

000 001 SFA-KAN: SPATIAL-FREQUENCY AGGREGATION 002 KOLMOGOROV-ARNOLD NETWORK FOR OCT SEG- 003 MENTATION 004 005

006 **Anonymous authors**

007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

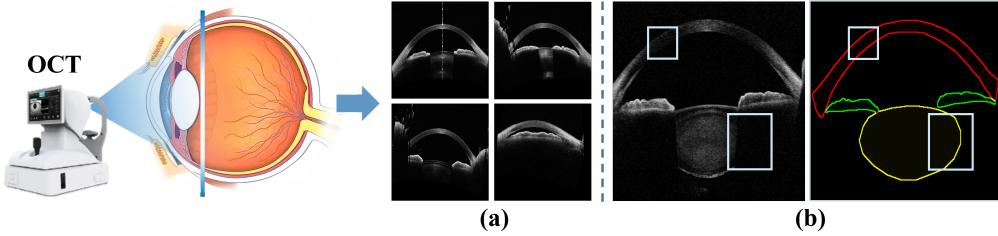
013 Current medical image segmentation methods exhibit significant limited robust-
014 ness in optical coherence tomography (OCT) images, primarily attributable to
015 incomplete representation of organ structures and the illumination heterogene-
016 ity during image acquisition. To this end, we propose an efficient approach for
017 extracting complete structure and fine-grained details of OCT images, the Spatial-
018 Frequency Aggregation Kolmogorov-Arnold Network (SFA-KAN). Specifically,
019 our method introduces the Spatial-Frequency Aggregation (SFA) module, which
020 operates in the latent space of a convolutional encoder-decoder architecture. This
021 module hierarchically aggregates features from both the spatial and frequency do-
022 mains. For spatial-domain feature extraction, we propose the Spatial-Shift KAN
023 (S2KA) block, which employs width and height directions channel-mixing KAN
024 linear layers combined with spatial-shift operations. This design facilitates patch-
025 wise communication and captures long-distance multi-directional dependencies
026 across the entire image within a single computational pass. For frequency-domain
027 feature extraction, we introduce the Spatial-Shift Frequency Transform (S2FT)
028 block, which employs the same spatial operations as the S2KA block followed by
029 multi-scale fast Fourier transform to isolate clinically-relevant frequency com-
030 ponents, enhancing segmentation of anatomically diverse structures. Subsequently,
031 the features from these two different domains are channel-wise concatenated and
032 aggregated via cross attention, enabling the model to reconstruct high-frequency
033 details while preserving global structural integrity. Experiments conducted on two
034 privately collected OCT image datasets employing pixel-based metrics and clini-
035 cal metrics demonstrated that SFA-KAN achieves state-of-the-art performance for
036 OCT image segmentation. The code will be made publicly available upon accep-
037 tance of this paper.
038
039

1 INTRODUCTION

040
041 Optical Coherence Tomography (OCT) produces cross-sectional images of both the anterior and
042 posterior segments of the eyes, and the accurate quantitative analysis of universal segmentation of
043 OCT images is crucial for medical research and clinical diagnosis (Qian et al., 2024; Li et al., 2024).
044 However, existing methods for OCT segmentation fail to effectively handle the incomplete repre-
045 sentation of organ structures and the illumination heterogeneity during image acquisition, primarily
046 due to the significant variability in imaging conditions, which limits their robustness capability, as
047 shown in Fig. 1.

048 This paper introduces SFA-KAN, a spatial-frequency aggregation Kolmogorov-Arnold network.
049 While maintaining the encoder-decoder architecture, we innovate by integrating the Spatial-
050 Frequency Aggregation (SFA) module at the bottleneck layer. This module comprises two com-
051 ponents: the Spatial-Shift KAN Attention (S2KA) block and the Spatial-Shift Frequency Transform
052 (S2FT) block. The architecture incorporates OCT-specific inductive biases, enhancing robustness
053 against speckle noise and attenuation artifacts.

Our key innovations are:

054
055
056
057
058
059
060
061
062
063

064 Figure 1: Motivation: stable and accurate OCT segmentation networks capable of inferring complete
065 structures are significant for ophthalmic diagnosis. (a) The illumination heterogeneity of OCT
066 datasets. (b) The incomplete representation of organ structures.

067
068
069
070
071
072
073
074
075
076
077

- We propose the S2KA block, which integrates cyclic width and height directions channel-shifting operations with KAN-linearized projections, enabling bidirectional information flow across multiple spatial directions within a single computational pass and overcoming the limitation of incomplete contextual aggregation in conventional methods.
- We propose the S2FT block, which employs identical spatial-shifting operations followed by multi-scale FFT with adaptive band selectors, to adaptively isolate clinically relevant frequency components and resolve spectral noise and contrast heterogeneity.
- We conduct extensive experiments on two custom-built OCT datasets, which demonstrate our method surpassed the existing methods fully verifying the efficiency of our method.

078

2 RELATED WORKS

080

081 Prior works, such as TransUNet (Chen et al., 2024), Swin-UNet (Cao et al., 2022), and UNETR
082 (Hatamizadeh et al., 2022), integrate UNet Ronneberger et al. (2015) with Transformer-based
083 architectures to mitigate the loss of feature representations associated with target structures, which
084 leads to unsmooth object boundaries and compromises accurate identification in OCT images (Wang
085 et al., 2021). The fine segmentation and the structural reasoning of the anterior segment are diffi-
086 cult to achieve simultaneously using Transformer-based methods, not only due to the insufficient
087 multi-scale feature extraction but also because of the heterogeneity caused by data distribution dif-
088 ferences in the images. The introduction of transformers has proven effective in reasoning with
089 incomplete imaging data but they neglect the constraints of computational resources in real medical
090 settings. While the state-of-the-art (SOTA) transformer-based medical segmentation model ZigRiR
091 Chen et al. (2025) introduces linear complexity modules for long-distance modeling and signifi-
092 cantly enhance computational efficiency, the challenge of substantial intra-class heterogeneity in the
093 data remains unaddressed.

094

095 Structured state-space sequence models (SSMs) have demonstrated high efficiency and lightweight
096 performance in long-sequence modeling (Gu & Dao, 2023). Subsequently, VM-UNet Zhang et al.
097 (2024) integrates the visual state-space sequence models into UNet architectures and reduces par-
098 ameters while maintaining performance comparable to Transformer. However, these models are limited
099 by the linear mapping of SSM equations and lack the capability for nonlinear mapping, a complex
nonlinear pattern commonly observed in medical segmentation tasks (Yu et al., 2021), resulting in
false-positive issues in segmentation tasks (Wang et al., 2025).

100
101
102
103
104
105
106
107

To address the significant heterogeneity across diverse image acquisition scenarios, a more robust
capability for nonlinear modeling is required. Therefore, approaches such as UNeXt (Valanarasu
& Patel, 2022), Rolling-UNet Liu et al. (2024b) and DPM-Net Wang et al. (2024) combine MLPs
with UNet architectures to develop lightweight models that mitigate these challenges. Rolling-UNet
and DPM-Net employ distinct spatial transformation strategies on the feature maps extracted by
MLPs within the UNeXt framework, effectively capturing long-range dependencies across multi-
ple directions, thereby achieving enhanced performance. The core mechanism of these MLP-based
medical segmentation methods is rooted in the MLP-Mixer (Tolstikhin et al., 2021), which incorpo-
rates token-mixing MLPs, thereby maintaining robust global modeling capabilities while effectively

108 reducing computational overhead. However, the global receptive field and spatially-specific architecture limit the generalization capability.
109
110

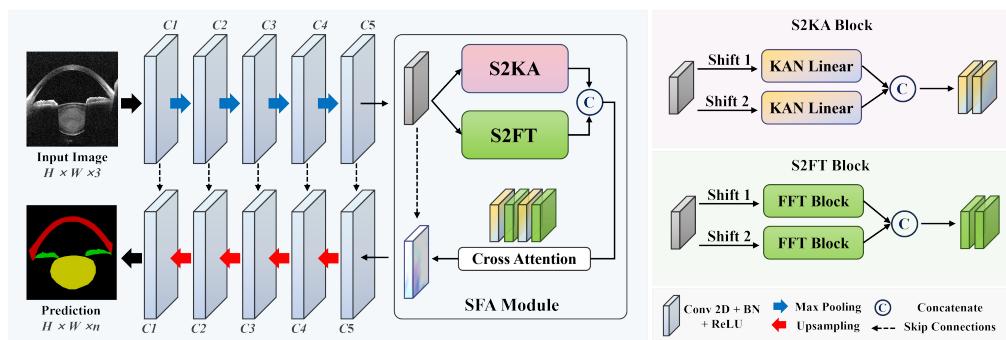
111 MLPs, particularly when integrated with spatial-shift operations (Wu et al., 2018; Chen et al., 2019),
112 such as S^2 -MLP (Yu et al., 2022), significantly improve the multi-domain generalization capability
113 of models. Consisting solely of channel-mixing MLP layers without additional token-mixing MLPs,
114 the model is endowed with a localized receptive field, enhancing spatial adaptability and further mitigating
115 model complexity. The Kolmogorov-Arnold Network (KAN) Liu et al. (2024c); Jiang et al.
116 (2025) has emerged as an alternative to MLP-based networks, utilizing learnable activation functions
117 and exhibiting faster convergence to low training loss, all while requiring fewer parameters.
118 This approach demonstrates superior precision and interpretability, particularly in the context of
119 addressing intricate nonlinear relationships. The SOTA KAN-based medical segmentation model
120 MM-UKAN++ (Zhang et al., 2025), along with other UKAN variants (Li et al., 2025), incorporates
121 a multidimensional attention mechanism to weight features from frequency, channel, and spatial
122 perspectives, and has demonstrated superior generalization performance. Moreover, MADGNet Nam
123 et al. (2024) and Y-Net Farshad et al. (2022) further validate that the multi-scale frequency-domain
124 attention mechanisms can effectively capture boundary features and enhance the delineation of tissue
125 contours and anatomical structures, particularly in scenarios requiring fine-grained detail resolution.
126
127

128 Inspired by these works, we propose a novel dual-domain feature aggregation framework designed
129 specifically for high-precision segmentation in clinical ophthalmic imaging.
130
131

132 3 METHOD

133 3.1 OVERVIEW

134 SFA-KAN is illustrated in Fig. 2, which is an encoder-decoder architecture with the SFA module
135 in bottleneck. The SFA module incorporates two core dual-domain feature extraction blocks: the
136 S2KA block and the S2FT block. These features are then concatenated along the channel dimension
137 and aggregated using a cross-attention Liu et al. (2025) mechanism to capture complementary infor-
138 mation from both domains. Each encoder block down-samples using max-pooling, and each decoder
139 block up-samples using interpolation. The number of channels across each block is denoted as C_1
140 to C_5 . Via the integration of these advanced modules, SFA-KAN substantially enhances robustness
141 and the structural inference capability of OCT structures compared to prior approaches.
142
143



152 Figure 2: The overview of SFA-KAN, which aggregates dual-domain features via cross-attention in
153 the SFA module. The S2KA and S2FT blocks extract spatial and frequency feature maps, respec-
154 tively, via KAN Linear and FFT blocks after shift operations in diverse directions.
155
156

157 3.2 S2KA BLOCK

158 As shown in part (a) of Fig. 3, we introduce the S2KA Block based on KAN. The input features are
159 duplicated into two copies, which undergo shift1 and shift2 operations, respectively. Given the input
160 feature matrix $X \in \mathbb{R}^{B \times C \times H \times W}$ with spatial resolution $H \times W$, batch size B and channel number C ,
161 X_c denotes the c -th channel of X ($0 \leq c < C$). X_c^W and X_c^H denote the cyclic shift operator along

162 the width and height dimensions, respectively. The compound transformations for the two shifted
 163 outputs can be formally expressed as:
 164

$$X_{\text{shift1}} = \{X_c^H(X_c^W(X_c)) \mid X_c \in X\}_{c=0}^{C-1} \quad (1)$$

$$X_{\text{shift2}} = \{X_c^H(X_c^W(X_c)) \mid X_c \in X\}_{c=0}^{C-1} \quad (2)$$

170 where the component operations are:
 171

$$X_c^W(X)(h, w) = X(h, (w - c) \bmod W) \quad (3)$$

$$X_c^H(X)(h, w) = X((h - c) \bmod H, w) \quad (4)$$

177 where $h \in [0, H)$ and $w \in [0, W)$. To preserve structural integrity, the displaced regions are compensated
 178 by cropping and geometrically registering corresponding sections from neighboring feature
 179 maps.
 180

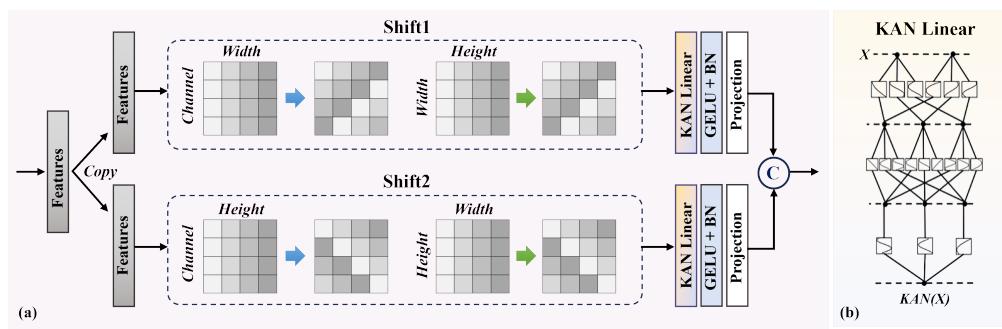
181 After applying the shift operations in both width and height directions, different channels acquire
 182 distinct spatial features. The two feature tensors are then fed into KAN Linear for feature transforma-
 183 tion, and the outputs are concatenated along the channel dimension. These shifting operations
 184 are parameter-free and enable communication between adjacent patches, making long-range context-
 185 ual interaction feasible. Unlike S2MLP, which adopts unidirectional spatial shifts, the S2KA block
 186 introduces diagonal spatial shifts to capture cross-directional dependencies.
 187

188 In KAN linear layers, instead of learning weights and biases with predefined activation functions, the
 189 activation functions themselves are learnable, utilizing gridded basis functions along with trainable
 190 scaling factors (Koenig et al., 2024). As shown in part (b) of Fig. 3, a KAN consisting of K layers
 191 can be viewed as the interaction between transformation matrices W and activation functions σ .
 192 This process can be formulated as:

$$\text{KAN}(X) = (\Phi_{K-1} \circ \sigma \circ \dots \circ \Phi_1 \circ \sigma \circ \Phi_0)X \quad (5)$$

193 where Φ_i denotes the i -th layer of the network and " \circ " represents function composition. Each layer
 194 has n_{in} input and n_{out} output dimensions, and Φ consists of learnable activation functions ϕ , which
 195 is defined as:
 196

$$\Phi = \{\phi_{q,p}\}, p = 1, 2, \dots, n_{\text{in}}, q = 1, 2, \dots, n_{\text{out}} \quad (6)$$



213 Figure 3: The architecture of S2KA block. (a) Block structure. (b) KAN Layer composition.
 214

215 The computation from the k -th to the $(k+1)$ -th layer in the KAN can be represented in matrix form
 216 as:

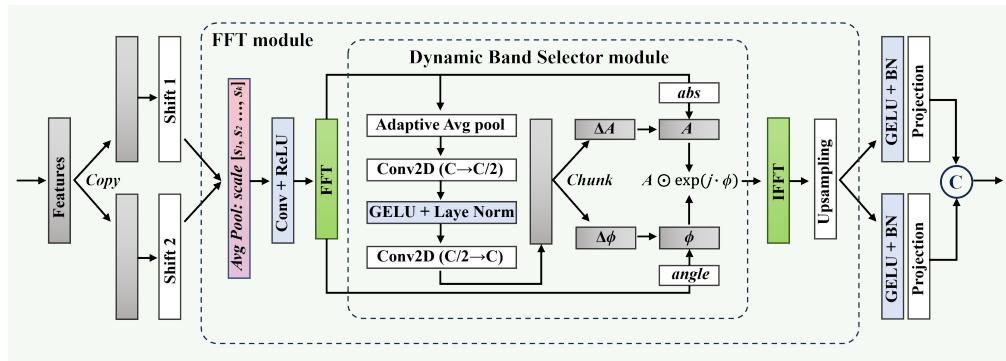
216
217
218
219
220
221

$$\Phi_k = \begin{pmatrix} \phi_{k,1,1}(\cdot) & \phi_{k,1,2}(\cdot) & \cdots & \phi_{k,1,n_k}(\cdot) \\ \phi_{k,2,1}(\cdot) & \phi_{k,2,2}(\cdot) & \cdots & \phi_{k,2,n_k}(\cdot) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{k,n_{k+1},1}(\cdot) & \phi_{k,n_{k+1},2}(\cdot) & \cdots & \phi_{k,n_{k+1},n_k}(\cdot) \end{pmatrix} \quad (7)$$

222 where $\phi_{k,p,q}(\cdot)$ denotes the learnable activation function at the position specified by p and q within
223 the k -th layer.

225 3.3 S2FT BLOCK
226

227 As shown in Fig. 4, the input feature tensor $X \in \mathbb{R}^{B \times C \times H \times W}$ is first duplicated into two copies, which
228 undergo shift1 and shift2 operations, respectively. Subsequently, we introduce a lightweight Fast
229 Fourier Transform (FFT) module to exploit multi-scale frequency-domain information for feature
230 enhancement, comprising multi-scale frequency extraction and dynamic band selection. The two
231 outputs are upsampled then channel-wise concatenated.

245 Figure 4: The architecture of S2FT block.
246

247 We process the input feature matrix X across $S = \{s_1, s_2, \dots, s_k\}$ scales to capture frequency
248 components at varying spatial resolution. Specifically, for each scale s_k : (1) Spatial downsampling
249 via average pooling with kernel size s_k reduces the feature size to $H/s_k \times W/s_k$, mitigating high-
250 frequency aliasing; (2) The 2D orthogonal fast Fourier transform converts the downsampled features
251 into complex-valued frequency-domain representations. The processed features are then passed to a
252 dynamic band selector module to generate scale-specific parameters to adjust amplitude and phase.
253 An adaptive average pooling reduces spatial dimensions to 1×1 , capturing channel-wise global
254 statistics and a two-layer convolutional bottleneck produces gating parameters $\{\Delta A, \Delta \phi\}$, where
255 $\Delta A \in \mathbb{R}^{B \times C/2 \times 1 \times 1}$ modulates amplitude via $A' = A \cdot (\Delta A + 1)$, and $\Delta \phi \in \mathbb{R}^{B \times C/2 \times 1 \times 1}$ perturbs phase
256 via $\phi' = \phi + 0.1 \cdot \Delta \phi$. Phase perturbations are scaled by 0.1 to maintain stability during learning
257 while allowing gradual phase adjustments. This mechanism avoids manual frequency band tuning,
258 allowing the block to learn optimal frequency transformations end-to-end. The Inverse Fast Fourier
259 Transform (IFFT) is performed by combining the modulated amplitude and phase as:

260
261
$$X' = \text{IFFT}(A \odot \exp(j \cdot \phi)) \quad (8)$$

262 where j represents imaginary unit and \odot represents element-wise multiplication.
263264 4 EXPERIMENTS
265266 4.1 DATASETS AND IMPLEMENTATION
267

268 Currently, publicly available anterior segment OCT datasets remain scarce. Existing open anterior
269 segment datasets are primarily designed for segmenting the cornea and iris under conditions of

270

271

272

273

274

275

276

277

278

279

complete imaging. However, the core motivation of our study lies in addressing imaging defects encountered in practical clinical scans—particularly structural deficiencies of the lens and cornea, as well as data heterogeneity induced by varying scanning conditions. Consequently, current public anterior segment OCT datasets fail to validate the performance of algorithms in these critical aspects.

Furthermore, public posterior segment OCT datasets (i.e., retinal OCT images) are fundamentally distinct from the problem delineated in the motivation section (illustrated in Fig. 1), thus falling outside the scope of our research objectives. Additionally, other vascular and fundus-related datasets categorized as optical coherence tomography angiography (OCTA) images do not constitute conventional OCT imaging in the medical field. They represent distinct ophthalmic imaging modalities that are clinically parallel to OCT; therefore, validating our method using posterior segment data lacks methodological rigor.

To validate the effectiveness of our method, we utilize two anterior segment OCT datasets that we collected as shown in Table 1. Dataset 1 was collected following the identical protocol described in Reference Sun et al. (2024), using the Cirrus HD-OCT 5000 system. The key parameters are as follows: Scan range: 9.0 mm (lateral) \times 2.0 mm (depth), designed to ensure comprehensive coverage from the corneal epithelium to the iris root. Scan speed: 27,000 A-scans per second (Cirrus 5000). Beam Scanning Geometry Correction was activated to compensate for artifacts induced by corneal refraction.

We meticulously selected from clinical data of 50 healthy patients who underwent ophthalmic examinations at our collaborating hospital, with 100 images per patient. Specifically, the dataset was curated from 5,000 images featuring diverse imaging characteristics, ensuring its representativeness and comprehensive reflection of various practical clinical scenarios. All images were annotated by five ophthalmologists with over three years of clinical experience from the collaborating ophthalmic hospital using the LabelMe tool. Given the labor-intensive nature of manual annotation, a total of 266 representative OCT images (resolution: 2135 \times 1468 pixels) were annotated. Dataset 2 contains 1,330 OCT images derived by augmenting Dataset 1 through random 15-degree rotations and horizontal flipping, aimed at further enhance dataset complexity. This augmentation strategy aligns with real-world clinical conditions, enabling robust validation of the generalization ability of the proposed method.

We resized all the images to 256 \times 256 and, in accordance with prior research (Guo et al., 2021; Liu et al., 2022), randomly partitioned the datasets into training, validation and testing sets in a 7 : 1 : 2 ratio. SFA-KAN is implemented using the Pytorch framework (Paszke et al., 2019), with channel numbers set to $C1 = 32$, $C2 = 64$, $C3 = 128$, $C4 = 256$ and $C5 = 512$. The AdamW optimizer is used with a learning rate of $1e - 3$ and the CosineAnnealingLR is employed as the scheduler with a minimum learning rate of $1e - 5$ and a maximum of 50 iterations. We train SFA-KAN for a total of 200 epochs with a batch size of 16. All experiments are performed on a single NVIDIA TITAN RTX GPU.

To evaluate our method, we employ pixel-based metrics including Intersection over Union (IoU), Dice Similarity Coefficient (DSC), Accuracy (Acc), and Average Symmetric Surface Distance (ASSD), and quantitative clinical metrics (Mean Absolute Error, MAE) for clinical measurements comprising Central Corneal Thickness (CCT), mean Iris Thickness (IT), and Lens Thickness (LT). All experiments were conducted with five repeated trials, with results reported as mean \pm standard deviation. The calculation formulas for CCT, IT, and LT are as follows:

322

323

Table 1: Overview of OCT datasets.

Datasets	Pictures	Resolution	Augmented
Dataset 1	266	2135 \times 1468	-
Dataset 2	1330	2135 \times 1468	Yes

$$\text{CCT} = r \times |y_{\text{top}} - y_{\text{bot}}| \quad (9)$$

Table 2: Comparison results on Dataset 1.

Networks	mIoU (%)	DSC (%)	Acc (%)	ASSD (μm)	CCT (μm)	IT (μm)	LT (μm)
UNet	79.30 ± 0.61	86.69 ± 0.45	96.28 ± 0.21	50.99 ± 2.55	55.84 ± 2.80	12.01 ± 0.60	228.8 ± 25.0
TransUNet	78.73 ± 0.83	86.35 ± 0.62	95.04 ± 0.30	46.28 ± 3.31	33.96 ± 1.70	20.20 ± 1.01	199.6 ± 15.0
S2-MLP	80.62 ± 0.49	87.50 ± 0.31	96.50 ± 0.15	43.29 ± 2.16	28.86 ± 1.44	15.72 ± 0.79	198.8 ± 10.0
UNeXt	75.68 ± 1.20	85.75 ± 1.03	96.01 ± 0.37	46.66 ± 2.83	33.96 ± 1.70	15.47 ± 2.27	177.6 ± 18.9
DPM-Net	79.90 ± 0.65	87.03 ± 0.57	95.49 ± 0.21	48.71 ± 2.44	48.67 ± 2.43	11.72 ± 0.59	142.8 ± 12.1
Rolling-UNet	81.48 ± 0.40	88.03 ± 0.33	96.61 ± 0.12	42.80 ± 2.14	33.58 ± 1.68	13.16 ± 0.66	128.0 ± 6.2
UKAN	74.25 ± 1.06	82.91 ± 0.84	95.78 ± 0.28	55.43 ± 2.77	34.34 ± 1.72	30.14 ± 1.51	173.2 ± 8.7
MM-UKAN++	72.79 ± 1.10	82.24 ± 0.90	94.97 ± 0.46	51.47 ± 3.17	36.98 ± 1.85	33.60 ± 1.68	138.0 ± 6.9
Zig-RiR	75.29 ± 0.92	83.97 ± 0.62	95.26 ± 0.34	57.27 ± 2.86	60.37 ± 3.02	21.44 ± 1.07	151.6 ± 7.6
MADGNet	78.92 ± 0.51	86.45 ± 0.41	95.95 ± 0.20	47.30 ± 2.36	27.73 ± 1.39	14.31 ± 0.72	151.2 ± 7.6
Y-Net	81.94 ± 0.45	87.47 ± 0.93	96.76 ± 0.82	40.61 ± 2.35	34.33 ± 0.96	13.60 ± 1.14	207.6 ± 10.1
SFA-KAN (Ours)	84.02 ± 0.27	89.61 ± 0.18	97.51 ± 0.08	30.11 ± 1.63	23.01 ± 1.15	8.54 ± 0.56	104.4 ± 6.3

$$LT = r \times [y'_{top} - y'_{bot}] \quad (10)$$

where the vertical distance between the corneal apex y_{top} and the corresponding lowermost point y_{bot} defines CCT for the cornea; for LT, y'_{top} and y'_{bot} represent the topmost and bottommost surfaces of the lens, respectively. r denotes the pixel-to-micrometer conversion factor (1 pixel = 20 μm).

$$IT = r \times \frac{1}{N} \sum_{x=0}^{W-1} |M(x, y'_{top}) - M(x, y'_{bot})| \quad (11)$$

IT was determined by the mean vertical dimension across all columns x in the binary iris mask M , where N denotes the number of valid columns containing iris tissue.

4.2 COMPARISON AND ANALYSIS

4.2.1 ANALYSIS ON FINE-GRAINED DELINEATION

As shown in Table 2, SFA-KAN achieves SOTA performance across all evaluation metrics on Dataset 1. Specifically, building upon the long-range modeling capability brought by two different shift operations and the global feature extraction of KAN, SFA-KAN achieves a DSC of 89.61%, an mIoU of 84.02%, and an Acc of 97.51%. This represents improvements of 1.58% in DSC, 2.54% in mIoU, and 0.90% in Acc compared to the second-best method, Rolling-UNet. The SFA module effectively integrates fine-grained details from complementary spatial and frequency domains, enabling more precise boundary delineation. This capability translates to a 12.69 μm reduction in ASSD compared to Rolling-UNet. Furthermore, SFA-KAN achieves substantially lower errors in key measurements than other recent SOTA methods, specifically: 23.01 μm (CCT error), 8.54 μm (IT error), and 104.4 μm (LT error). Compared to recent Transformer-based and KAN-based methods such as Zig-RiR and MM-UKAN++, and especially compared to MADGNet and Y-Net, which also incorporate multi-scale frequency domain features, SFA-KAN demonstrates superior performance in terms of pixel-level errors.

4.2.2 ANALYSIS ON HETEROGENEITY-ROBUST

As shown in Table 3, SFA-KAN achieves SOTA performance across all metrics on Dataset 2, which consists of OCT images exhibiting more severe illumination non-uniformity and structural variations. Compared with recent Transformer-based, KAN-based, and frequency-domain integrated methods, SFA-KAN exhibits significantly less performance degradation, thereby highlighting its robust generalization capability and outperforming the second-best method, Rolling-UNet, by 1.93%

378

379

Table 3: Comparison results on Dataset 2.

380

381

Networks	mIoU (%)	DSC (%)	Acc (%)	ASSD (μm)	CCT (μm)	IT (μm)	LT (μm)
UNet	62.88 \pm 0.60	67.88 \pm 0.55	90.71 \pm 0.30	104.51 \pm 5.20	63.81 \pm 3.10	29.09 \pm 1.45	219.7 \pm 10.9
TransUNet	60.10 \pm 0.85	69.11 \pm 0.70	90.87 \pm 0.40	112.64 \pm 5.63	42.03 \pm 2.10	43.35 \pm 2.17	195.8 \pm 9.7
S2-MLP	59.86 \pm 0.50	69.46 \pm 0.45	91.90 \pm 0.25	104.57 \pm 5.23	53.28 \pm 2.66	36.02 \pm 1.80	169.9 \pm 8.5
UNeXt	58.04 \pm 1.20	67.80 \pm 1.00	91.99 \pm 0.35	106.18 \pm 5.31	38.56 \pm 1.93	41.71 \pm 2.59	160.7 \pm 8.0
DPM-Net	61.33 \pm 0.70	70.29 \pm 0.60	92.34 \pm 0.28	103.29 \pm 5.16	38.71 \pm 1.94	30.38 \pm 1.52	153.9 \pm 7.7
Rolling-UNet	63.82 \pm 0.45	71.90 \pm 0.40	92.43 \pm 0.24	111.59 \pm 5.58	49.66 \pm 2.48	39.53 \pm 1.98	143.8 \pm 7.2
UKAN	58.15 \pm 1.10	67.96 \pm 0.90	91.99 \pm 0.35	105.24 \pm 5.26	41.28 \pm 2.06	52.76 \pm 2.64	158.3 \pm 7.9
MM-UKAN++	60.91 \pm 0.90	70.14 \pm 0.80	91.70 \pm 0.40	108.78 \pm 5.44	29.26 \pm 1.46	27.03 \pm 1.35	173.0 \pm 8.6
Zig-RiR	59.68 \pm 1.30	64.20 \pm 1.10	91.19 \pm 0.55	118.27 \pm 6.41	60.68 \pm 3.03	44.05 \pm 2.20	216.3 \pm 10.8
MADGNet	62.31 \pm 0.55	71.09 \pm 0.50	92.49 \pm 0.23	106.25 \pm 5.31	31.64 \pm 1.58	35.84 \pm 1.79	143.9 \pm 7.2
Y-Net	63.99 \pm 0.14	71.38 \pm 1.17	92.75 \pm 0.23	109.79 \pm 6.04	30.99 \pm 0.86	16.80 \pm 0.55	164.7 \pm 4.7
SFA-KAN (Ours)	65.75 \pm 0.30	73.54 \pm 0.25	92.85 \pm 0.18	96.04 \pm 4.80	26.90 \pm 1.35	19.75 \pm 0.99	131.9 \pm 6.6

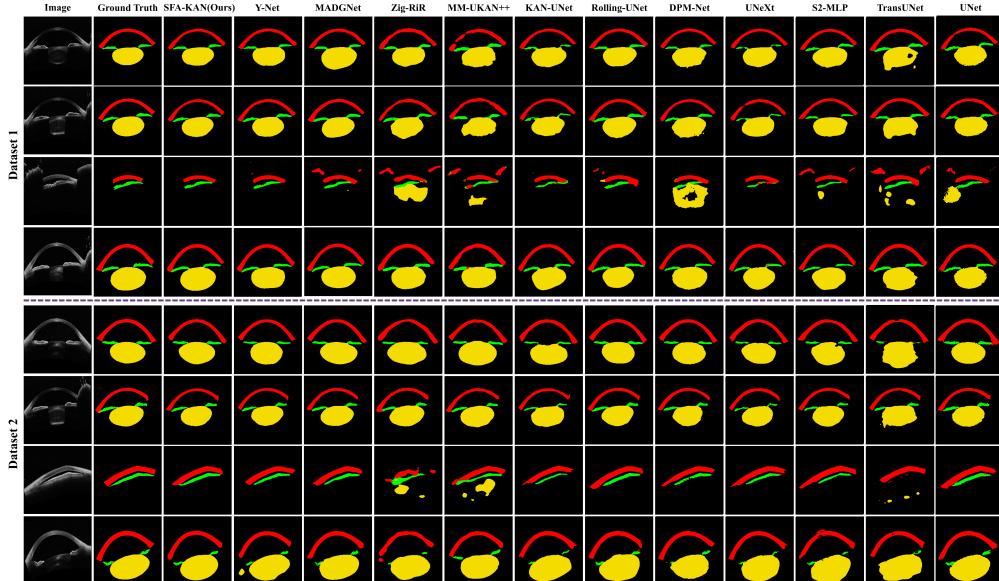
393

394

395

in mIoU, 1.64% in DSC, and 0.42% in Acc. Notably, SFA-KAN demonstrated minimal degradation in key clinical measurements, with increases limited to $3.89\mu\text{m}$ (CCT error), $8.52\mu\text{m}$ (IT error), and $7.5\mu\text{m}$ (LT error). This contrasts sharply with other methods, which showed substantially larger error increases (ranging from $> 10\mu\text{m}$ to $> 25\mu\text{m}$). This outcome is attributed to the dual-domain approach, which effectively mitigates the illumination heterogeneity challenge inherent in OCT imaging. The qualitative segmentation results are shown in Fig. 5.

402



422

423

Figure 5: Qualitative comparisons on Dataset 1 and Dataset 2.

424

425

4.2.3 ANALYSIS ON COMPUTATIONAL COMPLEXITY

426

427

428

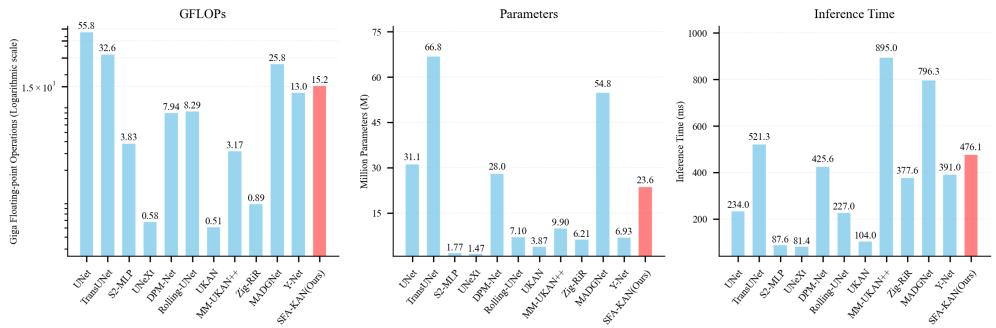
429

430

431

We perform a quantitative analysis of computational complexity (encompassing parameter count, GFLOPs, and inference time) to substantiate the efficiency of our methods. As shown in Fig. 6, SFA-KAN outperforms TransUNet significantly in terms of efficiency. With comparable inference speed, it reduces the parameter count and GFLOPs by 64.65% and 53.30%, respectively. Taking the results on Dataset 1 as an example, at an acceptable complexity, our method achieves mIoU improvements of 8.34% and 3.4% compared to lightweight segmentation models UNeXt and S2-

432 MLP. When compared with KAN-incorporated counterparts UKAN and MM-UKAN++, it delivers
 433 substantial mIoU gains of 9.77% and 11.23%, respectively. These results validate that the proposed
 434 SFA-KAN achieves a favorable trade-off between segmentation performance and computational
 435 efficiency.



449 Figure 6: Comparison results of computational complexity.

450 451 452 4.2.4 ABLATION RESULTS

453 We conduct extensive ablation experiments on Dataset 1 to demonstrate the individual contribution
 454 of each block in the SFA module of SFA-KAN. As shown in Table 4, we used a symmetric 5-
 455 level encoder-decoder architecture with a kernel size of 3 as the baseline. Adding the S2KA block
 456 significantly improved pixel-level accuracy, increasing mIoU by 4.17% and DSC by 4.22%, while
 457 reducing ASSD by 10.03 μ m. This validates its efficacy in global context modeling for fine-grained
 458 segmentation. In contrast, the S2FT block optimized on clinical thickness metrics more effectively,
 459 increasing mIoU by 3.10% and DSC by 2.59%, while reducing CCT error by 22.66 μ m, IT error
 460 by 4.07 μ m, and LT error by 55.6 μ m. The full SFA-KAN architecture demonstrates synergistic
 461 superiority: mIoU and DSC reached 83.85% and 89.52%, respectively, with CCT, IT, and LT errors
 462 reduced by 14.08 μ m, 5.20 μ m, and 84.8 μ m relative to baseline. The feature visualization of ablation
 463 results is shown in Fig. 7.

464 To further verify the proposed S2KA and S2FT blocks confer distinct advantages over existing
 465 spatial- and frequency-capturing modules, comparative experiments were conducted between our
 466 domain-specific feature extraction modules and the latest representative methods. The spatial-shift
 467 operation enables patch-wise information interaction and captures long-range multi-directional de-
 468 pendencies, thereby facilitating the subsequent extraction of both spatial and frequency domain
 469 features, while the KAN layers in the S2KA block demonstrate superior performance relative to
 470 methods with weak nonlinear expressiveness such as the Visual State Space (VSS) Liu et al. (2024a)
 471 module and the Contrast-Driven Feature Aggregation (CDFA) Lei et al. (2025) module. Methods re-
 472 lying on fixed local window sizes are hampered by low efficiency and prone to the loss of long-range
 473 spatial correlations; in contrast, the KAN linear layers in the S2KA block model highly nonlinear
 474 spatial correlations (e.g., irregular boundaries and complex textures in medical images) through
 475 linear combinations of activation functions, leading to enhanced segmentation effectiveness. Re-
 476 garding the S2FT block, its dynamic frequency band selection mechanism implemented post-spatial
 477 transformation can discriminate target frequency domains from other components with higher pre-
 478 cision, outperforming the static frequency band partitioning adopted by conventional modules (e.g.,
 479 Frequency-aware Matching, FAM Bo et al. (2025)). Additionally, although the Multi-Frequency in
 480 Multi-Scale Attention (MFMSA) Nam et al. (2024) module attains comparable pixel-level metrics
 481 to the S2FT block, its physiological metrics are marginally lower, as the dynamic frequency band
 482 selection of the S2FT block enables more accurate localization of segmentation boundaries.

483 5 CONCLUSION

484 In this paper, we propose a novel architecture, SFA-KAN, for addressing the challenges of illu-
 485 mination heterogeneity and incomplete structure representation in OCT image segmentation. By

486

487

Table 4: Ablation study on Dataset 1.

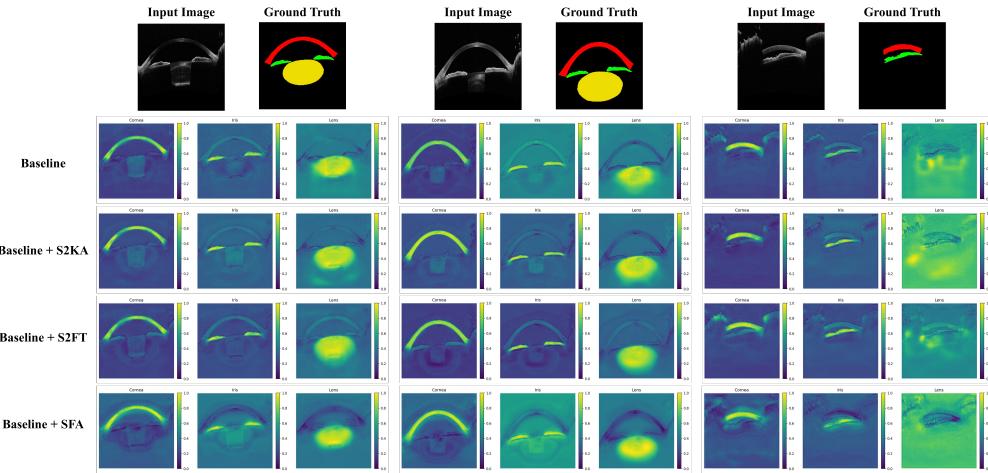
488

489

Networks	mIoU (%)	DSC (%)	Acc (%)	ASSD (μm)	CCT (μm)	IT (μm)	LT (μm)
Baseline	78.44 ± 0.83	84.52 ± 0.72	95.95 ± 0.15	51.12 ± 3.23	48.30 ± 2.09	16.43 ± 0.72	209.2 ± 10.8
Baseline + VSS	81.34 ± 0.85	88.16 ± 0.60	96.05 ± 0.04	46.33 ± 6.07	41.13 ± 2.38	14.61 ± 0.59	170.8 ± 6.31
Baseline + CDFA	81.54 ± 0.92	87.47 ± 1.24	96.01 ± 0.09	45.68 ± 4.45	33.32 ± 3.04	15.84 ± 0.57	178.4 ± 8.3
Baseline + S2KA	82.61 ± 0.44	88.74 ± 0.43	96.55 ± 0.12	41.09 ± 2.25	27.09 ± 1.61	13.23 ± 0.74	161.2 ± 6.0
Baseline + FAM	80.27 ± 0.92	85.53 ± 1.13	95.71 ± 0.08	41.51 ± 3.66	26.03 ± 0.32	17.41 ± 0.88	187.2 ± 8.4
Baseline + MFMSA	81.33 ± 0.60	86.59 ± 0.59	95.66 ± 0.18	40.56 ± 0.88	38.49 ± 1.87	16.88 ± 0.89	165.6 ± 5.0
Baseline + S2FT	81.54 ± 0.51	87.11 ± 0.64	96.10 ± 0.15	39.58 ± 2.01	25.64 ± 1.08	12.36 ± 0.31	153.6 ± 4.7
Baseline + SFA	83.85 ± 0.27	89.52 ± 0.18	97.17 ± 0.08	32.63 ± 1.63	23.01 ± 1.15	11.23 ± 0.56	124.4 ± 6.3

498

499



516

517

Figure 7: Qualitative comparisons of ablation results on Dataset 1.

518

519

integrating the innovative S2KA block for efficient long-range spatial dependency capture and the S2FT block for multi-scale frequency component isolation, the SFA module hierarchically aggregates complementary spatial and frequency features within the latent space. The synergistic cross-attention fusion enables reconstruction of intricate anatomical details while preserving global structural integrity. Extensive validation on two diverse anterior segment OCT datasets demonstrates that SFA-KAN achieves SOTA performance. Quantitative evaluation using both pixel-based metrics and clinically relevant measures confirms its superior accuracy in segmenting critical structures like the cornea, iris, and lens under challenging acquisition variations, providing a reliable foundation for clinical diagnosis via stable, complete organ delineation. Future work will extend SFA-KAN to 3D medical imaging and unsupervised segmentation.

530

531

6 ETHICS STATEMENT

533

534

535

536

537

538

539

This retrospective clinical study involving OCT images of the anterior eye segment was approved by the Independent Ethics Committee of a tertiary ophthalmic specialty hospital. The study strictly adhered to the principles of the Declaration of Helsinki. Written informed consent was obtained from all participants prior to data collection, with full disclosure of the study’s objectives and data usage scope. All datasets were fully de-identified. The proposed SFA-KAN model is intended solely for clinical decision support and explicitly does not replace the professional judgment of certified ophthalmologists.

540 REFERENCES

542 Y. Bo, Y. Zhu, L. Li, and H. Zhang. Famnet: Frequency-aware matching network for cross-domain
 543 fewshot medical image segmentation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39(2), pp. 1889–1897, 2025.

545 H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian, and M. Wang. Swin-unet: unet-like pure
 546 transformer for medical image segmentation. In *European Conference on Computer Vision*, pp.
 547 205–218. Springer, Cham, 2022.

548 J. Chen, J. Mei, X. Li, Y. Lu, Q. Yu, Q. Wei, X. Luo, Y. Xie, E. Adeli, Y. Wang, M. P. Lungren,
 549 S. Zhang, L. Xing, L. Lu, A. Yuille, and Y. Zhou. Transunet: rethinking the u-net architecture
 550 design for medical image segmentation through the lens of transformers. *Medical Image Analysis*,
 551 97:103280, 2024.

553 T. Chen, X. Zhou, Z. Tan, Y. Wu, Z. Wang, Z. Ye, T. Gong, Q. Chu, N. Yu, and L. Lu. Zig-rir:
 554 zigzag rwkv-in-rwkv for efficient medical image segmentation. *IEEE Transactions on Medical
 555 Imaging*, 2025.

556 W. Chen, D. Xie, Y. Zhang, and S. Pu. All you need is a few shifts: designing efficient convolutional
 557 neural networks for image classification. In *Proceedings of the IEEE/CVF Conference on
 558 Computer Vision and Pattern Recognition*, pp. 7241–7250, 2019.

559 A. Farshad, Y. Yeganeh, P. Gehlbach, and N. September. Navab. Y-net: A spatirospectral dual-
 560 encoder network for medical image segmentation. In *International Conference on Medical Image
 561 Computing and Computer-Assisted Intervention*, pp. 582–592, 2022.

563 A. Gu and T. Dao. Mamba: linear-time sequence modeling with selective state spaces. *arXiv
 564 preprint arXiv:2312.00752*, 2023.

565 C. Guo, M. Szemenyei, Y. Yi, W. Wang, B. Chen, and C. Fan. Sa-unet: spatial attention u-net
 566 for retinal vessel segmentation. In *2020 25th International Conference on Pattern Recognition
 567 (ICPR)*, pp. 1236–1242. IEEE, 2021.

569 A. Hatamizadeh, Y. Tang, V. Nath, D. Yang, A. Myronenko, B. Landman, H. R. Roth, and D. Xu.
 570 Unetr: transformers for 3d medical image segmentation. In *Proceedings of the IEEE/CVF Winter
 571 Conference on Applications of Computer Vision*, pp. 574–584, 2022.

574 C. Jiang, Y. Li, H. Luo, C. Zhang, and H. Du. Kansnet: Kolmogorov-arnold networks and multi
 575 slice partition channel priority attention in convolutional neural network for lung nodule detection.
 576 *Biomedical Signal Processing and Control*, 103:107358, 2025.

578 B. C. Koenig, S. Kim, and S. Deng. Kan-odes: Kolmogorov-arnold network ordinary differential
 579 equations for learning dynamical systems and hidden physics. *Computer Methods in Applied
 580 Mechanics and Engineering*, 432:117397, 2024.

584 M. Lei, H. Wu, X. Lv, and X. Wang. Condseg: A general medical image segmentation framework
 585 via contrast-driven feature enhancement. In *Proceedings of the AAAI Conference on Artificial
 586 Intelligence*, volume 39(5), pp. 4571–4579, 2025.

588 C. Li, X. Liu, W. Li, C. Wang, H. Liu, Y. Liu, Z. Chen, and Y. Yuan. Ukan makes strong backbone for
 589 medical image segmentation and generation. In *Proceedings of the AAAI Conference on Artificial
 590 Intelligence*, volume 39(5), pp. 4652–4660, 2025.

594 M. Li, K. Huang, Q. Xu, J. Yang, Y. Zhang, Z. Ji, K. Xie, S. Yuan, Q. Liu, and Q. Chen. Octa-500:
 595 a retinal dataset for optical coherence tomography angiography study. *Medical Image Analysis*,
 596 93:103092, 2024.

598 J. Liu, H. Yang, H. Y. Zhou, Y. Xi, L. Yu, C. Li, and et al. Swin-umamba: Mamba-based unet
 599 with imagenet-based pretraining. In *International Conference on Medical Image Computing and
 600 Computer-Assisted Intervention*, pp. 615–625. Springer, Cham, 2024a.

603 W. Liu, H. Yang, T. Tian, Z. Cao, X. Pan, and W. Xu. Full-resolution network and dual-threshold
 604 iteration for retinal vessel and coronary angiograph segmentation. *IEEE Journal of Biomedical
 605 and Health Informatics*, 26(9):4623–4634, 2022.

594 Y. Liu, H. Zhu, M. Liu, H. Yu, Z. Chen, and J. Gao. Rolling-unet: revitalizing mlp’s ability to
 595 efficiently extract long-distance dependencies for medical image segmentation. In *Proceedings of*
 596 *the AAAI Conference on Artificial Intelligence*, volume 38, pp. 3819–3827, 2024b.

597

598 Y. Liu, W. Ikezogwo, K. Hosny, J. Henriksen, R. Ricciotti, M. Rawlani, P. Swanson, P. Mathias,
 599 N. Hoffman, G. Baird, L. Gonzalez-Cuyar, L. Shapiro, and D. Reddi. 1373 multi-scale cross-
 600 attention multiple instance learning (mscamil) network for automated triage of colorectal polyps.
Laboratory Investigation, 105(3):103611, 2025.

601

602 Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljai, T. Y. Hou, and M. Tegmark. Kan:
 603 Kolmogorov-arnold networks. *arXiv preprint arXiv:2404.19756*, 2024c.

604

605 J. H. Nam, N. S. Syazwany, S. J. Kim, and S. C. Lee. Modality-agnostic domain generalizable
 606 medical image segmentation by multi-frequency in multi-scale attention. In *Proceedings of the*
 607 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 11480–11491, 2024.

608

609 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
 610 L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
 611 B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: an imperative style, high-performance deep
 612 learning library. *arXiv preprint arXiv:1912.01703*, 2019.

613

614 G. Qian, H. Wang, Y. Wang, X. Chen, D. Yu, S. Luo, Y. Sun, P. Xu, and J. Ye. Cascade spatial and
 615 channel-wise multifusion network with criss cross augmentation for corneal segmentation and
 616 reconstruction. *Computers in Biology and Medicine*, 177:108602, 2024.

617

618 O. Ronneberger, P. Fischer, and T. Brox. U-net: convolutional networks for biomedical image
 619 segmentation. In *Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015*,
 620 pp. 234–241. Springer, 2015.

621

622 Y. Sun, N. Maimaiti, P. Xu, P. Jin, J. Cai, G. Qian, P. Chen, M. Xu, G. Jia, Q. Wu, and J. Ye. An
 623 as-oct image dataset for deep learning-enabled segmentation and 3d reconstruction for keratitis.
Scientific Data, 11(1), 2024.

624

625 I. O. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner, J. Yung, A. Steiner,
 626 D. Keysers, J. Uszkoreit, M. Lucic, and A. Dosovitskiy. Mlp-mixer: an all-mlp architecture for
 627 vision. *Advances in Neural Information Processing Systems*, 34:24261–24272, 2021.

628

629 J. M. J. Valanarasu and V. M. Patel. Unext: Mlp-based rapid medical image segmentation network.
 630 In *International Conference on Medical Image Computing and Computer-Assisted Intervention*,
 631 pp. 2333. Springer, Cham, 2022.

632

633 L. Wang, M. Shen, Y. Chen, X. Zhang, and J. Li. Automated delineation of corneal layers on oct
 634 images using a boundary-guided cnn. *Pattern Recognition*, 120:108158, 2021.

635

636 S. Wang, X. Zhao, Y. Zhang, Y. Zhao, Z. Zhao, H. Ding, T. Chen, and S. Qiao. Dpmnet: dual-path
 637 mlp-based network for aneurysm image segmentation. In *International Conference on Medical*
 638 *Image Computing and Computer-Assisted Intervention*, pp. 245–254. Springer, Cham, 2024.

639

640 Z. Wang, J. Gu, W. Zhou, Q. He, T. Zhao, J. Guo, L. Lu, T. He, and J. Bu. Neural memory state
 641 space models for medical image segmentation. *International Journal of Neural Systems*, 35(1):
 642 2450068, 2025.

643

644 B. Wu, A. Wan, X. Yue, P. Jin, S. Zhao, N. Golmant, A. Gholaminejad, J. Gonzalez, and K. Keutzer.
 645 Shift: a zero flop, zero parameter alternative to spatial convolutions. In *Proceedings of the IEEE*
646 Conference on Computer Vision and Pattern Recognition, pp. 9127–9135, 2018.

647

648 H. Yu, L. T. Yang, Q. Zhang, D. Armstrong, and M. J. Deen. Convolutional neural networks for
 649 medical image analysis: state-of-the-art, comparisons, improvement and perspectives. *Neuro-
 650 computing*, 444:92–110, 2021.

651

652 T. Yu, X. Li, Y. Cai, M. Sun, and P. Li. S2-mlp: spatial-shift mlp architecture for vision. In
 653 *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 297–
 654 306, 2022.

648 B. Zhang, H. Huang, Y. Shen, and M. Sun. Mm-ukan++: a novel kolmogorov-arnold network
649 based u-shaped network for ultrasound image segmentation. *IEEE Transactions on Ultrasonics,*
650 *Ferroelectrics, and Frequency Control*, 72(4):498–514, 2025.

651

652 M. Zhang, Y. Yu, S. Jin, L. Gu, T. Ling, and X. Tao. Vm-unet-v2: rethinking vision mamba unet
653 for medical image segmentation. In *International Symposium on Bioinformatics Research and*
654 *Applications*, pp. 335–346. Springer, Singapore, 2024.

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701