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ABSTRACT

Current medical image segmentation methods exhibit significant limited robust-
ness in optical coherence tomography (OCT) images, primarily attributable to
incomplete representation of organ structures and the illumination heterogene-
ity during image acquisition. To this end, we propose an efficient approach for
extracting complete structure and fine-grained details of OCT images, the Spatial-
Frequency Aggregation Kolmogorov-Arnold Network (SFA-KAN). Specifically,
our method introduces the Spatial-Frequency Aggregation (SFA) module, which
operates in the latent space of a convolutional encoder-decoder architecture. This
module hierarchically aggregates features from both the spatial and frequency do-
mains. For spatial-domain feature extraction, we propose the Spatial-Shift KAN
(S2KA) block, which employs width and height directions channel-mixing KAN
linear layers combined with spatial-shift operations. This design facilitates patch-
wise communication and captures long-distance multi-directional dependencies
across the entire image within a single computational pass. For frequency-domain
feature extraction, we introduce the Spatial-Shift Frequency Transform (S2FT)
block, which employs the same spatial operations as the S2KA block followed by
multi-scale fast Fourier transform to isolate clinically-relevant frequency compo-
nents, enhancing segmentation of anatomically diverse structures. Subsequently,
the features from these two different domains are channel-wise concatenated and
aggregated via cross attention, enabling the model to reconstruct high-frequency
details while preserving global structural integrity. Experiments conducted on two
privately collected OCT image datasets employing pixel-based metrics and clini-
cal metrics demonstrated that SFA-KAN achieves state-of-the-art performance for
OCT image segmentation. The code will be made publicly available upon accep-
tance of this paper.

1 INTRODUCTION

Optical Coherence Tomography (OCT) produces cross-sectional images of both the anterior and
posterior segments of the eyes, and the accurate quantitative analysis of universal segmentation of
OCT images is crucial for medical research and clinical diagnosis (Qian et al., 2024; Li et al., 2024).
However, existing methods for OCT segmentation fail to effectively handle the incomplete repre-
sentation of organ structures and the illumination heterogeneity during image acquisition, primarily
due to the significant variability in imaging conditions, which limits their robustness capability, as
shown in Fig. 1.

This paper introduces SFA-KAN, a spatial-frequency aggregation Kolmogorov-Arnold network.
While maintaining the encoder-decoder architecture, we innovate by integrating the Spatial-
Frequency Aggregation (SFA) module at the bottleneck layer. This module comprises two com-
ponents: the Spatial-Shift KAN Attention (S2KA) block and the Spatial-Shift Frequency Transform
(S2FT) block. The architecture incorporates OCT-specific inductive biases, enhancing robustness
against speckle noise and attenuation artifacts.

Our key innovations are:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Motivation: stable and accurate OCT segmentation networks capable of inferring com-
plete structures are significant for ophthalmic diagnosis. (a) The illumination heterogeneity of OCT
datasets. (b) The incomplete representation of organ structures.

• We propose the S2KA block, which integrates cyclic width and height directions channel-
shifting operations with KAN-linearized projections, enabling bidirectional information
flow across multiple spatial directions within a single computational pass and overcoming
the limitation of incomplete contextual aggregation in conventional methods.

• We propose the S2FT block, which employs identical spatial-shifting operations followed
by multi-scale FFT with adaptive band selectors, to adaptively isolate clinically relevant
frequency components and resolve spectral noise and contrast heterogeneity.

• We conduct extensive experiments on two custom-built OCT datasets, which demonstrate
our method surpassed the existing methods fully verifying the efficiency of our method.

2 RELATED WORKS

Prior works, such as TransUNet (Chen et al., 2024), Swin-UNet (Cao et al., 2022), and UNETR
(Hatamizadeh et al., 2022), integrate UNet Ronneberger et al. (2015) with Transformer-based ar-
chitectures to mitigate the loss of feature representations associated with target structures, which
leads to unsmooth object boundaries and compromises accurate identification in OCT images (Wang
et al., 2021). The fine segmentation and the structural reasoning of the anterior segment are diffi-
cult to achieve simultaneously using Transformer-based methods, not only due to the insufficient
multi-scale feature extraction but also because of the heterogeneity caused by data distribution dif-
ferences in the images. The introduction of transformers has proven effective in reasoning with
incomplete imaging data but they neglect the constraints of computational resources in real medical
settings. While the state-of-the-art (SOTA) transformer-based medical segmentation model ZigRiR
Chen et al. (2025) introduces linear complexity modules for long-distance modeling and signifi-
cantly enhance computational efficiency, the challenge of substantial intra-class heterogeneity in the
data remains unaddressed.

Structured state-space sequence models (SSMs) have demonstrated high efficiency and lightweight
performance in long-sequence modeling (Gu & Dao, 2023). Subsequently, VM-UNet Zhang et al.
(2024) integrates the visual state-space sequence models into UNet architectures and reduces param-
eters while maintaining performance comparable to Transformer. However, these models are limited
by the linear mapping of SSM equations and lack the capability for nonlinear mapping, a complex
nonlinear pattern commonly observed in medical segmentation tasks (Yu et al., 2021), resulting in
false-positive issues in segmentation tasks (Wang et al., 2025).

To address the significant heterogeneity across diverse image acquisition scenarios, a more robust
capability for nonlinear modeling is required. Therefore, approaches such as UNeXt (Valanarasu
& Patel, 2022), Rolling-UNet Liu et al. (2024b) and DPM-Net Wang et al. (2024) combine MLPs
with UNet architectures to develop lightweight models that mitigate these challenges. Rolling-UNet
and DPM-Net employ distinct spatial transformation strategies on the feature maps extracted by
MLPs within the UNeXt framework, effectively capturing long-range dependencies across multi-
ple directions, thereby achieving enhanced performance. The core mechanism of these MLP-based
medical segmentation methods is rooted in the MLP-Mixer (Tolstikhin et al., 2021), which incorpo-
rates token-mixing MLPs, thereby maintaining robust global modeling capabilities while effectively
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reducing computational overhead. However, the global receptive field and spatially-specific archi-
tecture limit the generalization capability.

MLPs, particularly when integrated with spatial-shift operations (Wu et al., 2018; Chen et al., 2019),
such as S2-MLP (Yu et al., 2022), significantly improve the multi-domain generalization capability
of models. Consisting solely of channel-mixing MLP layers without additional token-mixing MLPs,
the model is endowed with a localized receptive field, enhancing spatial adaptability and further mit-
igating model complexity. The Kolmogorov-Arnold Network (KAN) Liu et al. (2024c); Jiang et al.
(2025) has emerged as an alternative to MLP-based networks, utilizing learnable activation func-
tions and exhibiting faster convergence to low training loss, all while requiring fewer parameters.
This approach demonstrates superior precision and interpretability, particularly in the context of
addressing intricate nonlinear relationships. The SOTA KAN-based medical segmentation model
MM-UKAN++ (Zhang et al., 2025), along with other UKAN variants (Li et al., 2025), incorporates
a multidimensional attention mechanism to weight features from frequency, channel, and spatial per-
spectives, and has demonstrated superior generalization performance. Moreover, MADGNet Nam
et al. (2024) and Y-Net Farshad et al. (2022) further validate that the multi-scale frequency-domain
attention mechanisms can effectively capture boundary features and enhance the delineation of tissue
contours and anatomical structures, particularly in scenarios requiring fine-grained detail resolution.

Inspired by these works, we propose a novel dual-domain feature aggregation framework designed
specifically for high-precision segmentation in clinical ophthalmic imaging.

3 METHOD

3.1 OVERVIEW

SFA-KAN is illustrated in Fig. 2, which is an encoder-decoder architecture with the SFA module
in bottleneck. The SFA module incorporates two core dual-domain feature extraction blocks: the
S2KA block and the S2FT block. These features are then concatenated along the channel dimension
and aggregated using a cross-attention Liu et al. (2025) mechanism to capture complementary infor-
mation from both domains. Each encoder block downsamples using max-pooling, and each decoder
block up-samples using interpolation. The number of channels across each block is denoted as C1
to C5. Via the integration of these advanced modules, SFA-KAN substantially enhances robustness
and the structural inference capability of OCT structures compared to prior approaches.

Figure 2: The overview of SFA-KAN, which aggregates dual-domain features via cross-attention in
the SFA module. The S2KA and S2FT blocks extract spatial and frequency feature maps, respec-
tively, via KAN Linear and FFT blocks after shift operations in diverse directions.

3.2 S2KA BLOCK

As shown in part (a) of Fig. 3, we introduce the S2KA Block based on KAN. The input features are
duplicated into two copies, which undergo shift1 and shift2 operations, respectively. Given the input
feature matrix X ∈ RB×C×H×W with spatial resolution H ×W , batch size B and channel number C,
Xc denotes the c-th channel of X(0 ≤ c < C). XW

c and XH
c denote the cyclic shift operator along
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the width and height dimensions, respectively. The compound transformations for the two shifted
outputs can be formally expressed as:

Xshift1 =
{

XH
c (XW

c (Xc)) | Xc ∈ X
}C−1

c=0 (1)

Xshift2 =
{

XH
c (XW

c (Xc)) | Xc ∈ X
}C−1

c=0 (2)

where the component operations are:

XW
c (X)(h,w) = X(h,(w− c) mod W ) (3)

XH
c (X)(h,w) = X((h− c) mod H,w) (4)

where h ∈ [0,H) and w ∈ [0,W ). To preserve structural integrity, the displaced regions are compen-
sated by cropping and geometrically registering corresponding sections from neighboring feature
maps.

After applying the shift operations in both width and height directions, different channels acquire
distinct spatial features. The two feature tensors are then fed into KAN Linear for feature transfor-
mation, and the outputs are concatenated along the channel dimension. These shifting operations
are parameter-free and enable communication between adjacent patches, making long-range contex-
tual interaction feasible. Unlike S2MLP, which adopts unidirectional spatial shifts, the S2KA block
introduces diagonal spatial shifts to capture cross-directional dependencies.

In KAN linear layers, instead of learning weights and biases with predefined activation functions, the
activation functions themselves are learnable, utilizing gridded basis functions along with trainable
scaling factors (Koenig et al., 2024). As shown in part (b) of Fig. 3, a KAN consisting of K layers
can be viewed as the interaction between transformation matrices W and activation functions σ .
This process can be formulated as:

KAN(X) = (ΦK−1 ◦σ ◦ · · · ◦Φ1 ◦σ ◦Φ0)X (5)

where Φi denotes the i-th layer of the network and "◦" represents function composition. Each layer
has nin input and nout output dimensions, and Φ consists of learnable activation functions ϕ , which
is defined as:

Φ = {ϕq,p}, p = 1,2, . . . ,nin, q = 1,2, . . . ,nout (6)

Figure 3: The architecture of S2KA block. (a) Block structure. (b) KAN Layer composition.

The computation from the k-th to the (k+1)-th layer in the KAN can be represented in matrix form
as:

4
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Φk =


ϕk,1,1(·) ϕk,1,2(·) · · · ϕk,1,nk(·)
ϕk,2,1(·) ϕk,2,2(·) · · · ϕk,2,nk(·)

...
...

. . .
...

ϕk,nk+1,1(·) ϕk,nk+1,2(·) · · · ϕk,nk+1,nk(·)

 (7)

where ϕk,p,q(·) denotes the learnable activation function at the position specified by p and q within
the k-th layer.

3.3 S2FT BLOCK

As shown in Fig. 4, the input feature tensor X ∈RB×C×H×W is first duplicated into two copies, which
undergo shift1 and shift2 operations, respectively. Subsequently, we introduce a lightweight Fast
Fourier Transform (FFT) module to exploit multi-scale frequency-domain information for feature
enhancement, comprising multi-scale frequency extraction and dynamic band selection. The two
outputs are upsampled then channel-wise concatenated.

Figure 4: The architecture of S2FT block.

We process the input feature matrix X across S = {s1,s2, . . . ,sk} scales to capture frequency com-
ponents at varying spatial resolution. Specifically, for each scale sk: (1) Spatial downsampling
via average pooling with kernel size sk reduces the feature size to H/sk ×W/sk, mitigating high-
frequency aliasing; (2) The 2D orthogonal fast Fourier transform converts the downsampled features
into complex-valued frequency-domain representations. The processed features are then passed to a
dynamic band selector module to generate scale-specific parameters to adjust amplitude and phase.
An adaptive average pooling reduces spatial dimensions to 1× 1, capturing channel-wise global
statistics and a two-layer convolutional bottleneck produces gating parameters {∆A,∆ϕ}, where
∆A ∈RB×C/2×1×1 modulates amplitude via A′ = A · (∆A+1), and ∆ϕ ∈RB×C/2×1×1 perturbs phase
via ϕ ′ = ϕ + 0.1 ·∆ϕ . Phase perturbations are scaled by 0.1 to maintain stability during learning
while allowing gradual phase adjustments. This mechanism avoids manual frequency band tuning,
allowing the block to learn optimal frequency transformations end-to-end. The Inverse Fast Fourier
Transform (IFFT) is performed by combining the modulated amplitude and phase as:

X ′ = IFFT(A⊙ exp( j ·ϕ)) (8)

where j represents imaginary unit and ⊙ represents element-wise multiplication.

4 EXPERIMENTS

4.1 DATASETS AND IMPLEMENTATION

Currently, publicly available anterior segment OCT datasets remain scarce. Existing open anterior
segment datasets are primarily designed for segmenting the cornea and iris under conditions of
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Table 1: Overview of OCT datasets.

Datasets Pictures Resolution Augmented

Dataset 1 266 2135×1468 -

Dataset 2 1330 2135×1468 Yes

complete imaging. However, the core motivation of our study lies in addressing imaging defects
encountered in practical clinical scans-particularly structural deficiencies of the lens and cornea,
as well as data heterogeneity induced by varying scanning conditions. Consequently, current public
anterior segment OCT datasets fail to validate the performance of algorithms in these critical aspects.

Furthermore, public posterior segment OCT datasets (i.e., retinal OCT images) are fundamentally
distinct from the problem delineated in the motivation section (illustrated in Fig. 1), thus falling out-
side the scope of our research objectives. Additionally, other vascular and fundus-related datasets
categorized as optical coherence tomography angiography (OCTA) images do not constitute con-
ventional OCT imaging in the medical field. They represent distinct ophthalmic imaging modalities
that are clinically parallel to OCT; therefore, validating our method using posterior segment data
lacks methodological rigor.

To validate the effectiveness of our method, we utilize two anterior segment OCT datasets that we
collected as shown in Table 1. Dataset 1 was collected following the identical protocol described
in Reference Sun et al. (2024), using the Cirrus HD-OCT 5000 system. The key parameters are
as follows: Scan range: 9.0 mm (lateral) × 2.0 mm (depth), designed to ensure comprehensive
coverage from the corneal epithelium to the iris root. Scan speed: 27,000 A-scans per second (Cirrus
5000). Beam Scanning Geometry Correction was activated to compensate for artifacts induced by
corneal refraction.

We meticulously selected from clinical data of 50 healthy patients who underwent ophthalmic ex-
aminations at our collaborating hospital, with 100 images per patient. Specifically, the dataset was
curated from 5,000 images featuring diverse imaging characteristics, ensuring its representativeness
and comprehensive reflection of various practical clinical scenarios. All images were annotated by
five ophthalmologists with over three years of clinical experience from the collaborating ophthalmic
hospital using the LabelMe tool. Given the labor-intensive nature of manual annotation, a total of
266 representative OCT images (resolution: 2135× 1468 pixels) were annotated. Dataset 2 con-
tains 1,330 OCT images derived by augmenting Dataset 1 through random 15-degree rotations and
horizontal flipping, aimed at further enhance dataset complexity. This augmentation strategy aligns
with real-world clinical conditions, enabling robust validation of the generalization ability of the
proposed method.

We resized all the images to 256×256 and, in accordance with prior research (Guo et al., 2021; Liu
et al., 2022), randomly partitioned the datasets into training, validation and testing sets in a 7 : 1 : 2
ratio. SFA-KAN is implemented using the Pytorch framework (Paszke et al., 2019), with channel
numbers set to C1 = 32, C2 = 64, C3 = 128, C4 = 256 and C5 = 512. The AdamW optimizer is
used with a learning rate of 1e− 3 and the CosineAnnealingLR is employed as the scheduler with
a minimum learning rate of 1e−5 and a maximum of 50 iterations. We train SFA-KAN for a total
of 200 epochs with a batch size of 16. All experiments are performed on a single NVIDIA TITAN
RTX GPU.

To evaluate our method, we employ pixel-based metrics including Intersection over Union (IoU),
Dice Similarity Coefficient (DSC), Accuracy (Acc), and Average Symmetric Surface Distance
(ASSD), and quantitative clinical metrics (Mean Absolute Error, MAE) for clinical measurements
comprising Central Corneal Thickness (CCT), mean Iris Thickness (IT), and Lens Thickness (LT).
All experiments were conducted with five repeated trials, with results reported as mean ś standard
deviation. The calculation formulas for CCT, IT, and LT are as follows:

CCT = r×|ytop − ybot| (9)
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Table 2: Comparison results on Dataset 1.

Networks mIoU (%) DSC (%) Acc (%) ASSD (µm) CCT (µm) IT (µm) LT (µm)

UNet 79.30±0.61 86.69±0.45 96.28±0.21 50.99±2.55 55.84±2.80 12.01±0.60 228.8±25.0

TransUNet 78.73±0.83 86.35±0.62 95.04±0.30 46.28±3.31 33.96±1.70 20.20±1.01 199.6±15.0

S2-MLP 80.62±0.49 87.50±0.31 96.50±0.15 43.29±2.16 28.86±1.44 15.72±0.79 198.8±10.0

UNeXt 75.68±1.20 85.75±1.03 96.01±0.37 46.66±2.83 33.96±1.70 15.47±2.27 177.6±18.9

DPM-Net 79.90±0.65 87.03±0.57 95.49±0.21 48.71±2.44 48.67±2.43 11.72±0.59 142.8±12.1

Rolling-UNet 81.48±0.40 88.03±0.33 96.61±0.12 42.80±2.14 33.58±1.68 13.16±0.66 128.0±6.2

UKAN 74.25±1.06 82.91±0.84 95.78±0.28 55.43±2.77 34.34±1.72 30.14±1.51 173.2±8.7

MM-UKAN++ 72.79±1.10 82.24±0.90 94.97±0.46 51.47±3.17 36.98±1.85 33.60±1.68 138.0±6.9

Zig-RiR 75.29±0.92 83.97±0.62 95.26±0.34 57.27±2.86 60.37±3.02 21.44±1.07 151.6±7.6

MADGNet 78.92±0.51 86.45±0.41 95.95±0.20 47.30±2.36 27.73±1.39 14.31±0.72 151.2±7.6

Y-Net 81.94±0.45 87.47±0.93 96.76±0.82 40.61±2.35 34.33±0.96 13.60±1.14 207.6±10.1

SFA-KAN (Ours) 84.02±0.27 89.61±0.18 97.51±0.08 30.11±1.63 23.01±1.15 8.54±0.56 104.4±6.3

LT = r× [y′top − y′bot] (10)

where the vertical distance between the corneal apex ytop and the corresponding lowermost point
ybot defines CCT for the cornea; for LT, y′top and y′bot represent the topmost and bottommost surfaces
of the lens, respectively. r denotes the pixel-to-micrometer conversion factor (1pixel = 20 µm).

IT = r× 1
N

W−1

∑
x=0

|M(x,y′top)−M(x,y′bot)| (11)

IT was determined by the mean vertical dimension across all columns x in the binary iris mask M,
where N denotes the number of valid columns containing iris tissue.

4.2 COMPARISON AND ANALYSIS

4.2.1 ANALYSIS ON FINE-GRAINED DELINEATION

As shown in Table 2, SFA-KAN achieves SOTA performance across all evaluation metrics on
Dataset 1. Specifically, building upon the long-range modeling capability brought by two different
shift operations and the global feature extraction of KAN, SFA-KAN achieves a DSC of 89.61%, an
mIoU of 84.02%, and an Acc of 97.51%. This represents improvements of 1.58% in DSC, 2.54%
in mIoU, and 0.90% in Acc compared to the second-best method, Rolling-UNet. The SFA mod-
ule effectively integrates fine-grained details from complementary spatial and frequency domains,
enabling more precise boundary delineation. This capability translates to a 12.69µm reduction in
ASSD compared to Rolling-UNet. Furthermore, SFA-KAN achieves substantially lower errors in
key measurements than other recent SOTA methods, specifically: 23.01µm (CCT error), 8.54µm
(IT error), and 104.4µm (LT error). Compared to recent Transformer-based and KAN-based meth-
ods such as Zig-RiR and MM-UKAN++, and especially compared to MADGNet and Y-Net, which
also incorporate multi-scale frequency domain features, SFA-KAN demonstrates superior perfor-
mance in terms of pixel-level errors.

4.2.2 ANALYSIS ON HETEROGENEITY-ROBUST

As shown in Table 3, SFA-KAN achieves SOTA performance across all metrics on Dataset 2, which
consists of OCT images exhibiting more severe illumination non-uniformity and structural vari-
ations. Compared with recent Transformer-based, KAN-based, and frequency-domain integrated
methods, SFA-KAN exhibits significantly less performance degradation, thereby highlighting its ro-
bust generalization capability and outperforming the second-best method, Rolling-UNet, by 1.93%
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Table 3: Comparison results on Dataset 2.

Networks mIoU (%) DSC (%) Acc (%) ASSD (µm) CCT (µm) IT (µm) LT (µm)

UNet 62.88±0.60 67.88±0.55 90.71±0.30 104.51±5.20 63.81±3.10 29.09±1.45 219.7±10.9

TransUNet 60.10±0.85 69.11±0.70 90.87±0.40 112.64±5.63 42.03±2.10 43.35±2.17 195.8±9.7

S2-MLP 59.86±0.50 69.46±0.45 91.90±0.25 104.57±5.23 53.28±2.66 36.02±1.80 169.9±8.5

UNeXt 58.04±1.20 67.80±1.00 91.99±0.35 106.18±5.31 38.56±1.93 41.71±2.59 160.7±8.0

DPM-Net 61.33±0.70 70.29±0.60 92.34±0.28 103.29±5.16 38.71±1.94 30.38±1.52 153.9±7.7

Rolling-UNet 63.82±0.45 71.90±0.40 92.43±0.24 111.59±5.58 49.66±2.48 39.53±1.98 143.8±7.2

UKAN 58.15±1.10 67.96±0.90 91.99±0.35 105.24±5.26 41.28±2.06 52.76±2.64 158.3±7.9

MM-UKAN++ 60.91±0.90 70.14±0.80 91.70±0.40 108.78±5.44 29.26±1.46 27.03±1.35 173.0±8.6

Zig-RiR 59.68±1.30 64.20±1.10 91.19±0.55 118.27±6.41 60.68±3.03 44.05±2.20 216.3±10.8

MADGNet 62.31±0.55 71.09±0.50 92.49±0.23 106.25±5.31 31.64±1.58 35.84±1.79 143.9±7.2

Y-Net 63.99±0.14 71.38±1.17 92.75±0.23 109.79±6.04 30.99±0.86 16.80±0.55 164.7±4.7

SFA-KAN (Ours) 65.75±0.30 73.54±0.25 92.85±0.18 96.04±4.80 26.90±1.35 19.75±0.99 131.9±6.6

in mIoU, 1.64% in DSC, and 0.42% in Acc. Notably, SFA-KAN demonstrated minimal degra-
dation in key clinical measurements, with increases limited to 3.89µm (CCT error), 8.52µm (IT
error), and 7.5µm (LT error). This contrasts sharply with other methods, which showed substan-
tially larger error increases (ranging from > 10 µm to > 25 µm). This outcome is attributed to the
dual-domain approach, which effectively mitigates the illumination heterogeneity challenge inherent
in OCT imaging. The qualitative segmentation results are shown in Fig. 5.

Figure 5: Qualitative comparisons on Dataset 1 and Dataset 2.

4.2.3 ANALYSIS ON COMPUTATIONAL COMPLEXITY

We perform a quantitative analysis of computational complexity (encompassing parameter count,
GFLOPs, and inference time) to substantiate the efficiency of our methods. As shown in Fig. 6,
SFA-KAN outperforms TransUNet significantly in terms of efficiency. With comparable inference
speed, it reduces the parameter count and GFLOps by 64.65% and 53.30%, respectively. Taking
the results on Dataset 1 as an example, at an acceptable complexity, our method achieves mIoU
improvements of 8.34% and 3.4% compared to lightweight segmentation models UNeXt and S2-
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MLP. When compared with KAN-incorporated counterparts UKAN and MM-UKAN++, it delivers
substantial mIoU gains of 9.77% and 11.23%, respectively. These results validate that the proposed
SFA-KAN achieves a favorable trade-off between segmentation performance and computational
efficiency.

Figure 6: Comparison results of computational complexity.

4.2.4 ABLATION RESULTS

We conduct extensive ablation experiments on Dataset 1 to demonstrate the individual contribution
of each block in the SFA module of SFA-KAN. As shown in Table 4, we used a symmetric 5-
level encoder-decoder architecture with a kernel size of 3 as the baseline. Adding the S2KA block
significantly improved pixel-level accuracy, increasing mIoU by 4.17% and DSC by 4.22%, while
reducing ASSD by 10.03µm. This validates its efficacy in global context modeling for fine-grained
segmentation. In contrast, the S2FT block optimized on clinical thickness metrics more effectively,
increasing mIoU by 3.10% and DSC by 2.59%, while reducing CCT error by 22.66µm, IT error
by 4.07µm, and LT error by 55.6µm. The full SFA-KAN architecture demonstrates synergistic
superiority: mIoU and DSC reached 83.85% and 89.52%, respectively, with CCT, IT, and LT errors
reduced by 14.08µm, 5.20µm, and 84.8µm relative to baseline. The feature visualization of ablation
results is shown in Fig. 7.

To further verify the proposed S2KA and S2FT blocks confer distinct advantages over existing
spatial- and frequency-capturing modules, comparative experiments were conducted between our
domain-specific feature extraction modules and the latest representative methods. The spatial-shift
operation enables patch-wise information interaction and captures long-range multi-directional de-
pendencies, thereby facilitating the subsequent extraction of both spatial and frequency domain
features, while the KAN layers in the S2KA block demonstrate superior performance relative to
methods with weak nonlinear expressiveness such as the Visual State Space (VSS) Liu et al. (2024a)
module and the Contrast-Driven Feature Aggregation (CDFA) Lei et al. (2025) module. Methods re-
lying on fixed local window sizes are hampered by low efficiency and prone to the loss of long-range
spatial correlations; in contrast, the KAN linear layers in the S2KA block model highly nonlinear
spatial correlations (e.g., irregular boundaries and complex textures in medical images) through
linear combinations of activation functions, leading to enhanced segmentation effectiveness. Re-
garding the S2FT block, its dynamic frequency band selection mechanismimplemented post-spatial
transformationcan discriminate target frequency domains from other components with higher preci-
sion, outperforming the static frequency band partitioning adopted by conventional modules (e.g.,
Frequency-aware Matching, FAM Bo et al. (2025)). Additionally, although the Multi-Frequency in
Multi-Scale Attention (MFMSA) Nam et al. (2024) module attains comparable pixel-level metrics
to the S2FT block, its physiological metrics are marginally lower, as the dynamic frequency band
selection of the S2FT block enables more accurate localization of segmentation boundaries.

5 CONCLUSION

In this paper, we propose a novel architecture, SFA-KAN, for addressing the challenges of illu-
mination heterogeneity and incomplete structure representation in OCT image segmentation. By
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Table 4: Ablation study on Dataset 1.

Networks mIoU (%) DSC (%) Acc (%) ASSD (µm) CCT (µm) IT (µm) LT (µm)

Baseline 78.44±0.83 84.52±0.72 95.95±0.15 51.12±3.23 48.30±2.09 16.43±0.72 209.2±10.8

Baseline + VSS 81.34±0.85 88.16±0.60 96.05±0.04 46.33±6.07 41.13±2.38 14.61±0.59 170.8±6.31

Baseline + CDFA 81.54±0.92 87.47±1.24 96.01±0.09 45.68±4.45 33.32±3.04 15.84±0.57 178.4±8.3

Baseline + S2KA 82.61±0.44 88.74±0.43 96.55±0.12 41.09±2.25 27.09±1.61 13.23±0.74 161.2±6.0

Baseline + FAM 80.27±0.92 85.53±1.13 95.71±0.08 41.51±3.66 26.03±0.32 17.41±0.88 187.2±8.4

Baseline + MFMSA 81.33±0.60 86.59±0.59 95.66±0.18 40.56±0.88 38.49±1.87 16.88±0.89 165.6±5.0

Baseline + S2FT 81.54±0.51 87.11±0.64 96.10±0.15 39.58±2.01 25.64±1.08 12.36±0.31 153.6±4.7

Baseline + SFA 83.85±0.27 89.52±0.18 97.17±0.08 32.63±1.63 23.01±1.15 11.23±0.56 124.4±6.3

Figure 7: Qualitative comparisons of ablation results on Dataset 1.

integrating the innovative S2KA block for efficient long-range spatial dependency capture and the
S2FT block for multi-scale frequency component isolation, the SFA module hierarchically aggre-
gates complementary spatial and frequency features within the latent space. The synergistic cross-
attention fusion enables reconstruction of intricate anatomical details while preserving global struc-
tural integrity. Extensive validation on two diverse anterior segment OCT datasets demonstrates that
SFA-KAN achieves SOTA performance. Quantitative evaluation using both pixel-based metrics and
clinically relevant measures confirms its superior accuracy in segmenting critical structures like the
cornea, iris, and lens under challenging acquisition variations, providing a reliable foundation for
clinical diagnosis via stable, complete organ delineation. Future work will extend SFA-KAN to 3D
medical imaging and unsupervised segmentation.

6 ETHICS STATEMENT

This retrospective clinical study involving OCT images of the anterior eye segment was approved
by the Independent Ethics Committee of a tertiary ophthalmic specialty hospital. The study strictly
adhered to the principles of the Declaration of Helsinki. Written informed consent was obtained
from all participants prior to data collection, with full disclosure of the study’s objectives and data
usage scope. All datasets were fully de-identified. The proposed SFA-KAN model is intended solely
for clinical decision support and explicitly does not replace the professional judgment of certified
ophthalmologists.
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