
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Posted Price Mechanisms for Online Allocation with
Diseconomies of Scale

Anonymous Author(s)

Abstract
This paper addresses the online 𝑘-selection problem with disec-
onomies of scale (OSDoS), where a seller seeks to maximize social
welfare by optimally pricing items for sequentially arriving buy-
ers, accounting for increasing marginal production costs. Previous
studies have investigated deterministic dynamic pricing mecha-
nisms for such settings. However, significant challenges remain,
particularly in achieving optimality with small or finite inventories
and developing effective randomized posted price mechanisms. To
bridge this gap, we propose a novel randomized dynamic pricing
mechanism for OSDoS, providing a tighter lower bound on the
competitive ratio compared to prior work. Our approach ensures
optimal performance in small inventory settings (i.e., when 𝑘 is
small) and surpasses existing online mechanisms in large inventory
settings (i.e., when 𝑘 is large), leading to the best-known posted
price mechanism for optimizing online selection and allocation
with diseconomies of scale across varying inventory sizes.
ACM Reference Format:
Anonymous Author(s). 2024. Posted Price Mechanisms for Online Alloca-
tion with Diseconomies of Scale. In . ACM, New York, NY, USA, 19 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Online resource allocation has been widely studied in recent years
and finds a broad range of applications in cloud computing [24, 25],
network routing [2, 7, 8], and various other online, market-based
Internet platforms. In this problem, most existing studies assume
that the seller has a finite inventory of resources before a stream
of online buyers arrives, with the goal of maximizing social wel-
fare or profit from these resources. However, in real-world ap-
plications, sellers often face diseconomies of scale in providing
resources—meaning they incur increasing marginal costs for sup-
plying each additional unit of resource. For instance, in cloud com-
puting systems, the power cost of servers increases superlinearly
as the utilization of computing resources grows [1]. Similarly, in
network routing, congestion costs (e.g., end-to-end delay) increase
significantly with the rise in traffic intensity brought by users.

In this work, we study online resource allocation with increasing
marginal production costs. In particular, we frame it as an online
𝑘-selection with diseconomies of scale (OSDoS) in a posted price
mechanism: A seller offers a certain item to buyers arriving one at a
time in an online manner. Each buyer has a private valuation 𝑣𝑡 for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

one unit of the item. The seller can produce 𝑘 units of the item in
total; however, the marginal cost of producing each unit increases
as more units are produced. When the 𝑡-th buyer arrives, the seller
posts a price 𝑝𝑡 to the buyer, provided that fewer than 𝑘 units have
already been produced and allocated. If the buyer’s valuation 𝑣𝑡
exceeds 𝑝𝑡 , the buyer accepts the price and takes one unit of the
item. The objective is to maximize social welfare, defined as the
sum of the utilities of all the buyers and the revenue of the seller.

The incorporation of increasing marginal production costs in
online resource allocation was initially pioneered by [5] and later
studied by [12] in the context of online combinatorial auctions.
Since then, different variants of OSDoS have been studied, such
as online convex packing and covering [3], online knapsack with
packing costs [22], and online selection with convex costs [23].
The common crux of these problems is that if, at early stages, the
pricing of the resource is too aggressive (i.e., the price is set too
low), a large number of items may be allocated to low-value buyers,
leading to an increase in production costs and a lower social welfare.
Conversely, if the pricing is too conservative (i.e., the price is set too
high) at early stages, the producer may lose the opportunity to sell
enough items to buyers. Thus, we must carefully design the prices
of these 𝑘 units to avoid selecting buyers that appear advantageous
early on but cause the rapid growth of marginal production costs
as more units are produced.

To address above challenge, Huang et al. [12] developed optimal
deterministic dynamic pricingmechanisms for fractional online com-
binatorial auctions with production costs and infinite production
capacity (i.e., 𝑘 = ∞). They also showed that similar mechanisms
could be designed for the integral case based on the fractional
pricing functions, achieving a competitive ratio that can be arbi-
trarily close to that of the fractional setting at the expense of some
nonzero additive loss. However, as the competitive ratio in the in-
tegral setting approaches the lower bound derived in the fractional
setting [12], the additive loss tends to approach infinity, which is
undesirable. To overcome this limitation, Tan et al. [23] considered
online selection with convex costs and limited supply (i.e., 𝑘 is
finite). Notably, they established a lower bound for the integral
setting without incurring any additive loss and further showed that
the competitive ratio of the proposed deterministic posted price
mechanism asymptotically converges to the lower bound in large
inventory settings (i.e., when 𝑘 approaches infinity). Recently, Sun
et al. [20] developed a randomized static pricing algorithm that sam-
pled one static price from a pre-determined distribution for solving
OSDoS. By utilizing randomization, the static pricing algorithm
developed in [20] can outperform the deterministic dynamic pricing
algorithm developed in [23] in small inventory settings. However,
the algorithm is not asymptotically optimal in large inventory set-
tings, and fails to converge to the lower bound obtained in [23] as
𝑘 approaches to infinity.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Despite previous efforts, two questions remain unresolved: First,
how to derive a tight lower bound forOSDoS in small inventory set-
tings? Second, it remains an open question how to develop random-
ized algorithms to solve OSDoS with tight guarantees, especially
for settings when 𝑘 is small.

In this paper, we affirmatively answer these two questions by
deriving a new tight lower bound for theOSDoS problem, providing
the best-known result in both small inventory and asymptotically
large inventory settings. Additionally, inspired by the new lower
bound results, we develop a novel algorithm that utilizes up to 𝑘
randomized prices, rather than just one. We demonstrate that our
proposed randomized dynamic pricing algorithm is optimal for small
inventory settings and outperforms existing designs presented in
[23] and [20] for large inventory settings.

1.1 Overview of Main Results and Techniques
The primary contribution of this paper is the development of novel
posted price mechanisms utilizing randomized dynamic pricing
schemes that improve upon the results in [5, 12, 20, 23]. The ran-
domized dynamic pricing scheme, termed r-Dynamic, sequentially
updates the price of the item as new units are produced and sold.
More specifically, as the marginal production cost of the item in-
creases with each additional unit, r-Dynamic employs a different
cumulative distribution function (CDF) to generate an independent
randomized price for each new unit of the item. The main result
concerning the lower bound can be stated as follows:

Theorem 1 (Informal Statement of Theorem 3). Assume that
buyers’ valuations are bounded within the range [𝐿,𝑈] and the cu-
mulative cost of production up to the 𝑖-th unit is given by 𝑓 (𝑖). The
seller can produce a total of 𝑘 units. For any given 𝑘 ≥ 1,𝑈 ≥ 𝐿 ≥ 1,
and a cumulative production cost function 𝑓 , no online algorithm can
be (𝛼∗S (𝑘) − 𝜖)-competitive for any 𝜖 > 0, where S := {𝐿,𝑈 , 𝑓 }.

We note that [23] also established a lower bound for the compet-
itive ratio of any online algorithm for OSDoS. However, the lower
bound in [23] was derived by connecting the integral selection
problem to its fractional counterpart. As a result, the cumulative
production cost function 𝑓 in [23] needs to be defined not only
at discrete points but also at every fractional point in the range
[0, 𝑘]. This brings two issues: (i) it may be impractical to assume
the availability of a continuous cost function 𝑓 due to the integral
nature of the problem, and (ii) the derived lower bound in [23] is
only tight under large inventory settings due to the fact that the
lower bound was established by assuming 𝑘 → ∞. In this paper,
we address these two issues by deriving the lower bound 𝛼∗S (𝑘)
via a totally different approach. In particular, we do not rely on
results in the fractional setting and only need to assume that the
cost function 𝑓 (𝑖) is defined at discrete points for 𝑖 ∈ {1, 2, · · · , 𝑘},
leading to the tight lower bound 𝛼∗S (𝑘) for all 𝑘 ≥ 1.

Theorem 2 (Informal Statement of Theorem 5). For any
given 𝑘 ≥ 1,𝑈 ≥ 𝐿 ≥ 1, and a cumulative production cost function
𝑓 , there exists a randomized dynamic price mechanism (r-Dynamic)

that achieves a competitive ratio of 𝛼∗S (𝑘) · exp(𝛼
∗
S (𝑘)
𝑘

). In particular,
when 𝑘 = 2, r-Dynamic is 𝛼∗S (2)-competitive.

Due to the arbitrary nature of the cost function 𝑓 , neither our
work nor [23] can derive the competitive ratio in closed form. Thus,

5 10 15 20 25 30 35 40
Number of Items (k)

4.0

4.2

4.4

4.6

4.8

5.0

5.2

Co
m

pe
tit

ve
 R

at
io

r-Static
d-Dynamic
r-Dynamic
Lower-Bound (*)

Figure 1: The blue curve (i.e., r-Dynamic) corresponds to the
competitive ratio of Algorithm 1 that uses randomized dy-
namic pricing. The red curve (i.e., d-Dynamic) and the yellow
curve (i.e., r-Static) correspond to the competitive ratios of
the deterministic dynamic pricing mechanism developed by
[23] and the static randomized pricing mechanism by [20].
In this figure, we set 𝐿 = 1,𝑈 = 10, and 𝑓 (𝑖) = 𝑖2

59 .

we cannot directly compare the competitive ratio of r-Dynamicwith
the deterministic dynamic pricing mechanism (d-Dynamic) pro-
posed in [23]. In Figure 1, we compare the asymptotic performance
of our r-Dynamic with d-Dynamic in [23] and the randomized
static pricing mechanism (r-Static) in [20]. The results show that
our proposed r-Dynamic significantly outperforms both d-Dynamic
and r-Static, and converges more quickly to the lower bound as 𝑘
approaches infinity. Furthermore, in small 𝑘 settings, we prove that
r-Dynamic can even attain the lower bound when 𝑘 = 2. In addition
to the strong theoretical guarantees, we also demonstrate that the
empirical performance of r-Dynamic outperforms both d-Dynamic
and r-Static (see Section 4.2), demonstrating that r-Dynamic is a
superior algorithm compared to existing designs.

The key technical component in deriving the above lower and
upper bound results is a new representative function-based approach.
This approach represents the dynamics of any randomized online
algorithm using a sequence of 𝑘 probability functions, denoted as
{𝜓𝑖 }∀𝑖∈[𝑘] . Specifically, we design a family of hard instances and
then characterize the performance of any 𝛼-competitive online
algorithm on these hard instances using a set of differential equa-
tions involving {𝜓𝑖 }∀𝑖∈[𝑘] . To determine the lower bound of the
competitive ratio in Theorem 1, 𝛼∗S (𝑘), we show that it suffices to
compute the minimum value of 𝛼 such that the set of differential
equations has a feasible solution, namely, a sequence of valid prob-
ability functions {𝜓𝑖 }∀𝑖∈[𝑘] . By reverse engineering these differen-
tial equations, we derive a corresponding set of inverse probability
functions, denoted as {𝜙𝑖 }∀𝑖∈[𝑘] , for pricing each unit of the item,
which leads to the r-Dynamic in Theorem 2.

1.2 Other Related Work
Online resource allocation, the process of assigning limited re-
sources to a sequence of online requests to maximize social welfare
or profit, has long been a central topic in computer science and

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Posted Price Mechanisms for Online Allocation with Diseconomies of Scale Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

operations research. In addition to the related work mentioned ear-
lier, readers are referred to the survey by Gupta and Singla on the
secretary problem [11] and the references therein for a detailed dis-
cussion of online allocation and selection in random-order models.
Significant progress has also been made in recent years on the study
of the prophet inequality through the lens of posted price mecha-
nisms [16] [9], as well as on online matching and its applications to
Internet advertising (e.g., see [18] and [13]). Beyond the stochastic
i.i.d. model in the prophet inequality, a recent line of work explores
the correlated arrival model based on a Markov chain [14]. How-
ever, all these studies focus on different variants of online allocation
and selection problems without accounting for production costs,
whereas our primary focus is to examine the impact of increasing
marginal production costs on online 𝑘-selection.

In recent years, there have been attempts to study online alloca-
tion problems with different forms of production costs in stochas-
tic settings (e.g., [6], [10], [4], and [19]). Specifically, the authors
of [6] considered the problem of online allocation of goods with
economies of scale, or decreasing marginal cost per item for the
seller. When customers have unit demand and arrive one at a time
with general valuations on items sampled i.i.d. from some unknown
underlying distribution, the authors of [6] developed a strategy that
is constant-competitive with respect to the optimal allocation in
hindsight. In comparison, the authors of [19] considered a Bayesian
online allocation problem in the presence of convex production
costs (i.e., diseconomies of scale). The framework by [19] yields
posted price mechanisms with𝑂 (1)-approximation factors for frac-
tionally subadditive buyers and logarithmic approximations for
subadditive buyers. Recall that we consider OSDoS in adversarial
settings by assuming no knowledge of the arrival instance (other
than the finite support of the valuations), so these results are not
directly comparable to ours.

On the applied side, the allocation of limited resources under dis-
economies of scale is prevalent across various online platforms in
multiple domains. For instance, in online cloud resource allocation
with server costs [24], convex and increasing server costs model
the energy consumption of each computing server as a function of
total CPU utilization. Another example is the online electric vehi-
cle charging problem with electricity costs [21], where electricity
generation costs are typically nonlinear and often modeled as a
quadratic function of total generation.

2 Problem Statement and Assumptions
We formally define online 𝑘-selection with diseconomies of scale
(OSDoS) as follows. Consider an online market operating under
posted price mechanisms. On the supply side, a seller can pro-
duce a total of 𝑘 units of an item, with increasing (or at least non-
decreasing) marginal production costs. Let 𝒄 := {𝑐𝑖 }∀𝑖∈[𝑘] repre-
sent the marginal production cost, where 𝑐𝑖 denotes the cost of pro-
ducing the 𝑖-th unit, and 𝑐1 ≤ 𝑐2 ≤ · · · ≤ 𝑐𝑘 . Define 𝑓 (𝑖) =

∑𝑖
𝑗=1 𝑐 𝑗

as the cumulative production cost of the first 𝑖 units. On the demand
side, 𝑇 buyers arrive sequentially, each demanding one unit of the
item. Let 𝑣𝑡 denote the private valuation of the 𝑡-th buyer. Once
buyer 𝑡 arrives, a price 𝑝𝑡 is posted, and then the buyer decides to
accept the price and make a purchase if a non-negative utility is
gained 𝑣𝑡 − 𝑝𝑡 ≥ 0, and reject it otherwise.

Let 𝑥𝑡 ∈ 0, 1 represent the decision of buyer 𝑡 , where 𝑥𝑡 = 1 indi-
cates a purchase and 𝑥𝑡 = 0 otherwise. Then buyer 𝑡 obtains a utility
(𝑣𝑡 − 𝑝𝑡)𝑥𝑡 and the seller collects a total revenue of

∑
𝑡 ∈[𝑇] 𝑝𝑡𝑥𝑡 −

𝑓 (∑𝑡 ∈[𝑇] 𝑥𝑡) from all buyers. The goal of the online market is to de-
termine the posted prices {𝑝𝑡 }∀𝑡 ∈[𝑇] tomaximize the social welfare,
which is the sum of utilities of all the buyers and the revenue of the
producer, i.e.,

∑
𝑡 ∈[𝑇] 𝑥𝑡 · (𝑣𝑡 −𝑝𝑡) +

∑
𝑡 ∈[𝑇] 𝑥𝑡 ·𝑝𝑡 − 𝑓 (∑𝑡 ∈[𝑇] 𝑥𝑡) =∑

𝑡 ∈[𝑇] 𝑣𝑡𝑥𝑡 − 𝑓 (∑𝑡 ∈[𝑇] 𝑥𝑡).
Let I = {𝑣1, · · · , 𝑣𝑇 } denote an arrival instance of buyers. An

optimal offline algorithm that knows all the information of I can
obtain the optimal social welfare OPT(I) by solving the following
optimization problem

OPT(I) = max
𝑥𝑡 ∈{0,1}

∑︁
𝑡 ∈[𝑇] 𝑣𝑡𝑥𝑡 − 𝑓

(∑︁
𝑡 ∈[𝑇] 𝑥𝑡

)
,

s.t.
∑︁

𝑡 ∈[𝑇] 𝑥𝑡 ≤ 𝑘.

However, in the online market, the posted price 𝑝𝑡 is determined
without knowing the valuations of future buyers {𝑣𝜏 }𝜏>𝑡 . We aim
to design an online mechanism to determine the posted prices such
that the social welfare achieved by the online mechanism, denoted
by ALG(I), is competitive compared to OPT(I). Specifically, an
online algorithm is 𝛼-competitive if for any input instance I, the
following inequality holds:

𝛼 ≥ OPT(I)
E[ALG(I)] ,

where the expectation of E[ALG(I)] is taken with respect to the
randomness of the online algorithm. To attain a bounded compet-
itive ratio, we consider a constrained adversary model [15, 23],
where the buyers’ valuations are assumed to be bounded.

Assumption 1. Buyers’ valuations are bounded in [𝐿,𝑈], i.e.,
𝑣𝑡 ∈ [𝐿,𝑈],∀𝑡 ∈ [𝑇].

The interval [𝐿,𝑈] can be considered as the prediction interval
that covers the valuations of all buyers [15], and is known to the
online algorithm. As shown in [23], the competitive analysis of
online algorithms for OSDoS depends on the relationship between
buyers’ valuations and the production cost function. For simplicity
of presentation, we focus on the case where the production cost is
always smaller than the buyer’s valuation, i.e., 𝑐𝑘 < 𝐿, and derive
lower and upper bound results of OSDoS in Section 3 and Section 4,
respectively. We show in Appendix H and I that the assumption
of 𝑐𝑘 < 𝐿 is without loss of generality as our lower/upper bound
results can be naturally extended to the general case.

3 Lower Bound for OSDoS: Hardness of
Allocation with Diseconomies of Scale

We begin by deriving a tight lower bound for OSDoS. The insights
gained from this analysis guide the design of r-Dynamic (Algorithm
1) in Section 4.

3.1 Lower Bound 𝛼∗
S (𝑘)

Theorem 3 below formally states the lower bound 𝛼∗S (𝑘) for the
competitive ratio of any online algorithm for OSDoS.

Theorem 3 (Lower Bound). Given S = {𝐿,𝑈 , 𝑓 } for the OS-
DoS problem with 𝑘 ≥ 1, no online algorithm, including those with

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

randomization, can achieve a competitive ratio smaller than 𝛼∗S (𝑘),
where 𝛼∗S (𝑘) is the solution to the following equation of 𝛼 :

𝑈 =

(
𝐿 − 𝑐

¯
𝑘

)
· 𝑒

𝛼
𝑘
· (𝑘+1−

¯
𝑘−𝜉) + 𝑐

¯
𝑘 · 𝑒

𝛼
𝑘
· (𝑘−

¯
𝑘)+

𝑐
¯
𝑘+1 ·

(
1 − 𝑒

𝛼
𝑘

)
· 𝑒

𝛼
𝑘
· (𝑘−1−

¯
𝑘) + · · · + 𝑐𝑘 ·

(
1 − 𝑒

𝛼
𝑘

)
. (1)

In Eq. (1),
¯
𝑘 ∈ [𝑘] denotes the smallest natural number such that∑︁

¯
𝑘

𝑖=1
(𝐿 − 𝑐𝑖) ≥

1
𝛼
·
(
𝑘𝐿 −

∑︁𝑘

𝑖=1
𝑐𝑖

)
, (2)

and 𝜉 ∈ (0, 1] denotes the unique solution to the following equation

𝜉 =

1
𝛼 · (𝑘𝐿 − ∑𝑘

𝑖=1 𝑐𝑖) −
∑

¯
𝑘−1
𝑖=1 (𝐿 − 𝑐𝑖)

𝐿 − 𝑐
¯
𝑘

. (3)

Theorem 3 is our main result concerning the hardness of OSDoS.
To prove Theorem 3, a key step is to establish a set of necessary
conditions that any 𝛼-competitive online algorithm must satisfy. A
formal proof will be provided in Section 3.3. Below, we offer several
remarks to clarify the key intuitions.
• By the definition of

¯
𝑘 in Eq. (2),

¯
𝑘 represents the minimum num-

ber of units that any 𝛼-competitive deterministic algorithm, de-
noted byALGd, must sell when faced with an arrival instance of𝑘
identical buyers with valuation 𝐿, denoted by I (𝐿)

𝑖𝑑𝑒𝑛
= {𝐿, · · · , 𝐿}.

Under the instance I (𝐿)
𝑖𝑑𝑒𝑛

, the maximum social welfare achievable
by the offline optimal algorithm is 𝑘𝐿−∑𝑘

𝑖=1 𝑐𝑖 . Therefore, ALGd
must sell at least

¯
𝑘 units to ensure 𝛼-competitiveness, implying

that
¯
𝑘 is well-defined for all values of 𝛼 ≥ 1.

• Eq. (3) demonstrates that 𝜉 is defined as the fraction of the
¯
𝑘-

th unit required to make Eq. (2) binding. We argue that 𝜉 ∈
(0, 1] is well-defined and always exists as long as there is an 𝛼-
competitive randomized algorithm, denoted as ALGr. Consider
running ALGr on the same instance I (𝐿)

𝑖𝑑𝑒𝑛
. In this scenario, ALGr

must sell at least
¯
𝑘 − 1 units plus a fraction 𝜉 of the

¯
𝑘-th unit of

the item, in expectation.
• Note that, in general, a closed-form expression for the lower

bound 𝛼∗S (𝑘) cannot be derived. This is expected due to the
arbitrary nature of the sequence of marginal production costs.
However, because of the monotonicity of

¯
𝑘 , 𝜉 , and the right-hand

side of Eq. (1) with respect to 𝛼 , 𝛼∗S (𝑘) can be easily computed
by solving Eq. (1) numerically using binary search.
In the next subsection, we construct a family of hard instances

and introduce a novel representative function-based approach to de-
rive a system of differential equations, which are crucial to proving
the lower bound result in Theorem 3.

3.2 Representing Worst-Case Performance by
(Probabilistic) Allocation Functions

3.2.1 Hard Instances {I (𝜖)
𝑣 }∀𝑣∈[𝐿,𝑈] . We introduce a family of

hard instances based on the instance I (𝜖) defined as follows.

Definition 1 (Instance I (𝜖)). For an arbitrarily small 𝜖 > 0,
the instance I (𝜖) starts with 𝑘 identical buyers with valuation 𝐿 in
the first stage, followed by a group of 𝑘 identical buyers per stage, with
valuations continuously increasing from 𝐿 + 𝜖 to 𝑈 . Mathematically,

I (𝜖) is denoted as

{𝐿, . . . , 𝐿︸ ︷︷ ︸
𝑘

, 𝐿 + 𝜖, . . . , 𝐿 + 𝜖︸ ︷︷ ︸
𝑘

, 𝐿 + 2𝜖, . . . , 𝐿 + 2𝜖︸ ︷︷ ︸
𝑘

, . . . ,

𝑣, . . . , 𝑣︸ ︷︷ ︸
𝑘 buyers in stage 𝑣

, . . . ,𝑈 , . . . ,𝑈︸ ︷︷ ︸
𝑘

}.

By Definition 1, as 𝜖 → 0, for any value 𝑣 ∈ [𝐿,𝑈], there will
be 𝑘 buyers with valuation 𝑣 in I (𝜖) , which we define as stage-𝑣 .
For any 𝑣 ∈ [𝐿,𝑈], let I (𝜖)

𝑣 represent all the buyers in I (𝜖) from
the beginning up to stage-𝑣 . For instance, if 𝑣 = 𝐿 + 2𝜖 , then I (𝜖)

𝑣

includes the first 3𝑘 buyers in I (𝜖) with valuations 𝐿, 𝐿 + 𝜖 , and
𝐿 + 2𝜖 . Due to the online nature of the problem, we emphasize that
I (𝜖) may terminate at any stage 𝑣 . In other words, there exists a
family of hard instances, {I (𝜖)

𝑣 }∀𝑣∈[𝐿,𝑈] , induced by I (𝜖) . Here,
I (𝜖)
𝑣 denotes the arrival instance of I (𝜖) that terminates at stage-𝑣 .
Henceforth, we will use “instance I (𝜖)

𝑣 " and “instance I (𝜖) by the
end of stage-𝑣" interchangeably.

Given any 𝛼-competitive algorithm ALG, an arbitrary instance
from {I (𝜖)

𝑣 }∀𝑣∈[𝐿,𝑈] may be the one that ALG processes. Thus, for
any 𝑣 ∈ [𝐿,𝑈], by the end of stage-𝑣 of I (𝜖) , ALG must achieve
at least a 1/𝛼 fraction of the optimal social welfare, 𝑘𝑣 − ∑𝑘

𝑖=1 𝑐𝑖 ,
which is attained by rejecting all previous buyers except for the
last 𝑘 buyers with valuation 𝑣 . Consequently, an 𝛼-competitive
algorithm must ensure

ALG
(
I (𝜖)
𝑣

)
≥ 1

𝛼
·
(
𝑘𝑣 −

∑︁𝑘

𝑖=1
𝑐𝑖

)
, ∀𝑣 ∈ [𝐿,𝑈], (4)

where ALG(I (𝜖)
𝑣) denotes the expected performance of ALG under

the instance I (𝜖)
𝑣 .

3.2.2 Representing ALG(I (𝜖)
𝑣) by Allocation Functions. For

any randomized algorithm,we define𝑘+1 distinct states, {𝑞𝑖 }∀𝑖∈{0,· · · ,𝑘 } ,
which represent the allocation behavior of the online algorithm at
any stage of instance I (𝜖) , as follows:

• State 𝑞0 corresponds to the situation where the online al-
gorithm has not allocated any units.

• For all 𝑖 ∈ [𝑘], state 𝑞𝑖 represents that the online algorithm
has allocated at least 𝑖 units of the item.

For all 𝑣 ∈ [𝐿,𝑈] and 𝑖 ∈ {0, · · · , 𝑘}, we define Ψ𝑖 (𝑣) : [𝐿,𝑈] →
{0, 1} such that Ψ𝑖 (𝑣) = 1 if the algorithm is in state 𝑞𝑖 after pro-
cessing all the buyers in I (𝜖)

𝑣 , and Ψ𝑖 (𝑣) = 0 otherwise. Specifically,
Ψ𝑖 (𝑣) = 1 if the online algorithm allocates at least 𝑖 units of the
item at the end of stage 𝑣 in I (𝜖) , which occurs with some proba-
bility depending on the algorithm’s randomness. Since the instance
I (𝜖) is deterministically defined, Ψ𝑖 (𝑣) is a binary random variable
whose distribution depends solely on the algorithm’s randomness.
This leads to the definition of 𝝍 = {𝜓𝑖 }∀𝑖∈[𝑘] below.

Definition 2 (Allocation Functions). For any randomized
online algorithm, let 𝝍 = {𝜓𝑖 }∀𝑖∈[𝑘] and 𝜓𝑖 : [𝐿,𝑈] → [0, 1] rep-
resent the functions where 𝜓𝑖 (𝑣) = E[Ψ𝑖 (𝑣)], with the expectation
taken over the randomness of the algorithm.

Based on the definition above, we have 𝜓𝑖 (𝑣) = Pr(Ψ𝑖 (𝑣) = 1),
where Ψ𝑖 (𝑣) = 1 indicates that the algorithm is in state 𝑞𝑖 (i.e., at

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Posted Price Mechanisms for Online Allocation with Diseconomies of Scale Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

least 𝑖 units of the item have been allocated) after processing all
buyers in I (𝜖)

𝑣 (i.e., by the end of stage 𝑣 of instance I (𝜖)). In this
context,𝜓𝑖 (𝑣) represents the probability that the online algorithm
has allocated at least 𝑖 units of the item by the end of stage 𝑣 in
instance I (𝜖) . Therefore, the term probabilistic allocation functions
is used or simply allocation functions for brevity. The following
lemma demonstrates several important properties of𝜓𝑖 (𝑣) for all
𝑖 ∈ [𝑘] and 𝑣 ∈ [𝐿,𝑈].

Lemma 1 (Monotonicity; Continuity). For any randomized
online algorithm, 𝜓𝑖 (𝑣) ≥ 𝜓𝑖+1 (𝑣) holds for all 𝑖 ∈ [𝑘] and 𝑣 ∈
[𝐿,𝑈]. In addition, for any 𝑖 ∈ [𝑘], if the allocation function 𝜓𝑖 (𝑣)
is discontinuous at some point 𝑣 ∈ [𝐿,𝑈], then there exists another
algorithm ÂLG such that𝜓𝑖 (𝑣) is continuous at 𝑣 ∈ [𝐿,𝑈] and ÂLG
performs no worse than ALG.

The proof of the above lemma is given in Appendix A.
Lemma 1 implies that it suffices to focus on randomized algo-

rithms whose allocation functions are from the following set

Ω =

{
𝝍
��𝜓𝑖 (𝑣) ∈ [0, 1],𝜓𝑖 (𝑣) ≥ 𝜓𝑖+1 (𝑣),

𝜓𝑖 (𝑣) < 𝜓𝑖 (𝑣 ′),∀𝑖 ∈ [𝑘], 𝑣, 𝑣 ′ ∈ [𝐿,𝑈], and 𝑣 < 𝑣 ′
}
.

Next, we analyze how the allocation level of an 𝛼-competitive
algorithm should evolve as new buyers with higher valuations
arrive in I (𝜖) . We argue that the expected performance of any
online algorithm under the instance I (𝜖) can be fully represented
by the 𝑘 allocation functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘] . Let ALG(I (𝜖)

𝑣) denote
the expected objective value of the algorithm under instance I (𝜖)

𝑣 .
Then ALG(I (𝜖)

𝑣) can be framed using 𝝍 = {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘] as follows.

Proposition 1 (Representation based on 𝝍). For any random-
ized algorithmALG under the family of hard instances {I (𝜖)

𝑣 }∀𝑣∈[𝐿,𝑈]
with 𝜖 → 0, its expected performance can be represented by its allo-
cation functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘] ∈ Ω as follows:
ALG

(
I (𝜖)
𝐿

)
=

𝑘∑
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖),

ALG
(
I (𝜖)
𝑣

)
= ALG

(
I (𝜖)
𝐿

)
+

𝑘∑
𝑖=1

∫ 𝑣

𝜂=𝐿
(𝜂 − 𝑐𝑖)𝑑𝜓𝑖 (𝜂), ∀𝑣 ∈ (𝐿,𝑈] .

The above proposition relates the expected performance of an on-
line algorithm to the set of allocation functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘] that
capture its dynamics under the family of hard instances {I (𝜖)

𝑣 }∀𝑣∈[𝐿,𝑈] .
The detailed proof can be found in Appendix B.

Combining Proposition 1 and Eq. (4) gives the corollary below.

Corollary 4 (Necessary Conditions). If there exists an 𝛼-
competitive algorithm for OSDoS, then there exists 𝑘 allocation func-
tions {𝜓𝑖 }∀𝑖∈[𝑘] ∈ Ω that satisfy the following equation:

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖) +
𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖)𝑑𝜓𝑖 (𝜂)

≥ 1
𝛼
·
(
𝑘𝑣 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
, ∀𝑣 ∈ [𝐿,𝑈] . (5)

The corollary above provides a set of necessary conditions for
the allocation functions {𝜓𝑖 }∀𝑖∈[𝑘] induced by any 𝛼-competitive

algorithm. Therefore, determining a tight lower bound for OSDoS
is equivalent to finding the lowest 𝛼 such that there exists a set of
allocation functions in Ω that satisfy Eq. (5).

3.3 Proof of Theorem 3
We now move on to prove Theorem 3. Based on the necessary
conditions in Corollary 4, the lower bound can be defined as

𝛼∗S (𝑘) = inf
{
𝛼 ≥ 1

��there exist a set of 𝑘 allocation

functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘] ∈ Ω that satisfy Eq. (5)
}
.

Next, we show that it is possible to find a tight design of {𝜓𝑖 }∀𝑖∈[𝑘]
that satisfies the necessary conditions in Eq. (5) by equality, ulti-
mately leading to Eq. (1) in Theorem 3.

For any 𝛼 ≥ 𝛼∗S (𝑘), let Γ
(𝛼) denote the superset of the set of

functions {𝜓𝑖 }∀𝑖∈[𝑘] ∈ Ω that satisfy Eq. (5). Note that Γ (𝛼) ⊂ Ω

holds for all 𝛼 ≥ 𝛼∗S (𝑘). Let function 𝜒 (𝛼) (𝑣) : [𝐿,𝑈] → [0, 𝑘] be
defined as

𝜒 (𝛼) (𝑣) = inf
{∑︁𝑘

𝑖=1
𝜓𝑖 (𝑣)

�� {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘] ∈ Γ (𝛼)
}
. (6)

Based on the definition of 𝜒 (𝛼) , we construct a set of allocation
functions {𝜓 (𝛼)

𝑖
(𝑣)}∀𝑖∈[𝑘] as follows:

𝜓
(𝛼)
𝑖

(𝑣) =
(
𝜒 (𝛼) (𝑣) − (𝑖 − 1)

)
· 1{𝑖−1≤𝜒 (𝛼) (𝑣)≤𝑖 }+

1{𝜒 (𝛼) (𝑣)>𝑖 } ,∀𝑣 ∈ [𝐿,𝑈], ∀𝑖 ∈ [𝑘], (7)

where 1{𝐴} is the standard indicator function, equal to 1 if 𝐴 is
true and 0 otherwise. In the following lemma, we argue that the set
of functions {𝜓 (𝛼)

𝑖
(𝑣)}∀𝑖∈[𝑘] is a feasible solution to Eq. (5) and

satisfies it as an equality.

Lemma 2. For any 𝛼 ≥ 𝛼∗S (𝑘), the functions {𝜓
(𝛼)
𝑖

}∀𝑖∈[𝑘] satisfy
Eq. (5) as an equality.

The detailed proof for the above lemma is in Appendix C. Fol-
lowing the definition of {𝜓 (𝛼)

𝑖
(𝑣)}∀𝑖∈[𝑘] , we observe that these

functions exhibit the following property:

Lemma 3. For any 𝑖 ∈ [𝑘] and 𝑣 ∈ [𝐿,𝑈], if 𝜓 (𝛼)
𝑖

(𝑣) ∈ (0, 1)
holds, then𝜓 (𝛼)

𝑗
(𝑣) = 1 for all 𝑗 = 1, · · · , 𝑖 − 1 and𝜓 (𝛼)

𝑗
(𝑣) = 0 for

all 𝑗 = 𝑖 + 1, · · · , 𝑘 .

The lemma above asserts that if the online algorithm inducing
{𝜓 (𝛼) }∀𝑖 begins allocating unit 𝑖 with some positive probability to
buyers in stage-𝑣 of I (𝜖) , then the algorithm must have already
allocated all units 𝑗 < 𝑖 with probability one to buyers arriving at
or before stage-𝑣 of I (𝜖) . Furthermore, if the algorithm has not
allocated unit 𝑖 with probability one by the end of stage-𝑣 , then
all units 𝑗 > 𝑖 remain in the system with probability one at the
end of stage-𝑣 . Given that the marginal cost for each additional
unit of resource increases, the algorithm should only produce and
allocate a new unit once all previously produced units have been
fully allocated.

According to Lemma 2, the inequality in Eq. (5) can be replaced
with an equality. By combining Lemma 2 with Lemma 3, we con-
clude that there exists a unique set of functions that satisfy Eq.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(5) as an equality and also fulfill the property stated in Lemma 3.
Proposition 2 below formally states this result.

Proposition 2. For any 𝛼 ≥ 𝛼∗S (𝑘), there exist a unique set

of 𝑘 allocation functions {𝜓 (𝛼)
𝑖

}∀𝑖∈[𝑘] ∈ Ω that satisfy Eq. (5) by
equality:

𝜓
(𝛼)
𝑖

(𝑣) = 1, 𝑖 = 1, . . . ,
¯
𝑘 − 1,

𝜓
(𝛼)

¯
𝑘

(𝑣) =
{
𝜉 + 𝑘

𝛼 · ln
(
𝑣−𝑐

¯
𝑘

𝐿−𝑐
¯
𝑘

)
𝑣 ∈ [𝐿,𝑢

¯
𝑘],

1 𝑣 > 𝑢
¯
𝑘 ,

𝜓
(𝛼)
𝑖

(𝑣) =


0 𝑣 ≤ ℓ𝑖 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑖
ℓ𝑖−𝑐𝑖

)
𝑣 ∈ [ℓ𝑖 , 𝑢𝑖],

1 𝑣 ≥ 𝑢𝑖 ,

𝑖 =
¯
𝑘 + 1, . . . , 𝑘 − 1,

𝜓
(𝛼)
𝑘

(𝑣) =
{

0 𝑣 ≤ ℓ𝑘 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑘
ℓ𝑘−𝑐𝑘

)
𝑣 ∈ [ℓ𝑘 ,𝑈],

where the intervals {[ℓ𝑖 , 𝑢𝑖]}∀𝑖 are specified by

𝑢
¯
𝑘 = ℓ

¯
𝑘+1 = (𝐿 − 𝑐

¯
𝑘) · 𝑒 (1−𝜉) ·

𝛼
𝑘 + 𝑐

¯
𝑘 , (8)

𝑢𝑖 = ℓ𝑖+1 = (ℓ𝑖 − 𝑐𝑖) · 𝑒𝛼/𝑘 + 𝑐𝑖 ∀𝑖 =
¯
𝑘 + 1, . . . , 𝑘 . (9)

Recall that the parameters
¯
𝑘 and 𝜉 are defined in Eq. (2) and

Eq. (3), respectively. Once 𝛼 is given, both
¯
𝑘 and 𝜉 can be uniquely

determined. Therefore, the set of allocation functions {𝜓 (𝛼)
𝑖

}∀𝑖∈[𝑘]
given in Proposition 2 can also be explicitly computed once 𝛼

is given. The full proof of how to derive the explicit designs of
{𝜓 (𝛼)

𝑖
}∀𝑖∈[𝑘] is given in Appendix D.

Putting together Eq. (8) and Eq. (9), we have

𝑢𝑘 = (𝐿 − 𝑐
¯
𝑘) · 𝑒

𝛼
𝑘
· (𝑘+1−

¯
𝑘−𝜉) + 𝑐

¯
𝑘 · 𝑒

𝛼
𝑘
· (𝑘−

¯
𝑘)+

𝑐
¯
𝑘+1 · (1 − 𝑒

𝛼
𝑘) · 𝑒

𝛼
𝑘
· (𝑘−1−

¯
𝑘) + · · · + 𝑐𝑘 · (1 − 𝑒

𝛼
𝑘) .

Note that the right-hand side of the equation above is increasing
in 𝛼 . Therefore, as 𝛼 decreases, the value of 𝑢𝑘 also decreases and
will eventually fall below 𝑈 for a specific value of 𝛼 . Consequently,
according to the definition of𝜓 (𝛼)

𝑘
in Proposition 2,𝜓 (𝛼)

𝑘
(𝑈) will

exceed 1 (since𝜓 (𝛼)
𝑘

(𝑈) > 𝜓
(𝛼)
𝑘

(𝑢𝑘), and based on Eq. (9),𝜓
(𝛼)
𝑘

(𝑢𝑘)
is equal to one). However, this will generate an infeasible alloca-
tion function 𝜓

(𝛼)
𝑘

, as we require that 𝜓 (𝛼)
𝑘

(𝑣) ≤ 1 holds for all
𝑣 ∈ [𝐿,𝑈]. As a result, for those values of 𝛼 where 𝑢𝑘 < 𝑈 , the set
of 𝑘 allocation functions {𝜓 (𝛼)

𝑖
}∀𝑖∈[𝑘] obtained in Proposition 2

becomes infeasible, meaning that 𝛼 must be less than 𝛼∗S (𝑘). There-
fore, the lower bound 𝛼∗S (𝑘) is the value of 𝛼 for which 𝑢𝑘 = 𝑈 ,
and this gives Eq. (1) in Theorem 3. Thus, we complete the proof of
Theorem 3.

4 r-Dynamic: A Randomized Dynamic Posted
Price Mechanisms

We propose a randomized dynamic pricing mechanism (r-Dynamic),
as described in Algorithm 1, to solve the OSDoS problem. Before
the buyers arrive, r-Dynamic samples 𝑘 independent random prices
{𝑃𝑖 }∀𝑖∈[𝑘] , where 𝑃𝑖 is the price for the 𝑖-th unit of the item. Specif-
ically, for each unit 𝑖 ∈ [𝑘], a random seed 𝑠𝑖 is drawn from
the uniform distribution Unif(0, 1), and the random price is set

Algorithm1 Randomized Dynamic Pricing (r-Dynamic) forOSDoS

1: Input: pricing functions {𝜙𝑖 }∀𝑖∈[𝑘] ;
2: Initiate: index of the unit to be sold 𝜅1 = 1;
3: Generate a random seed vector 𝒔 = {𝑠𝑖 }∀𝑖∈[𝑘] , each element

sampled independently from uniform distribution Unif(0, 1);
4: Set a price vector P = {𝑃𝑖 }∀𝑖∈[𝑘] , where 𝑃𝑖 = 𝜙𝑖 (𝑠𝑖);
5: while buyer 𝑡 arrives do
6: if 𝜅𝑡 ≤ 𝑘 then:
7: Post the price 𝑝𝑡 = 𝑃𝜅𝑡 to buyer 𝑡 ;
8: if buyer 𝑡 accepts the price then
9: One unit is sold and set 𝑥𝑡 = 1;
10: end if
11: end if
12: Update 𝜅𝑡+1 = 𝜅𝑡 + 𝑥𝑡 . ⊲ 𝑥𝑡 = 0 if buyer 𝑡 declines 𝑝𝑡 .
13: end while

as 𝑃𝑖 = 𝜙𝑖 (𝑠𝑖), where 𝜙𝑖 (𝑠𝑖) is the pricing function designed for the
𝑖-th unit. r-Dynamic then posts the price of the available unit with
the smallest index from {𝑃𝑖 }∀𝑖∈[𝑘] to the online arriving buyers.

For all 𝑖 ∈ [𝑘], the pricing function 𝜙𝑖 : [0, 1] → [𝐿𝑖 ,𝑈𝑖] is
constructed such that the 𝑘 price intervals {[𝐿𝑖 ,𝑈𝑖]}∀𝑖∈[𝑘] span the
entire range of [𝐿,𝑈], where 𝐿 = 𝐿1 ≤ 𝑈1 = 𝐿2 ≤ 𝑈2 ≤ · · · ≤
𝑈𝑘−1 = 𝐿𝑘 ≤ 𝑈𝑘 = 𝑈 . That is, the upper boundary of 𝜙𝑖 (i.e.,
the maximum price of 𝑃𝑖) is the lower boundary of 𝜙𝑖+1 (i.e., the
minimum price of 𝑃𝑖+1). As a result, the posted prices will always
be non-decreasing (i.e., 𝑃1 ≤ 𝑃2 ≤ · · · ≤ 𝑃𝑘), regardless of the
realization of the random seeds {𝑠𝑖 }∀𝑖∈[𝑘] . This design ensures
that units with higher production costs are sold at higher prices,
which is consistent with the natural pricing scheme where more
expensive units reflect higher production costs.

4.1 Asymptotic Optimality of r-Dynamic
We show that by carefully designing the pricing functions, r-Dynamic
achieves an asymptotically optimal competitive ratio.

Theorem 5. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with

𝑘 ≥ 1, r-Dynamic is 𝛼∗S (𝑘) ·exp(𝛼
∗
S (𝑘)
𝑘

)-competitive when the pricing
functions are given by

𝜙𝑖 (𝑠) = 𝐿, ∀𝑠 ∈ [0, 1], 𝑖 ∈ [
¯
𝑘∗ − 1],

𝜙
¯
𝑘∗ (𝑠) =

{
𝐿 𝑠 ∈ [0, 𝜉∗],
(𝐿 − 𝑐

¯
𝑘∗) · 𝑒 (𝑠−𝜉

∗) ·𝛼∗
S (𝑘)/𝑘 + 𝑐

¯
𝑘∗ 𝑠 ∈ [𝜉∗, 1],

𝜙𝑖 (𝑠) = (𝐿𝑖 − 𝑐𝑖) · 𝑒𝑠 ·𝛼
∗
S (𝑘)/𝑘 + 𝑐𝑖 , ∀𝑠 ∈ [0, 1], 𝑖 =

¯
𝑘∗ + 1, . . . , 𝑘,

where
¯
𝑘∗ and 𝜉∗ are respectively the values of

¯
𝑘 and 𝜉 defined in

Theorem 3, corresponding to 𝛼 = 𝛼∗S (𝑘), and the price intervals
{[𝐿𝑖 ,𝑈𝑖]}∀𝑖∈[𝑘] are given as follows:

𝑈
¯
𝑘∗ = 𝐿

¯
𝑘∗+1 = (𝐿 − 𝑐

¯
𝑘∗) · 𝑒 (1−𝜉

∗) ·𝛼∗
S (𝑘)/𝑘 + 𝑐

¯
𝑘∗ , (10)

𝑈𝑖 = 𝐿𝑖+1 = (𝐿𝑖 − 𝑐𝑖) · 𝑒𝛼
∗
S (𝑘)/𝑘 + 𝑐𝑖 , ∀𝑖 =

¯
𝑘∗ + 1, . . . , 𝑘 . (11)

We provide a proof sketch of Theorem 5 in Section 4.3. At a high
level, the design of the pricing functions {𝜙𝑖 (𝑠)}∀𝑖∈[𝑘] is inspired
by the dynamics of an 𝛼∗S (𝑘)-competitive algorithm on the arrival
instance I (𝜖) studied in the lower bound section. Essentially, the
inverse of the pricing function 𝜙𝑖 (𝑠), defined as 𝜙−1

𝑖
(𝑣) = sup{𝑠 :

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Posted Price Mechanisms for Online Allocation with Diseconomies of Scale Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

𝜙𝑖 (𝑠) ≤ 𝑣}, follows the same design as 𝜓 (𝛼)
𝑖

(𝑣) in Proposition 2

when 𝛼 = 𝛼∗S (𝑘), namely,𝜓
(𝛼∗

S (𝑘))
𝑖

(𝑣) = sup{𝑠 : 𝜙𝑖 (𝑠) ≤ 𝑣}.
Asymptotic optimality of r-Dynamic in general settings.

It is important to note that previous studies (e.g., [12, 23]) have
shown that 𝛼∗S (𝑘) remains bounded by a constant as 𝑘 approaches
infinity.1 Thus, the competitive ratio of r-Dynamic approaches the
lower bound 𝛼∗S (𝑘) as 𝑘 goes to infinity (i.e., 𝛼∗S (𝑘)/𝑘 → 0 as
𝑘 → ∞), meaning that r-Dynamic is asymptotically optimal.

Exact optimality of r-Dynamic when 𝑘 = 2. For the small
inventory case of 𝑘 = 2, a tighter analysis shows that r-Dynamic is
𝛼∗S (2)-competitive using the same design of pricing functions in
Theorem 5, where 𝛼∗S (2) is the lower bound obtained in Theorem
3 for 𝑘 = 2. This indicates that r-Dynamic is not just asymptotically
optimal, but also optimal in the small inventory setting when 𝑘 = 2.
The corollary below formalizes this result.

Corollary 6. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with
𝑘 = 2, r-Dynamic is 𝛼∗S (2)-competitive when 𝜙1 : [0, 1] → [𝐿1,𝑈1]
and 𝜙2 : [0, 1] → [𝐿2,𝑈2] are designed as follows:
• If 𝛼∗S (2) ≥

2𝐿−𝑐1−𝑐2
𝐿−𝑐1

, then:

𝜙1 (𝑠) =
{
𝐿 𝑠 ∈ [0, 𝜉∗],
(𝐿 − 𝑐1) · 𝑒 (𝑠−𝜉

∗) ·𝛼∗
S (2)/2 + 𝑐1 𝑠 ∈ [𝜉∗, 1],

𝜙2 (𝑠) = (𝐿2 − 𝑐2) · 𝑒𝑠 ·𝛼
∗
S (2)/2 + 𝑐2 ∀𝑠 ∈ [0, 1] .

In this case, the price intervals and 𝜉∗ are given by

𝐿1 = 𝐿,𝑈1 = 𝐿2 = (𝐿 − 𝑐1) · 𝑒 (1−𝜉
∗) ·𝛼∗

S (2)/2 + 𝑐1,𝑈2 = 𝑈 ,

𝜉∗ =
1

𝛼∗S (2)
· (2𝐿 − 𝑐1 − 𝑐2)

𝐿 − 𝑐1
.

• If 𝛼∗S (2) <
2𝐿−𝑐1−𝑐2

𝐿−𝑐1
, then:

𝜙1 (𝑠) = 𝐿, ∀𝑠 ∈ [0, 1],

𝜙2 (𝑠) =
{
𝐿 𝑠 ∈ [0, 𝜉∗],
(𝐿 − 𝑐2) · 𝑒 (𝑠−𝜉

∗) ·𝛼∗
S (2)/2 + 𝑐2 𝑠 ∈ [𝜉∗, 1] .

In this case, the price intervals and 𝜉∗ are given by

𝐿1 = 𝑈1 = 𝐿2 = 𝐿, 𝑈2 = 𝑈 ,

𝜉∗ =
(2𝐿 − 𝑐1 − 𝑐2)/𝛼∗S (2) − (𝐿 − 𝑐1)

𝐿 − 𝑐2
.

The proof of the corollary above is given in Appendix F. In the
following two subsections, we first evaluate the empirical perfor-
mance of r-Dynamic and then provide a proof sketch of Theorem
5 to show the asymptotic optimality of r-Dynamic.

4.2 Empirical Performance of r-Dynamic
We perform three experiments to evaluate the empirical perfor-
mance of r-Dynamic and compare its performance to two other
algorithms, d-Dynamic [17] and r-Static [20]. Throughout the three
experiments, the setupS is fixed to be {𝐿 = 1,𝑈 = 30, 𝑓 (𝑖) = 𝑖2/16}
1Recall that all buyers’ valuations are bounded within [𝐿,𝑈]. Thus, any naive algo-
rithm will be at least 𝑘𝑈 −𝑓 (𝑘)

𝑘𝐿−𝑓 (𝑘) -competitive by allocating 𝑘 units to buyers with the
lowest valuation, 𝐿, while the offline optimal algorithm allocates all 𝑘 units to buyers
with the highest valuation,𝑈 .

and 𝑘 = 10. To stimulate different arrival patterns of buyers, we
consider the following three types of instances:

• Instance-IID: We generate the valuations of 1000 buyers
using the truncated normal distribution 𝑁 (15, 15)[1,30] .

• Instance-Sorted: We generate 1000 buyers using the same
approach as Instance-IID, and then sort these buyers in
increasing order by their valuations. This instance mimics
the hard instance I (𝜖) .

• Instance-Low2High: We generate the valuations of 500
buyers using truncated normal distribution𝑁 (7.5, 7.5)[1,30] .
Following these 500 buyers, we generate another 500 buyers
using distribution 𝑁 (22.5, 7.5)[1,30] .

Figure 2 presents the CDF plot of the empirical competitive ra-
tios for the three algorithms r-Dynamic, d-Dynamic, and r-Static,
evaluated on 300 instances from each type of instance. In Figure
2(a), r-Dynamic significantly outperforms the other two algorithms
under Instance-Sorted. This is because the valuations of online
arrivals are increasing, similar to the hard instance I (𝜖) defined
in Section 3.2. This result confirms the superior performance of
r-Dynamic under difficult instances compared to the other algo-
rithms. Additionally, Figure 2(a) demonstrates that r-Dynamic’s
performance is very close to the lower bound 𝛼∗S (10), suggesting
that r-Dynamic may not only be asymptotically optimal in the
large 𝑘 regime but also near-optimal in the small 𝑘 regime. In Fig-
ure 2(b), Instance-Low2High consists of two phases: low-valued
buyers arriving first, followed by high-valued buyers. This instance
is simpler than Instance-Sorted, and the performance of all three
algorithms improves, with r-Dynamic continuing to outperform
the others. Finally, in Figure 2(c), under Instance-IID, all algo-
rithms achieve a competitive ratio close to 1, with r-Dynamic and
d-Dynamic performing similarly. From these figures, we observe
that the advantage of r-Dynamic becomes increasingly evident as
the instances become more difficult, particularly when low-valued
buyers arrive before high-valued buyers.

4.3 Proof Sketch of Theorem 5
For an arbitrary arrival instance I = {𝑣𝑡 }∀𝑡 ∈[𝑇] , we prove that

r-Dynamic is 𝛼∗S (𝑘) · exp(𝛼
∗
S (𝑘)
𝑘

)-competitive if the pricing func-
tions {𝜙𝑖 }∀𝑖∈[𝑘] are designed according to Theorem 5.

Recall that the random price vector P = {𝑃𝑖 }𝑖∈[𝑘] is generated
using the pricing functions {𝜙𝑖 }∀𝑖∈[𝑘] at the start of r-Dynamic
(line 3 of Algorithm 1). Hereafter, we will refer to Algorithm 1
as r-Dynamic(P) to indicate that the algorithm is executed with
the random price vector P. Based on the design of {𝜙𝑖 }∀𝑖∈[𝑘] in
Theorem 5, the first

¯
𝑘∗ − 1 prices in P are all 𝐿’s (i.e., 𝑃1 = · · · =

𝑃
¯
𝑘∗−1 = 𝐿), the

¯
𝑘∗-th price 𝑃

¯
𝑘∗ is a random variable within [𝐿,𝑈

¯
𝑘∗],

and for all 𝑖 ∈ {
¯
𝑘∗ + 1, · · · , 𝑘], the 𝑖-th price 𝑃𝑖 is a random variable

within [𝐿𝑖 ,𝑈𝑖]. Here, the values of ¯
𝑘∗ and {[𝐿𝑖 ,𝑈𝑖]}∀𝑖 are all defined

in Theorem 5.
Let P denote the support of all possible values of the random

price vector P:

P = {𝐿}¯
𝑘∗−1 × [𝐿,𝑈

¯
𝑘∗] ×

∏
𝑖∈{

¯
𝑘∗+1,· · · ,𝑘 }

[𝐿𝑖 ,𝑈𝑖] .

Given a price vector P ∈ P, let𝑊 (P) represent the total number of
items allocated by r-Dynamic(P) under the input instance I. Since

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

4.00 4.25 4.50 4.75 5.00 5.25 5.50 5.75
Empirical Competitive Ratio

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

x = * (10)
r-Dynamic
d-Dynamic
r-Static

(a) Instance-Sorted

2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25
Empirical Competitive Ratio

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

x = * (10)
r-Dynamic
d-Dynamic
r-Static

(b) Instance-Low2High

1.0 1.2 1.4 1.6 1.8
Empirical Competitive Ratio

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

r-Dynamic
d-Dynamic
r-Static

(c) Instance-IID

Figure 2: CDF plots of empirical competitive ratios of r-Dynamic (Algorithm 1), d-Dynamic [23] and r-Static [20].

P is a random variable,𝑊 (P) is also a random variable. For clarity,
we will sometimes omit the price vector and refer to it simply as
𝑊 whenever the context is clear.

Let 𝜔 be the maximum value in the support of the random vari-
able𝑊 (i.e.,𝜔 is the maximum possible value of𝑊 (P) for all P ∈ P).
Thus, 𝜔 is a deterministic value that depends only on the input
instance I. In addition, let 𝝅 ∈ P be a price vector such that
r-Dynamic(𝝅) allocates the 𝜔-th item earlier than any other price
vector in the set P. That is, for all P ∈ P, r-Dynamic(P) allocates
the 𝜔-th item no earlier than that of r-Dynamic(𝝅). Let us define
the set {𝜏𝑖 }∀𝑖∈[𝜔] so that 𝜏𝑖 is the arrival time of the buyer in the
instance I to whom r-Dynamic(𝝅) allocates the 𝑖-th unit. Note
that for all 𝑖 ∈ {1, · · · , 𝜔}, 𝜏𝑖 is a deterministic value once 𝝅 and I
are given. Let the random variable𝑊 𝜏𝜔 (P) denote the total number
of items allocated by r-Dynamic(P) after the arrival of buyer 𝜏𝜔 in
the instance I. The lemma below shows that the random variable
𝑊 𝜏𝜔 (P) is always lower bounded by 𝜔 − 1.

Lemma 4. Given instance I,𝑊 𝜏𝜔 (P) ≥ 𝜔 − 1 holds for all 𝑷 ∈ P.

Lemma 4 greatly simplifies the analysis of r-Dynamic since it
implies that the support of the random variable𝑊 𝜏𝜔 consists only
of two values:𝜔−1 and𝜔 (note that all𝑊 ’s are upper bounded by𝜔).
The intuition behind Lemma 4 is as follows. For all 𝑖 ∈ {1, · · · , 𝜔},
recall that 𝜏𝑖 denotes the arrival time of the buyer in the instance I
who receives the 𝑖-th unit under r-Dynamic(𝝅). Upon the arrival
of buyer 𝜏𝑖 , if the number of items allocated by r-Dynamic(P) is
less than 𝑖 − 1, then the current 𝜏𝑖 -th buyer will definitely accept
the price offered to her, ensuring that one more unit will be sold.
As a result, at least 𝜔 − 1 items will be allocated by the end of time
𝜏𝜔 . Lemma 4 thus follows.

The following two lemmas help us lower bound the expected
performance ofr-Dynamic on input instance I and upper bound
the objective of the offline optimal algorithm, respectively.

Lemma 5. If a buyer in instance I arrives before time 𝜏𝜔 with
a valuation within [𝐿𝜔 ,𝑈], then for all P ∈ P, r-Dynamic(P) will
allocate one unit of the item to that buyer.

Lemma 5 can be proved as follows. By definition, 𝜏𝜔 is the earli-
est time across all possible price vectors in P that the production
level exceeds 𝜔 − 1, causing the posted price to exceed𝑈𝜔−1. Thus,
for all possible realization of P ∈ P, the posted prices by r-Dynamic
remain below 𝑈𝜔−1 before the arrival of buyer at time 𝜏𝜔 . Con-
sequently, when a buyer with a valuation within [𝐿𝜔 ,𝑈] arrives

before time 𝜏𝜔 , the buyer accepts the price posted to him (since
𝐿𝜔 ≥ 𝑈𝜔−1) and a unit of item will thus be allocated to this buyer.

Lemma 6. There are no buyers in instance I with a valuation
within [𝑈𝜔 ,𝑈] arriving after time 𝜏𝜔 , namely, the valuations of all
buyers arrive after 𝜏𝜔 are less than𝑈𝜔 .

y The above lemma can be proved by contradiction. If there exists
a buyer arriving after time 𝜏𝜔 with a valuation within [𝑈𝜔 ,𝑈], then
theremust exist a price vector inP, say P′, such that r-Dynamic(P′)
will allocate more than 𝜔 units, contradicting the definition of 𝜔 .

Applying Lemma 5 and observing that r-Dynamic sells at least
𝜔 − 1 units, we can derive a lower bound on the expected per-
formance of r-Dynamic. Conversely, using the lemma 6 and the
fact that for all P ∈ P, the allocation level of r-Dynamic never
exceeds 𝜔 , we can upper bound the objective of the offline optimal
algorithm. The combination of these two bounds yields the final
competitive ratio of r-Dynamic. For the full proof of Theorem 5,
refer to Appendix E.

5 Conclusions and Future Work
In this paper, we studied online 𝑘-selection with production costs
that exhibit diseconomies of scale (OSDoS) and developed novel
randomized dynamic pricing mechanisms with the best-known
competitive ratios. Specifically, our randomized dynamic pricing
scheme provides tight guarantees in both the small and large in-
ventory settings (i.e., small and large 𝑘), addressing the gap left by
[23]. These findings advance the theoretical understanding of OS-
DoS and offer practical insights for designing randomized dynamic
pricing mechanisms in online resource allocation problems with
increasing marginal production costs.

This work highlights several promising directions for future
research. First, we conjecture that our proposed randomized pric-
ing mechanism is optimal for all 𝑘 ≥ 1. However, a more refined
analysis is required to establish or refute its optimality for𝑘 ≥ 3. Ad-
ditionally, extending our results to multi-resource or combinatorial
settings could reveal new insights into online resource allocation
with diseconomies of scale in more complex environments. Fur-
thermore, it would be valuable to explore other metrics, such as
risk and fairness, in online allocation and selection to ensure that
the developed randomized pricing mechanisms not only maximize
efficiency but also promote reliable and equitable outcomes.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Posted Price Mechanisms for Online Allocation with Diseconomies of Scale Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Matthew. Andrews, Spyridon. Antonakopoulos, and Lisa. Zhang. 2016. Minimum-

Cost Network Design with (Dis)economies of Scale. SIAM J. Comput. 45, 1 (2016),
49–66.

[2] Baruch Awerbuch, Yossi Azar, and Serge Plotkin. 1993. Throughput-competitive
on-line routing. In Proceedings of 1993 IEEE 34th Annual Foundations of Computer
Science. IEEE, 32–40.

[3] Yossi Azar, Niv Buchbinder, TH Hubert Chan, Shahar Chen, Ilan Reuven Cohen,
Anupam Gupta, Zhiyi Huang, Ning Kang, Viswanath Nagarajan, Joseph Naor,
et al. 2016. Online algorithms for covering and packing problems with convex
objectives. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS). IEEE, 148–157.

[4] Siddharth Barman, Seeun Umboh, Shuchi Chawla, and David Malec. 2012. Sec-
retary problems with convex costs. In International Colloquium on Automata,
Languages, and Programming. Springer, 75–87.

[5] Avrim Blum, Anupam Gupta, Yishay Mansour, and Ankit Sharma. 2011. Welfare
and Profit Maximization with Production Costs. In Proceedings of the 52nd Annual
Symposium on Foundations of Computer Science (FOCS ’11). 77–86.

[6] Avrim Blum, Yishay Mansour, and Liu Yang. 2015. Online allocation and pricing
with economies of scale. InWeb and Internet Economics: 11th International Confer-
ence, WINE 2015, Amsterdam, The Netherlands, December 9-12, 2015, Proceedings
11. Springer, 159–172.

[7] Niv Buchbinder and Joseph Naor. 2009. Online primal-dual algorithms for
covering and packing. Mathematics of Operations Research 34, 2 (2009), 270–286.

[8] Ying Cao, Bo Sun, and Danny HK Tsang. 2022. Online network utility maximiza-
tion: Algorithm, competitive analysis, and applications. IEEE Transactions on
Control of Network Systems 10, 1 (2022), 274–284.

[9] Jose Correa, Patricio Foncea, Ruben Hoeksma, Tim Oosterwijk, and Tjark Vrede-
veld. 2019. Recent developments in prophet inequalities. ACM SIGecom Exchanges
17, 1 (2019), 61–70.

[10] Anupam Gupta, Ruta Mehta, and Marco Molinaro. 2018. Maximizing Profit with
Convex Costs in the Random-order Model. In 45th International Colloquium on
Automata, Languages, and Programming (ICALP 2018).

[11] AnupamGupta and Sahil Singla. 2021. Random-OrderModels. Chapter 11 – Beyond
the Worst-Case Analysis of Algorithms. Cambridge University Press. 234–258
pages.

[12] Zhiyi Huang and Anthony Kim. 2019. Welfare maximization with production
costs: A primal dual approach. Games and Economic Behavior 118, C (2019),
648–667.

[13] Zhiyi Huang, Zhihao Gavin Tang, and David Wajc. 2024. Online Matching: A
Brief Survey. https://doi.org/10.48550/arXiv.2407.05381

[14] Jianhao Jia, Hao Li, Kai Liu, Ziqi Liu, Jun Zhou, Nikolai Gravin, and Zhihao Gavin
Tang. 2023. Online resource allocation in Markov Chains. In Proceedings of the
ACM Web Conference 2023. 3498–3507.

[15] Zhihao Jiang, Pinyan Lu, Zhihao Gavin Tang, and Yuhao Zhang. 2021. Online
selection problems against constrained adversary. In International Conference on
Machine Learning. PMLR, 5002–5012.

[16] Brendan Lucier. 2017. An economic view of prophet inequalities. ACM SIGecom
Exchanges 16, 1 (2017), 24–47.

[17] A. Marchetti-Spaccamela and C. Vercellis. 1995. Stochastic On-Line Knapsack
Problems. Mathematical Programming 68, 1 (Jan. 1995), 73–104.

[18] Aranyak Mehta. 2013. Online Matching and Ad Allocation. Found. Trends Theor.
Comput. Sci. 8, 4 (Oct. 2013), 265–368.

[19] Shreyas Sekar. 2017. Posted pricing sans discrimination. In Proceedings of the
26th International Joint Conference on Artificial Intelligence. 388–394.

[20] Bo Sun, Hossein Nekouyan Jazi, Xiaoqi Tan, and Raouf Boutaba. 2024. Static
Pricing for Online Selection Problem and its Variants. In The 20th Conference on
Web and Internet Economics, WINE 2024, Edinburgh, United Kingdom Proceedings
,December 2-5, 2024. Springer. https://arxiv.org/abs/2410.07378

[21] Bo Sun, Xiaoqi Tan, and Danny HK Tsang. 2018. Eliciting multi-dimensional flex-
ibilities from electric vehicles: A mechanism design approach. IEEE Transactions
on Power Systems 34, 5 (2018), 4038–4047.

[22] Xiaoqi Tan, Bo Sun, Alberto Leon-Garcia, Yuan Wu, and D.H.K Tsang. 2020.
Mechanism Design for Online Resource Allocation: A Unified Approach. Proc.
ACM Meas. Anal. Comput. Syst. (SIGMETRICS ’20) 4, 2, Article 24 (June 2020),
46 pages.

[23] Xiaoqi Tan, Siyuan Yu, Raouf Boutaba, and Alberto Leon-Garcia. 2023. Threshold
Policies with Tight Guarantees for Online Selection with Convex Costs. WINE
(2023). https://doi.org/10.48550/ARXIV.2310.06166 arXiv:2310.06166

[24] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. Lau. 2015. Online Auctions in IaaS
Clouds: Welfare and Profit Maximization with Server Costs. In Proceedings of the
2015 ACM SIGMETRICS International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS ’15) (Portland, Oregon, USA). 3–15.

[25] Z. Zhang, Z. Li, and C. Wu. 2017. Optimal Posted Prices for Online Cloud
Resource Allocation. Proc. ACM Meas. Anal. Comput. Syst. (SIGMETRICS ’17) 1, 1
(June 2017).

A Proof of Lemma 1
Wefirst prove themonotonicity. Following the definition of the state
variables 𝑞𝑖+1 and 𝑞𝑖 , when the random variable Ψ𝑖+1 (𝑣) is realized
to be 1, r-Dynamic must have allocated at least 𝑖 + 1 units, and thus
Ψ𝑖 (𝑣) = 1 must hold. Consequently, it follows that𝜓𝑖 (𝑣) ≥ 𝜓𝑖+1 (𝑣).

We now move on to prove the continuity of𝜓𝑖 (𝑣) in 𝑣 ∈ [𝐿,𝑈].
Let ALG be an 𝛼-competitive algorithm. For some 𝑣 ∈ (𝐿,𝑈) and 𝑖 ∈
[𝑘], let the function𝜓𝑖 (.) corresponding to ALG be non-continuous
at 𝑣 . Let lim𝑥→𝑣− 𝜓𝑖 (𝑣) = 𝜈 and𝜓𝑖 (𝑣) = lim𝑥→𝑣+ 𝜓𝑖 (𝑣) = 𝜈 + 𝛿 , for
some 𝛿 > 0. Then the algorithm must be selling at least in expecta-
tion a 𝛿-fraction of the 𝑖-th unit to the buyers with valuation 𝑣 in
instance I. Conversely, for ALG to be 𝛼-competitive, the expected
objective of the algorithm before the arrival of buyers with val-
uation 𝑣 , ALG(I (𝜖)

𝑣−), must be at least equal to 1
𝛼 · OPT(I (𝜖)

𝑣−) =

1
𝛼 · OPT(I (𝜖)

𝑣), where OPT(I (𝜖)
𝑣) denotes the objective value of

the offline optimal algorithm on the hard instance I (𝜖) up to the
end of stage-𝑣 . It can be seen that selling in expectation at least a
𝛿 fraction of the 𝑖-th unit is unnecessary and ALG could save this
fraction of the unit and sell it to buyers with higher valuations. In
other words, we can construct another online algorithm, say ÂLG,
that follows ALG up to the arrival of buyers with valuation 𝑣 , but
sells the 𝛿-fraction of the 𝑖-th unit to buyers with valuation strictly
greater than 𝑣 instead. It is easy to see that ÂLG will obtain a better
objective value with its𝜓𝑖 being continuous at 𝑣 . Lemma 1 follows
by repeating the same process for any other discontinuous point of
𝜓𝑖 (𝑣).

B Proof of Proposition 1
For any randomized algorithm ALG, let 𝐷 (𝐿) denote the number of
units that ALG allocates under the instance I (𝜖)

𝐿
(i.e., the instance

I (𝜖) by the end of stage-𝐿). Thus, 𝐷 (𝐿) is a random variable taking
values from 0 to 𝑘 . Based on definition of 𝐷 (𝐿), ALG(I (𝜖)

𝐿
) can be

computed as follows:

ALG
(
I (𝜖)
𝐿

)
= E

𝐷 (𝐿) · 𝐿 −
𝐷 (𝐿)∑︁
𝑖=1

𝑐𝑖

 ,
where the expectation is taken with respect to the randomness of
𝐷 (𝐿) (the distribution depends on the randomness of the algorithm
ALG). Let the indicator function 1{𝐷 (𝐿)=𝑗 } = 1 if ALG allocates
exactly 𝑗 units at the end of stage-𝐿, and 1{𝐷 (𝐿)=𝑗 } = 0 otherwise.
Based on definition of the random variables {Ψ𝑖 (𝐿)}∀𝑖∈[𝑘] , we
argue that:

1{𝐷 (𝐿)=𝑗 } = Ψ𝑗 (𝐿) − Ψ𝑗+1 (𝐿), 1 ≤ 𝑗 ≤ 𝑘. (12)

Here,Ψ𝑘+1 (𝐿) = 0 always holds. To seewhy Eq. (12) is true, consider
the case where the random variable 𝐷 (𝐿) = 𝑗 , then:

Ψ𝑖 (𝐿) = 1, ∀𝑖 ≤ 𝑗,

Ψ𝑖 (𝐿) = 0, ∀𝑖 > 𝑗 .

From the equation above, we can observe that when the indicator
function 1{𝐷 (𝐿)=𝑗 } = 1, Ψ𝑗+1 (𝐿) − Ψ𝑗 (𝐿) = 1 holds. For the case
when 1{𝐷 (𝐿)=𝑗 } = 0, if 𝐷 (𝐿) < 𝑗 , then Ψ𝑗 (𝐿) = Ψ𝑗+1 (𝐿) = 0 and
1{𝐷 (𝐿)=𝑗 } = Ψ𝑗 (𝐿) − Ψ𝑗+1 (𝐿) follows. For the case 𝐷 (𝐿) > 𝑗 , the
two equations Ψ𝑗 (𝐿) = Ψ𝑗+1 (𝐿) = 1 and 1{𝐷 (𝐿)=𝑗 } = Ψ𝑗 (𝐿) −

9

https://doi.org/10.48550/arXiv.2407.05381
https://arxiv.org/abs/2410.07378
https://doi.org/10.48550/ARXIV.2310.06166
https://arxiv.org/abs/2310.06166

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Ψ𝑗+1 (𝐿) again follow. As a result, ALG(I (𝜖)
𝐿

) can be computed as
follows:

ALG
(
I (𝜖)
𝐿

)
= E

𝐷 (𝐿) · 𝐿 −
𝐷 (𝐿)∑︁
𝑖=1

𝑐𝑖


=

𝑘∑︁
𝑗=1

E
[
1{𝐷 (𝐿)=𝑗 }

]
·
(
𝑗 · 𝐿 −

𝑗∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

E
[
Ψ𝑗 (𝐿) − Ψ𝑗+1 (𝐿)

]
·
(
𝑗 · 𝐿 −

𝑗∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

(
𝜓 𝑗 (𝐿) −𝜓 𝑗+1 (𝐿)

)
·
(
𝑗 · 𝐿 −

𝑗∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

𝜓 𝑗 (𝐿) · (𝐿 − 𝑐 𝑗) −𝜓𝑘+1 (𝐿) ·
(
𝑘 · 𝐿 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

𝜓 𝑗 (𝐿) · (𝐿 − 𝑐 𝑗).

Now, let us compute the objective of the 𝛼-competitive algorithm
at the end of stage-𝑣 , ∀𝑣 ∈ (𝐿,𝑈]. Let the random variable 𝑋𝑖 (𝑣) be
the value obtained from allocating the 𝑖-th unit of the item at the
end of some stage-𝑣 ∈ (𝐿,𝑈]. It follows that

E[𝑋𝑖 (𝑣) − 𝑐𝑖] = 𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖)+

E
[∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖) · (Ψ𝑖 (𝜂) − Ψ𝑖 (𝜂 − 𝑑𝜂))
]

=𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖) +
∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖) · E[Ψ𝑖 (𝜂) − Ψ𝑖 (𝜂 − 𝑑𝜂)]

=𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖) +
∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖) ·
(
𝜓𝑖 (𝜂) −𝜓𝑖 (𝜂 − 𝑑𝜂)

)
=𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖) · 𝑑𝜓𝑖 (𝜂),

where the first equality follows because if the 𝑖-th unit is allocated
at some stage 𝜂, then the algorithm must have sold at least 𝑖 units of
the item by the end of 𝜂, leading toΨ(𝜂) = 1. Additionally, if the 𝑖-th
unit is allocated at stage 𝜂, then at stage 𝜂 −𝑑𝜂, the algorithm must
have allocated fewer than 𝑖 units, indicating that Ψ𝑖 (𝜂 − 𝑑𝜂) = 0.
The last equality follows because the function𝜓𝑖 ∈ Ω is continuous.
Note that if the function 𝜓𝑖 is not differentiable at some value 𝑣 ,
then we use the right derivative of𝜓𝑖 at that point. Putting together
the above results, it follows that:

ALG
(
I (𝜖)
𝑣

)
=

𝑘∑︁
𝑖=1

E[𝑋𝑖 (𝑣) − 𝑐𝑖]

=

𝑘∑︁
𝑖=1

[
𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖) · 𝑑𝜓𝑖 (𝜂)
]
,

= ALG
(
I (𝜖)
𝐿

)
+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖) · 𝑑𝜓𝑖 (𝜂), ∀𝑣 ∈ (𝐿,𝑈] .

Proposition 1 thus follows.

C Proof of Lemma 2
For any 𝑣 ∈ [𝐿,𝑈], let us define 𝐶𝑣 as follows:

𝐶𝑣 = 𝐶𝐿 +
𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖)𝑑𝜓𝛼
𝑖 (𝜂), ∀𝑣 ∈ (𝐿,𝑈]

𝐶𝐿 =

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖).

To prove Lemma 2, we need to first prove the feasibility of {𝜓 (𝛼)
𝑖

}∀𝑖∈[𝑘] ,
namely, 𝐶𝑣 is greater than 1

𝛼 · (𝑘 · 𝑣 − ∑
𝑖 𝑐𝑖) for all 𝑣 ∈ [𝐿,𝑈].

For some 𝑣 ∈ [𝐿,𝑈], based on the definition of 𝜒𝛼 (𝑣) in Eq. (6),
there exist a set of functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘] that satisfy Eq. (5) and
in the meanwhile, for some arbitrary small value 𝜖 , we have:

𝜒𝛼 (𝑣) + 𝜖 ≥
𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣). (13)

Next, using integration by parts, we have

𝐶𝑣 = 𝐶𝐿 +
𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖)𝑑𝜓𝛼
𝑖 (𝜂)

= 𝐶𝐿 +
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · (𝑣 − 𝑐𝑖)−

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖) −

∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝜂)

)
𝑑𝜂

=

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · (𝑣 − 𝑐𝑖) −

∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝜂)

)
𝑑𝜂

= 𝑣 ·
(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑝)

)
−

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝜂)

)
𝑑𝜂

= 𝑣 · 𝜒𝛼 (𝑣) −
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

𝜒𝛼 (𝑣)𝑑𝜂,

where the last equality follows the definition of {𝜓𝛼
𝑖
}∀𝑖∈[𝑘] in Eq.

(7). Thus, we have

𝐶𝑣 = 𝑣 · 𝜒𝛼 (𝑣) −
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

𝜒𝛼 (𝑣) · 𝑑𝜂,

≥ 𝑣 ·
𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) − 𝑣 · 𝜖 −
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

𝜒𝛼 (𝑣) · 𝑑𝜂,

≥ 𝑣 ·
𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) −
∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝑖 (𝜂)
)
· 𝑑𝜂

−
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 − 𝑣 · 𝜖, (14)

where the first inequality follows Eq. (13) and the second inequal-
ity directly follows the definition of 𝜒𝛼 (𝑣) (recall that 𝜒𝛼 (𝑣) ≤∑𝑘
𝑖=1𝜓𝑖 (𝑣) holds for all 𝑣 ∈ [𝐿,𝑈]).
By the definition of {𝜓𝛼

𝑖
}∀𝑖∈[𝑘] , we have

∑
𝑖∈[𝑘] 𝜓

𝛼
𝑖
(𝑣) = 𝜒𝛼 (𝑣).

Putting together the inequality 𝜒𝛼 (𝑣) ≤ ∑𝑘
𝑖=1𝜓𝑖 (𝑣) and the fact

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Posted Price Mechanisms for Online Allocation with Diseconomies of Scale Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

that productions costs are increasing, we have

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 ≤

𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) · 𝑐𝑖 .

Putting together the above inequality and the right-hand-side of
Eq. (14), it follows that:

𝐶𝑣 ≥ 𝑝 ·
𝑘−1∑︁
𝑖=0

𝜓𝑖 (𝑣) −
𝑘−1∑︁
𝑖=0

∫ 𝑣

𝜂=𝐿

𝜓𝑖 (𝜂) · 𝑑𝜂−

𝑘−1∑︁
𝑖=0

𝜓𝑖 (𝑣) · 𝑐𝑖+1 − 𝑣 · 𝜖

≥ ALG
(
I (𝜖)
𝑣

)
− 𝑣 · 𝜖,

where ALG is the online algorithm corresponding to the set of
allcation functions {𝜓𝑖 }∀𝑖∈[𝑘] and recall that ALG(I (𝜖)

𝑣) is defined
as follows:

ALG
(
I (𝜖)
𝐿

)
=

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖),

ALG
(
I (𝜖)
𝑣

)
= ALG

(
I (𝜖)
𝐿

)
+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖)𝑑𝜓𝑖 (𝜂), ∀𝑣 ∈ [𝐿,𝑈] .

Since {𝜓𝑖 }∀𝑖∈[𝑘] satisfy Eq. (5), it follows that

𝐶𝑣 ≥ ALG
(
I (𝜖)
𝑣

)
− 𝑣 · 𝜖

≥ 1
𝛼
·
(
𝑘 · 𝑣 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
− 𝑣 · 𝜖, ∀𝑣 ∈ [𝐿,𝑈] .

By setting 𝜖 → 0, it follows that

𝐶𝑣 ≥ 1
𝛼
·
(
𝑘 · 𝑣 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
, ∀𝑣 ∈ [𝐿,𝑈] .

To complete the proof of Lemma 2, we also need to prove that
the above inequality holds as an equality for the set of functions
{𝜓𝛼

𝑖
}∀𝑖∈[𝑘] . This can be proved by contradiction. Suppose that at

some point 𝑣 ∈ [𝐿,𝑈], the above equality does not hold, then there
must exist another set of feasible functions, say {𝜓𝑖 }∀𝑖∈[𝑘] , induced
by a new algorithm, say ÂLG, that satisfy Eq. (5) and

𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) <
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣).

We argue that the new set of functions {𝜓𝑖 }∀𝑖∈[𝑘] will allocate a
smaller fraction of its total units to buyers in I (𝜖) arriving at or
before stage-𝑣 compared to {𝜓𝛼

𝑖
}∀𝑖∈[𝑘] . However, by still following

the allocation functions {𝜓𝛼
𝑖
}∀𝑖∈[𝑘] , ÂLG(I (𝜖)

𝑣) will be exactly
equal to 1

𝛼 (𝑘 · 𝑣 − ∑𝑘
𝑖=1 𝑐𝑖). Given the definition of {𝜓𝛼

𝑖
}∀𝑖∈[𝑘] ,

we have
∑𝑘
𝑖=1𝜓

𝛼
𝑖
(𝑣) = 𝜒𝛼 (𝑣), meaning that

∑𝑘
𝑖=1𝜓𝑖 (𝑣) < 𝜒𝛼 (𝑣).

However, this contradicts the definition of 𝜒𝛼 (𝑣). We thus complete
the proof of Lemma 2.

D Proof of Proposition 2
From Lemma 2, we know that {𝜓𝛼

𝑖
(𝑣)}∀𝑖∈[𝑘] satisfy Eq. (5) with an

equality. Therefore, the set of allocation functions {𝜓𝛼
𝑖
(𝑣)}∀𝑖∈[𝑘]

is a solution to the following system of equations:
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖) +

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖)𝑑𝜓𝛼
𝑖 (𝜂)

=
1
𝛼
· (𝑘 · 𝑣 −

∑︁
𝑖

𝑐𝑖), ∀𝑖 ∈ [𝑘], 𝑣 ∈ [𝐿,𝑈] . (15)

Also, based on Lemma 3, we argue that if the value of the function
𝜓𝛼
𝑖
(𝑣) is changing at some value 𝑣 ∈ [𝐿,𝑈] (i.e., 𝑑𝜓𝛼

𝑖
(𝑣) ≠ 0), then

the value of all the functions {𝜓∗
𝑗
(𝑣)}∀ 𝑗∈[𝑖−1] are equal to one,

and all the functions in the set {𝜓∗
𝑗
(𝑣)} 𝑗>𝑖 are equal to zero. Based

on this property, we can assign an interval [ℓ𝑖 , 𝑢𝑖] to each 𝜓𝛼
𝑖
(𝑣).

In the interval of [ℓ𝑖 , 𝑢𝑖], only the value of 𝜓𝛼
𝑖
changes while the

other functions {𝜓𝛼
𝑗
}∀ 𝑗≠𝑖 in that interval are fixed to be one or zero.

Additionally, the following relation exists between the start and
end points of these intervals:

𝐿 = ℓ1 ≤ 𝑢1 = ℓ2 ≤ 𝑢2 ≤ · · · ≤ ℓ𝑘 ≤ 𝑢𝑘 = 𝑈 .

To satisfy the equality
∑
𝑖∈[𝑘] 𝜓

𝛼
𝑖
(𝐿) · (𝐿 − 𝑐𝑖) = 1

𝛼 · (𝑘 · 𝐿 −∑
𝑖 𝑐𝑖),

the set of functions {𝜓𝛼
𝑖
(𝑣)}∀𝑖∈[

¯
𝑘−1] should be equal to one at the

point 𝑣 = 𝐿. Thus, the explicit design of the functions {𝜓𝛼
𝑖
}∀𝑖∈[

¯
𝑘−1]

is as follows:

𝜓
(𝛼)
𝑖

(𝑣) = 1, 𝑖 = 1, . . . ,
¯
𝑘 − 1.

In the case that
∑
𝑖∈[

¯
𝑘] 𝐿 − 𝑐𝑖 < 1

𝛼 · (𝑘 · 𝐿 − ∑
𝑖 𝑐𝑖), to satisfy∑

𝑖∈[𝑘] 𝜓
𝛼
𝑖
(𝐿) · (𝐿 − 𝑐𝑖) = 1

𝛼 · (𝑘 · 𝐿 − ∑
𝑖 𝑐𝑖), we need to have:

𝜓𝛼

¯
𝑘
(𝐿) =

∑
𝑖∈[

¯
𝑘−1] (𝐿 − 𝑐𝑖) − 1

𝛼 · ∑𝑖∈[𝑘] (𝐿 − 𝑐𝑖)
𝐿 − 𝑐

¯
𝑘

= 𝜉 .

Since for all 𝑣 ∈ [ℓ
¯
𝑘 , 𝑢

¯
𝑘] with ℓ

¯
𝑘 = 𝐿, only the value of 𝜓𝛼

¯
𝑘
(𝑣)

changes (i.e., 𝑑𝜓𝛼
𝑖
(𝑣) = 0 for all 𝑖 ≠

¯
𝑘), it follows that:

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖) +

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖)𝑑𝜓𝛼
𝑖 (𝜂)

=

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐
¯
𝑘)𝑑𝜓∗

¯
𝑘
(𝜂), ∀𝑣 ∈ [𝐿,𝑢

¯
𝑘] .

Based on the system of equations in Eq. (15), we need to have:
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐
¯
𝑘)𝑑𝜓∗

¯
𝑘
(𝜂)

=
1
𝛼
· (𝑘 · 𝑣 −

∑︁
𝑖

𝑐𝑖), ∀𝑣 ∈ [ℓ
¯
𝑘 , 𝑢

¯
𝑘] .

Taking derivative w.r.t. 𝑣 from both sides of the equation above, we
have

(𝑣 − 𝑐
¯
𝑘) · 𝑑𝜓∗

¯
𝑘
(𝑣) = 𝑘

𝛼
.

Solving the above differential equation leads to

𝜓∗
¯
𝑘
(𝑣) = 𝑘

𝛼
· ln(𝑣 − 𝑐

¯
𝑘) +𝑄, ∀𝑣 ∈ [ℓ

¯
𝑘 , 𝑢

¯
𝑘],

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

where 𝑄 is a constant. To find 𝑄 , since 𝜓∗
¯
𝑘
(𝐿) = 𝜉 , it follows that

𝑄 = 𝜉 − 𝑘
𝛼 · ln(𝐿−𝑐

¯
𝑘). As a result, the explicit design of the function

𝜓𝛼

¯
𝑘
is as follows:

𝜓
(𝛼)

¯
𝑘

(𝑣) =
{
𝜉 + 𝑘

𝛼 · ln
(
𝑣−𝑐

¯
𝑘

𝐿−𝑐
¯
𝑘

)
𝑣 ∈ [𝐿,𝑢

¯
𝑘],

1 𝑣 > 𝑢
¯
𝑘 .

To obtain the value of 𝑢
¯
𝑘 , we set 𝜓∗

¯
𝑘
(𝑢

¯
𝑘) = 1 (the function 𝜓∗

¯
𝑘

reaches its maximum). Consequently, it follows that:

𝑢
¯
𝑘 = (𝐿 − 𝑐

¯
𝑘) · 𝑒

𝛼
𝑘
· (1−𝜉) + 𝑐

¯
𝑘 .

Using the same procedure as what has been applied to𝜓𝛼

¯
𝑘
, for all

the other functions {𝜓𝛼
𝑖
(𝑣)}∀𝑖>

¯
𝑘 , we have

𝑘∑︁
𝑗=1

𝜓∗
𝑗 (𝐿) · (𝐿 − 𝑐 𝑗) +

𝑘∑︁
𝑗=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐 𝑗)𝑑𝜓𝛼
𝑖 (𝜂)

=

𝑘∑︁
𝑗=1

𝜓∗
𝑗 (𝐿) · (𝐿 − 𝑐 𝑗) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖)𝑑𝜓𝛼
𝑖 (𝜂), ∀𝑣 ∈ [ℓ𝑖 , 𝑢𝑖] .

Taking derivative w.r.t. 𝑣 from both sides of the equation above, it
follows that:

(𝑣 − 𝑐𝑖) · 𝑑𝜓𝛼
𝑖 (𝑣) = 𝑘

𝛼
.

Solving the above differential equation leads to

𝜓𝛼
𝑖 (𝑣) = 𝑘

𝛼
· ln(𝑣 − 𝑐𝑖) + �̂�, ∀𝑣 ∈ [ℓ𝑖 , 𝑢𝑖] .

Since𝜓∗ (ℓ𝑖) = 0, we have �̂� = − ln(ℓ𝑖 − 𝑐𝑖). The explicit design of
the function𝜓𝛼

𝑖
is thus as follows:

𝜓
(𝛼)
𝑖

(𝑣) =


0 𝑣 ≤ ℓ𝑖 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑖
ℓ𝑖−𝑐𝑖

)
𝑣 ∈ [ℓ𝑖 , 𝑢𝑖],

1 𝑣 ≥ 𝑢𝑖 .

𝑖 =
¯
𝑘 + 1, . . . , 𝑘 − 1

For the function𝜓𝛼
𝑘
, since it is the last function, it follows that:

𝜓
(𝛼)
𝑘

(𝑣) =
{

0 𝑣 ≤ ℓ𝑘 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑘
ℓ𝑘−𝑐𝑘

)
𝑣 ∈ [ℓ𝑘 ,𝑈] .

By setting𝜓∗ (𝑢𝑖) = 1, it follows that:

𝑢𝑖 = (ℓ𝑖 − 𝑐𝑖) · 𝑒
𝛼
𝑘 + 𝑐𝑖 , ¯

𝑘 + 1 ≤ 𝑖 ≤ 𝑘.

Putting everything together, Proposition 2 follows.

E Full Proof of Theorem 5
In this section, we provide a complete proof of Theorem 5. We begin
by introducing several important notations and lemmas. Then, we
break the problem into two independent subproblems based on
the buyers’ valuations in some arbitrary arrival instance I. For
each case, we proceed to show how to upper bound OPT(I), the
objective of the optimal offline algorithm on I. We then proceed
to lower bound the expected performance of r-Dynamic on that
instance, ALG(I). Ultimately, we combine everything and obtain
a performance guarantee for r-Dynamic under all adversarially
chosen instances of OSDoS for that subproblem.

E.1 Notations and Definitions
Consider an arbitrary arrival instance I = {𝑣𝑡 }𝑡 ∈[𝑇] . Recall that
the random price vector P = {𝑃1, · · · , 𝑃𝑘 } is generated using the
pricing functions {𝜙𝑖 }∀𝑖∈[𝑘] at the beginning of r-Dynamic (line
3 of Algorithm 1). In the following, we will refer to Algorithm 1
as r-Dynamic(P) to indicate that the algorithm is executed with
the random price vector being realized as P. Based on the design
of {𝜙𝑖 }∀𝑖∈[𝑘] in Theorem 5, the first 𝑘∗ − 1 prices in P are all 𝐿’s
(i.e., 𝑃1 = · · · = 𝑃𝑘∗−1 = 𝐿), the 𝑘∗-th price 𝑃𝑘∗ is a random variable
within [𝐿,𝑈𝑘∗], and for all 𝑖 ∈ {𝑘∗ +1, · · · , 𝑘], we have 𝑃𝑖 ∈ [𝐿𝑖 ,𝑈𝑖]
(recall that 𝑃𝑖 is also a random variable). Here, the values of

¯
𝑘∗ and

{[𝐿𝑖 ,𝑈𝑖]}∀𝑖 are all defined in Theorem 5.
Let P denote the support of all possible values of the random

price vector P:

P = {𝐿}¯
𝑘∗−1 × [𝐿,𝑈

¯
𝑘∗] ×

∏
𝑖∈{

¯
𝑘∗+1,· · · ,𝑘 }

[𝐿𝑖 ,𝑈𝑖] .

Given a price vector realization P ∈ P, let𝑊 (P) represent the
total number of items allocated by r-Dynamic(P) under the input
instance I. Since P is a random variable,𝑊 (P) is also a random
variable. For clarity, we will sometimes omit the price vector and
refer to it simply as𝑊 whenever the context is clear.

Let 𝜔 denote the maximum value in the support of the random
variable𝑊 (i.e., 𝜔 is the maximum possible value of𝑊 (P) for all
P ∈ P). Thus, 𝜔 is a deterministic value that depends only on the
input instance I. Furthermore, let 𝝅 ∈ P be a price vector such that
r-Dynamic(𝝅) allocates the 𝜔-th item earlier than any other price
vector in the set P. That is, for all P ∈ P, r-Dynamic(P) allocates
the 𝜔-th item no earlier than that of r-Dynamic(𝝅).

Let us define the set {(𝜈𝑖 , 𝜏𝑖)}∀𝑖∈[𝜔] so that 𝜏𝑖 is the arrival time
of the buyer in the instance I to whom r-Dynamic(𝝅) allocates
the 𝑖-th unit and 𝜈𝑖 is its valuation. Note that for all 𝑖 ∈ {1, · · · , 𝜔},
𝜏𝑖 and 𝜈𝑖 are deterministic values once 𝝅 and I are given.

We can derive the following inequality regarding 𝜈𝑖 :

𝜈𝑖 ≥ 𝐿𝑖 , ∀𝑖 ∈ [𝜔], (16)

where 𝐿𝑖 is the lower bound for the range of the pricing function 𝜙𝑖 ,
used to generate the random price for the 𝑖-th unit. This inequality
holds since the buyer arriving at time 𝜏𝑖 accepts the price posted
for the 𝑖-th unit by r-Dynamic. The price for the 𝑖-th unit is at least
equal to 𝐿𝑖 based on the design of the pricing functions 𝜙𝑖 .

Let the random variable𝑊 𝜏𝜔 (P) denote the total number of
items allocated by r-Dynamic(P) after the arrival of buyer 𝜏𝜔 in
the instance I. The lemma below shows that the random variable
𝑊 𝜏𝜔 (P) is always lower bounded by 𝜔 − 1.

Lemma 7. Given an arbitrary instance I,𝑊 𝜏𝜔 (P) ≥ 𝜔 − 1 holds
for all 𝑷 ∈ P.

Proof. If 𝜔 = 1, this lemma is trivial, so we consider the case
where 𝜔 ≥ 2. Suppose before the arrival of the buyer at time 𝜏2,
no items have been sold. From Eq. (16), we know that 𝜈2 ≥ 𝐿2.
Additionally, based on the design of the pricing functions 𝜙1 (.)
and 𝜙2 (.), we have 𝐿2 ≥ 𝑈1. Consequently, it follows that 𝜈2 ≥ 𝑈1.
Since the realized price for the first unit under any sampled price
vector will be at most𝑈1 (based on design of the pricing function
𝜙1), the buyer arriving at time 𝜏2 will accept the price for the first
unit, and the algorithm will sell the first item. Thus, for all possible

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Posted Price Mechanisms for Online Allocation with Diseconomies of Scale Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

price vector P, the value of the random variable𝑊 𝜏2 (P) is at least
equal to one. By the same reasoning, if before the arrival of the
buyer at time 𝜏3, only one item has been sold, the buyer arriving at
𝜏3 will accept the price for the second unit, regardless of its price,
and the total number of items sold by r-Dynamic will increase to
two. This reasoning can be extended to the time 𝜏𝜔 . As a result,
after the arrival of the buyer at time 𝜏𝜔 , r-Dynamic sells at least
𝜔 − 1 units and thereby the claim in the lemma follows. □

Lemma 7 implies that the support of the random variable𝑊 𝜏𝜔

consists only of two values: 𝜔 − 1 and 𝜔 . This greatly simplifies the
analysis of the algorithm.

The following two lemmas help us lower bound the expected
performance of r-Dynamic under the input instance I and up-
per bound the objective of the offline optimal algorithm given the
instance I, respectively.

Lemma 8. If a buyer in instance I arrives before time 𝜏𝜔 with
a valuation within [𝐿𝜔 ,𝑈], then for all P ∈ P, r-Dynamic(P) will
allocate one unit of the item to that buyer.

Proof. According to the definition of 𝝅 , 𝜏𝜔 is the earliest time
across all possible price vectors in P that the production level
exceeds 𝜔 − 1, causing the posted price to exceed 𝑈𝜔−1. Thus, for
all possible realization of P, the posted prices by r-Dynamic remain
below𝑈𝜔−1 before the arrival of buyer at time 𝜏𝜔 . Consequently,
when a buyer with a valuation within [𝐿𝜔 ,𝑈] arrives before time
𝜏𝜔 , the buyer accepts the price posted to him (since 𝐿𝜔 ≥ 𝑈𝜔−1)
and a unit of item will thus be allocated to this buyer. □

Lemma 9. There are no buyers in instance I with a valuation
within [𝑈𝜔 ,𝑈] arriving after time 𝜏𝜔 , namely, the valuations of all
buyers arrive after 𝜏𝜔 are less than𝑈𝜔 .

Proof. If there exist a buyer with a valuation larger than 𝑈𝜔

arriving after the time 𝜏𝜔 , then there must exist a price vector in
P, say P′, such that the number of units sold by r-Dynamic(P′)
will exceed 𝜔 . This contradicts the definition of 𝜔 . Thus, the lemma
follows.2 □

Given an instanceI, let the setB ⊆ I contain the highest-valued
buyers that the offline optimal algorithm selects. We further divide
B into two subsets: B1 and B2. B1 comprises the highest-valued
buyers up to time 𝜏𝜔 , while B2 includes the remaining buyers in
B who arrive at or after time 𝜏𝜔 . Let us further partition B1 into
two subsets: B1,1 and B1,2. Here, B1,1 consists of buyers in B1 with
valuations at least 𝐿𝜔 , and B1,2 = B1 \ B1,1 comprises those with
valuations strictly less than 𝐿𝜔 .

For the rest of the analysis, let us study the problem for two
separate cases that may occur depending on the instance I.

E.2 Case 1: Buyer 𝜏𝜔 Has the Highest Valuation
In this case, in the set B2, no buyer has a valuation greater than
𝑈𝜔−1 except for the buyer at time 𝜏𝜔 . Therefore, the buyer at time
𝜏𝜔 possesses the highest valuation in the instance I.

2In fact, such a price vector P′ for the initial 𝜔 units should have the same prices as
the vector 𝝅 and for the (𝑖 + 1)-th unit, P′ should be equal to𝑈𝜔 (i.e., 𝑃 ′

𝑖+1 = 𝑈𝜔).

E.2.1 Bound OPT from Above for Case 1. The following upper
bound can be derived for OPT(I), which denotes the objective
value of the offline optimal algorithm on instance I:

OPT(I)

= 𝑉 (B1) +𝑉 (B2) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

= 𝑉 (B1,1) +𝑉 (B1,2) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ |B1,1 | ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)
+ |B1,2 | ·𝑈𝜔−1 + (|B2 | − 1) ·𝑈𝜔−1

+ 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ (𝑘 − 1) ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)

+ 𝜈𝜏𝜔 −
𝑘∑︁
𝑖=1

𝑐𝑖 ,

where the first inequality directly follows the condition of Case
1. The second inequality follows the definition of B1,1 and B1,2.
Finally, the third inequality follows the fact that we only focus on
the case when 𝑐𝑘 < 𝐿.

E.2.2 Bound ALG fromBelow for Case 1. Moving forward, we focus
on establishing a lower bound on the performance of r-Dynamic
under the arrival instance I. Let the random variables {𝑋𝑖 }∀𝑖∈[𝑘]
represent the value obtained by r-Dynamic from allocating the 𝑖-th
unit of the item. Given the input instance I, let E[ALG(I)] denote
the expected performance of r-Dynamic. Therefore, we have:

E[ALG(I)]

= E

[
𝑘∑︁
𝑖=1

(𝑋𝑖 − 𝑐𝑖) · 1{i-th item is sold under price vector P}

]
,

≥
𝜔−1∑︁
𝑖=1

E[𝑋𝑖 − 𝑐𝑖]

=

𝜔−1∑︁
𝑖=1

E[𝑋𝑖] −
𝜔−1∑︁
𝑖=1

𝑐𝑖

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) −

𝜔−1∑︁
𝑖=1

𝑐𝑖 .

In the equations above, all expectations are taken with respect to
the randomness of the price vector P. The first inequality follows
Lemma 7, indicating that under any price vector P, r-Dynamic sells
at least 𝜔 − 1 units. The first term in the second inequality follows
due to the independent sampling used to set the price of the 𝑖-th
unit using the pricing function 𝜙𝑖 , and the second term follows
Lemma 8.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

Conference’17, July 2017, Washington, DC, USA Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Let us define𝜓𝑖 (𝑣) = sup{𝑠 : 𝜙𝑖 (𝑠) ≤ 𝑣} for all 𝑖 ∈ [𝑘]. From the
definition of {𝜙𝑖 }∀𝑖∈[𝑘] in Theorem 5, it follows that:

E[ALG(I)]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 −

𝜔−1∑︁
𝑖=1

𝑐𝑖 +
(
𝑉 (B1,1) − |B1 | · 𝐿𝜔

)
=

𝜔∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+
(
𝑉 (B1,1) − |B1 | · 𝐿𝜔

)
.

Furthermore, it is evident that based on the design of {𝜙𝑖 }∀𝑖∈[𝑘]
with 𝛼 = 𝛼∗S (𝑘), the set of functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘] follows the
same design as {𝜓𝛼

𝑖
(𝑣)}∀𝑖∈[𝑘] given in Proposition 2. As a result,

it follows that:
𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | · 𝐿𝜔)

≥ 1
𝛼∗S (𝑘)

·
(
𝑘 ·𝑈𝜔−1 −

∑︁
𝑖

𝑐𝑖

)
+

(
𝑉 (B1,1) − |B1 | · 𝐿𝜔

)
.

E.2.3 Putting Everything Together for Case 1. Putting together the
lower bound and upper bound derived for the expected objective
value of r-Dynamic and the offline optimal algorithm, it follows
that:

OPT(I)
E[ALG(I)]

≤
(𝑘 − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 + (𝑉 (B1,1) − |B1,1 | · 𝐿𝜔) −

∑𝑘
𝑖=1 𝑐𝑖

1
𝛼∗
S (𝑘)

· (𝑘 ·𝑈𝜔−1 −
∑
𝑖 𝑐𝑖) + (𝑉 (B1,1) − |B1,1 | · 𝐿𝜔)

≤
(𝑘 − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 − ∑𝑘

𝑖=1 𝑐𝑖
1

𝛼∗
S (𝑘)

· (𝑘 ·𝑈𝜔−1 −
∑
𝑖 𝑐𝑖)

= 𝛼∗S (𝑘) ·
(
1 +

𝜈𝜏𝜔 −𝑈𝜔−1
𝑘 ·𝑈𝜔−1 −𝐶

)
≤ 𝛼∗S (𝑘) ·

(
1 + 𝑈𝜔 −𝑈𝜔−1

𝑘 ·𝑈𝜔−1 −𝐶

)
≤ 𝛼∗S (𝑘) · 𝑒

𝛼∗
S (𝑘)
𝑘 .

In the equation above, the last inequality is due to the fact that
𝑈𝜔−𝑈𝜔−1
𝑈𝜔−1−𝑐𝜔 =

𝑈𝜔−𝑐𝜔
𝑈𝜔−1−𝑐𝜔 − 1 ≤ 1 + 𝑒

𝛼∗
S (𝑘)
𝑘 , where the last inequality

follows the design in Eq. (10).

E.3 Case 2: Buyer 𝜏𝜔 Does Not Have the Highest
Valuation

In the set of buyersB2, there are other buyers with valuation greater
than𝑈𝜔−1 besides the buyer at time 𝜏𝜔 . Let 𝜆 denote the value of
the highest buyer in B2 along with the value of buyer at time 𝜏𝜔 .
First, let us consider the case that 𝜆 ≤ 𝜈𝜏𝜔 . The proof for the case
that 𝜆 > 𝜈𝜏𝜔 follows exactly the same as the following case.

E.3.1 Bound OPT from Above for Case 2. Following the same ap-
proach as the previous Case 1, let us first upper bound the objective

of the offline optimal algorithm on instance I:

OPT(I)

= 𝑉 (B1) +𝑉 (B2) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1) + (|B2 | − 1) · 𝜆 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1,1) +𝑉 (B1,2) + (|B2 | − 1) · 𝜆 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ |B1,1 | ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)+

|B1,2 | ·𝑈𝜔−1 + (|B2 | − 1) · 𝜆 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ (𝑘 − 1) · 𝜆 + 𝜈𝜏𝜔 + (𝑉 (B1) − |B1 | · 𝐿𝜔) −
𝑘∑︁
𝑖=1

𝑐𝑖 .

E.3.2 Bound ALG from Below for Case 2. To establish a lower
bound on the performance of r-Dynamic in this case, let us consider
the following lemma:

Lemma 10. If the random price of the 𝜔-th unit is realized to be
less than 𝜆 and further assume that 𝜆 ≤ 𝜈𝜏𝜔 , then the number of
items allocated by r-Dynamic in the end is equal to 𝜔 .

Proof. Under any price realization, as established by Lemma
7, it is proven that after the arrival of the buyer at time 𝜏𝜔 , the
number of allocated units is at least 𝜔 − 1. If the price of the 𝜔-th
unit is realized to be less than 𝜆, then upon the arrival of the buyer
with valuation 𝜆 at some time after 𝜏𝜔 , the buyer will accept the
price if the 𝜔-th unit has not already been sold. □

Next, we obtain a lower bound on the performance of r-Dynamic
as follows:

E[ALG(I)]

= E

[
𝑘∑︁
𝑖=1

(𝑋𝑖 − 𝑐𝑖) · 1{i-th item is sold under pricie vector P}

]
≥

𝜔−1∑︁
𝑖=1

E[𝑋𝑖 − 𝑐𝑖] + E[𝑋𝜔 − 𝑐𝜔 |𝑃𝜔 ≤ 𝜆]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 +

∫ 𝜙−1
𝜔 (𝜆)

0
𝜙𝜔 (𝜂)𝑑𝜂 − 𝜙−1

𝜔 (𝜆) · 𝑐𝜔

−
𝜔−1∑︁
𝑖=1

𝑐𝑖 + (𝑉 (B1) − |B1 | · 𝐿𝜔) .

In the equations above, all expectations are taken with respect to
the randomness of the price vector P ∈ P. The first inequality
follows Lemma 10, where 𝑃𝜔 denotes the 𝜔-element of the random
price vector P that r-Dynamic posts for the 𝜔-th unit. The second
inequality is true because of the independent sampling that is used
to set the random price of the 𝑖-th unit using 𝜙𝑖 and Lemma 8.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Posted Price Mechanisms for Online Allocation with Diseconomies of Scale Conference’17, July 2017, Washington, DC, USA

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Let us define 𝜓𝑖 (𝑣) = sup{𝑠 : 𝜙𝑖 (𝑠) ≤ 𝑣}, 𝑖 ∈ [𝑘]. From the
definition of {𝜙𝑖 }𝑖∈[𝑘] in Theorem 5, it follows that:

𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 +

∫ 𝜙−1
𝜔 (𝜆)

0
𝜙𝜔 (𝜂)𝑑𝜂 − 𝜙−1

𝜔 (𝜆) · 𝑐𝜔

−
𝜔−1∑︁
𝑖=1

𝑐𝑖 + (𝑉 (B1) − |B1 | · 𝐿𝜔)

=

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔∑︁
𝑖=1

∫ 𝜆

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | · 𝐿𝜔).

Furthermore, it is evident that the set of functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘]
follows the same design as {𝜓𝛼

𝑖
(𝑣)}𝑖∈[𝑘] given in Lemma 2 (recall

that {𝜓𝛼
𝑖
(𝑣)}𝑖∈[𝑘] are based on {𝜙𝑖 }∀𝑖∈[𝑘]). As a result, it follows

that:
𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔∑︁
𝑖=1

∫ 𝜆

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | · 𝐿𝜔)

≥ 1
𝛼∗S (𝑘)

·
(
𝑘 · 𝜆 −

∑︁
𝑖

𝑐𝑖) + (𝑉 (B1

)
− |B1 | · 𝐿𝜔) .

E.3.3 Putting Everything Together for Case 2. Putting together the
above lower and upper bounds, it follows that:

OPT(I)
E[ALG(I)]

≤
(𝑘 − 1) · 𝜆 + 𝜈𝜏𝜔 + (𝑉 (B1) − |B1 | · 𝐿𝜔) −

∑𝑘
𝑖=1 𝑐𝑖

1
𝛼∗
S (𝑘)

· (𝑘 · 𝜆 − ∑𝑘
𝑖=1 𝑐𝑖) + (𝑉 (B1) − |B1 | · 𝐿𝜔)

≤
(𝑘 − 1) · 𝜆 + 𝜈𝜏𝜔 − ∑𝑘

𝑖=1 𝑐𝑖
1

𝛼∗
S (𝑘)

· (𝑘 · 𝜆 − ∑𝑘
𝑖=1 𝑐𝑖)

= 𝛼∗S (𝑘) · (1 +
𝜈𝜏𝜔 − 𝜆

𝑘 · 𝜆 −𝐶
)

≤ 𝛼∗S (𝑘) · (1 +
𝜈𝜏𝜔 − 𝜆

𝑘 · 𝜆 −𝐶
)

≤ 𝛼∗S (𝑘) · (1 +
𝑈𝜔 −𝑈𝜔−1
𝑘 ·𝑈𝜔−1 −𝐶

)

≤ 𝛼∗S (𝑘) · 𝑒
𝛼∗
S (𝑘)
𝑘 .

We thus complete the proof of Theorem 5.

Remark 1. Theorem 5 argues that r-Dynamic is asymptotically
optimal. We emphasize that our analysis of Theorem 5 is not tight be-
cause it does not differentiate between the sample paths of r-Dynamic
when the algorithm sells 𝜔 − 1 units and those when it sells 𝜔 units.
As a result, our analysis considers that r-Dynamic sells 𝜔 − 1 units of
the item on all sample paths.3 However, in the subsequent analysis
for the case of 𝑘 = 2, we can enumerate all the scenarios and therefore
do not require such a reduction. For this reason, we can prove in the
next section that r-Dynamic is indeed optimal for 𝑘 = 2 (see the proof
of Corollary 6 next).
3We conjecture that r-Dynamic is optimal even in the small inventory regime if a
tighter analysis is performed.

F Proof of Corollary 6
In this section, we prove that for an arbitrary instance I, the ex-
pected performance of r-Dynamic, denoted as E[ALG(I)], is at
least OPT(I)

𝛼∗
S (2)

.
Let 𝑣∗1, 𝑣

∗
2 denote the two highest valuations in the instance I

(we omit the proof for the trivial case with only one buyer in I).
Depending on the values of 𝑣∗1 and 𝑣∗2 , the following three cases
occur. In each scenario, we prove that E[ALG(I)] ≥ OPT(I)

𝛼∗
S (2)

=

𝑣∗1+𝑣∗2−𝑐1−𝑐2
𝛼∗
S (2)

holds.
Case I: 𝑣∗1 ≤ 𝑣∗2 ≤ 𝑈1. Let random variables 𝑋1 and 𝑋2 denote

the valuations of the buyers that purchase the first and second unit
of the item, respectively. Then, it follows that

E[ALG(I)]
= E𝒔∼𝑈 2 (0,1) [𝑋1 + 𝑋2 − 𝑐1 − 𝑐2]

≥
∫ 𝜙−1

1 (𝑣∗1)

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

+ (𝑣∗2 − 𝑐1) · (𝜙−1
1 (𝑣∗2) − 𝜙−1

1 (𝑣∗1)),

≥
∫ 𝜙−1

1 (𝑣∗1)

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

+
∫ 𝜙−1

1 (𝑣∗2)

𝑠1=𝜙
−1
1 (𝑣∗1)

(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

=

∫ 𝜙−1
1 (𝑣∗2)

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

≥
𝑣∗1 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=
OPT(I)
𝛼∗S (2)

,

where the first two terms in the first inequality arise from the fact
that if the realized price for the first unit of the item, denoted as
𝑃1 = 𝜙1 (𝑠1), is set below 𝑣∗1 , then in the worst-case scenario, the
value obtained from the first item will be at least equal to 𝜙1 (𝑠1).
The subsequent two terms are included because if the price for
the first item falls within the range from 𝑣∗1 to 𝑣∗2 , then the first
item is allocated to the buyer whose valuation is 𝑣∗2 . The second
inequality follows since 𝜙1 (𝑠1) is an non-decreasing function. The
third inequality follows from the design of 𝜙1 (𝑠1) in Theorem 6.

Case II: 𝑣∗1 ≤ 𝑈1 = 𝐿2 ≤ 𝑣∗2 ≤ 𝑈 . In this case, we have

E[ALG(I)]
= E𝒔∼𝑈 2 (0,1) [𝑋1 − 𝑐1] + E𝒔∼𝑈 2 (0,1) [𝑋2 − 𝑐2]

≥
∫ 𝜙−1

1 (𝑣∗1)

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1)𝑑𝑠1 + (𝑣∗2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))

+ (𝑣∗2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) · 𝜙

−1
2 (𝑣∗2)

=
2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))

+ (𝑣∗2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) · 𝜙

−1
2 (𝑣∗2).

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

Conference’17, July 2017, Washington, DC, USA Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

To prove E[ALG(I)] ≥ OPT(I)
𝛼∗
S (2)

=
𝑣∗1+𝑣∗2−𝑐1−𝑐2

𝛼∗
S (2)

, we define the fol-
lowing function

𝐺 (𝑣∗1, 𝑣
∗
2) =

2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))+

(𝑣∗2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) · 𝜙

−1
2 (𝑣∗2) −

𝑣∗1 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)
.

Then the goal is to prove 𝐺 (𝑣∗1, 𝑣
∗
2) ≥ 0 in its domain 𝐿 ≤ 𝑣∗1 ≤ 𝑈1

and 𝐿2 ≤ 𝑣∗2 ≤ 𝑈 . The proposition below formally states this result.

Proposition 3. For all 𝑣∗1 ∈ [𝐿1,𝑈1] and 𝑣∗2 ∈ [𝐿2,𝑈2], we have
𝐺 (𝑣∗1, 𝑣

∗
2) ≥ 0.

We deferred the proof of the above proposition to Appendix G.
The idea is to simply prove that 𝐺 (𝑣∗1, 𝑣

∗
2) ≥ 0 holds at all extreme

points within its domain.
Case III: 𝐿2 ≤ 𝑣∗1 ≤ 𝑣∗2 . In this case, we show that we can lower

bound the expected performance of r-Dynamic as follows:

E[ALG(I)]
= E𝒔∼𝑈 2 (0,1) [𝑋1 − 𝑐1] + E𝒔∼𝑈 2 (0,1) [𝑋2 − 𝑐2]

≥
∫ 1

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 +

∫ 𝜙−1
2 (𝑣∗1)

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

+ (𝑣∗2 − 𝑐2) · (𝜙−1
2 (𝑣∗2) − 𝜙−1

2 (𝑣∗1))

≥
∫ 1

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 +

∫ 𝜙−1
2 (𝑣∗1)

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

+
∫ 𝜙−1

2 (𝑣∗2)

𝑠2=𝜙
−1
2 (𝑣∗1)

(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

=

∫ 1

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 +

∫ 𝜙−1
2 (𝑣∗2)

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

=
2 ·𝑈1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+

∫ 𝜙−1
2 (𝑣∗2)

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

=
2 · 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

≥OPT(I)
𝛼∗S (2)

,

where the first term in the first inequality arises from the fact
that if the realized price for the first unit of the item, denoted
as 𝑃1 = 𝜙1 (𝑠1), is set below 𝐿2, then in the worst-case scenario,
the value obtained from the first item will be at least equal to
𝜙1 (𝑠1). The second and third terms follow the same reasoning. The
second inequality follows the fact that 𝜙2 (𝑠2) is non-decreasing.
The third and forth equalities follow the design of 𝜙1 (𝑠1) and 𝜙2 (𝑠2)
in Theorem 6.

Combining the analysis of the above three cases, Corollary 6
follows.

G Proof of Proposition 3
We first evaluate the value of 𝐺 (𝑣∗1, 𝑣

∗
2) at its critical points, that

is, at the points where 𝜕𝐺 (𝑣∗1 ,𝑣∗2)
𝜕𝑣∗1

= 0 and 𝜕𝐺 (𝑣∗1 ,𝑣∗2)
𝜕𝑣∗2

= 0, and show
that 𝐺 (𝑣∗1, 𝑣

∗
2) ≥ 0 holds at these critical points. After that, the

proposition follows by evaluating the values of𝐺 (𝑣∗1, 𝑣
∗
2) at the four

boundary hyperplanes of its domain.
First, let us compute 𝜕𝐺 (𝑣∗1 ,𝑣∗2)

𝜕𝑣∗1
. It follows that:

𝜕𝐺 (𝑣∗1, 𝑣
∗
2)

𝜕𝑣∗1

=
1

𝛼∗S (2)
− 2
𝛼∗S (2)

·
𝑣∗2 − 𝑐1

𝑣∗1 − 𝑐1
+ 2
𝛼∗S (2)

·
𝑣∗2 − 𝑐2

𝑣∗1 − 𝑐1
· 𝜙−1

2 (𝑣∗2) .

Setting the right-hand side of above equation to be zero, we have

𝜙−1
2 (𝑣∗2) · (𝑣

∗
2 − 𝑐2) = 𝑣∗2 − 𝑐1 −

𝑣∗1 − 𝑐1

2
.

Using the equation above, we then compute 𝐺 (𝑣∗1, 𝑣
∗
2) at the points

that 𝜕𝐺 (𝑣∗1 ,𝑣∗2)
𝜕𝑣∗1

= 0, it follows that:

𝐺 (𝑣∗1, 𝑣
∗
2)

=
𝑣∗1 − 𝑣∗2
𝛼∗S (2)

+ (𝑣∗2 − 𝑐1) · (1 − 𝜙−1
1 (𝑣∗1))

+ (𝑣∗2 − 𝑐1 −
𝑣∗1 − 𝑐1

2
) · 𝜙−1

1 (𝑣∗1)

=
𝑣∗1 − 𝑣∗2
𝛼∗S (2)

+ (𝑣∗2 − 𝑐1) −
𝑣∗1 − 𝑐1

2
· 𝜙−1

1 (𝑣∗1)

≥
𝑣∗1 − 𝑣∗2
𝛼∗S (2)

+ (𝑣∗2 − 𝑐1) −
𝑣∗1 − 𝑐1

2

=𝑣∗1 · (1
𝛼∗S (2)

− 1
2
) + 𝑣∗2 · (1 − 1

𝛼∗S (2)
) − 𝑐1

2

≥
𝑣∗1 − 𝑐1

2
>0,

leading to the conclusion that 𝐺 (𝑣∗1, 𝑣
∗
2) ≥ 0 holds at its critical

points.
Next, we consider the boundary hyperplanes and prove that

𝐺 (𝑣∗1, 𝑣
∗
2) is positive in all four boundary planes given below:

• 𝐺 (𝐿1, 𝑣∗2), ∀𝑣∗2 ∈ [𝐿2,𝑈2].
• 𝐺 (𝑈1, 𝑣∗2), ∀𝑣∗2 ∈ [𝐿2,𝑈2].
• 𝐺 (𝑣∗1, 𝐿2), ∀𝑣∗1 ∈ [𝐿1,𝑈1].
• 𝐺 (𝑣∗1,𝑈2), ∀𝑣∗1 ∈ [𝐿1,𝑈1].

We start with the first one 𝐺 (𝐿1, 𝑣∗2):

𝐺 (𝐿, 𝑣∗2)

=
2 · 𝐿 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐2) −

𝐿 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=(𝑣∗2 − 𝑐2) −
𝑣∗2 − 𝐿

𝛼∗S (2)
≥0, ∀𝐿2 ≤ 𝑣∗2 ≤ 𝑈2,

where the equations above follow since 𝐿 ≥ 𝑐2 holds (the assump-
tion that the marginal production costs are always less than the
valuations).

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

Posted Price Mechanisms for Online Allocation with Diseconomies of Scale Conference’17, July 2017, Washington, DC, USA

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

For the second one 𝐺 (𝑈1, 𝑣∗2):

𝐺 (𝑈1, 𝑣
∗
2)

=
2 ·𝑈1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐2) · 𝜙−1

2 (𝑣∗2) −
𝑈1 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=(𝑣∗2 − 𝑐2) · 𝜙−1
2 (𝑣∗2) −

𝑣∗2 −𝑈1

𝛼∗S (2)
≥0, ∀𝐿2 ≤ 𝑣∗2 ≤ 𝑈2 = 𝑈 .

The equations above follow since (𝑣∗2−𝑐2)·𝜙−1
2 (𝑣∗2) ≥

∫ 𝜙−1
2 (𝑣∗)

𝑠2=0 (𝜙2 (𝑠2)−

𝑐2) · 𝑑𝑠2 ≥ 2 · 𝑣
∗
2−𝑈1
𝛼∗
S (2)

based on the definition of 𝜙2 (𝑠).
For the third one 𝐺 (𝑣∗1, 𝐿2):

𝐺 (𝑣∗1, 𝐿2)

=
2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝐿2 − 𝑐1) · 𝜙−1

1 (𝑣∗1) −
𝑣∗1 + 𝐿2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=(𝐿2 − 𝑐1) · (1 − 𝜙−1
1 (𝑣∗1)) −

𝐿2 − 𝑣∗1
𝛼∗S (2)

≥0, ∀𝐿1 ≤ 𝑣∗1 ≤ 𝑈1,

where the above equation follows since (𝐿2 − 𝑐1) · (1 −𝜙−1
1 (𝑣∗1)) ≥∫ 𝜙−1

1 (𝐿2)
𝑠1=𝜙

−1
1 (𝑣∗1)

(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 ≥ 2 · 𝐿2−𝑣∗1
𝛼∗
S (2)

(based on the definition
of 𝜙1 (𝑠)).

Finally, for the last one 𝐺 (𝑣∗1,𝑈2):

𝐺 (𝑣∗1,𝑈2)

=
2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑈2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))

+ (𝑈2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) −

𝑣∗1 +𝑈2 − 𝑐1 − 𝑐2

𝛼∗S (2)

≥(𝑈2 − 𝑐2) −
𝑈2 − 𝑣∗1
𝛼∗S (2)

≥0, ∀𝐿 = 𝐿1 ≤ 𝑣∗1 ≤ 𝑈1,

where the equations above follow since 𝑣∗1 ≥ 𝑐2 holds (again, the
assumption that the marginal production costs are always less than
the valuations).

Combining all the above analysis, we thus complete the proof of
Proposition 3.

H Extension of the Lower Bound Results to
General Production Cost Functions

In this section, we extend our lower bound result in Theorem 3,
originally developed for the high-value case,4 to general cumulative
production cost functions.

Before presenting the main theorem on obtaining a lower bound
for general cost functions, let us introduce some notations. Define
𝑓 ∗ (𝑣) : [𝐿,𝑈] → R as the conjugate of the total production cost
function, where 𝑓 ∗ (𝑣) = max𝑖∈[𝑘]

(
𝑣 · 𝑖 − 𝑓 (𝑖)

)
. Additionally, let

4This corresponds to the case when 𝑐𝑘 < 𝐿, or equivalently, the lowest possible
valuation 𝐿 is no less than the highest marginal production cost 𝑐𝑘 .

𝑔(𝑣) be defined as

𝑔(𝑣) = (𝑓 ∗)′ (𝑣) =
∑︁
𝑖∈[𝑘]

1{𝑣≥𝑐𝑖 } ,

where 1{𝐴} is the standard indicator function. Let
¯
𝑘 denote the

smallest natural number such that:

¯
𝑘∑︁
𝑖=1

(𝐿 − 𝑐𝑖) >
1
𝛼
· 𝑓 ∗ (𝐿).

Following Theorem 3, we also define 𝜉 as follows:

𝜉 =

1
𝛼 · 𝑓 ∗ (𝐿) − ∑

¯
𝑘−1
𝑖=1 (𝐿 − 𝑐𝑖)

𝐿 − 𝑐
¯
𝑘

Theorem 7 below extends our lower bound results to settings
with general cost functions.

Theorem 7. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with
𝑘 ≥ 1 and general production cost functions 𝑓 , no online algorithm,
including those with randomization, can achieve a competitive ratio
smaller than 𝛼∗S (𝑘), where 𝛼

∗
S (𝑘) is the solution to the following

system of equations of 𝛼 :∫ 𝑢
¯
𝑘

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐

¯
𝑘)

𝑑𝜂 = 1 − 𝜉, (17)∫ 𝑢
¯
𝑖

𝜂=ℓ𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖)

𝑑𝜂 = 1, 𝑢𝑖 = ℓ𝑖+1, 𝑖 = ¯
𝑘 + 1, . . . , 𝑘, (18)

𝑢𝑘 = 𝑈 . (19)

Proof. The proof proceeds similarly to the proof of Theorem 3
until the derivation of Eq. (5). Given the arrival instance I (𝜖) up
to the end of stage-𝑣 , the objective of the offline optimal algorithm
equals 𝑓 ∗ (𝑣). Therefore, we reformulate Eq. (4) as follows:

ALG
(
I (𝜖)
𝑣

)
≥ 1

𝛼
· 𝑓 ∗ (𝑣), ∀𝑣 ∈ [𝐿,𝑈] .

In the case of general production cost functions, we derive the
following inequality to capture the production level changes of an
𝛼-competitive algorithm:

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖)+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖)𝑑𝜓𝑖 (𝜂) ≥
1
𝛼
· 𝑓 ∗ (𝑣). (20)

In addition, we define 𝛼∗S (𝑘) as follows:

𝛼∗S (𝑘) = inf
{
𝛼 ≥ 1

��there exist a set of 𝑘 allocation

functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘] ∈ Ω that satisfy Eq. (20)
}
.

From this point onward, the proof continues in the same manner as
the proof of Theorem 3. Let us define the function 𝜒𝛼 (𝑣) : [𝐿,𝑈] →
[0, 𝑘] and the set of functions {𝜓𝛼

𝑖
(𝑣)}

𝑖∈[𝑘] as specified in Eq. (6)
and Eq. (2). Consequently, Lemma 2 holds as long as we have in-
creasing marginal production costs (i.e., diseconomies of scale) and
Lemma 3 that follows the definition of {𝜓𝛼

𝑖
(𝑣)}

𝑖∈[𝑘] holds in this
case as well.

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference’17, July 2017, Washington, DC, USA Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

The primary distinction between the two proofs arises in the
following proposition, which gives an explicit design of the function
{𝜓𝛼

𝑖
}∀𝑖∈[𝑘] by replacing the inequality with an equality in Eq. (20).

Proposition 4. For any 𝛼 ≥ 𝛼∗S (𝑘), there exist a unique set of
functions {𝜓𝛼

𝑖
(𝑣)}∀𝑖∈[𝑘] that satisfy Eq. (20) with an equality:

𝜓𝛼
𝑖 (𝑣) = 1, ∀𝑣 ∈ [𝐿,𝑈], 1 ≤ 𝑖 ≤

¯
𝑘 − 1,

𝜓𝛼

¯
𝑘
(𝑣) =


0 𝑣 ≤ ℓ

¯
𝑘 ,

𝜉 +
∫ 𝑣

𝜂=𝐿

𝑔 (𝜂)
𝛼 · (𝜂−𝑐𝑖) 𝑑𝜂, 𝑣 ∈ [𝐿,𝑢

¯
𝑘],

1 𝑣 ≥ 𝑢
¯
𝑘 ,

𝜓𝛼
𝑖 (𝑣) =


0 𝑣 ≤ ℓ𝑖 ,∫ 𝑣

𝜂=ℓ𝑖

𝑔 (𝜂)
𝛼 · (𝜂−𝑐𝑖) 𝑑𝜂, 𝑣 ∈ [ℓ𝑖 , 𝑢𝑖],

1 𝑣 ≥ 𝑢𝑖 ,

, 𝑖 =
¯
𝑘 + 1, . . . , 𝑘 − 1.

𝜓𝛼
𝑘
(𝑣) =

{
0 𝑣 ≤ ℓ𝑘 ,∫ 𝑣

𝜂=ℓ𝑘

𝑔 (𝜂)
𝛼 · (𝜂−𝑐𝑘) 𝑑𝜂, 𝑣 ∈ [ℓ𝑘 ,𝑈],

where the intervals are specified by:∫ 𝑢
¯
𝑘

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐

¯
𝑘)

𝑑𝜂 = 1 − 𝜉, (21)∫ 𝑢
¯
𝑖

𝜂=ℓ𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖)

𝑑𝜂 = 1, 𝑢𝑖 = ℓ𝑖+1, ∀𝑖 = ¯
𝑘 + 1, . . . , 𝑘 . (22)

In the proposition above, for any given 𝛼 ≥ 𝛼∗S (𝑘), the values of
𝑢𝑖 and ℓ𝑖 can be determined. We begin by solving Eq. (21) to find the
value of 𝑢

¯
𝑘 , and then proceed to find the value of other variables

{𝑢𝑖 }∀𝑖 using Eq. (22).
Based on the above proposition, as the value of 𝛼 decreases, the

value of 𝑢𝑘 also decreases. Again, following the same reasoning as
the proof of Theorem 3, the lower bound 𝛼∗S (𝑘) is the value of 𝛼
for which 𝑢𝑘 computed above is equal to𝑈 . We thus complete the
proof of Theorem 7. □

I Extension of the Upper Bound Results to
General Production Cost Functions

In this section, we extend the randomized dynamic pricing scheme
r-Dynamic, originally developed for the high-value case, to general
cumulative production cost functions.

Theorem 8. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with
𝑘 ≥ 1, r-Dynamic (Algorithm 1) is max𝑖∈[𝑘] 𝛼∗S (𝑘) · (1 +

𝑈𝑖−𝑐𝑖
𝑓 ∗ (𝑈𝑖−1))-

competitive for the following design of the pricing functions {𝜙𝑖 }∀𝑖∈[𝑘] ,
where 𝛼∗S (𝑘) is the lower bound obtained in Theorem 7:

𝜙𝑖 (𝑠) = 𝐿, ∀𝑠 ∈ [0, 1], 𝑖 ∈ [
¯
𝑘∗ − 1],

𝜙
¯
𝑘∗ (𝑠) =

{
𝐿 𝑠 ∈ [0, 𝜉∗],
𝜓−1

¯
𝑘∗ (𝑠) 𝑠 ∈ (𝜉∗, 1],

𝜙𝑖 (𝑠) = 𝜓−1
𝑖 (𝑠), ∀𝑠 ∈ [0, 1], 𝑖 =

¯
𝑘∗ + 1, . . . , 𝑘,

where the set of functions {𝜓𝑖 }∀𝑖∈{
¯
𝑘∗,· · · ,𝑘 } are defined as follows:

𝜓
¯
𝑘∗ (𝑣) = 𝜉∗ +

∫ 𝑣

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖)

𝑑𝜂, ∀𝑣 ∈ [𝐿,𝑈
¯
𝑘∗],

𝜓𝑖 (𝑣) =
∫ 𝑣

𝜂=ℓ𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖)

𝑑𝜂, ∀𝑣 ∈ [𝐿𝑖 ,𝑈𝑖], 𝑖 = ¯
𝑘∗ + 1, . . . , 𝑘 ;

the parameters
¯
𝑘∗ and 𝜉∗ are respectively the values of

¯
𝑘 and 𝜉 defined

in Appendix H, corresponding to 𝛼 = 𝛼∗S (𝑘), and the price intervals
{[𝐿𝑖 ,𝑈𝑖]}∀𝑖∈[𝑘] are given as follows:∫ 𝑈

¯
𝑘∗

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐

¯
𝑘)

𝑑𝜂 = 1 − 𝜉,∫ 𝑈𝑖

𝜂=𝐿𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖)

𝑑𝜂 = 1, 𝑢𝑖 = ℓ𝑖+1,∀𝑖 = ¯
𝑘∗ + 1, . . . , 𝑘 .

Proof. The proof will follow the same process as the proof in
Appendix E. So we only provide a brief proof sketch.

Consider an arbitrary arrival instance I = {𝑣𝑡 }𝑡 ∈[𝑇] . Recall
that the random price vector P = {𝑃1, · · · , 𝑃𝑘 } is generated using
the pricing functions {𝜙𝑖 }∀𝑖∈[𝑘] at the beginning of r-Dynamic
(line 3 of Algorithm 1). Let us define the random variable𝑊 (P),
the variable 𝜔 and the price vector 𝝅 , the set {𝜈𝑖 , 𝜏𝑖 }∀𝑖∈[𝜔] , and
𝑊 𝜏𝜔 (P) in the same fashion as in Appendix E.

Following the same reasoning, the property in Eq. (16) can be
derived for {𝜈𝑖 }∀𝑖∈[𝜔] , and the lemmas 7, 8, and 9 follow as well.

We also define B ⊆ I, as before, to be the set of highest-valued
buyers to whom the offline optimal algorithm allocates a unit of
the item in instance I. We further divide B into two subsets: B1
and B2, as done in the previous proof. Additionally, we partition
B1 into two subsets: B1,1 and B1,2, as before.

We continue our analysis for two separate cases that can arise
depending on the instance I. In this proof, we only provide the
proof for the first case and the proof of the second case follows
similarly as Appendix E.

Case 1: In this case, no buyer in B2 has a valuation greater than
𝑈𝜔−1 except for the buyer at time 𝜏𝜔 . Therefore, the buyer at time
𝜏𝜔 possesses the highest valuation in instance I. The following up-
per bound can be derived for OPT(I), which denotes the objective
value of the offline optimal algorithm:

OPT(I) = 𝑉 (B1) +𝑉 (B2) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

= 𝑉 (B1,1) +𝑉 (B1,2) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ |B1,1 | ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)

+ |B1,2 | ·𝑈𝜔−1 + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

= (|B1,1 | + |B1,2 | + |B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔

+ (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) + 𝜈𝜏𝜔 − 𝑐𝜔 ,

where the first inequality follows the condition of Case 1. The
second inequality follows the definition of the sets B1,1 and B1,2.
Finally, the third inequality follows since based on definition of 𝑓 ∗,
we have (|B1,1 | + |B1,2 | + |B2 | − 1) ·𝑈𝜔−1 −

∑ | B |−1
𝑖=1 𝑐𝑖 ≤ 𝑓 ∗ (𝑈𝜔−1).

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

Posted Price Mechanisms for Online Allocation with Diseconomies of Scale Conference’17, July 2017, Washington, DC, USA

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Moving forward, we can lower bound the expected performance
of r-Dynamic under I, denoted by E[ALG(I)], using the same
approach as before.

E[ALG(I)]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) −

𝜔−1∑︁
𝑖=1

𝑐𝑖 .

Based on the definition of {𝜙𝑖 }∀𝑖∈[𝑘] , we have:
E[ALG(I)]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 −

𝜔−1∑︁
𝑖=1

𝑐𝑖 + (𝑉 (B1,1) − |B1 | ·𝑈𝜔−1)

=

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖)𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1,1) − |B1 | ·𝑈𝜔−1) .
Furthermore, based on the design of {𝜓𝑖 }∀𝑖∈[𝑘] in Theorem 8, we
have

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖)𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | ·𝑈𝜔−1)

≥ 1
𝛼∗S (𝑘)

𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1) − |B1 | ·𝑈𝜔−1) .

Putting together the above lower and upper bounds, it follows that:
OPT(I)

E[ALG(I)]

≤
𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) + 𝜈𝜏𝜔 − 𝑐𝜔

1
𝛼∗
S (𝑘)

𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1) − |B1 | ·𝑈𝜔−1)

≤
𝑓 ∗ (𝑈𝜔−1) + 𝜈𝜏𝜔 − 𝑐𝜔

1
𝛼∗
S (𝑘)

𝑓 ∗ (𝑈𝜔−1)

=𝛼∗S (𝑘) ·
(
1 +

𝜈𝜏𝜔 − 𝑐𝜔

𝑓 ∗ (𝑈𝜔−1)

)
≤𝛼∗S (𝑘) ·

(
1 + 𝑈𝜔 − 𝑐𝜔

𝑓 ∗ (𝑈𝜔−1)

)
≤ max
𝑖∈[𝑘]

𝛼∗S (𝑘) ·
(
1 + 𝑈𝑖 − 𝑐𝑖

𝑓 ∗ (𝑈𝑖−1)

)
.

Case 2: In the set of buyers B2, there are other buyers with
valuations greater than 𝑈𝜔−1 besides the buyer at time 𝜏𝜔 . The
proof in this case follows the same structure as the proof above and
the proof in Appendix E. □

19

	Abstract
	1 Introduction
	1.1 Overview of Main Results and Techniques
	1.2 Other Related Work

	2 Problem Statement and Assumptions
	3 Lower Bound for OSDoS: Hardness of Allocation with Diseconomies of Scale
	3.1 Lower Bound S*(k)
	3.2 Representing Worst-Case Performance by (Probabilistic) Allocation Functions
	3.3 Proof of Theorem 3

	4 r-Dynamic: A Randomized Dynamic Posted Price Mechanisms
	4.1 Asymptotic Optimality of r-Dynamic
	4.2 Empirical Performance of r-Dynamic
	4.3 Proof Sketch of Theorem 5

	5 Conclusions and Future Work
	References
	A Proof of Lemma 1
	B Proof of Proposition 1
	C Proof of Lemma 2
	D Proof of Proposition 2
	E Full Proof of Theorem 5
	E.1 Notations and Definitions
	E.2 Case 1: Buyer Has the Highest Valuation
	E.3 Case 2: Buyer Does Not Have the Highest Valuation

	F Proof of Corollary 6
	G Proof of Proposition 3
	H Extension of the Lower Bound Results to General Production Cost Functions
	I Extension of the Upper Bound Results to General Production Cost Functions

