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ABSTRACT

Deep neural networks achieve impressive accuracy yet remain highly suscepti-
ble to adversarial perturbations, limiting their deployment in safety-critical do-
mains. We propose RDNAS, a robust dual-branch neural architecture search
framework that jointly optimizes standard (clean) accuracy and adversarial ro-
bustness. RDNAS introduces a dual-branch cell with separate “normal” and “ro-
bust” pathways, fused via a lightweight attention module to capture complemen-
tary representations without significantly enlarging the search space. To reliably
score candidate operations under adversarial training, we develop ROSE (Robust
Outlier-Aware Shapley Estimator), which stabilizes Shapley-based evaluation via
median-of-means smoothing and interquartile-range filtering, reducing bias from
noisy gradients. RDNAS consistently discovers architectures that outperform both
hand-crafted networks and state-of-the-art robust NAS baselines across CIFAR-
10, CIFAR-100, SVHN, and Tiny-ImageNet. Notably, it achieves 52.6% PGD?°
robustness on CIFAR-10 while maintaining strong clean accuracy. Extensive abla-
tions validate the effectiveness of the dual-branch design, attention-based fusion,
and robustness-aware search. Overall, RDNAS provides a scalable and effective
framework for discovering architectures resilient to adversarial attacks.

1 INTRODUCTION

Deep neural networks (DNNs) have achieved strong performance across vision tasks such as classi-
fication, segmentation, and detection (Krizhevsky et al.,2012; He et al.,[2015)). Yet their deployment
in safety-critical domains—autonomous driving (Chen & Huang},2017)), medical imaging (Taigman
et al.l2014), or biometric authentication—remains limited by their vulnerability to adversarial per-
turbations: small, imperceptible input changes that can drastically alter predictions. This fragility
motivates research into adversarial robustness, where adversarial training (Madry et al.,2019;Zhang
et al.,|2019) is the prevailing defense. While effective, adversarial training alone cannot fully exploit
robustness potential if the network architecture itself is not designed with robustness in mind.

Neural architecture search (NAS) offers a way to automatically discover architectures with strong
performance. However, most NAS approaches—including differentiable (Heuillet et al.l 2024;
Yang et al., 2020; |Chen et al., 2019b)), zero-shot (Mellor et al., 2021} |Peng et al., 2024), reinforce-
ment learning (Zoph & Le, 2017} Baker et al.l [2017), or evolutionary methods (Zhou et al., 2023
2024)—optimize almost exclusively for clean accuracy, while treating robustness as secondary. Re-
cent robust NAS studies (Simon et al., [2022; [Feng et al., |2025) incorporate adversarial training into
the search loop, but typically score candidate operations via noisy adversarial gradients, leading to
unstable updates and inconsistent robustness (Dong et al., 2025b; |Cheng et al., | 2023). For example,
Shapley-based methods (Xiao et al.,2022)) can be skewed by outliers, yielding unreliable attribution.

We propose RDNAS (Robust Dual-Branch NAS), a robustness-aware framework that jointly op-
timizes clean (standard) accuracy and adversarial robustness. RDNAS builds on three ideas:
(i) A dual-branch cell that disentangles feature representation learning into a normal and a ro-
bust pathway, fused through a lightweight attention mechanism. Unlike ensembles or mixture-
of-experts, this design does not duplicate operators or widen the search combinatorics; in-
stead, it introduces a single extra dimension (one additional cell type) while keeping the op-
erator set unchanged, thereby maintaining search efficiency. (ii) Adversarial training directly
embedded in the inner loop of NAS, steering the search toward architectures that are in-
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herently robust to perturbations.

(ili) ROSE (Robust Outlier-Aware Shapley Estimator), a

stabilized Shapley-based scoring mechanism that combines median-of-means smoothing with
interquartile-range filtering to dampen gradient noise and reward rare but decisive operation effects.

To keep the search tractable, we couple ROSE
with a few-sample evaluation strategy that re-
duces both the supernet training and scoring
costs, achieving stability without significant com-
putational overhead. Moreover, inspired by ro-
bustness studies on wide architectures (Wu et al.,
2025), RDNAS prioritizes width over depth,
achieving resilience with fewer layers and simi-
lar parameter budgets to conventional NAS cells.

We validate RDNAS on CIFAR-10 (Krizhevsky),
2009), CIFAR-100 (Krizhevskyl [2009), SVHN,
and Tiny-ImageNet (Deng et al.l [2009) against
diverse adversarial attacks (including FGSM
(Goodfellow et al,, [2015), PGD (Madry et al.,
2019), and transfer-based attacks (Papernot et al.}
2017)). As shown in Figure [T, RDNAS consis-
tently surpasses both hand-crafted and NAS base-
lines in clean and robust accuracy. Our contribu-
tions are threefold: (i) A dual-branch cell design
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Figure 1: Clean vs. adversarial (FGSM) ac-
curacy of various architectures on CIFAR-100.
Ours achieves a favorable trade-off between ro-
bustness and clean performance, outperforming
NAS-based and hand-crafted models.

that explicitly separates and fuses clean and ro-

bust pathways, providing complementary repre-

sentations without inflating the search space. (ii) A robustness-aware scoring mechanism (ROSE)
that stabilizes Shapley attribution under adversarial training through principled statistical techniques.
(iii) Empirical evidence that RDNAS discovers architectures with superior robustness and accuracy
across datasets and attacks, while maintaining computational efficiency.

To ensure both rigor and reproducibility, we complement our empirical study with theoretical anal-
ysis of the proposed estimator and release full source code and search logs in the appendix and
supplementary material.

2 RELATED WORK

2.1 ADVERSARIAL ROBUSTNESS (ATTACKS VS. DEFENSES)

Deep neural networks (DNNs) have achieved remarkable performance across many tasks yet remain
vulnerable to adversarial examples, i.e., small (often human-imperceptible) perturbations that can
significantly alter model predictions. Adversarial attacks are commonly categorized into white-box
and black-box settings. In the white-box case, the attacker assumes full access to model parameters
and gradients: FGSM (Goodfellow et al.,[2015) performs a fast single-step perturbation aligned with
the loss gradient, whereas PGD (Madry et al., 2019) performs multi-step projected gradient ascent
within an ¢, ball of radius € and serves as a strong baseline for white-box evaluation. In the black-
box case, attacks operate under limited information, relying either on transferability (adversarial
examples crafted on a surrogate model) or on query-based methods that estimate gradients from
model outputs. AutoAttack (Croce & Heinl |2020) provides a parameter-free evaluation suite that
combines strong white-box attacks (APGD-CE/APGD-DLR, FAB) with a black-box component
(Square), and is widely used as a reliable robustness benchmark.

To counter adversarial threats, a variety of defenses have been proposed. Among existing strategies,
adversarial training has proven to be one of the most effective—in particular, PGD-based adversarial
training, which is formulated as a min—-max optimization between the model and the adversary.
Notable extensions include TRADES (Zhang et all [2019), which balances standard accuracy and
robustness through a regularized loss. Despite these advances, the robustness of a model remains
closely tied to its underlying architecture. Architectures not explicitly designed for robustness often
exhibit an inherent trade-off between clean accuracy and adversarial performance. This observation
underscores the need for robustness-aware NAS, where adversarial objectives are integrated directly
into the search process.
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2.2 ROBUSTNESS-AWARE NEURAL ARCHITECTURE SEARCH

Neural architecture search (NAS) automates the design of DNNs, optimizing trade-offs among ac-
curacy, efficiency, and model complexity. Early efforts considered macro-level search over entire
networks (Zoph & Le, |2017), followed by micro-level approaches that learn reusable cells and stack
them to build full models (Pham et al., [2018)). To improve scalability, DARTS (Liu et al., [2019)
introduced a continuous relaxation that forms a Supernet with differentiable operation selection;
subsequent variants such as GDAS (Dong & Yang} 2019b)) and PC-DARTS (Xu et al.,[2019)) further
improved the efficiency of gradient-based search.

While NAS has achieved strong results in clean settings, adversarial robustness has only recently be-
come a central focus. Early work incorporated robustness into DARTS-style frameworks via adver-
sarial training or robustness-aware objectives—e.g., smoothness priors, certified bounds, or Jacobian
regularization—to guide the search (Guo et al., [2020a; |Zela et al., [2020; Mok et al.| |2021; Hosseini
et al., [2021)). Others explored broader search spaces, hybrid designs, and topological changes to
improve robustness, revealing that simple strategies such as ensembling or width expansion can en-
hance adversarial accuracy (Vargas et al., 2019} [Yang et al.| [2024b; [Devaguptapu et al., 2021} [Liu
et al., [2023). More recent methods adopt multi-objective formulations (Geraeinejad et al., [2021])
to jointly consider accuracy, robustness, and efficiency, while designing specialized search spaces
(Sun et al.,|2025) and robustness-aware proxies (Jung et al.,2023). Additional strategies—including
knowledge distillation (Nath et al., |2024), architectural disentanglement (Yang et al., 2024a), and
adaptive channel allocation (L1 et al., 2024)—further refine the search process (Chen et al.| |2020).
Meanwhile, techniques like Fair-DARTS (Chu et al.l 2020) and BatchQuant (Bai et al.,|[2021) study
robustness under constraints such as discretization and quantization.

Collectively, these developments reflect growing momentum toward NAS (especially DARTS-
based) frameworks that explicitly optimize adversarial robustness across architectures and domains.
Nevertheless, many approaches still depend on predefined templates and heuristic evaluations (e.g.,
PGD accuracy), which can introduce statistical noise and obscure robustness-critical factors. This
motivates the need for principled, robustness-aware NAS frameworks that dynamically identify sen-
sitivity in operations and architectural choices, enabling the discovery of inherently robust models.

2.3 SHAPLEY VALUES IN ARCHITECTURE SEARCH

The Shapley value, rooted in cooperative game theory (Nowak & Radzikl [1994), provides a
principled way to assess the contribution of individual components to a collective reward. Let

N = {1,...,n} index the components and let v : 2" — R assign a value to each subset S C N.
The Shapley value of component i € N is
1 )
i) = — 3 [o(pre,(m) U {i}) — vlpre;(m) ], 1)
" T€P(N)

where P (V) is the set of all permutations of N and pre;(7) denotes the set of components pre-
ceding ¢ in permutation 7. Shapley-based approaches have been widely used for feature attribution
and, more recently, for NAS (Xiao et al.| 2022) to identify influential operations. AutoShape (Fang
et al.| |2023) and GraphNAP++ (Oloulade et al., 2025) apply Shapley-guided pruning or architecture
selection. KernelSHAP-NAS (Tran et al [2025) adapts KernelSHAP to approximate operation in-
fluence in a supernet more robustly than earlier sampling-based methods. D-DARTS (Heuillet et al.,
2023) introduces a Shapley-based loss to guide distributed differentiable NAS, promoting diversity
and cell-specific optimization. Beyond architecture search, SDL (Djenouri et al., [2023)) leverages
Shapley values for model consensus in general-purpose vision systems, and various algorithms have
been proposed to estimate Shapley values more accurately and efficiently (Chen et al., 2023)).

Nevertheless, effectiveness under adversarial evaluation can be hindered by high variance in
marginal contributions due to input perturbations and limited sample sizes. To address this, we
develop ROSE with two robust statistical techniques: the interquartile range (IQR) (Rousseeuw &
Hubert, 2017), which flags outlier contributions using quartiles @)1 and Q3 (with IQR = Q3 — 1),
and the median-of-means (MoM) estimator (Lecué & Leraslel 2017). These tools yield a more sta-
ble and robust estimation pipeline for operation importance under adversarial noise. This design
grounds ROSE in established statistical principles while extending Shapley-based NAS to adversar-
ial settings for the first time; we further provide detailed theoretical analysis in the appendix.
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Figure 2: Overview of the RDNAS framework: (left) the dual-branch cell design; (middle) a com-
parison between standard DARTS (20 layers) and our dual-branch network (10 layers); (right) the
ROSE estimator.

3 METHODOLOGY

3.1 OVERVIEW OF RDNAS

RDNAS follows the DARTS paradigm in which an architecture is built by stacking cells—directed
acyclic graphs (DAGs) with NV intermediate nodes and a predefined operation set O (e.g., depthwise
convolutions, pooling, identity). For each edge (4, j), we maintain logits a(*/) = {aff’] )}OGO that
parameterize a softmax mixture of operations:

z7
o(z®) = Z exp(ab J))_ » O(I(z‘)) _ )
(4,)
0e® ZOIEO exp(ao, )

As illustrated in Figure 2] we enhance the standard DARTS backbone—typically 20 normal cells
and 2 reduction cells—by replacing each normal cell with a dual-branch cell while halving the
depth (10 dual-branch cells plus 2 reduction cells). The two branches process features in parallel to
emphasize clean and robust pathways, respectively; at each fusion point an Efficient Channel Atten-
tion (ECA) module adaptively reweights and aggregates channel-wise responses, enabling selective
retention of informative representations (see Appendix [A.2|for Grad-CAM visualizations). The final
representation is fed to a softmax classifier.

To support efficient search, we relax discrete operation choices into continuous architecture param-
eters « and jointly optimize network weights w and « via bilevel optimization:

m;n Eval(w*(a),a), €))
s.t. w* () = arg rrbin Lirain (W, @), 4)

where the inner objective adopts a composite loss on clean and adversarial examples,
Lirain = A+ Letean + (1 = A) - Lagy- (5)

(details in Sec.[#.2), and the outer objective is evaluated under the same robustness settings. RDNAS
employs robustness-aware bilevel optimization to balance accuracy and adversarial resilience.
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To improve stability under noisy gradients, we introduce ROSE, which scores operations on each
edge (4,7j) and guides lightweight pruning. By combining MoM smoothing with IQR filtering,
ROSE yields robust importance estimates. After convergence, we discretize by retaining the top op-
eration(s) per edge based on ROSE scores, producing a compact model that balances clean accuracy
and adversarial robustness.

3.2 DUAL-BRANCH CELL DESIGN

Conventional gradient-based NAS methods (e.g., DARTS) use a single shared cell for both clean
and adversarial data, often producing architectures that favor one objective at the cost of the other.
Clean-focused designs lack robustness, while robust-focused ones sacrifice accuracy. To overcome
this trade-off, we introduce the Dual-Branch Cell, which decouples learning into two parallel sub-
networks: a normal branch for clean accuracy and a robust branch for adversarial resilience. Both
branches process the same inputs (sg, s1) using a shared operator C but independent parameters
Onorm and Qrob-

Hnorm - C(SOa 515 anorm)a Hrob - C(SOa S1; arob)7 (6)
where Hporm, Hrob € REH>XW  Their outputs are concatenated along the channel dimension:
H = [Hnorm;Hrob] S RQCXHXW~ @)

To effectively fuse the complementary representations, we adopt an attention-based fusion mecha-
nism inspired by ECA (Wang et al.| 2020). First, we reduce the channel dimension with a 1 x 1
convolution followed by ReLU activation:

U = Wiyx1(ReLU(H)) € REXHXW, 8)
Next, global average pooling extracts a channel descriptor:
z=GAP(U) € R®, )

which is passed through a 1D convolution (with an adaptively determined kernel size as in ECA)
and a sigmoid activation to generate channel-wise attention weights:

w = o(ConvlD(2)) € (0,1)°. (10)
These weights modulate the feature map via element-wise multiplication:
F=woUeROHXW, (11)

This fused output F' is forwarded to the next layer. By separating optimization paths and fusing
them adaptively, the Dual-Branch Cell captures complementary representations that jointly enhance
accuracy and robustness, while keeping FLOPs, parameters, and training budgets comparable to
DARTS baselines. Figure [2]illustrates the design, and Grad-CAM visualizations in Appendix [A.2]
qualitatively confirm the complementary roles of the two branches.

3.3 ADVERSARIALLY ROBUST SEARCH

Following recent advances in robust NAS, we integrate adversarial training directly into the inner
optimization loop to promote robustness-aware search. Specifically, during each epoch, clean inputs
x are transformed into adversarial examples 2*1" using a fast PGD-k method (e.g., k = 7 steps):

:Eadv = arg Hgﬁla)i [:train(f(x + 5)7 y), (12)
o S€E
where € constrains the perturbation magnitude and Ly,;, is the composite training loss that mitigates
overfitting to clean samples and steers weight learning toward robust representations. After obtain-
ing the optimal network weights w*(«), the outer optimization fixes w™* () and updates architecture
parameters o by minimizing the validation loss:

3 E O
Lo (w*(a),a) = — Z Z Zpg’g(a) Scoreg’g (13)
where b indexes normal, reduce, and robust branches, and pgf())(a) = softmax(agf.) )O is the proba-
bility of selecting operation o on edge e of branch b. The Scoregbf} is computed by ROSE.

)
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Algorithm 1 Adversarially Robust Architecture Search

—_

: Input: Search space S = {o0;;}, warm-up epochs N,,, search epochs N, #Shapley samples S, #MoM
groups G, IQR sensitivity -y, training data Ds,ain, validation data Dy,

2: Output: Adversarially robust architecture A*

3: Initialize architecture logits c,, € RE*© for each branch b € {normal, reduce, robust} and weights w;

4: for epoch=1to N, + N5 do

5:  Train w on Dyrain by minimize the composite training loss in (5);

6:  if epoch > N,, then

7 Compute the clean and adversarial accuracy deltas A( o St 4 and AP by (15);

8

9

e,o,adv

Compute the final Scoree 2. by ROSE in (19) based on (15) to (18);
Update logits: o < o + 1 - Score;

10: Row-normalize each edge of « so its logits sum to 1;
11:  endif
12: end for

13: Pick the operation for each edge with highest logit to form A*;
14: Return: A*

Upon convergence, architecture discretization selects the most probable operation per edge:

r = , 14
O = argmaxae [k] (14)

The resulting normal and robust cells are paired into Dual-Branch Cells and interleaved with Reduce
Cells to construct a compact, robust backbone for deployment. The overall search procedure is
outlined in Algorithm

3.4 ROSE: ROBUST OUTLIER-AWARE SHAPLEY ESTIMATOR

After revisiting the Shapley foundations, we find that certain operations disproportionately influence
adversarial robustness. This motivates the ROSE, which refines Shapley-based scoring to capture
both stable contributions and rare impactful events. Unlike conventional approaches that score all
operations jointly, ROSE applies separate evaluations to the normal, reduction, and robust cells,
yielding three branch-specific score matrices. It enhances the standard Monte Carlo Shapley sampler
using two complementary techniques: (i) IQR-based outlier detection: Operations whose standard-
ized marginal gains fall outside the interquartile “box” are rewarded or penalized to highlight rare
but decisive contributions. (ii) MoM smoothing: By partitioning permutations into groups and ag-
gregating their means, MoM stabilizes the Shapley estimate, guiding the search toward consistently
robust architectures.

Let b € {normal, reduce, robust} index each cell branch, and 0®) denote its candidate operations,
with the rest of the supernet fixed. Over S random permutations, we compute clean and adversarial
accuracy deltas for each operation o on edge e in branch b:

ACY = Accls — Accl)  ABD = AccY — ey, (15)

e,0,st e,o,adv adv,
(97 )

where Acc td) (or Accl® )) denotes the validation accuracy with operation o, and Acc; (or

udv —o

Accg‘z\lj)fo) denotes the accuracy after removing o. These deltas are standardized per permutatlon to
reduce variance: (@) (@) ® -
S S S
A(S . Ai std — Hstd Als) Az adv — Hadv
i,std T (5) +e ’ i,adv — (5) +e
Ostd O adv

(16)

where 1.(*) and o(*) are empirical statistics across operations, and e ensures numerical stability.
To capture anomalies, we compute the IQR for each {Aéfg}’) s,
rébg and Tg( 3 and derive an outlier score:
(s ) S 0+ NS (b)
b _ M5t AS > 7o — [{s: A% <7eo }|
o) 17)

© S
Here, vgb,)) > 0 suggests frequent robustness gains when o is is dropped, while vébg < 0 indicates
critical importance.

set upper and lower thresholds
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For stability, the MoM estimate is computed by partitioning samples into G folds, averaging within
each fold, and taking the median:

1 o
m®) = median{ —— Z A(esg)b)}kGfl (18)
’ |gk| s€Gy ’ Bl

The final ROSE score combines both components:
Score(!) = (1= B)m{) + Bul!) (19)

where 3 € [0, 1] balances steady reward and occasional indispensability. Empirically, 5 € [0.3,0.5]
yields architectures that are both reliably accurate and resilient under adversarial conditions. We
use the ROSE score to rank (and, if enabled, lightly prune) candidate operations in each cell. This
selective mechanism highlights components that are consistently valuable or occasionally critical to
adversarial robustness, guiding the architecture toward a robust-optimal configuration. Sensitivity
experiments on 3 are presented in Sec. with additional hyperparameter studies for the entire
framework provided in Appendix [A.3]

4 EXPERIMENTAL STUDIES

4.1 BENCHMARK DATASETS AND BASELINES

Following established practices in robust NAS research (Guo et al., |2019; Mok et al., |2021)),
we evaluate our proposed method, RDNAS, on four benchmark datasets: CIFAR-10, CIFAR-
100 (Krizhevskyl 2009), SVHN, and Tiny-ImageNet-200 (Le & Yang, 2015). We compare RD-
NAS against a comprehensive set of peer methods, including manually designed architectures such
as ResNet-18 (He et al., [2015)) and DenseNet-121 (Huang et al., 2017), standard NAS frameworks
like DARTS (Liu et al} 2019), NASNet (Zoph et al., [2018), and PDARTS (Chen et al., 2019a),
GDAS (Dong & Yang, 2019b), SETN (Dong & Yang, [2019a)), and ENAS (Pham et al., [2018));
training-free NAS baselines including TTNAS (Lin et al.l [2024) and MOTE-NAS (Zhang et al.,
2024); as well as robust NAS approaches such as RobNet (Guo et al., 2020b), AdvRush (Mok et al.,
2021), RACL (Dong et al., [2025a), E2RNAS (Yue et al., [2020), ARNAS (Ou et al. [2024)), and
LRNAS (Feng et al.,[2025)).

4.2 SEARCH CONFIGURATION AND EVALUATION PROTOCOL

Given that RDNAS adopts a shallower architecture, we conduct the search on a 10-cell network
(instead of 8) and adjust the initial channel count to 32 (the common setting is 36) to maintain
training—search consistency. The search runs for 50 epochs using adversarial training based on 7-step
PGD with a step size of 2/255 and perturbation bound of 8/255. The adversarial loss regularization
coefficient is set to 0.5. Other settings follow DARTS. Network weights (w) are optimized using
SGD with momentum 0.9, learning rate 7,, = 0.025 (cosine decay), and weight decay 3 x 107
Architecture parameters («) use Adam with 7, = 3 x 1074, 8 = (0.5,0.999), and weight decay
10~3. Notably, to substantially reduce search cost and accelerate the search process, we adopt a
small-sample search: on CIFAR-10 we use only 1,000 training samples and 500 validation samples
for search. To the best of our knowledge, this is the first such attempt in one-shot models, and it
yields highly effective results—not only cutting search cost drastically, but also delivering strong
performance on NAS-Bench-201—thereby further corroborating the reliability of ROSE.

For final evaluation, we stack 10 cells with an initial channel count of 32. Stem / Reduction-1 /
Reduction-2 channels are set to 32/ 128 / 128. Following AdvRush (Mok et al., 2021), we adversar-
ially train each model for 120 epochs using 7-step PGD (step size 0.01, ¢ = 8/255). Optimization
uses SGD with momentum 0.9 and weight decay 1 x 10~*. Learning rates are 0.1 (CIFAR-10/100)
and 0.01 (SVHN), decayed at epochs 90 and 104. Batch size is 32. All experiments are performed
on an NVIDIA GeForce RTX 4080 Super GPU.

4.3 RESULTS ON WHITE-BOX ATTACKS

Table (1| shows that RDNAS attains the strongest overall white-box results: it is best on Clean,
FGSM, PGD?°, PGD'?°, and APGD-CE, and only 0.25 pp behind the best prior AutoAttack score
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Table 1: Robust accuracy on CIFAR-10. All attacks use £, budget ¢ = 8/255. Columns report
clean (Nat.) and white-box attacks; the last two columns show AutoAttack (AA) and GPU-days.
Best in each column is bold.

Model Params  FLOPs Evaluation (£ ) AA GPUday
Nat. FGSM  PGD*°  PGD'°  APGD-CE

ResNet-18 112M  37.6TM  84.09%  5464%  4586%  45.53% 454%  43.22%
DenseNet-121 70M  59.83M  8595%  5846%  50.49%  49.92% 4911%  47.46%

DARTS 33M  S54744M  8592%  5896%  5145%  49.32% 4832%  41.73% 10
PDARTS 34M 55075M  85.38%  59.12%  5132%  50.91% 4996%  48.52% 03
RobNet 56M  80040M  85.00%  59.22%  52.09%  51.14% 5041%  48.56% 33
DSRNA 20M  33623M  8093%  5449%  49.11%  48.89% A867%  44.87% 0.4
LRNAS 20M  34610M  8426%  59.89%  5020%  49.90% 4983%  49.07% 0.4
RACL 36M  568.86M  85.13%  59.45%  5189%  51.63% 5109%  5023% 0.5
AdvRush 42M  66853M  86.38%  60.32%  52.29%  51.80% 5142%  50.05% 0.7
RDNAS (Ours)  44M 130G 8656%  60.44%  52.62%  5224%  52.05%  49.98% 02

Table 2: Transfer-based black-box accuracy on CIFAR-10/100 (%).

Dataset Params (M) Source Target

DARTS AdvRush LRNAS RACL  PDARTS Ours
33 DARTS - 65.22 63.01 65.22 66.21 67.54
42 AdvRush 65.40 z 63.52 65.45 66.29 67.60
CIFAR-10 23 LRNAS 67.96 68.67 z 67.83 68.92 69.46
- 36 RACL 65.44 65.46 62.54 Z 64.97 65.80
34 PDARTS 65.25 65.24 62.61 63.81 z 65.52

44 Ours 67.16 66.80 63.85 65.79 66.32 z
33 DARTS - 43.63 4278 4329 40.17 46.37
42 AdvRush 42.46 Z 41.91 2.8 40.01 46.54
238 LRNAS 4335 4427 z 4473 4187 47.06
CIFAR-100 3.6 RACL 42.68 41.83 4225 Z 40.39 46.72
34 PDARTS 40.06 41.39 3838 40.71 = 45.94

44 Ours 47.04 47.83 4461 47.65 47.18 z

(49.98% vs. 50.23% for RACL), with a moderate 4.4M parameters. Our FLOPs (1.30G) are higher
than some DARTS-style baselines due to the dual-branch design with ECA fusion, but this extra
compute yields consistent gains across all white-box attacks. The cost is practical: the search bud-
get is small (0.2 GPU-days), and the halved depth (10 cells) helps latency despite per-cell compute.
Moreover, the robustness transfers: Table[Z] shows best or tied-best transfer-based black-box perfor-
mance in most source—target pairs, and Table [3|confirms strong cross-dataset results (CIFAR-100,
SVHN, Tiny-ImageNet-200). Overall, the modest FLOPs increase buys attack- and dataset-general
robustness, making the accuracy—compute trade-off favorable.

4.4 RESULTS ON BLACK-BOX ATTACKS

We evaluate transfer-based black-box robustness on CIFAR-10 and CIFAR-100 using adversarial
examples generated by PGD (untargeted, e = 8/255, step size 2/255, 20 steps, random starts) from
five source models: DARTS, PDARTS, RACL, LRNAS, and AdvRush. Unless otherwise noted,
attacks are single-source transfers (no ensemble). As summarized in Table [2, RDNAS outperforms
peers in most transfer settings. Notably on CIFAR-100, it retains top robustness when attacked by
adversarial inputs generated from the above sources. Despite its moderate size (4.4M parameters),
RDNAS achieves 65.5%—69.5% robust accuracy on CIFAR-10 and 45.9%-47.8% on CIFAR-100,
offering favorable robustness—parameter trade-offs relative to smaller models.

4.5 CROSS-DATASET TRANSFERABILITY

To test generalization, we transfer the RDNAS architecture searched on CIFAR-10 to CIFAR-100,
SVHN, and Tiny-ImageNet-200, and retrain from scratch on each target dataset (no re-search). As
shown in Tables [3] RDNAS attains strong clean and adversarial accuracies. On CIFAR-100, it
surpasses ResNet-18 and NASNet in robustness; on SVHN, it achieves 97.88% clean accuracy and
96.37% FGSM robustness; on Tiny-ImageNet-200, it delivers 56.84% clean accuracy and remains
competitive under PGD, trailing AdvRush slightly.
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Table 3: Cross-dataset transfer results (%, e=8,/255, PGD?" step size 2/255). Best result in each
sub-table is bold.

CIFAR-100 SVHN Tiny-ImageNet-200
Model Clean FGSM PGD?° Model Clean FGSM PGD?° Model Clean FGSM PGD?°
ResNet-18 55.57 26.03 21.44 ResNet-18 92.06 88.73 69.51 ResNet-18 36.26 16.08 13.94
AdvRush 6031 31.54 27.38 DenseNet-121  95.10 93.01  89.58 DenseNet-121 47.56 22.98  18.06
RACL 59.18 3440 30.41 ARNAS 95.84 9443  92.02 PDARTS 4594 2436 2274
ARNAS 5818 3260 29.54 AdvRush 96.53 9495 91.14 AdvRush 4642 2420 22.89
RDNAS 6199 39.60 29.42 RDNAS 97.88 9637 95.80 RDNAS 56.84 2449 19.40

Table 4: Ablation of ECA, adversarial-training during search, and search space. Metrics are Top-1
(%) on clean and PGD?° (e = 8/255, step size 2/255); Params in millions.

ID ECA Adv. search Search space Params (M) Clean (%) PGD?° (%)
A x X DARTS (20 cells) 420 84.8 50.3
B X v DARTS (20 cells) 428 85.6 51.0
C v v DARTS (20 cells) 430 86.0 51.5
D X v RDNAS (10 cells) 426 85.7 51.8
E v v RDNAS (10 cells) 432 86.5 52.6

4.6 ABLATION STUDIES

Search-Space Ablation: As shown in Table @] a reduced RDNAS search space (10 operations)
outperforms the full DARTS space (20 operations) under FGSM and PGD, while maintaining
similar clean accuracy.

Adversarial Training Ablation: Clean-only search yields strong natural accuracy but poor
PGD robustness. Integrating adversarial training during search significantly improves robustness,
validating its importance.

Attention Module Ablation: Removing the Efficient Channel Attention (ECA) module slightly
degrades clean accuracy and noticeably reduces adversarial robustness. Reintroducing ECA
improves both, confirming its effectiveness.

4.7 RESULTS ON NAS-BENCH-201 (CIFAR-10)

Table [5] reports validation/test accuracy and

Method Search (s) val test
search cost on NAS-Bench-201 (CIFAR-10). SARTSV R 7000 S1305000
We list c.la.ss1c gradlgnt-based baselines and pag 3160980 89.89+0.08 93.6140.09
recent training/evaluation-free methods (e.g., SEIN 3413953 84.04:£028  87.64:0.00

: ENAS 14058.80  37.5143.19  53.8940.58
TTNAS (Lin et al, 2024), MOTE-NAS (Zhang| 17 aining.free) 1146 91.02%0.11  93.9440.38
et al.,[2024)). Our method achieves the best trade- MOTE-NAS (K=5) 2239 90.89+0.13  93.8640.15
off .between accuracy and search time. This ex- gurs 731 91134036 93.97+0.35
periment demonstrates that, even under a few- Ground Trath — o161 o137

sample search regime, the ROSE estimator re-
mains stable and reliably discovers robust archi-

Table 5: Validation and test accuracy with
tectures.

corresponding search cost on NAS-Bench-201
(CIFAR-10). RDNAS achieves the best trade-
off between accuracy and efficiency, demon-
strating stable performance even under limited
search budgets.

5 CONCLUSION

This work presents RDNAS, a robust NAS frame-

work that jointly optimizes for accuracy and ad-

versarial robustness. We propose a dual-branch cell search space and enhance Shapley-value esti-
mation using MoM and IQR to identify critical operations. Extensive experiments across multiple
benchmarks and attack settings demonstrate the effectiveness and transferability of RDNAS, with
results highlighting that heterogeneous cell placement across depths is crucial for balancing robust-
ness and accuracy.
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A APPENDIX

A.1 THEORETICAL JUSTIFICATION OF ROSE ESTIMATOR

This appendix provides a concentration bound for the Robust Outlier-aware Shapley Estimator
(ROSE) under mild assumptions.

A.1.1 ASSUMPTIONS

Assumption 1 (Bounded Marginal Gains). For any branch b, edge e, operation o, and permutation
S,

ASD G <M, Al < (20)

e,o,std e,o,adv
where M > 0 is a finite constant. Since the Shapley value qﬁ(eb(), 1s a convex combination of bounded
marginal gains, we also have \¢éb2,| < M.

Assumption 2 (Permutation Independence). The .S Monte-Carlo permutations are sampled inde-
pendently and partitioned into buckets for the MoM estimator; independence implies inter-bucket
independence.

A.1.2 TRIANGLE INEQUALITY FOR ROSE SCORE
ROSE combines a Median-of-Means (MoM) estimator mgb()) and an outlier-aware score véb(),
[—1,1]:

S

Scorel”) = (1-B)m®) + s,  0<p<1. 1)

,O0
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Subtracting the true Shapley value ¢éb()) gives

[Scorel?) — 6] = | (1 = B)(m) — 6)) + B - o)

)

(22)
< (1=0)[m{) — ¢ + B [vl) — 6] (22))
Because \vébg| < 1and \¢£b2,| < M, define C := 1 + M for later use.

A.1.3 PROBABILITY RELAXATION
We upper-bound the deviation probability:
Pr(|Score”) — ¢{")| > ¢). (23)

When ¢ > 3C, inequality equation[22] implies

) g0 > = Y
Hence
Pi(|Score(?) — 6(1)] > ) < Paf|m{) - 6%)] = 555 (25)

A.1.4 CONCENTRATION OF MOM ESTIMATOR

According to the MoM concentration bound (Lugosi & Mendelson, [2019)), if the bucket (group) size
is at least ng, then for any ¢ > 0,

Pr{|m") — 60)| > 1) < 2exp(—335). (26)
Plugging t = ﬂ e into equat1onand using equation [25|yields
2
(|Score (;S(b)\ >e) < 2ex ( M) (27)
A.1.5 FINAL RELAXATION
If e > 23C then (¢ — BC)* > % /4 and (1 — B)? < 1, s0
Pr(|Score b _ (b)\ >e) < 2exp( g%}j) (28)

e>28(1+ M).

Thus, ROSE enjoys a sub-Gaussian tail (up to a constant factor), completing the proof. Equa-
tion equation [28| establishes a sub-Gaussian tail

PI(|Score —¢| > 5) < 2exp< gjovfz)

Discussion. The MoM mechanism counteracts heavy-tailed noise, while the outlier-aware term
Ve, SUppresses extreme gradients, yielding robustness even when adversarial or extreme samples
are present. The guarantees rely only on inter-bucket independence and thus extend naturally to
multi-GPU or multi-node distributed settings. The error—probability relation also couples the bucket
size ng with any desired confidence level, allowing practitioners to minimize sampling—and hence
search cost—while meeting accuracy targets. Finally, the coefficient 5 acts as a design knob between
statistical reliability and outlier penalization; the theory requires € > 25(1 + M), so exponentially
decaying f3 or rescaling gains (reducing M) keeps evaluations within the admissible region, trans-
forming heuristic “ tuning” into a quantitatively grounded procedure.Although we conduct the
search with only 1k/0.5k labeled samples on CIFAR-10, our theoretical guarantees concern the es-
timation sample size used by ROSE (i.e., the number of independent evaluations per MoM bucket),
rather than the dataset size itself. By increasing the number of permutations, data augmentations,
and resamplings, we effectively enlarge ng. With a small 5 and bounded gains (small M), the
sub-Gaussian tail bound still applies—albeit with a looser constant— hence our small-data search
remains consistent with the theory.
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Figure 3: Grad-CAM visualizations comparing models with and without ECA under clean and
adversarial inputs.

A.2 VISUALIZATION OF ECA MODULE’S EFFECT

To examine how the ECA (Efficient Channel Attention) module affects robustness and interpretabil-
ity, we visualize class activation maps (CAMs) using Grad-CAM (Selvaraju et al., 2019) under both
clean and adversarial inputs. We use the last convolutional block for Grad-CAM, and normalize
each CAM to [0, 1] (per image) before overlay. Adversarial CAMs are generated with untargeted
PGD-20 under /., budget e = 8/255 (step size 2/255, random starts). Figure 3| shows a grid of
five representative CIFAR-10 samples and their corresponding CAMs, using the same inputs across
models for a fair comparison.

* Column 1: Original image with ground-truth label.
* Columns 2-3 (with ECA): CAMs under clean and adversarial inputs.
¢ Columns 4-5 (w/o ECA): CAMs for the same architecture without ECA.

We observe that models with ECA tend to produce more focused, class-consistent activation maps.
For instance, in the frog example (row 3), clean and adversarial CAMSs remain centered on the object
when ECA is enabled, whereas the w/o-ECA counterpart exhibits a pronounced shift that coincides
with a misclassification to “dog.” In the cat example (row 4), the ECA model preserves attention over
the cat body, while the w/o-ECA variant misclassifies it as “ship” and shifts attention to background.
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Table 6: CIFAR-10 performance under different (A1, \y) for asymmetric IQR thresholds. Best is
bold, second best is underlined. Attacks follow Sec. @

A1 A Clean FGSM  PGD?** PGD!%

1.5 12 84.69% 58.41% 50.45% 50.07%
1.5 1.5 8545% 59.55% 52.18% 51.73%
1.2 20 86.56% 60.44% 52.62% 52.24%
20 15 8505% 57.74% 49.97% 49.61%

Table 7: CIFAR-10 performance under different 8 values. Best is bold. Attacks follow Sec.

B Clean FGSM  PGD2?0 PGD!%

0.2 8506% 58.68% 50.54%  50.20%
03 86.56% 60.44% 52.62% 52.24%
04 8549% 59.63% 52.22% 51.67%
0.5 84.83% 58.48% 50.99% 50.47%

Similar patterns appear in the horse sample (row 5), suggesting improved stability of attention under
perturbations.

Overall, these qualitative results indicate that ECA can promote both adversarial robustness and
interpretability by enforcing more discriminative and stable attention over semantically meaningful
regions.

A.3 HYPERPARAMETER SETTINGS AND SEARCH DETAILS

To ensure fair comparison and reproducibility, we follow standard settings widely adopted in robust
NAS for optimization and adversarial attacks. Unless otherwise noted, all experiments use:

* Optimizer: SGD with momentum 0.9, initial learning rate 0.025, cosine annealing;

» Weight decay: 3 x 107%;

* Search epochs: 50;

* Adversarial training: PGD-7 with step size 2/255 and e = 8/255 (untargeted, random
starts; evaluation protocol in Sec. [.2)).

We only tune the two hyperparameters introduced by the ROSE module:

* (3: trade-off coefficient between the median-of-means (steady contribution) and the IQR-

based outlier score (occasional indispensability);

* A = (A1, A2): asymmetric IQR scale factors for upper/lower fences, used to detect sig-
nificant outliers in clean/adv gains, respectively, with

T =Qs+XMIQR, 71 =@Q;— XIQR.
We conduct a lightweight grid search over:

« 3€{0.2,0.3, 04, 0.5};
e (A1, M) € {1.2, 1.5, 2.0} x {1.2, 1.5, 2.0}.

Table@ summarizes CIFAR-10 results under different (A1, A2) choices. The best-performing setting
is (\1=1.2, A2=2.0), which yields strong clean accuracy and adversarial robustness.

A.4 CELL VISUALIZATION OF THE FINAL ARCHITECTURE

To enhance reproducibility and provide architectural insights, we visualize the three cell types dis-
covered by RDNAS on CIFAR-10: the Normal cell, the Reduction cell, and the Robust cell. Each
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cell is a directed acyclic graph in which nodes denote intermediate feature maps and edges denote
selected operations. Inputs c;_o and ¢, are the outputs of the two preceding cells, and ¢y, is the
current cell’s output. The final genotype is obtained from the discretized architecture at the end of
search.

* Normal cell. Prioritizes expressive operations (e.g., sepconv—-3x3, sepconv-5x5),
forming deeper computation paths while maintaining gradient flow with occasional
skipconnect.

* Reduction cell. Responsible for spatial downsampling, often combining pooling (e.g.,
maxpool-3x3) with separable convolutions to expand the receptive field efficiently.

* Robust cell. Tends to favor smoother or more redundant topologies (e.g., dilconv-5x5,
skipconnect), which are associated with improved stability under perturbations.

Together, the three cells emphasize complementary goals—expressiveness (Normal), efficiency (Re-
duction), and stability (Robust)—which helps explain the observed balance between clean accuracy
and adversarial robustness.

A.5 FULL-SCALE VISUALIZATION OF PRIMITIVE TRENDS

To provide a comprehensive view of search dynamics, we visualize the high-resolution trigger trends
of each primitive in both the Normal and Robust cells across 50 search epochs. While the main
paper provides compact summaries for space, the figures below reveal finer-grained patterns and
fluctuations. For clarity, “exception triggers” (method-specific events such as IQR outliers) are
counted per epoch; see Sec. [3.4]for the formal definition.

We observe that primitives such as sepconv—-3x3/5x5 and dilconv-5x5 are offen among the
most frequently triggered in both cells, suggesting their importance for robust architecture forma-
tion. In contrast, skipconnect and pooling operations (e.g., avgpool-3x3, maxpool-3x3)
are triggered less frequently, indicating a lower tendency to be prioritized in our robustness-aware
search space.

The temporal curves also exhibit periodic rises and falls, implying that the search revisits and re-
assesses operator importance over time rather than converging prematurely. These detailed trends
support the effectiveness of our ROSE-based exception mechanism in tracking meaningful shifts in
primitive utility.

Table 8: Attention module comparison on CIFAR-10 (%, ¢, € = 8/255, PGD step size 2/255).
Single run per setting; best in each column is bold.

Module Params (M) Clean FGSM PGD?° PGD!%° APGDcg
CBAM (reduction=16, k=7) 42 84.62 59.72 52.38 51.99 51.73
ECAM (k. = 3, ks = 5) 4.5 8534  59.92 52.57 52.17 51.95
ECA (k = 3) 4.4 86.56 60.44 52.62 52.24 52.05

A.6 ATTENTION MODULE SELECTION

To assess how the fusion attention choice shapes both the searched architecture and robustness,
we evaluate three candidates—CBAM (reduction= 16, k=7) (Woo et al., 2018), ECAM (k.=3,
ks=5) (W et al.,[2025)), and ECA (k=3) (Wang et al.l 2020; Zhang et al., 2025)—by replacing the
attention module in the search space and re-running the full NAS pipeline for each variant. Apart
from the attention module, all factors are held fixed: the rest of the primitives, random seeds and
splits, search/training budgets, and optimization hyperparameters (including 7-step PGD adversarial
training with step size 2/255, e=8/255).

As reported in Table [§] under the “re-search + retrain” setting, ECA yields the best or tied-best
performance across all metrics. ECAM (a spatially-extended ECA) is close under strong attacks but
slightly behind overall; CBAM drops further under stronger attacks. Because the resulting models
have nearly identical parameter counts, these gains are unlikely to stem from model size, pointing
instead to how attention design shapes the searched topology and robustness-oriented inductive bias.
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Table 9: Robust accuracy (%) under L., PGD with varying budgets. Default & = ¢/4, restarts
T =0.

€ a T r RDNAS(Ours) LRNAS RACL AdvRush
8/255 2/255 20 5 52.62 50.20 51.89 52.29
6/255 1.5/255 20 5 62.84 56.05 61.94 62.09
4/255 1/255 20 5 72.11 66.45 71.33 71.94
3/255 0.75/255 30 5 76.08 71.05 75.33 75.49
2/255 0.5/255 40 5 79.91 75.12 79.87 79.70
1/255 0.25/255 50 5 83.34 79.29 82.24 83.14

Why does ECA lead the search? We believe three factors contribute: (1) No channel bottle-
neck: ECA’s local 1D channel convolution avoids MLP reduction, preserving fine-grained discrim-
inative information that is easily lost under adversarial training; (2) Local channel neighborhoods:
small-kernel cross-channel interactions appear more stable to perturbation noise, reducing variance
in Shapley-style scoring and gradient updates during search; (3) Lightweight and optimization-
friendly: with minimal parameters and a short optimization path, ECA couples more benignly with
adversarial losses, whereas spatial branches and strong reduction (CBAM/ECAM) add compute and
can aggravate optimization instability without consistent robustness gains.

A.7 ROBUSTNESS ACROSS PGD BUDGETS

To examine how robustness evolves with the strength of the adversary, we sweep the perturbation
budget e for untargeted L., PGD on CIFAR-10 and evaluate all models under a fixed, transparent
protocol:

* Attack setup. For each € € {1,2,3,4,6,8}/255 we use step size & = €/4, r = 5 random
restarts with uniform initialization in the /., ball, and 7" PGD iterations. To avoid under-
optimized attacks at small budgets, 7" is increased as e decreases (Table [9). No attack
parameter is tuned per model.

* Evaluation. Robust accuracy is measured on the full test set; images are clipped to [0, 1]
after each step. The same settings are applied to all compared methods.

Results and takeaways. Table[J|reports the robust accuracy grid. As expected, accuracy decreases
monotonically as e grows. Across the full range of budgets, RDNAS consistently matches or exceeds
baselines, with the largest margins appearing at the higher budgets (e.g., ¢ = 8/255). At moderate
budgets (e € [3,6]/255), RDNAS preserves a comfortable robustness headroom while maintaining
competitive clean accuracy (see main text), indicating that its dual-branch design and ECA fusion
do not rely on a narrow operating point.

All runs use identical preprocessing, evaluation code, and random seeds across models. We follow
the common choice « = ¢/4 and keep restarts fixed (r = 5) to balance attack strength and runtime.
This grid can serve as a drop-in stress test for future methods to report budget sensitivity under a
standardized PGD protocol.
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(a) Normal cell discovered by RDNAS on CIFAR-10.
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(b) Reduction cell discovered by RDNAS on CIFAR-10.
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(c) Robust cell discovered by RDNAS on CIFAR-10.

Figure 4: Cells discovered by RDNAS on CIFAR-10. From top to bottom: Normal, Reduction, and Robust
cells.
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