlight that practitioners should choose an 539

attribution method with proper output mechanism 540

and aggregation method according to the property 541

of explanation in question: 542

• For most attribution methods, L2 aggregation 543

and attribution calculation with respect to loss 544

provide more faithful and plausible explanations. 545

• Erasure-based faithfulness metrics cannot prop- 546

erly differentiate different attribution methods. 547

• Gradient-based attribution methods usually gen- 548

erate more plausible and faithful explanations 549

than perturbation-based methods. 550

• One should choose Guided Backpropagation 551

with L2 and Saliency with both aggregation meth- 552

ods and calculate scores with respect to the loss 553

to obtain the most plausible explanations. 554

• One should choose Activation with L2 regardless 555

of output mechanism to obtain the most faithful 556

explanations. 557

Finally, we present e-XNLI, a multilingual 558

dataset with automatically generated higlight ex- 559

planations, to support future multilingual exNLP 560

studies. 561
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A Cross-lingual performance of mBERT787

classifier788

Table 7 shows the results of the mBERT model789

fine-tuned on multiNLI for each language in the790

XNLI dataset.791

Language F1

ar 0.6534
bg 0.6815
de 0.7169
el 0.6655
en 0.8153
es 0.7426
fr 0.7426
hi 0.6169
ru 0.6767
sw 0.5165
th 0.5289
tr 0.6486
ur 0.5819
vi 0.6992
zh 0.7016

Table 7: F1 scores of the mBERT model fine-tuned on
multiNLI for each XNLI language.

B Attribution Methods792

In this work, we focus on a wide range of attribu-793

tion methods by investigating different combina-794

tions of output mechanisms and aggregation meth-795

ods. We consider two different output options796

while calculating importance scores per word: (a)797

top predicted class; (b) loss value calculated when798

the ground truth label is given. In the following,799

we refer to the output as ftp when it is the top pre-800

dicted class and fL when it is the loss. While some801

methods inherently return a single score per word,802

some of them return importance scores for each803

dimension of the corresponding word vector. Since804

we want to obtain a single score per word, those805

scores are need to be aggregated. We investigate806

L2 and mean aggregations separately.807

Implementation Details We build our frame-808

work upon the Captum library (Kokhlikyan et al.,809

2020) to use existing implementations of many at-810

tribution methods. We use the HuggingFace trans-811

formers (Wolf et al., 2020) and datasets (Lhoest812

et al., 2021) libraries to access pretrained models813

and datasets. Also, we rely upon Scikit-learn (Pe-814

dregosa et al., 2011) for evaluation scores such as815

Average Precision (AP) and Spearman Correlation. 816

B.1 Saliency 817

Saliency (Simonyan et al., 2014) calculates attibu- 818

tion scores by calculating the absolute value of the 819

gradients with respect to inputs. More formally, let 820

uj be the embedding for word xj of x(i), the i’th 821

instance of any dataset. Then the attribution score 822

per each dimension of the embedding is defined as 823

|∇ujk
f(x(i))| (8) 824

We obtain an attribution score per word, ω(i)
xj , by 825

aggregating scores across each word embedding. 826

Using mean aggregation, it is defined as follows: 827

ω(i)
xj

=
1

N

d∑
k=0

|∇ujk
f(x(i))| (9) 828

where d is the number of dimensions for the word 829

embedding and N is number of words in the se- 830

quence. Similarly, using L2 aggregation, we obtain 831

ω(i)
xj

=

√√√√ d∑
k=0

|∇ujk
f(x(i))|2 (10) 832

B.2 InputxGradient 833

InputxGradient (Shrikumar et al., 2017) calculates 834

attribution scores by multiplying the input with the 835

gradients with respect to the input. More formally, 836

the attribution score per each dimension is defined 837

as 838

∇ujk
f(x(i))ujk (11) 839

We obtain attribution scores per word in the same 840

way as Saliency using mean/L2 aggregations. 841

B.3 Guided Backpropagation 842

Guided Backpropagation (Springenberg et al., 843

2015) produces attribution scores by calculating 844

gradients with respect to the input. Different from 845

other methods, it overrides the gradient of the 846

ReLU activation so that only positive gradients pass 847

through. We obtain attribution scores per word us- 848

ing L2 and mean aggregations as in the previously 849

described methods. 850

B.4 Integrated Gradients 851

Integrated Gradients (Sundararajan et al., 2017) 852

produces attribution scores by summing gradients 853

along each dimension from some baseline input 854

to a given input. The attribution score per each 855

11



dimension is defined as856

u
(i)
jk−u

(i)
jk×

m∑
l=1

∂f(u
(i)
jk + l

m × (u
(i)
jk − u

(i)
jk ))

∂u
(i)
jk

× 1

m

(12)857

where m is the number of steps for a Riemannian858

approximation of the path integral and u
(i)
j is the859

baseline input. We use the word embedding of the860

[PAD] token as the baseline input for each word861

except for [SEP] and [CLS] tokens (Sajjad et al.,862

2021). We obtain attribution scores per word us-863

ing L2 and mean aggregations as in the previous864

methods.865

Higher values of m would produce a better ap-866

proximation, but also make attribution calculation867

computationally expensive. We need to find a sweet868

spot between approximation and computational869

resources. For plausibility experiments, we se-870

lect m according to validation performance based871

on MAP scores. Among {50, 75, 100, 125}, we872

choose m = 50 for calculations with respect to the873

loss, m = 75 for mean aggregation, and n = 100874

for L2 aggregation on calculations with respect to875

top prediction. For cross-lingual faithfulness ex-876

periments, we select m according to the evaluation877

on the validation set based on the Spearman cor-878

relation coefficient values. Among {50,75,100},879

we choose m = 100 for all calculations except for880

the one with respect to loss with mean aggregation,881

for which we choose m = 75. For erasure-based882

faithfulness experiments, we use the same values883

of m for the sake of a fair comparison.884

B.5 LIME885

LIME (Ribeiro et al., 2016) produces attribution886

scores by training a surrogate linear model using887

the points around the input created by perturbing888

the input and output of perturbations from the origi-889

nal model. A random subset of the input is replaced890

by a baseline value to create perturbations. We use891

the word embedding of the [PAD] token as the base-892

line value (as in Integrated Gradients). Since we893

create the perturbations by replacing whole word894

vectors, we obtain a single score per word, which895

eliminates the need for aggregation. We use 50 sam-896

ples for training the surrogate model as the default897

value for the LIME implementation in Captum.898

B.6 Occlusion899

Occlusion (Zeiler and Fergus, 2014) produces at-900

tribution scores by calculating differences in the901

output after replacing the input with baseline val-902

ues over a sliding window. We select the shape of 903

the sliding window so that it occludes only the em- 904

bedding of one word at a time, and we use the word 905

embedding of the [PAD] token as a baseline value 906

(as in Integrated Gradients and LIME). Since we 907

create the perturbations by replacing whole word 908

vectors, we obtain a single score per word. 909

B.7 Shapley Value Sampling 910

In Shapley Value Sampling (Štrumbelj and 911

Kononenko, 2010), we take a random permutation 912

of input, which is word embeddings of input se- 913

quence in our case, and add them one by one to 914

a given baseline, embedding vector for [PAD] to- 915

ken in our case, to produce attribution score by 916

calculating the difference in the output. The scores 917

are averaged across several samples. We choose 918

the feature group so that one score corresponds 919

to a single word, which eliminates the need for 920

aggregation. We take 25 samples for calculating 921

attributions as the default value for Shapley Value 922

Sampling implementation in Captum. 923

B.8 Activation 924

Layer Activation (Karpathy et al., 2015) produces 925

attribution scores by getting the activations in the 926

output of the specified layer. We select the embed- 927

ding layer for this purpose, which yields an attri- 928

bution score per each dimension of the embedding 929

equal to ujk. Then, we obtain attribution scores per 930

word using L2 and mean aggregations as in other 931

methods. 932

C Cross-lingual Faithfulness Results per 933

Language 934

Our cross-lingual faithfulness evaluation averages 935

correlations across languages. For completeness, 936

we provide in Tables 8–12 the results of cross- 937

lingual faithfulness evaluation per language. 938

D Human Evaluation for e-XNLI 939

A subset of our dataset is evaluated by NLP 940

researchers—the authors and a colleague of one 941

of the authors—from Turkey, Israel, and Russia. 942

The annotators followed the e-SNLI (Camburu 943

et al., 2018) guidelines for evaluating automatically 944

extracted highligh-based explanations. 945

E Limitations and Potential Risks 946

In this work, we examine a wide range of attribu- 947

tion methods along output and aggregation dimen- 948

sions. However, our experiments are only limited 949

to BERT (Devlin et al., 2019) architecture. The 950
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Method
ρ

TP Loss

InputxGradient (µ) .0524 .0705
InputxGradient (L2) .706 .708
Saliency (µ) .6177 .6202
Saliency (L2) .6186 .6207
GuidedBackProp (µ) .0034 -0.001
GuidedBackProp (L2) .6186 .6207
IntegratedGrads (µ) .1759 .265
IntegratedGrads (L2) .602 .5381
Activation (µ) .6963 .6963
Activation (L2) .7011 .7011
LIME .0759 .0995
Occlusion .2262 .3156
Shapley .363 .4658

Table 8: Cross-lingual faithfulness results for the Ger-
man split of XNLI dataset: Average correlations mea-
sured for different attribution methods on the XNLI
dataset. Attribution calculations are performed with re-
spect to the top prediction (TP) class and the loss.

multilingual dataset we provide, e-XNLI, consists951

of automatically extracted highlight-based expla-952

nations and should be used with caution for future953

exNLP studies since we only perform the human954

evaluation on a small subset of the all dataset. Es-955

pecially, training self-explanatory models with this956

dataset can cause undesired outcomes such as poor957

explanation quality.958

F Computational Resources959

We mainly use Google Colab for the experiments960

and Titan RTX in some cases. All experiments for961

gradient-based attribution methods and Activation962

take a period of time ranging from 5 minutes to963

1 hour, while perturbation-based approaches take964

several hours. Especially, experiments for Shapley965

Value Sampling take a few days since its implemen-966

tation does not use batched operations.967

Method
ρ

TP Loss

InputxGradient (µ) .0742 .0933
InputxGradient (L2) .7322 .7332
Saliency (µ) .658 .6591
Saliency (L2) .6584 .6595
GuidedBackProp (µ) .0079 -.0006
GuidedBackProp (L2) .6584 .6595
IntegratedGrads (µ) .1962 .2763
IntegratedGrads (L2) .637 .5657
Activation (µ) .7341 .7341
Activation (L2) .7232 .7232
LIME .0796 .0998
Occlusion .2612 .3446
Shapley .3696 .4734

Table 9: Cross-lingual faithfulness results for the French
split of XNLI dataset: Average correlations measured
for different attribution methods on the XNLI dataset.
Attribution calculations are performed with respect to
the top prediction (TP) class and the loss.

Method
ρ

TP Loss

InputxGradient (µ) .0756 .1029
InputxGradient (L2) .7195 .72
Saliency (µ) .6595 .6615
Saliency (L2) .6598 .6619
GuidedBackProp (µ) -.0007 .0037
GuidedBackProp (L2) .6598 .6619
IntegratedGrads (µ) .2072 .2965
IntegratedGrads (L2) .6238 .5581
Activation (µ) .7528 .7528
Activation (L2) .707 .707
LIME .0865 .1054
Occlusion .2739 .3618
Shapley .3616 .4781

Table 10: Cross-lingual faithfulness results for the Span-
ish split of XNLI dataset: Average correlations mea-
sured for different attribution methods on the XNLI
dataset. Attribution calculations are performed with re-
spect to the top prediction (TP) class and the loss.
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Method
ρ

TP Loss

InputxGradient (µ) .0441 .0648
InputxGradient (L2) .6486 .6503
Saliency (µ) .5809 .5823
Saliency (L2) .5813 .5827
GuidedBackProp (µ) .0023 .0032
GuidedBackProp (L2) .5813 .5827
IntegratedGrads (µ) .1594 .2473
IntegratedGrads (L2) .5597 .4949
Activation (µ) .6627 .6627
Activation (L2) .6748 .6748
LIME .0627 .085
Occlusion .1942 .2705
Shapley .3197 .4235

Table 11: Cross-lingual faithfulness results for the Viet-
namese split of XNLI dataset: Average correlations
measured for different attribution methods on the XNLI
dataset. Attribution calculations are performed with re-
spect to the top prediction (TP) class and the loss.

Method
ρ

TP Loss

InputxGradient (µ) .0273 .0413
InputxGradient (L2) .6119 .6139
Saliency (µ) .5458 .5495
Saliency (L2) .5462 .5501
GuidedBackProp (µ) .004 .0021
GuidedBackProp (L2) .5462 .5501
IntegratedGrads (µ) .1126 .188
IntegratedGrads (L2) .5197 .4563
Activation (µ) .5949 .5949
Activation (L2) .6331 .6331
LIME .0619 .0819
Occlusion .1615 .2374
Shapley .2953 .3862

Table 12: Cross-lingual faithfulness results for the Chi-
nese split of XNLI dataset: Average correlations mea-
sured for different attribution methods on the XNLI
dataset. Attribution calculations are performed with re-
spect to the top prediction (TP) class and the loss.
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