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Posted Price Mechanisms for Online Allocation with
Diseconomies of Scale

Anonymous Author(s)

Abstract
This paper addresses the online 𝑘-selection problem with disec-
onomies of scale (OSDoS), where a seller seeks to maximize social
welfare by optimally pricing items for sequentially arriving buy-
ers, accounting for increasing marginal production costs. Previous
studies have investigated deterministic dynamic pricing mecha-
nisms for such settings. However, significant challenges remain,
particularly in achieving optimality with small or finite inventories
and developing effective randomized posted price mechanisms. To
bridge this gap, we propose a novel randomized dynamic pricing
mechanism for OSDoS, providing a tighter lower bound on the
competitive ratio compared to prior work. Our approach ensures
optimal performance in small inventory settings (i.e., when 𝑘 is
small) and surpasses existing online mechanisms in large inventory
settings (i.e., when 𝑘 is large), leading to the best-known posted
price mechanism for optimizing online selection and allocation
with diseconomies of scale across varying inventory sizes.
ACM Reference Format:
Anonymous Author(s). 2024. Posted Price Mechanisms for Online Alloca-
tion with Diseconomies of Scale. In . ACM, New York, NY, USA, 19 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Online resource allocation has been widely studied in recent years
and finds a broad range of applications in cloud computing [24, 25],
network routing [2, 7, 8], and various other online, market-based
Internet platforms. In this problem, most existing studies assume
that the seller has a finite inventory of resources before a stream
of online buyers arrives, with the goal of maximizing social wel-
fare or profit from these resources. However, in real-world ap-
plications, sellers often face diseconomies of scale in providing
resources—meaning they incur increasing marginal costs for sup-
plying each additional unit of resource. For instance, in cloud com-
puting systems, the power cost of servers increases superlinearly
as the utilization of computing resources grows [1]. Similarly, in
network routing, congestion costs (e.g., end-to-end delay) increase
significantly with the rise in traffic intensity brought by users.

In this work, we study online resource allocation with increasing
marginal production costs. In particular, we frame it as an online
𝑘-selection with diseconomies of scale (OSDoS) in a posted price
mechanism: A seller offers a certain item to buyers arriving one at a
time in an online manner. Each buyer has a private valuation 𝑣𝑡 for

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
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republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
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one unit of the item. The seller can produce 𝑘 units of the item in
total; however, the marginal cost of producing each unit increases
as more units are produced. When the 𝑡-th buyer arrives, the seller
posts a price 𝑝𝑡 to the buyer, provided that fewer than 𝑘 units have
already been produced and allocated. If the buyer’s valuation 𝑣𝑡
exceeds 𝑝𝑡 , the buyer accepts the price and takes one unit of the
item. The objective is to maximize social welfare, defined as the
sum of the utilities of all the buyers and the revenue of the seller.

The incorporation of increasing marginal production costs in
online resource allocation was initially pioneered by [5] and later
studied by [12] in the context of online combinatorial auctions.
Since then, different variants of OSDoS have been studied, such
as online convex packing and covering [3], online knapsack with
packing costs [22], and online selection with convex costs [23].
The common crux of these problems is that if, at early stages, the
pricing of the resource is too aggressive (i.e., the price is set too
low), a large number of items may be allocated to low-value buyers,
leading to an increase in production costs and a lower social welfare.
Conversely, if the pricing is too conservative (i.e., the price is set too
high) at early stages, the producer may lose the opportunity to sell
enough items to buyers. Thus, we must carefully design the prices
of these 𝑘 units to avoid selecting buyers that appear advantageous
early on but cause the rapid growth of marginal production costs
as more units are produced.

To address above challenge, Huang et al. [12] developed optimal
deterministic dynamic pricingmechanisms for fractional online com-
binatorial auctions with production costs and infinite production
capacity (i.e., 𝑘 = ∞). They also showed that similar mechanisms
could be designed for the integral case based on the fractional
pricing functions, achieving a competitive ratio that can be arbi-
trarily close to that of the fractional setting at the expense of some
nonzero additive loss. However, as the competitive ratio in the in-
tegral setting approaches the lower bound derived in the fractional
setting [12], the additive loss tends to approach infinity, which is
undesirable. To overcome this limitation, Tan et al. [23] considered
online selection with convex costs and limited supply (i.e., 𝑘 is
finite). Notably, they established a lower bound for the integral
setting without incurring any additive loss and further showed that
the competitive ratio of the proposed deterministic posted price
mechanism asymptotically converges to the lower bound in large
inventory settings (i.e., when 𝑘 approaches infinity). Recently, Sun
et al. [20] developed a randomized static pricing algorithm that sam-
pled one static price from a pre-determined distribution for solving
OSDoS. By utilizing randomization, the static pricing algorithm
developed in [20] can outperform the deterministic dynamic pricing
algorithm developed in [23] in small inventory settings. However,
the algorithm is not asymptotically optimal in large inventory set-
tings, and fails to converge to the lower bound obtained in [23] as
𝑘 approaches to infinity.
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Despite previous efforts, two questions remain unresolved: First,
how to derive a tight lower bound forOSDoS in small inventory set-
tings? Second, it remains an open question how to develop random-
ized algorithms to solve OSDoS with tight guarantees, especially
for settings when 𝑘 is small.

In this paper, we affirmatively answer these two questions by
deriving a new tight lower bound for theOSDoS problem, providing
the best-known result in both small inventory and asymptotically
large inventory settings. Additionally, inspired by the new lower
bound results, we develop a novel algorithm that utilizes up to 𝑘
randomized prices, rather than just one. We demonstrate that our
proposed randomized dynamic pricing algorithm is optimal for small
inventory settings and outperforms existing designs presented in
[23] and [20] for large inventory settings.

1.1 Overview of Main Results and Techniques
The primary contribution of this paper is the development of novel
posted price mechanisms utilizing randomized dynamic pricing
schemes that improve upon the results in [5, 12, 20, 23]. The ran-
domized dynamic pricing scheme, termed r-Dynamic, sequentially
updates the price of the item as new units are produced and sold.
More specifically, as the marginal production cost of the item in-
creases with each additional unit, r-Dynamic employs a different
cumulative distribution function (CDF) to generate an independent
randomized price for each new unit of the item. The main result
concerning the lower bound can be stated as follows:

Theorem 1 (Informal Statement of Theorem 3). Assume that
buyers’ valuations are bounded within the range [𝐿,𝑈 ] and the cu-
mulative cost of production up to the 𝑖-th unit is given by 𝑓 (𝑖). The
seller can produce a total of 𝑘 units. For any given 𝑘 ≥ 1,𝑈 ≥ 𝐿 ≥ 1,
and a cumulative production cost function 𝑓 , no online algorithm can
be (𝛼∗S (𝑘) − 𝜖)-competitive for any 𝜖 > 0, where S := {𝐿,𝑈 , 𝑓 }.

We note that [23] also established a lower bound for the compet-
itive ratio of any online algorithm for OSDoS. However, the lower
bound in [23] was derived by connecting the integral selection
problem to its fractional counterpart. As a result, the cumulative
production cost function 𝑓 in [23] needs to be defined not only
at discrete points but also at every fractional point in the range
[0, 𝑘]. This brings two issues: (i) it may be impractical to assume
the availability of a continuous cost function 𝑓 due to the integral
nature of the problem, and (ii) the derived lower bound in [23] is
only tight under large inventory settings due to the fact that the
lower bound was established by assuming 𝑘 → ∞. In this paper,
we address these two issues by deriving the lower bound 𝛼∗S (𝑘)
via a totally different approach. In particular, we do not rely on
results in the fractional setting and only need to assume that the
cost function 𝑓 (𝑖) is defined at discrete points for 𝑖 ∈ {1, 2, · · · , 𝑘},
leading to the tight lower bound 𝛼∗S (𝑘) for all 𝑘 ≥ 1.

Theorem 2 (Informal Statement of Theorem 5). For any
given 𝑘 ≥ 1,𝑈 ≥ 𝐿 ≥ 1, and a cumulative production cost function
𝑓 , there exists a randomized dynamic price mechanism (r-Dynamic)

that achieves a competitive ratio of 𝛼∗S (𝑘) · exp( 𝛼
∗
S (𝑘 )
𝑘

). In particular,
when 𝑘 = 2, r-Dynamic is 𝛼∗S (2)-competitive.

Due to the arbitrary nature of the cost function 𝑓 , neither our
work nor [23] can derive the competitive ratio in closed form. Thus,
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Figure 1: The blue curve (i.e., r-Dynamic) corresponds to the
competitive ratio of Algorithm 1 that uses randomized dy-
namic pricing. The red curve (i.e., d-Dynamic) and the yellow
curve (i.e., r-Static) correspond to the competitive ratios of
the deterministic dynamic pricing mechanism developed by
[23] and the static randomized pricing mechanism by [20].
In this figure, we set 𝐿 = 1,𝑈 = 10, and 𝑓 (𝑖) = 𝑖2

59 .

we cannot directly compare the competitive ratio of r-Dynamicwith
the deterministic dynamic pricing mechanism (d-Dynamic) pro-
posed in [23]. In Figure 1, we compare the asymptotic performance
of our r-Dynamic with d-Dynamic in [23] and the randomized
static pricing mechanism (r-Static) in [20]. The results show that
our proposed r-Dynamic significantly outperforms both d-Dynamic
and r-Static, and converges more quickly to the lower bound as 𝑘
approaches infinity. Furthermore, in small 𝑘 settings, we prove that
r-Dynamic can even attain the lower bound when 𝑘 = 2. In addition
to the strong theoretical guarantees, we also demonstrate that the
empirical performance of r-Dynamic outperforms both d-Dynamic
and r-Static (see Section 4.2), demonstrating that r-Dynamic is a
superior algorithm compared to existing designs.

The key technical component in deriving the above lower and
upper bound results is a new representative function-based approach.
This approach represents the dynamics of any randomized online
algorithm using a sequence of 𝑘 probability functions, denoted as
{𝜓𝑖 }∀𝑖∈[𝑘 ] . Specifically, we design a family of hard instances and
then characterize the performance of any 𝛼-competitive online
algorithm on these hard instances using a set of differential equa-
tions involving {𝜓𝑖 }∀𝑖∈[𝑘 ] . To determine the lower bound of the
competitive ratio in Theorem 1, 𝛼∗S (𝑘), we show that it suffices to
compute the minimum value of 𝛼 such that the set of differential
equations has a feasible solution, namely, a sequence of valid prob-
ability functions {𝜓𝑖 }∀𝑖∈[𝑘 ] . By reverse engineering these differen-
tial equations, we derive a corresponding set of inverse probability
functions, denoted as {𝜙𝑖 }∀𝑖∈[𝑘 ] , for pricing each unit of the item,
which leads to the r-Dynamic in Theorem 2.

1.2 Other Related Work
Online resource allocation, the process of assigning limited re-
sources to a sequence of online requests to maximize social welfare
or profit, has long been a central topic in computer science and
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operations research. In addition to the related work mentioned ear-
lier, readers are referred to the survey by Gupta and Singla on the
secretary problem [11] and the references therein for a detailed dis-
cussion of online allocation and selection in random-order models.
Significant progress has also been made in recent years on the study
of the prophet inequality through the lens of posted price mecha-
nisms [16] [9], as well as on online matching and its applications to
Internet advertising (e.g., see [18] and [13]). Beyond the stochastic
i.i.d. model in the prophet inequality, a recent line of work explores
the correlated arrival model based on a Markov chain [14]. How-
ever, all these studies focus on different variants of online allocation
and selection problems without accounting for production costs,
whereas our primary focus is to examine the impact of increasing
marginal production costs on online 𝑘-selection.

In recent years, there have been attempts to study online alloca-
tion problems with different forms of production costs in stochas-
tic settings (e.g., [6], [10], [4], and [19]). Specifically, the authors
of [6] considered the problem of online allocation of goods with
economies of scale, or decreasing marginal cost per item for the
seller. When customers have unit demand and arrive one at a time
with general valuations on items sampled i.i.d. from some unknown
underlying distribution, the authors of [6] developed a strategy that
is constant-competitive with respect to the optimal allocation in
hindsight. In comparison, the authors of [19] considered a Bayesian
online allocation problem in the presence of convex production
costs (i.e., diseconomies of scale). The framework by [19] yields
posted price mechanisms with𝑂 (1)-approximation factors for frac-
tionally subadditive buyers and logarithmic approximations for
subadditive buyers. Recall that we consider OSDoS in adversarial
settings by assuming no knowledge of the arrival instance (other
than the finite support of the valuations), so these results are not
directly comparable to ours.

On the applied side, the allocation of limited resources under dis-
economies of scale is prevalent across various online platforms in
multiple domains. For instance, in online cloud resource allocation
with server costs [24], convex and increasing server costs model
the energy consumption of each computing server as a function of
total CPU utilization. Another example is the online electric vehi-
cle charging problem with electricity costs [21], where electricity
generation costs are typically nonlinear and often modeled as a
quadratic function of total generation.

2 Problem Statement and Assumptions
We formally define online 𝑘-selection with diseconomies of scale
(OSDoS) as follows. Consider an online market operating under
posted price mechanisms. On the supply side, a seller can pro-
duce a total of 𝑘 units of an item, with increasing (or at least non-
decreasing) marginal production costs. Let 𝒄 := {𝑐𝑖 }∀𝑖∈[𝑘 ] repre-
sent the marginal production cost, where 𝑐𝑖 denotes the cost of pro-
ducing the 𝑖-th unit, and 𝑐1 ≤ 𝑐2 ≤ · · · ≤ 𝑐𝑘 . Define 𝑓 (𝑖) =

∑𝑖
𝑗=1 𝑐 𝑗

as the cumulative production cost of the first 𝑖 units. On the demand
side, 𝑇 buyers arrive sequentially, each demanding one unit of the
item. Let 𝑣𝑡 denote the private valuation of the 𝑡-th buyer. Once
buyer 𝑡 arrives, a price 𝑝𝑡 is posted, and then the buyer decides to
accept the price and make a purchase if a non-negative utility is
gained 𝑣𝑡 − 𝑝𝑡 ≥ 0, and reject it otherwise.

Let 𝑥𝑡 ∈ 0, 1 represent the decision of buyer 𝑡 , where 𝑥𝑡 = 1 indi-
cates a purchase and 𝑥𝑡 = 0 otherwise. Then buyer 𝑡 obtains a utility
(𝑣𝑡 − 𝑝𝑡 )𝑥𝑡 and the seller collects a total revenue of

∑
𝑡 ∈[𝑇 ] 𝑝𝑡𝑥𝑡 −

𝑓 (∑𝑡 ∈[𝑇 ] 𝑥𝑡 ) from all buyers. The goal of the online market is to de-
termine the posted prices {𝑝𝑡 }∀𝑡 ∈[𝑇 ] tomaximize the social welfare,
which is the sum of utilities of all the buyers and the revenue of the
producer, i.e.,

∑
𝑡 ∈[𝑇 ] 𝑥𝑡 · (𝑣𝑡 −𝑝𝑡 ) +

∑
𝑡 ∈[𝑇 ] 𝑥𝑡 ·𝑝𝑡 − 𝑓 (∑𝑡 ∈[𝑇 ] 𝑥𝑡 ) =∑

𝑡 ∈[𝑇 ] 𝑣𝑡𝑥𝑡 − 𝑓 (∑𝑡 ∈[𝑇 ] 𝑥𝑡 ).
Let I = {𝑣1, · · · , 𝑣𝑇 } denote an arrival instance of buyers. An

optimal offline algorithm that knows all the information of I can
obtain the optimal social welfare OPT(I) by solving the following
optimization problem

OPT(I) = max
𝑥𝑡 ∈{0,1}

∑︁
𝑡 ∈[𝑇 ] 𝑣𝑡𝑥𝑡 − 𝑓

(∑︁
𝑡 ∈[𝑇 ] 𝑥𝑡

)
,

s.t.
∑︁

𝑡 ∈[𝑇 ] 𝑥𝑡 ≤ 𝑘.

However, in the online market, the posted price 𝑝𝑡 is determined
without knowing the valuations of future buyers {𝑣𝜏 }𝜏>𝑡 . We aim
to design an online mechanism to determine the posted prices such
that the social welfare achieved by the online mechanism, denoted
by ALG(I), is competitive compared to OPT(I). Specifically, an
online algorithm is 𝛼-competitive if for any input instance I, the
following inequality holds:

𝛼 ≥ OPT(I)
E[ALG(I)] ,

where the expectation of E[ALG(I)] is taken with respect to the
randomness of the online algorithm. To attain a bounded compet-
itive ratio, we consider a constrained adversary model [15, 23],
where the buyers’ valuations are assumed to be bounded.

Assumption 1. Buyers’ valuations are bounded in [𝐿,𝑈 ], i.e.,
𝑣𝑡 ∈ [𝐿,𝑈 ],∀𝑡 ∈ [𝑇 ].

The interval [𝐿,𝑈 ] can be considered as the prediction interval
that covers the valuations of all buyers [15], and is known to the
online algorithm. As shown in [23], the competitive analysis of
online algorithms for OSDoS depends on the relationship between
buyers’ valuations and the production cost function. For simplicity
of presentation, we focus on the case where the production cost is
always smaller than the buyer’s valuation, i.e., 𝑐𝑘 < 𝐿, and derive
lower and upper bound results of OSDoS in Section 3 and Section 4,
respectively. We show in Appendix H and I that the assumption
of 𝑐𝑘 < 𝐿 is without loss of generality as our lower/upper bound
results can be naturally extended to the general case.

3 Lower Bound for OSDoS: Hardness of
Allocation with Diseconomies of Scale

We begin by deriving a tight lower bound for OSDoS. The insights
gained from this analysis guide the design of r-Dynamic (Algorithm
1) in Section 4.

3.1 Lower Bound 𝛼∗
S (𝑘)

Theorem 3 below formally states the lower bound 𝛼∗S (𝑘) for the
competitive ratio of any online algorithm for OSDoS.

Theorem 3 (Lower Bound). Given S = {𝐿,𝑈 , 𝑓 } for the OS-
DoS problem with 𝑘 ≥ 1, no online algorithm, including those with

3
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randomization, can achieve a competitive ratio smaller than 𝛼∗S (𝑘),
where 𝛼∗S (𝑘) is the solution to the following equation of 𝛼 :

𝑈 =

(
𝐿 − 𝑐

¯
𝑘

)
· 𝑒

𝛼
𝑘
· (𝑘+1−

¯
𝑘−𝜉 ) + 𝑐

¯
𝑘 · 𝑒

𝛼
𝑘
· (𝑘−

¯
𝑘 )+

𝑐
¯
𝑘+1 ·

(
1 − 𝑒

𝛼
𝑘

)
· 𝑒

𝛼
𝑘
· (𝑘−1−

¯
𝑘 ) + · · · + 𝑐𝑘 ·

(
1 − 𝑒

𝛼
𝑘

)
. (1)

In Eq. (1),
¯
𝑘 ∈ [𝑘] denotes the smallest natural number such that∑︁

¯
𝑘

𝑖=1
(𝐿 − 𝑐𝑖 ) ≥

1
𝛼
·
(
𝑘𝐿 −

∑︁𝑘

𝑖=1
𝑐𝑖

)
, (2)

and 𝜉 ∈ (0, 1] denotes the unique solution to the following equation

𝜉 =

1
𝛼 · (𝑘𝐿 − ∑𝑘

𝑖=1 𝑐𝑖 ) −
∑

¯
𝑘−1
𝑖=1 (𝐿 − 𝑐𝑖 )

𝐿 − 𝑐
¯
𝑘

. (3)

Theorem 3 is our main result concerning the hardness of OSDoS.
To prove Theorem 3, a key step is to establish a set of necessary
conditions that any 𝛼-competitive online algorithm must satisfy. A
formal proof will be provided in Section 3.3. Below, we offer several
remarks to clarify the key intuitions.
• By the definition of

¯
𝑘 in Eq. (2),

¯
𝑘 represents the minimum num-

ber of units that any 𝛼-competitive deterministic algorithm, de-
noted byALGd, must sell when faced with an arrival instance of𝑘
identical buyers with valuation 𝐿, denoted by I (𝐿)

𝑖𝑑𝑒𝑛
= {𝐿, · · · , 𝐿}.

Under the instance I (𝐿)
𝑖𝑑𝑒𝑛

, the maximum social welfare achievable
by the offline optimal algorithm is 𝑘𝐿−∑𝑘

𝑖=1 𝑐𝑖 . Therefore, ALGd
must sell at least

¯
𝑘 units to ensure 𝛼-competitiveness, implying

that
¯
𝑘 is well-defined for all values of 𝛼 ≥ 1.

• Eq. (3) demonstrates that 𝜉 is defined as the fraction of the
¯
𝑘-

th unit required to make Eq. (2) binding. We argue that 𝜉 ∈
(0, 1] is well-defined and always exists as long as there is an 𝛼-
competitive randomized algorithm, denoted as ALGr. Consider
running ALGr on the same instance I (𝐿)

𝑖𝑑𝑒𝑛
. In this scenario, ALGr

must sell at least
¯
𝑘 − 1 units plus a fraction 𝜉 of the

¯
𝑘-th unit of

the item, in expectation.
• Note that, in general, a closed-form expression for the lower

bound 𝛼∗S (𝑘) cannot be derived. This is expected due to the
arbitrary nature of the sequence of marginal production costs.
However, because of the monotonicity of

¯
𝑘 , 𝜉 , and the right-hand

side of Eq. (1) with respect to 𝛼 , 𝛼∗S (𝑘) can be easily computed
by solving Eq. (1) numerically using binary search.
In the next subsection, we construct a family of hard instances

and introduce a novel representative function-based approach to de-
rive a system of differential equations, which are crucial to proving
the lower bound result in Theorem 3.

3.2 Representing Worst-Case Performance by
(Probabilistic) Allocation Functions

3.2.1 Hard Instances {I (𝜖 )
𝑣 }∀𝑣∈[𝐿,𝑈 ] . We introduce a family of

hard instances based on the instance I (𝜖 ) defined as follows.

Definition 1 (Instance I (𝜖 ) ). For an arbitrarily small 𝜖 > 0,
the instance I (𝜖 ) starts with 𝑘 identical buyers with valuation 𝐿 in
the first stage, followed by a group of 𝑘 identical buyers per stage, with
valuations continuously increasing from 𝐿 + 𝜖 to 𝑈 . Mathematically,

I (𝜖 ) is denoted as

{𝐿, . . . , 𝐿︸  ︷︷  ︸
𝑘

, 𝐿 + 𝜖, . . . , 𝐿 + 𝜖︸            ︷︷            ︸
𝑘

, 𝐿 + 2𝜖, . . . , 𝐿 + 2𝜖︸                ︷︷                ︸
𝑘

, . . . ,

𝑣, . . . , 𝑣︸  ︷︷  ︸
𝑘 buyers in stage 𝑣

, . . . ,𝑈 , . . . ,𝑈︸    ︷︷    ︸
𝑘

}.

By Definition 1, as 𝜖 → 0, for any value 𝑣 ∈ [𝐿,𝑈 ], there will
be 𝑘 buyers with valuation 𝑣 in I (𝜖 ) , which we define as stage-𝑣 .
For any 𝑣 ∈ [𝐿,𝑈 ], let I (𝜖 )

𝑣 represent all the buyers in I (𝜖 ) from
the beginning up to stage-𝑣 . For instance, if 𝑣 = 𝐿 + 2𝜖 , then I (𝜖 )

𝑣

includes the first 3𝑘 buyers in I (𝜖 ) with valuations 𝐿, 𝐿 + 𝜖 , and
𝐿 + 2𝜖 . Due to the online nature of the problem, we emphasize that
I (𝜖 ) may terminate at any stage 𝑣 . In other words, there exists a
family of hard instances, {I (𝜖 )

𝑣 }∀𝑣∈[𝐿,𝑈 ] , induced by I (𝜖 ) . Here,
I (𝜖 )
𝑣 denotes the arrival instance of I (𝜖 ) that terminates at stage-𝑣 .
Henceforth, we will use “instance I (𝜖 )

𝑣 " and “instance I (𝜖 ) by the
end of stage-𝑣" interchangeably.

Given any 𝛼-competitive algorithm ALG, an arbitrary instance
from {I (𝜖 )

𝑣 }∀𝑣∈[𝐿,𝑈 ] may be the one that ALG processes. Thus, for
any 𝑣 ∈ [𝐿,𝑈 ], by the end of stage-𝑣 of I (𝜖 ) , ALG must achieve
at least a 1/𝛼 fraction of the optimal social welfare, 𝑘𝑣 − ∑𝑘

𝑖=1 𝑐𝑖 ,
which is attained by rejecting all previous buyers except for the
last 𝑘 buyers with valuation 𝑣 . Consequently, an 𝛼-competitive
algorithm must ensure

ALG
(
I (𝜖 )
𝑣

)
≥ 1

𝛼
·
(
𝑘𝑣 −

∑︁𝑘

𝑖=1
𝑐𝑖

)
, ∀𝑣 ∈ [𝐿,𝑈 ], (4)

where ALG(I (𝜖 )
𝑣 ) denotes the expected performance of ALG under

the instance I (𝜖 )
𝑣 .

3.2.2 Representing ALG(I (𝜖 )
𝑣 ) by Allocation Functions. For

any randomized algorithm,we define𝑘+1 distinct states, {𝑞𝑖 }∀𝑖∈{0,· · · ,𝑘 } ,
which represent the allocation behavior of the online algorithm at
any stage of instance I (𝜖 ) , as follows:

• State 𝑞0 corresponds to the situation where the online al-
gorithm has not allocated any units.

• For all 𝑖 ∈ [𝑘], state 𝑞𝑖 represents that the online algorithm
has allocated at least 𝑖 units of the item.

For all 𝑣 ∈ [𝐿,𝑈 ] and 𝑖 ∈ {0, · · · , 𝑘}, we define Ψ𝑖 (𝑣) : [𝐿,𝑈 ] →
{0, 1} such that Ψ𝑖 (𝑣) = 1 if the algorithm is in state 𝑞𝑖 after pro-
cessing all the buyers in I (𝜖 )

𝑣 , and Ψ𝑖 (𝑣) = 0 otherwise. Specifically,
Ψ𝑖 (𝑣) = 1 if the online algorithm allocates at least 𝑖 units of the
item at the end of stage 𝑣 in I (𝜖 ) , which occurs with some proba-
bility depending on the algorithm’s randomness. Since the instance
I (𝜖 ) is deterministically defined, Ψ𝑖 (𝑣) is a binary random variable
whose distribution depends solely on the algorithm’s randomness.
This leads to the definition of 𝝍 = {𝜓𝑖 }∀𝑖∈[𝑘 ] below.

Definition 2 (Allocation Functions). For any randomized
online algorithm, let 𝝍 = {𝜓𝑖 }∀𝑖∈[𝑘 ] and 𝜓𝑖 : [𝐿,𝑈 ] → [0, 1] rep-
resent the functions where 𝜓𝑖 (𝑣) = E[Ψ𝑖 (𝑣)], with the expectation
taken over the randomness of the algorithm.

Based on the definition above, we have 𝜓𝑖 (𝑣) = Pr(Ψ𝑖 (𝑣) = 1),
where Ψ𝑖 (𝑣) = 1 indicates that the algorithm is in state 𝑞𝑖 (i.e., at
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least 𝑖 units of the item have been allocated) after processing all
buyers in I (𝜖 )

𝑣 (i.e., by the end of stage 𝑣 of instance I (𝜖 ) ). In this
context,𝜓𝑖 (𝑣) represents the probability that the online algorithm
has allocated at least 𝑖 units of the item by the end of stage 𝑣 in
instance I (𝜖 ) . Therefore, the term probabilistic allocation functions
is used or simply allocation functions for brevity. The following
lemma demonstrates several important properties of𝜓𝑖 (𝑣) for all
𝑖 ∈ [𝑘] and 𝑣 ∈ [𝐿,𝑈 ].

Lemma 1 (Monotonicity; Continuity). For any randomized
online algorithm, 𝜓𝑖 (𝑣) ≥ 𝜓𝑖+1 (𝑣) holds for all 𝑖 ∈ [𝑘] and 𝑣 ∈
[𝐿,𝑈 ]. In addition, for any 𝑖 ∈ [𝑘], if the allocation function 𝜓𝑖 (𝑣)
is discontinuous at some point 𝑣 ∈ [𝐿,𝑈 ], then there exists another
algorithm ÂLG such that𝜓𝑖 (𝑣) is continuous at 𝑣 ∈ [𝐿,𝑈 ] and ÂLG
performs no worse than ALG.

The proof of the above lemma is given in Appendix A.
Lemma 1 implies that it suffices to focus on randomized algo-

rithms whose allocation functions are from the following set

Ω =

{
𝝍
��𝜓𝑖 (𝑣) ∈ [0, 1],𝜓𝑖 (𝑣) ≥ 𝜓𝑖+1 (𝑣),

𝜓𝑖 (𝑣) < 𝜓𝑖 (𝑣 ′),∀𝑖 ∈ [𝑘], 𝑣, 𝑣 ′ ∈ [𝐿,𝑈 ], and 𝑣 < 𝑣 ′
}
.

Next, we analyze how the allocation level of an 𝛼-competitive
algorithm should evolve as new buyers with higher valuations
arrive in I (𝜖 ) . We argue that the expected performance of any
online algorithm under the instance I (𝜖 ) can be fully represented
by the 𝑘 allocation functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] . Let ALG(I (𝜖 )

𝑣 ) denote
the expected objective value of the algorithm under instance I (𝜖 )

𝑣 .
Then ALG(I (𝜖 )

𝑣 ) can be framed using 𝝍 = {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] as follows.

Proposition 1 (Representation based on 𝝍). For any random-
ized algorithmALG under the family of hard instances {I (𝜖 )

𝑣 }∀𝑣∈[𝐿,𝑈 ]
with 𝜖 → 0, its expected performance can be represented by its allo-
cation functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] ∈ Ω as follows:
ALG

(
I (𝜖 )
𝐿

)
=

𝑘∑
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ),

ALG
(
I (𝜖 )
𝑣

)
= ALG

(
I (𝜖 )
𝐿

)
+

𝑘∑
𝑖=1

∫ 𝑣

𝜂=𝐿
(𝜂 − 𝑐𝑖 )𝑑𝜓𝑖 (𝜂), ∀𝑣 ∈ (𝐿,𝑈 ] .

The above proposition relates the expected performance of an on-
line algorithm to the set of allocation functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] that
capture its dynamics under the family of hard instances {I (𝜖 )

𝑣 }∀𝑣∈[𝐿,𝑈 ] .
The detailed proof can be found in Appendix B.

Combining Proposition 1 and Eq. (4) gives the corollary below.

Corollary 4 (Necessary Conditions). If there exists an 𝛼-
competitive algorithm for OSDoS, then there exists 𝑘 allocation func-
tions {𝜓𝑖 }∀𝑖∈[𝑘 ] ∈ Ω that satisfy the following equation:

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +
𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝑖 (𝜂)

≥ 1
𝛼
·
(
𝑘𝑣 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
, ∀𝑣 ∈ [𝐿,𝑈 ] . (5)

The corollary above provides a set of necessary conditions for
the allocation functions {𝜓𝑖 }∀𝑖∈[𝑘 ] induced by any 𝛼-competitive

algorithm. Therefore, determining a tight lower bound for OSDoS
is equivalent to finding the lowest 𝛼 such that there exists a set of
allocation functions in Ω that satisfy Eq. (5).

3.3 Proof of Theorem 3
We now move on to prove Theorem 3. Based on the necessary
conditions in Corollary 4, the lower bound can be defined as

𝛼∗S (𝑘) = inf
{
𝛼 ≥ 1

��there exist a set of 𝑘 allocation

functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] ∈ Ω that satisfy Eq. (5)
}
.

Next, we show that it is possible to find a tight design of {𝜓𝑖 }∀𝑖∈[𝑘 ]
that satisfies the necessary conditions in Eq. (5) by equality, ulti-
mately leading to Eq. (1) in Theorem 3.

For any 𝛼 ≥ 𝛼∗S (𝑘), let Γ
(𝛼 ) denote the superset of the set of

functions {𝜓𝑖 }∀𝑖∈[𝑘 ] ∈ Ω that satisfy Eq. (5). Note that Γ (𝛼 ) ⊂ Ω

holds for all 𝛼 ≥ 𝛼∗S (𝑘). Let function 𝜒 (𝛼 ) (𝑣) : [𝐿,𝑈 ] → [0, 𝑘] be
defined as

𝜒 (𝛼 ) (𝑣) = inf
{∑︁𝑘

𝑖=1
𝜓𝑖 (𝑣)

�� {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] ∈ Γ (𝛼 )
}
. (6)

Based on the definition of 𝜒 (𝛼 ) , we construct a set of allocation
functions {𝜓 (𝛼 )

𝑖
(𝑣)}∀𝑖∈[𝑘 ] as follows:

𝜓
(𝛼 )
𝑖

(𝑣) =
(
𝜒 (𝛼 ) (𝑣) − (𝑖 − 1)

)
· 1{𝑖−1≤𝜒 (𝛼 ) (𝑣)≤𝑖 }+

1{𝜒 (𝛼 ) (𝑣)>𝑖 } ,∀𝑣 ∈ [𝐿,𝑈 ], ∀𝑖 ∈ [𝑘], (7)

where 1{𝐴} is the standard indicator function, equal to 1 if 𝐴 is
true and 0 otherwise. In the following lemma, we argue that the set
of functions {𝜓 (𝛼 )

𝑖
(𝑣)}∀𝑖∈[𝑘 ] is a feasible solution to Eq. (5) and

satisfies it as an equality.

Lemma 2. For any 𝛼 ≥ 𝛼∗S (𝑘), the functions {𝜓
(𝛼 )
𝑖

}∀𝑖∈[𝑘 ] satisfy
Eq. (5) as an equality.

The detailed proof for the above lemma is in Appendix C. Fol-
lowing the definition of {𝜓 (𝛼 )

𝑖
(𝑣)}∀𝑖∈[𝑘 ] , we observe that these

functions exhibit the following property:

Lemma 3. For any 𝑖 ∈ [𝑘] and 𝑣 ∈ [𝐿,𝑈 ], if 𝜓 (𝛼 )
𝑖

(𝑣) ∈ (0, 1)
holds, then𝜓 (𝛼 )

𝑗
(𝑣) = 1 for all 𝑗 = 1, · · · , 𝑖 − 1 and𝜓 (𝛼 )

𝑗
(𝑣) = 0 for

all 𝑗 = 𝑖 + 1, · · · , 𝑘 .

The lemma above asserts that if the online algorithm inducing
{𝜓 (𝛼 ) }∀𝑖 begins allocating unit 𝑖 with some positive probability to
buyers in stage-𝑣 of I (𝜖 ) , then the algorithm must have already
allocated all units 𝑗 < 𝑖 with probability one to buyers arriving at
or before stage-𝑣 of I (𝜖 ) . Furthermore, if the algorithm has not
allocated unit 𝑖 with probability one by the end of stage-𝑣 , then
all units 𝑗 > 𝑖 remain in the system with probability one at the
end of stage-𝑣 . Given that the marginal cost for each additional
unit of resource increases, the algorithm should only produce and
allocate a new unit once all previously produced units have been
fully allocated.

According to Lemma 2, the inequality in Eq. (5) can be replaced
with an equality. By combining Lemma 2 with Lemma 3, we con-
clude that there exists a unique set of functions that satisfy Eq.
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(5) as an equality and also fulfill the property stated in Lemma 3.
Proposition 2 below formally states this result.

Proposition 2. For any 𝛼 ≥ 𝛼∗S (𝑘), there exist a unique set

of 𝑘 allocation functions {𝜓 (𝛼 )
𝑖

}∀𝑖∈[𝑘 ] ∈ Ω that satisfy Eq. (5) by
equality:

𝜓
(𝛼 )
𝑖

(𝑣) = 1, 𝑖 = 1, . . . ,
¯
𝑘 − 1,

𝜓
(𝛼 )

¯
𝑘

(𝑣) =
{
𝜉 + 𝑘

𝛼 · ln
(
𝑣−𝑐

¯
𝑘

𝐿−𝑐
¯
𝑘

)
𝑣 ∈ [𝐿,𝑢

¯
𝑘 ],

1 𝑣 > 𝑢
¯
𝑘 ,

𝜓
(𝛼 )
𝑖

(𝑣) =


0 𝑣 ≤ ℓ𝑖 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑖
ℓ𝑖−𝑐𝑖

)
𝑣 ∈ [ℓ𝑖 , 𝑢𝑖 ],

1 𝑣 ≥ 𝑢𝑖 ,

𝑖 =
¯
𝑘 + 1, . . . , 𝑘 − 1,

𝜓
(𝛼 )
𝑘

(𝑣) =
{

0 𝑣 ≤ ℓ𝑘 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑘
ℓ𝑘−𝑐𝑘

)
𝑣 ∈ [ℓ𝑘 ,𝑈 ],

where the intervals {[ℓ𝑖 , 𝑢𝑖 ]}∀𝑖 are specified by

𝑢
¯
𝑘 = ℓ

¯
𝑘+1 = (𝐿 − 𝑐

¯
𝑘 ) · 𝑒 (1−𝜉 ) ·

𝛼
𝑘 + 𝑐

¯
𝑘 , (8)

𝑢𝑖 = ℓ𝑖+1 = (ℓ𝑖 − 𝑐𝑖 ) · 𝑒𝛼/𝑘 + 𝑐𝑖 ∀𝑖 =
¯
𝑘 + 1, . . . , 𝑘 . (9)

Recall that the parameters
¯
𝑘 and 𝜉 are defined in Eq. (2) and

Eq. (3), respectively. Once 𝛼 is given, both
¯
𝑘 and 𝜉 can be uniquely

determined. Therefore, the set of allocation functions {𝜓 (𝛼 )
𝑖

}∀𝑖∈[𝑘 ]
given in Proposition 2 can also be explicitly computed once 𝛼

is given. The full proof of how to derive the explicit designs of
{𝜓 (𝛼 )

𝑖
}∀𝑖∈[𝑘 ] is given in Appendix D.

Putting together Eq. (8) and Eq. (9), we have

𝑢𝑘 = (𝐿 − 𝑐
¯
𝑘 ) · 𝑒

𝛼
𝑘
· (𝑘+1−

¯
𝑘−𝜉 ) + 𝑐

¯
𝑘 · 𝑒

𝛼
𝑘
· (𝑘−

¯
𝑘 )+

𝑐
¯
𝑘+1 · (1 − 𝑒

𝛼
𝑘 ) · 𝑒

𝛼
𝑘
· (𝑘−1−

¯
𝑘 ) + · · · + 𝑐𝑘 · (1 − 𝑒

𝛼
𝑘 ) .

Note that the right-hand side of the equation above is increasing
in 𝛼 . Therefore, as 𝛼 decreases, the value of 𝑢𝑘 also decreases and
will eventually fall below 𝑈 for a specific value of 𝛼 . Consequently,
according to the definition of𝜓 (𝛼 )

𝑘
in Proposition 2,𝜓 (𝛼 )

𝑘
(𝑈 ) will

exceed 1 (since𝜓 (𝛼 )
𝑘

(𝑈 ) > 𝜓
(𝛼 )
𝑘

(𝑢𝑘 ), and based on Eq. (9),𝜓
(𝛼 )
𝑘

(𝑢𝑘 )
is equal to one). However, this will generate an infeasible alloca-
tion function 𝜓

(𝛼 )
𝑘

, as we require that 𝜓 (𝛼 )
𝑘

(𝑣) ≤ 1 holds for all
𝑣 ∈ [𝐿,𝑈 ]. As a result, for those values of 𝛼 where 𝑢𝑘 < 𝑈 , the set
of 𝑘 allocation functions {𝜓 (𝛼 )

𝑖
}∀𝑖∈[𝑘 ] obtained in Proposition 2

becomes infeasible, meaning that 𝛼 must be less than 𝛼∗S (𝑘). There-
fore, the lower bound 𝛼∗S (𝑘) is the value of 𝛼 for which 𝑢𝑘 = 𝑈 ,
and this gives Eq. (1) in Theorem 3. Thus, we complete the proof of
Theorem 3.

4 r-Dynamic: A Randomized Dynamic Posted
Price Mechanisms

We propose a randomized dynamic pricing mechanism (r-Dynamic),
as described in Algorithm 1, to solve the OSDoS problem. Before
the buyers arrive, r-Dynamic samples 𝑘 independent random prices
{𝑃𝑖 }∀𝑖∈[𝑘 ] , where 𝑃𝑖 is the price for the 𝑖-th unit of the item. Specif-
ically, for each unit 𝑖 ∈ [𝑘], a random seed 𝑠𝑖 is drawn from
the uniform distribution Unif(0, 1), and the random price is set

Algorithm1 Randomized Dynamic Pricing (r-Dynamic) forOSDoS

1: Input: pricing functions {𝜙𝑖 }∀𝑖∈[𝑘 ] ;
2: Initiate: index of the unit to be sold 𝜅1 = 1;
3: Generate a random seed vector 𝒔 = {𝑠𝑖 }∀𝑖∈[𝑘 ] , each element

sampled independently from uniform distribution Unif(0, 1);
4: Set a price vector P = {𝑃𝑖 }∀𝑖∈[𝑘 ] , where 𝑃𝑖 = 𝜙𝑖 (𝑠𝑖 );
5: while buyer 𝑡 arrives do
6: if 𝜅𝑡 ≤ 𝑘 then:
7: Post the price 𝑝𝑡 = 𝑃𝜅𝑡 to buyer 𝑡 ;
8: if buyer 𝑡 accepts the price then
9: One unit is sold and set 𝑥𝑡 = 1;
10: end if
11: end if
12: Update 𝜅𝑡+1 = 𝜅𝑡 + 𝑥𝑡 . ⊲ 𝑥𝑡 = 0 if buyer 𝑡 declines 𝑝𝑡 .
13: end while

as 𝑃𝑖 = 𝜙𝑖 (𝑠𝑖 ), where 𝜙𝑖 (𝑠𝑖 ) is the pricing function designed for the
𝑖-th unit. r-Dynamic then posts the price of the available unit with
the smallest index from {𝑃𝑖 }∀𝑖∈[𝑘 ] to the online arriving buyers.

For all 𝑖 ∈ [𝑘], the pricing function 𝜙𝑖 : [0, 1] → [𝐿𝑖 ,𝑈𝑖 ] is
constructed such that the 𝑘 price intervals {[𝐿𝑖 ,𝑈𝑖 ]}∀𝑖∈[𝑘 ] span the
entire range of [𝐿,𝑈 ], where 𝐿 = 𝐿1 ≤ 𝑈1 = 𝐿2 ≤ 𝑈2 ≤ · · · ≤
𝑈𝑘−1 = 𝐿𝑘 ≤ 𝑈𝑘 = 𝑈 . That is, the upper boundary of 𝜙𝑖 (i.e.,
the maximum price of 𝑃𝑖 ) is the lower boundary of 𝜙𝑖+1 (i.e., the
minimum price of 𝑃𝑖+1). As a result, the posted prices will always
be non-decreasing (i.e., 𝑃1 ≤ 𝑃2 ≤ · · · ≤ 𝑃𝑘 ), regardless of the
realization of the random seeds {𝑠𝑖 }∀𝑖∈[𝑘 ] . This design ensures
that units with higher production costs are sold at higher prices,
which is consistent with the natural pricing scheme where more
expensive units reflect higher production costs.

4.1 Asymptotic Optimality of r-Dynamic
We show that by carefully designing the pricing functions, r-Dynamic
achieves an asymptotically optimal competitive ratio.

Theorem 5. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with

𝑘 ≥ 1, r-Dynamic is 𝛼∗S (𝑘) ·exp( 𝛼
∗
S (𝑘 )
𝑘

)-competitive when the pricing
functions are given by

𝜙𝑖 (𝑠) = 𝐿, ∀𝑠 ∈ [0, 1], 𝑖 ∈ [
¯
𝑘∗ − 1],

𝜙
¯
𝑘∗ (𝑠) =

{
𝐿 𝑠 ∈ [0, 𝜉∗],
(𝐿 − 𝑐

¯
𝑘∗ ) · 𝑒 (𝑠−𝜉

∗ ) ·𝛼∗
S (𝑘 )/𝑘 + 𝑐

¯
𝑘∗ 𝑠 ∈ [𝜉∗, 1],

𝜙𝑖 (𝑠) = (𝐿𝑖 − 𝑐𝑖 ) · 𝑒𝑠 ·𝛼
∗
S (𝑘 )/𝑘 + 𝑐𝑖 , ∀𝑠 ∈ [0, 1], 𝑖 =

¯
𝑘∗ + 1, . . . , 𝑘,

where
¯
𝑘∗ and 𝜉∗ are respectively the values of

¯
𝑘 and 𝜉 defined in

Theorem 3, corresponding to 𝛼 = 𝛼∗S (𝑘), and the price intervals
{[𝐿𝑖 ,𝑈𝑖 ]}∀𝑖∈[𝑘 ] are given as follows:

𝑈
¯
𝑘∗ = 𝐿

¯
𝑘∗+1 = (𝐿 − 𝑐

¯
𝑘∗ ) · 𝑒 (1−𝜉

∗ ) ·𝛼∗
S (𝑘 )/𝑘 + 𝑐

¯
𝑘∗ , (10)

𝑈𝑖 = 𝐿𝑖+1 = (𝐿𝑖 − 𝑐𝑖 ) · 𝑒𝛼
∗
S (𝑘 )/𝑘 + 𝑐𝑖 , ∀𝑖 =

¯
𝑘∗ + 1, . . . , 𝑘 . (11)

We provide a proof sketch of Theorem 5 in Section 4.3. At a high
level, the design of the pricing functions {𝜙𝑖 (𝑠)}∀𝑖∈[𝑘 ] is inspired
by the dynamics of an 𝛼∗S (𝑘)-competitive algorithm on the arrival
instance I (𝜖 ) studied in the lower bound section. Essentially, the
inverse of the pricing function 𝜙𝑖 (𝑠), defined as 𝜙−1

𝑖
(𝑣) = sup{𝑠 :
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𝜙𝑖 (𝑠) ≤ 𝑣}, follows the same design as 𝜓 (𝛼 )
𝑖

(𝑣) in Proposition 2

when 𝛼 = 𝛼∗S (𝑘), namely,𝜓
(𝛼∗

S (𝑘 ) )
𝑖

(𝑣) = sup{𝑠 : 𝜙𝑖 (𝑠) ≤ 𝑣}.
Asymptotic optimality of r-Dynamic in general settings.

It is important to note that previous studies (e.g., [12, 23]) have
shown that 𝛼∗S (𝑘) remains bounded by a constant as 𝑘 approaches
infinity.1 Thus, the competitive ratio of r-Dynamic approaches the
lower bound 𝛼∗S (𝑘) as 𝑘 goes to infinity (i.e., 𝛼∗S (𝑘)/𝑘 → 0 as
𝑘 → ∞), meaning that r-Dynamic is asymptotically optimal.

Exact optimality of r-Dynamic when 𝑘 = 2. For the small
inventory case of 𝑘 = 2, a tighter analysis shows that r-Dynamic is
𝛼∗S (2)-competitive using the same design of pricing functions in
Theorem 5, where 𝛼∗S (2) is the lower bound obtained in Theorem
3 for 𝑘 = 2. This indicates that r-Dynamic is not just asymptotically
optimal, but also optimal in the small inventory setting when 𝑘 = 2.
The corollary below formalizes this result.

Corollary 6. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with
𝑘 = 2, r-Dynamic is 𝛼∗S (2)-competitive when 𝜙1 : [0, 1] → [𝐿1,𝑈1]
and 𝜙2 : [0, 1] → [𝐿2,𝑈2] are designed as follows:
• If 𝛼∗S (2) ≥

2𝐿−𝑐1−𝑐2
𝐿−𝑐1

, then:

𝜙1 (𝑠) =
{
𝐿 𝑠 ∈ [0, 𝜉∗],
(𝐿 − 𝑐1) · 𝑒 (𝑠−𝜉

∗ ) ·𝛼∗
S (2)/2 + 𝑐1 𝑠 ∈ [𝜉∗, 1],

𝜙2 (𝑠) = (𝐿2 − 𝑐2) · 𝑒𝑠 ·𝛼
∗
S (2)/2 + 𝑐2 ∀𝑠 ∈ [0, 1] .

In this case, the price intervals and 𝜉∗ are given by

𝐿1 = 𝐿,𝑈1 = 𝐿2 = (𝐿 − 𝑐1) · 𝑒 (1−𝜉
∗ ) ·𝛼∗

S (2)/2 + 𝑐1,𝑈2 = 𝑈 ,

𝜉∗ =
1

𝛼∗S (2)
· (2𝐿 − 𝑐1 − 𝑐2)

𝐿 − 𝑐1
.

• If 𝛼∗S (2) <
2𝐿−𝑐1−𝑐2

𝐿−𝑐1
, then:

𝜙1 (𝑠) = 𝐿, ∀𝑠 ∈ [0, 1],

𝜙2 (𝑠) =
{
𝐿 𝑠 ∈ [0, 𝜉∗],
(𝐿 − 𝑐2) · 𝑒 (𝑠−𝜉

∗ ) ·𝛼∗
S (2)/2 + 𝑐2 𝑠 ∈ [𝜉∗, 1] .

In this case, the price intervals and 𝜉∗ are given by

𝐿1 = 𝑈1 = 𝐿2 = 𝐿, 𝑈2 = 𝑈 ,

𝜉∗ =
(2𝐿 − 𝑐1 − 𝑐2)/𝛼∗S (2) − (𝐿 − 𝑐1)

𝐿 − 𝑐2
.

The proof of the corollary above is given in Appendix F. In the
following two subsections, we first evaluate the empirical perfor-
mance of r-Dynamic and then provide a proof sketch of Theorem
5 to show the asymptotic optimality of r-Dynamic.

4.2 Empirical Performance of r-Dynamic
We perform three experiments to evaluate the empirical perfor-
mance of r-Dynamic and compare its performance to two other
algorithms, d-Dynamic [17] and r-Static [20]. Throughout the three
experiments, the setupS is fixed to be {𝐿 = 1,𝑈 = 30, 𝑓 (𝑖) = 𝑖2/16}
1Recall that all buyers’ valuations are bounded within [𝐿,𝑈 ]. Thus, any naive algo-
rithm will be at least 𝑘𝑈 −𝑓 (𝑘 )

𝑘𝐿−𝑓 (𝑘 ) -competitive by allocating 𝑘 units to buyers with the
lowest valuation, 𝐿, while the offline optimal algorithm allocates all 𝑘 units to buyers
with the highest valuation,𝑈 .

and 𝑘 = 10. To stimulate different arrival patterns of buyers, we
consider the following three types of instances:

• Instance-IID: We generate the valuations of 1000 buyers
using the truncated normal distribution 𝑁 (15, 15)[1,30] .

• Instance-Sorted: We generate 1000 buyers using the same
approach as Instance-IID, and then sort these buyers in
increasing order by their valuations. This instance mimics
the hard instance I (𝜖 ) .

• Instance-Low2High: We generate the valuations of 500
buyers using truncated normal distribution𝑁 (7.5, 7.5)[1,30] .
Following these 500 buyers, we generate another 500 buyers
using distribution 𝑁 (22.5, 7.5)[1,30] .

Figure 2 presents the CDF plot of the empirical competitive ra-
tios for the three algorithms r-Dynamic, d-Dynamic, and r-Static,
evaluated on 300 instances from each type of instance. In Figure
2(a), r-Dynamic significantly outperforms the other two algorithms
under Instance-Sorted. This is because the valuations of online
arrivals are increasing, similar to the hard instance I (𝜖 ) defined
in Section 3.2. This result confirms the superior performance of
r-Dynamic under difficult instances compared to the other algo-
rithms. Additionally, Figure 2(a) demonstrates that r-Dynamic’s
performance is very close to the lower bound 𝛼∗S (10), suggesting
that r-Dynamic may not only be asymptotically optimal in the
large 𝑘 regime but also near-optimal in the small 𝑘 regime. In Fig-
ure 2(b), Instance-Low2High consists of two phases: low-valued
buyers arriving first, followed by high-valued buyers. This instance
is simpler than Instance-Sorted, and the performance of all three
algorithms improves, with r-Dynamic continuing to outperform
the others. Finally, in Figure 2(c), under Instance-IID, all algo-
rithms achieve a competitive ratio close to 1, with r-Dynamic and
d-Dynamic performing similarly. From these figures, we observe
that the advantage of r-Dynamic becomes increasingly evident as
the instances become more difficult, particularly when low-valued
buyers arrive before high-valued buyers.

4.3 Proof Sketch of Theorem 5
For an arbitrary arrival instance I = {𝑣𝑡 }∀𝑡 ∈[𝑇 ] , we prove that

r-Dynamic is 𝛼∗S (𝑘) · exp( 𝛼
∗
S (𝑘 )
𝑘

)-competitive if the pricing func-
tions {𝜙𝑖 }∀𝑖∈[𝑘 ] are designed according to Theorem 5.

Recall that the random price vector P = {𝑃𝑖 }𝑖∈[𝑘 ] is generated
using the pricing functions {𝜙𝑖 }∀𝑖∈[𝑘 ] at the start of r-Dynamic
(line 3 of Algorithm 1). Hereafter, we will refer to Algorithm 1
as r-Dynamic(P) to indicate that the algorithm is executed with
the random price vector P. Based on the design of {𝜙𝑖 }∀𝑖∈[𝑘 ] in
Theorem 5, the first

¯
𝑘∗ − 1 prices in P are all 𝐿’s (i.e., 𝑃1 = · · · =

𝑃
¯
𝑘∗−1 = 𝐿), the

¯
𝑘∗-th price 𝑃

¯
𝑘∗ is a random variable within [𝐿,𝑈

¯
𝑘∗ ],

and for all 𝑖 ∈ {
¯
𝑘∗ + 1, · · · , 𝑘], the 𝑖-th price 𝑃𝑖 is a random variable

within [𝐿𝑖 ,𝑈𝑖 ]. Here, the values of ¯
𝑘∗ and {[𝐿𝑖 ,𝑈𝑖 ]}∀𝑖 are all defined

in Theorem 5.
Let P denote the support of all possible values of the random

price vector P:

P = {𝐿}¯
𝑘∗−1 × [𝐿,𝑈

¯
𝑘∗ ] ×

∏
𝑖∈{

¯
𝑘∗+1,· · · ,𝑘 }

[𝐿𝑖 ,𝑈𝑖 ] .

Given a price vector P ∈ P, let𝑊 (P) represent the total number of
items allocated by r-Dynamic(P) under the input instance I. Since
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Figure 2: CDF plots of empirical competitive ratios of r-Dynamic (Algorithm 1), d-Dynamic [23] and r-Static [20].

P is a random variable,𝑊 (P) is also a random variable. For clarity,
we will sometimes omit the price vector and refer to it simply as
𝑊 whenever the context is clear.

Let 𝜔 be the maximum value in the support of the random vari-
able𝑊 (i.e.,𝜔 is the maximum possible value of𝑊 (P) for all P ∈ P).
Thus, 𝜔 is a deterministic value that depends only on the input
instance I. In addition, let 𝝅 ∈ P be a price vector such that
r-Dynamic(𝝅) allocates the 𝜔-th item earlier than any other price
vector in the set P. That is, for all P ∈ P, r-Dynamic(P) allocates
the 𝜔-th item no earlier than that of r-Dynamic(𝝅). Let us define
the set {𝜏𝑖 }∀𝑖∈[𝜔 ] so that 𝜏𝑖 is the arrival time of the buyer in the
instance I to whom r-Dynamic(𝝅) allocates the 𝑖-th unit. Note
that for all 𝑖 ∈ {1, · · · , 𝜔}, 𝜏𝑖 is a deterministic value once 𝝅 and I
are given. Let the random variable𝑊 𝜏𝜔 (P) denote the total number
of items allocated by r-Dynamic(P) after the arrival of buyer 𝜏𝜔 in
the instance I. The lemma below shows that the random variable
𝑊 𝜏𝜔 (P) is always lower bounded by 𝜔 − 1.

Lemma 4. Given instance I,𝑊 𝜏𝜔 (P) ≥ 𝜔 − 1 holds for all 𝑷 ∈ P.

Lemma 4 greatly simplifies the analysis of r-Dynamic since it
implies that the support of the random variable𝑊 𝜏𝜔 consists only
of two values:𝜔−1 and𝜔 (note that all𝑊 ’s are upper bounded by𝜔).
The intuition behind Lemma 4 is as follows. For all 𝑖 ∈ {1, · · · , 𝜔},
recall that 𝜏𝑖 denotes the arrival time of the buyer in the instance I
who receives the 𝑖-th unit under r-Dynamic(𝝅). Upon the arrival
of buyer 𝜏𝑖 , if the number of items allocated by r-Dynamic(P) is
less than 𝑖 − 1, then the current 𝜏𝑖 -th buyer will definitely accept
the price offered to her, ensuring that one more unit will be sold.
As a result, at least 𝜔 − 1 items will be allocated by the end of time
𝜏𝜔 . Lemma 4 thus follows.

The following two lemmas help us lower bound the expected
performance ofr-Dynamic on input instance I and upper bound
the objective of the offline optimal algorithm, respectively.

Lemma 5. If a buyer in instance I arrives before time 𝜏𝜔 with
a valuation within [𝐿𝜔 ,𝑈 ], then for all P ∈ P, r-Dynamic(P) will
allocate one unit of the item to that buyer.

Lemma 5 can be proved as follows. By definition, 𝜏𝜔 is the earli-
est time across all possible price vectors in P that the production
level exceeds 𝜔 − 1, causing the posted price to exceed𝑈𝜔−1. Thus,
for all possible realization of P ∈ P, the posted prices by r-Dynamic
remain below 𝑈𝜔−1 before the arrival of buyer at time 𝜏𝜔 . Con-
sequently, when a buyer with a valuation within [𝐿𝜔 ,𝑈 ] arrives

before time 𝜏𝜔 , the buyer accepts the price posted to him (since
𝐿𝜔 ≥ 𝑈𝜔−1) and a unit of item will thus be allocated to this buyer.

Lemma 6. There are no buyers in instance I with a valuation
within [𝑈𝜔 ,𝑈 ] arriving after time 𝜏𝜔 , namely, the valuations of all
buyers arrive after 𝜏𝜔 are less than𝑈𝜔 .

y The above lemma can be proved by contradiction. If there exists
a buyer arriving after time 𝜏𝜔 with a valuation within [𝑈𝜔 ,𝑈 ], then
theremust exist a price vector inP, say P′, such that r-Dynamic(P′)
will allocate more than 𝜔 units, contradicting the definition of 𝜔 .

Applying Lemma 5 and observing that r-Dynamic sells at least
𝜔 − 1 units, we can derive a lower bound on the expected per-
formance of r-Dynamic. Conversely, using the lemma 6 and the
fact that for all P ∈ P, the allocation level of r-Dynamic never
exceeds 𝜔 , we can upper bound the objective of the offline optimal
algorithm. The combination of these two bounds yields the final
competitive ratio of r-Dynamic. For the full proof of Theorem 5,
refer to Appendix E.

5 Conclusions and Future Work
In this paper, we studied online 𝑘-selection with production costs
that exhibit diseconomies of scale (OSDoS) and developed novel
randomized dynamic pricing mechanisms with the best-known
competitive ratios. Specifically, our randomized dynamic pricing
scheme provides tight guarantees in both the small and large in-
ventory settings (i.e., small and large 𝑘), addressing the gap left by
[23]. These findings advance the theoretical understanding of OS-
DoS and offer practical insights for designing randomized dynamic
pricing mechanisms in online resource allocation problems with
increasing marginal production costs.

This work highlights several promising directions for future
research. First, we conjecture that our proposed randomized pric-
ing mechanism is optimal for all 𝑘 ≥ 1. However, a more refined
analysis is required to establish or refute its optimality for𝑘 ≥ 3. Ad-
ditionally, extending our results to multi-resource or combinatorial
settings could reveal new insights into online resource allocation
with diseconomies of scale in more complex environments. Fur-
thermore, it would be valuable to explore other metrics, such as
risk and fairness, in online allocation and selection to ensure that
the developed randomized pricing mechanisms not only maximize
efficiency but also promote reliable and equitable outcomes.
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A Proof of Lemma 1
Wefirst prove themonotonicity. Following the definition of the state
variables 𝑞𝑖+1 and 𝑞𝑖 , when the random variable Ψ𝑖+1 (𝑣) is realized
to be 1, r-Dynamic must have allocated at least 𝑖 + 1 units, and thus
Ψ𝑖 (𝑣) = 1 must hold. Consequently, it follows that𝜓𝑖 (𝑣) ≥ 𝜓𝑖+1 (𝑣).

We now move on to prove the continuity of𝜓𝑖 (𝑣) in 𝑣 ∈ [𝐿,𝑈 ].
Let ALG be an 𝛼-competitive algorithm. For some 𝑣 ∈ (𝐿,𝑈 ) and 𝑖 ∈
[𝑘], let the function𝜓𝑖 (.) corresponding to ALG be non-continuous
at 𝑣 . Let lim𝑥→𝑣− 𝜓𝑖 (𝑣) = 𝜈 and𝜓𝑖 (𝑣) = lim𝑥→𝑣+ 𝜓𝑖 (𝑣) = 𝜈 + 𝛿 , for
some 𝛿 > 0. Then the algorithm must be selling at least in expecta-
tion a 𝛿-fraction of the 𝑖-th unit to the buyers with valuation 𝑣 in
instance I. Conversely, for ALG to be 𝛼-competitive, the expected
objective of the algorithm before the arrival of buyers with val-
uation 𝑣 , ALG(I (𝜖 )

𝑣− ), must be at least equal to 1
𝛼 · OPT(I (𝜖 )

𝑣− ) =

1
𝛼 · OPT(I (𝜖 )

𝑣 ), where OPT(I (𝜖 )
𝑣 ) denotes the objective value of

the offline optimal algorithm on the hard instance I (𝜖 ) up to the
end of stage-𝑣 . It can be seen that selling in expectation at least a
𝛿 fraction of the 𝑖-th unit is unnecessary and ALG could save this
fraction of the unit and sell it to buyers with higher valuations. In
other words, we can construct another online algorithm, say ÂLG,
that follows ALG up to the arrival of buyers with valuation 𝑣 , but
sells the 𝛿-fraction of the 𝑖-th unit to buyers with valuation strictly
greater than 𝑣 instead. It is easy to see that ÂLG will obtain a better
objective value with its𝜓𝑖 being continuous at 𝑣 . Lemma 1 follows
by repeating the same process for any other discontinuous point of
𝜓𝑖 (𝑣).

B Proof of Proposition 1
For any randomized algorithm ALG, let 𝐷 (𝐿) denote the number of
units that ALG allocates under the instance I (𝜖 )

𝐿
(i.e., the instance

I (𝜖 ) by the end of stage-𝐿). Thus, 𝐷 (𝐿) is a random variable taking
values from 0 to 𝑘 . Based on definition of 𝐷 (𝐿), ALG(I (𝜖 )

𝐿
) can be

computed as follows:

ALG
(
I (𝜖 )
𝐿

)
= E

𝐷 (𝐿) · 𝐿 −
𝐷 (𝐿)∑︁
𝑖=1

𝑐𝑖

 ,
where the expectation is taken with respect to the randomness of
𝐷 (𝐿) (the distribution depends on the randomness of the algorithm
ALG). Let the indicator function 1{𝐷 (𝐿)=𝑗 } = 1 if ALG allocates
exactly 𝑗 units at the end of stage-𝐿, and 1{𝐷 (𝐿)=𝑗 } = 0 otherwise.
Based on definition of the random variables {Ψ𝑖 (𝐿)}∀𝑖∈[𝑘 ] , we
argue that:

1{𝐷 (𝐿)=𝑗 } = Ψ𝑗 (𝐿) − Ψ𝑗+1 (𝐿), 1 ≤ 𝑗 ≤ 𝑘. (12)

Here,Ψ𝑘+1 (𝐿) = 0 always holds. To seewhy Eq. (12) is true, consider
the case where the random variable 𝐷 (𝐿) = 𝑗 , then:

Ψ𝑖 (𝐿) = 1, ∀𝑖 ≤ 𝑗,

Ψ𝑖 (𝐿) = 0, ∀𝑖 > 𝑗 .

From the equation above, we can observe that when the indicator
function 1{𝐷 (𝐿)=𝑗 } = 1, Ψ𝑗+1 (𝐿) − Ψ𝑗 (𝐿) = 1 holds. For the case
when 1{𝐷 (𝐿)=𝑗 } = 0, if 𝐷 (𝐿) < 𝑗 , then Ψ𝑗 (𝐿) = Ψ𝑗+1 (𝐿) = 0 and
1{𝐷 (𝐿)=𝑗 } = Ψ𝑗 (𝐿) − Ψ𝑗+1 (𝐿) follows. For the case 𝐷 (𝐿) > 𝑗 , the
two equations Ψ𝑗 (𝐿) = Ψ𝑗+1 (𝐿) = 1 and 1{𝐷 (𝐿)=𝑗 } = Ψ𝑗 (𝐿) −
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Ψ𝑗+1 (𝐿) again follow. As a result, ALG(I (𝜖 )
𝐿

) can be computed as
follows:

ALG
(
I (𝜖 )
𝐿

)
= E

𝐷 (𝐿) · 𝐿 −
𝐷 (𝐿)∑︁
𝑖=1

𝑐𝑖


=

𝑘∑︁
𝑗=1

E
[
1{𝐷 (𝐿)=𝑗 }

]
·
(
𝑗 · 𝐿 −

𝑗∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

E
[
Ψ𝑗 (𝐿) − Ψ𝑗+1 (𝐿)

]
·
(
𝑗 · 𝐿 −

𝑗∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

(
𝜓 𝑗 (𝐿) −𝜓 𝑗+1 (𝐿)

)
·
(
𝑗 · 𝐿 −

𝑗∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

𝜓 𝑗 (𝐿) · (𝐿 − 𝑐 𝑗 ) −𝜓𝑘+1 (𝐿) ·
(
𝑘 · 𝐿 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
=

𝑘∑︁
𝑗=1

𝜓 𝑗 (𝐿) · (𝐿 − 𝑐 𝑗 ).

Now, let us compute the objective of the 𝛼-competitive algorithm
at the end of stage-𝑣 , ∀𝑣 ∈ (𝐿,𝑈 ]. Let the random variable 𝑋𝑖 (𝑣) be
the value obtained from allocating the 𝑖-th unit of the item at the
end of some stage-𝑣 ∈ (𝐿,𝑈 ]. It follows that

E[𝑋𝑖 (𝑣) − 𝑐𝑖 ] = 𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 )+

E
[∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 ) · (Ψ𝑖 (𝜂) − Ψ𝑖 (𝜂 − 𝑑𝜂))
]

=𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +
∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 ) · E[Ψ𝑖 (𝜂) − Ψ𝑖 (𝜂 − 𝑑𝜂)]

=𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +
∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 ) ·
(
𝜓𝑖 (𝜂) −𝜓𝑖 (𝜂 − 𝑑𝜂)

)
=𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 ) · 𝑑𝜓𝑖 (𝜂),

where the first equality follows because if the 𝑖-th unit is allocated
at some stage 𝜂, then the algorithm must have sold at least 𝑖 units of
the item by the end of 𝜂, leading toΨ(𝜂) = 1. Additionally, if the 𝑖-th
unit is allocated at stage 𝜂, then at stage 𝜂 −𝑑𝜂, the algorithm must
have allocated fewer than 𝑖 units, indicating that Ψ𝑖 (𝜂 − 𝑑𝜂) = 0.
The last equality follows because the function𝜓𝑖 ∈ Ω is continuous.
Note that if the function 𝜓𝑖 is not differentiable at some value 𝑣 ,
then we use the right derivative of𝜓𝑖 at that point. Putting together
the above results, it follows that:

ALG
(
I (𝜖 )
𝑣

)
=

𝑘∑︁
𝑖=1

E[𝑋𝑖 (𝑣) − 𝑐𝑖 ]

=

𝑘∑︁
𝑖=1

[
𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 ) · 𝑑𝜓𝑖 (𝜂)
]
,

= ALG
(
I (𝜖 )
𝐿

)
+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 ) · 𝑑𝜓𝑖 (𝜂), ∀𝑣 ∈ (𝐿,𝑈 ] .

Proposition 1 thus follows.

C Proof of Lemma 2
For any 𝑣 ∈ [𝐿,𝑈 ], let us define 𝐶𝑣 as follows:

𝐶𝑣 = 𝐶𝐿 +
𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝛼
𝑖 (𝜂), ∀𝑣 ∈ (𝐿,𝑈 ]

𝐶𝐿 =

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ).

To prove Lemma 2, we need to first prove the feasibility of {𝜓 (𝛼 )
𝑖

}∀𝑖∈[𝑘 ] ,
namely, 𝐶𝑣 is greater than 1

𝛼 · (𝑘 · 𝑣 − ∑
𝑖 𝑐𝑖 ) for all 𝑣 ∈ [𝐿,𝑈 ].

For some 𝑣 ∈ [𝐿,𝑈 ], based on the definition of 𝜒𝛼 (𝑣) in Eq. (6),
there exist a set of functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] that satisfy Eq. (5) and
in the meanwhile, for some arbitrary small value 𝜖 , we have:

𝜒𝛼 (𝑣) + 𝜖 ≥
𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣). (13)

Next, using integration by parts, we have

𝐶𝑣 = 𝐶𝐿 +
𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝛼
𝑖 (𝜂)

= 𝐶𝐿 +
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · (𝑣 − 𝑐𝑖 )−

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) −

∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝜂)

)
𝑑𝜂

=

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · (𝑣 − 𝑐𝑖 ) −

∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝜂)

)
𝑑𝜂

= 𝑣 ·
(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑝)

)
−

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝜂)

)
𝑑𝜂

= 𝑣 · 𝜒𝛼 (𝑣) −
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

𝜒𝛼 (𝑣)𝑑𝜂,

where the last equality follows the definition of {𝜓𝛼
𝑖
}∀𝑖∈[𝑘 ] in Eq.

(7). Thus, we have

𝐶𝑣 = 𝑣 · 𝜒𝛼 (𝑣) −
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

𝜒𝛼 (𝑣) · 𝑑𝜂,

≥ 𝑣 ·
𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) − 𝑣 · 𝜖 −
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 −

∫ 𝑣

𝜂=𝐿

𝜒𝛼 (𝑣) · 𝑑𝜂,

≥ 𝑣 ·
𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) −
∫ 𝑣

𝜂=𝐿

(
𝑘∑︁
𝑖=1

𝜓𝑖 (𝜂)
)
· 𝑑𝜂

−
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 − 𝑣 · 𝜖, (14)

where the first inequality follows Eq. (13) and the second inequal-
ity directly follows the definition of 𝜒𝛼 (𝑣) (recall that 𝜒𝛼 (𝑣) ≤∑𝑘
𝑖=1𝜓𝑖 (𝑣) holds for all 𝑣 ∈ [𝐿,𝑈 ]).
By the definition of {𝜓𝛼

𝑖
}∀𝑖∈[𝑘 ] , we have

∑
𝑖∈[𝑘 ] 𝜓

𝛼
𝑖
(𝑣) = 𝜒𝛼 (𝑣).

Putting together the inequality 𝜒𝛼 (𝑣) ≤ ∑𝑘
𝑖=1𝜓𝑖 (𝑣) and the fact
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that productions costs are increasing, we have

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣) · 𝑐𝑖 ≤

𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) · 𝑐𝑖 .

Putting together the above inequality and the right-hand-side of
Eq. (14), it follows that:

𝐶𝑣 ≥ 𝑝 ·
𝑘−1∑︁
𝑖=0

𝜓𝑖 (𝑣) −
𝑘−1∑︁
𝑖=0

∫ 𝑣

𝜂=𝐿

𝜓𝑖 (𝜂) · 𝑑𝜂−

𝑘−1∑︁
𝑖=0

𝜓𝑖 (𝑣) · 𝑐𝑖+1 − 𝑣 · 𝜖

≥ ALG
(
I (𝜖 )
𝑣

)
− 𝑣 · 𝜖,

where ALG is the online algorithm corresponding to the set of
allcation functions {𝜓𝑖 }∀𝑖∈[𝑘 ] and recall that ALG(I (𝜖 )

𝑣 ) is defined
as follows:

ALG
(
I (𝜖 )
𝐿

)
=

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ),

ALG
(
I (𝜖 )
𝑣

)
= ALG

(
I (𝜖 )
𝐿

)
+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝑖 (𝜂), ∀𝑣 ∈ [𝐿,𝑈 ] .

Since {𝜓𝑖 }∀𝑖∈[𝑘 ] satisfy Eq. (5), it follows that

𝐶𝑣 ≥ ALG
(
I (𝜖 )
𝑣

)
− 𝑣 · 𝜖

≥ 1
𝛼
·
(
𝑘 · 𝑣 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
− 𝑣 · 𝜖, ∀𝑣 ∈ [𝐿,𝑈 ] .

By setting 𝜖 → 0, it follows that

𝐶𝑣 ≥ 1
𝛼
·
(
𝑘 · 𝑣 −

𝑘∑︁
𝑖=1

𝑐𝑖

)
, ∀𝑣 ∈ [𝐿,𝑈 ] .

To complete the proof of Lemma 2, we also need to prove that
the above inequality holds as an equality for the set of functions
{𝜓𝛼

𝑖
}∀𝑖∈[𝑘 ] . This can be proved by contradiction. Suppose that at

some point 𝑣 ∈ [𝐿,𝑈 ], the above equality does not hold, then there
must exist another set of feasible functions, say {𝜓𝑖 }∀𝑖∈[𝑘 ] , induced
by a new algorithm, say ÂLG, that satisfy Eq. (5) and

𝑘∑︁
𝑖=1

𝜓𝑖 (𝑣) <
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝑣).

We argue that the new set of functions {𝜓𝑖 }∀𝑖∈[𝑘 ] will allocate a
smaller fraction of its total units to buyers in I (𝜖 ) arriving at or
before stage-𝑣 compared to {𝜓𝛼

𝑖
}∀𝑖∈[𝑘 ] . However, by still following

the allocation functions {𝜓𝛼
𝑖
}∀𝑖∈[𝑘 ] , ÂLG(I (𝜖 )

𝑣 ) will be exactly
equal to 1

𝛼 (𝑘 · 𝑣 − ∑𝑘
𝑖=1 𝑐𝑖 ). Given the definition of {𝜓𝛼

𝑖
}∀𝑖∈[𝑘 ] ,

we have
∑𝑘
𝑖=1𝜓

𝛼
𝑖
(𝑣) = 𝜒𝛼 (𝑣), meaning that

∑𝑘
𝑖=1𝜓𝑖 (𝑣) < 𝜒𝛼 (𝑣).

However, this contradicts the definition of 𝜒𝛼 (𝑣). We thus complete
the proof of Lemma 2.

D Proof of Proposition 2
From Lemma 2, we know that {𝜓𝛼

𝑖
(𝑣)}∀𝑖∈[𝑘 ] satisfy Eq. (5) with an

equality. Therefore, the set of allocation functions {𝜓𝛼
𝑖
(𝑣)}∀𝑖∈[𝑘 ]

is a solution to the following system of equations:
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝛼
𝑖 (𝜂)

=
1
𝛼
· (𝑘 · 𝑣 −

∑︁
𝑖

𝑐𝑖 ), ∀𝑖 ∈ [𝑘], 𝑣 ∈ [𝐿,𝑈 ] . (15)

Also, based on Lemma 3, we argue that if the value of the function
𝜓𝛼
𝑖
(𝑣) is changing at some value 𝑣 ∈ [𝐿,𝑈 ] (i.e., 𝑑𝜓𝛼

𝑖
(𝑣) ≠ 0), then

the value of all the functions {𝜓∗
𝑗
(𝑣)}∀ 𝑗∈[𝑖−1] are equal to one,

and all the functions in the set {𝜓∗
𝑗
(𝑣)} 𝑗>𝑖 are equal to zero. Based

on this property, we can assign an interval [ℓ𝑖 , 𝑢𝑖 ] to each 𝜓𝛼
𝑖
(𝑣).

In the interval of [ℓ𝑖 , 𝑢𝑖 ], only the value of 𝜓𝛼
𝑖
changes while the

other functions {𝜓𝛼
𝑗
}∀ 𝑗≠𝑖 in that interval are fixed to be one or zero.

Additionally, the following relation exists between the start and
end points of these intervals:

𝐿 = ℓ1 ≤ 𝑢1 = ℓ2 ≤ 𝑢2 ≤ · · · ≤ ℓ𝑘 ≤ 𝑢𝑘 = 𝑈 .

To satisfy the equality
∑
𝑖∈[𝑘 ] 𝜓

𝛼
𝑖
(𝐿) · (𝐿 − 𝑐𝑖 ) = 1

𝛼 · (𝑘 · 𝐿 −∑
𝑖 𝑐𝑖 ),

the set of functions {𝜓𝛼
𝑖
(𝑣)}∀𝑖∈[

¯
𝑘−1] should be equal to one at the

point 𝑣 = 𝐿. Thus, the explicit design of the functions {𝜓𝛼
𝑖
}∀𝑖∈[

¯
𝑘−1]

is as follows:

𝜓
(𝛼 )
𝑖

(𝑣) = 1, 𝑖 = 1, . . . ,
¯
𝑘 − 1.

In the case that
∑
𝑖∈[

¯
𝑘 ] 𝐿 − 𝑐𝑖 < 1

𝛼 · (𝑘 · 𝐿 − ∑
𝑖 𝑐𝑖 ), to satisfy∑

𝑖∈[𝑘 ] 𝜓
𝛼
𝑖
(𝐿) · (𝐿 − 𝑐𝑖 ) = 1

𝛼 · (𝑘 · 𝐿 − ∑
𝑖 𝑐𝑖 ), we need to have:

𝜓𝛼

¯
𝑘
(𝐿) =

∑
𝑖∈[

¯
𝑘−1] (𝐿 − 𝑐𝑖 ) − 1

𝛼 · ∑𝑖∈[𝑘 ] (𝐿 − 𝑐𝑖 )
𝐿 − 𝑐

¯
𝑘

= 𝜉 .

Since for all 𝑣 ∈ [ℓ
¯
𝑘 , 𝑢

¯
𝑘 ] with ℓ

¯
𝑘 = 𝐿, only the value of 𝜓𝛼

¯
𝑘
(𝑣)

changes (i.e., 𝑑𝜓𝛼
𝑖
(𝑣) = 0 for all 𝑖 ≠

¯
𝑘), it follows that:

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝛼
𝑖 (𝜂)

=

𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐
¯
𝑘 )𝑑𝜓∗

¯
𝑘
(𝜂), ∀𝑣 ∈ [𝐿,𝑢

¯
𝑘 ] .

Based on the system of equations in Eq. (15), we need to have:
𝑘∑︁
𝑖=1

𝜓𝛼
𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐
¯
𝑘 )𝑑𝜓∗

¯
𝑘
(𝜂)

=
1
𝛼
· (𝑘 · 𝑣 −

∑︁
𝑖

𝑐𝑖 ), ∀𝑣 ∈ [ℓ
¯
𝑘 , 𝑢

¯
𝑘 ] .

Taking derivative w.r.t. 𝑣 from both sides of the equation above, we
have

(𝑣 − 𝑐
¯
𝑘 ) · 𝑑𝜓∗

¯
𝑘
(𝑣) = 𝑘

𝛼
.

Solving the above differential equation leads to

𝜓∗
¯
𝑘
(𝑣) = 𝑘

𝛼
· ln(𝑣 − 𝑐

¯
𝑘 ) +𝑄, ∀𝑣 ∈ [ℓ

¯
𝑘 , 𝑢

¯
𝑘 ],
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where 𝑄 is a constant. To find 𝑄 , since 𝜓∗
¯
𝑘
(𝐿) = 𝜉 , it follows that

𝑄 = 𝜉 − 𝑘
𝛼 · ln(𝐿−𝑐

¯
𝑘 ). As a result, the explicit design of the function

𝜓𝛼

¯
𝑘
is as follows:

𝜓
(𝛼 )

¯
𝑘

(𝑣) =
{
𝜉 + 𝑘

𝛼 · ln
(
𝑣−𝑐

¯
𝑘

𝐿−𝑐
¯
𝑘

)
𝑣 ∈ [𝐿,𝑢

¯
𝑘 ],

1 𝑣 > 𝑢
¯
𝑘 .

To obtain the value of 𝑢
¯
𝑘 , we set 𝜓∗

¯
𝑘
(𝑢

¯
𝑘 ) = 1 (the function 𝜓∗

¯
𝑘

reaches its maximum). Consequently, it follows that:

𝑢
¯
𝑘 = (𝐿 − 𝑐

¯
𝑘 ) · 𝑒

𝛼
𝑘
· (1−𝜉 ) + 𝑐

¯
𝑘 .

Using the same procedure as what has been applied to𝜓𝛼

¯
𝑘
, for all

the other functions {𝜓𝛼
𝑖
(𝑣)}∀𝑖>

¯
𝑘 , we have

𝑘∑︁
𝑗=1

𝜓∗
𝑗 (𝐿) · (𝐿 − 𝑐 𝑗 ) +

𝑘∑︁
𝑗=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐 𝑗 )𝑑𝜓𝛼
𝑖 (𝜂)

=

𝑘∑︁
𝑗=1

𝜓∗
𝑗 (𝐿) · (𝐿 − 𝑐 𝑗 ) +

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝛼
𝑖 (𝜂), ∀𝑣 ∈ [ℓ𝑖 , 𝑢𝑖 ] .

Taking derivative w.r.t. 𝑣 from both sides of the equation above, it
follows that:

(𝑣 − 𝑐𝑖 ) · 𝑑𝜓𝛼
𝑖 (𝑣) = 𝑘

𝛼
.

Solving the above differential equation leads to

𝜓𝛼
𝑖 (𝑣) = 𝑘

𝛼
· ln(𝑣 − 𝑐𝑖 ) + �̂�, ∀𝑣 ∈ [ℓ𝑖 , 𝑢𝑖 ] .

Since𝜓∗ (ℓ𝑖 ) = 0, we have �̂� = − ln(ℓ𝑖 − 𝑐𝑖 ). The explicit design of
the function𝜓𝛼

𝑖
is thus as follows:

𝜓
(𝛼 )
𝑖

(𝑣) =


0 𝑣 ≤ ℓ𝑖 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑖
ℓ𝑖−𝑐𝑖

)
𝑣 ∈ [ℓ𝑖 , 𝑢𝑖 ],

1 𝑣 ≥ 𝑢𝑖 .

𝑖 =
¯
𝑘 + 1, . . . , 𝑘 − 1

For the function𝜓𝛼
𝑘
, since it is the last function, it follows that:

𝜓
(𝛼 )
𝑘

(𝑣) =
{

0 𝑣 ≤ ℓ𝑘 ,

𝑘
𝛼 · ln

(
𝑣−𝑐𝑘
ℓ𝑘−𝑐𝑘

)
𝑣 ∈ [ℓ𝑘 ,𝑈 ] .

By setting𝜓∗ (𝑢𝑖 ) = 1, it follows that:

𝑢𝑖 = (ℓ𝑖 − 𝑐𝑖 ) · 𝑒
𝛼
𝑘 + 𝑐𝑖 , ¯

𝑘 + 1 ≤ 𝑖 ≤ 𝑘.

Putting everything together, Proposition 2 follows.

E Full Proof of Theorem 5
In this section, we provide a complete proof of Theorem 5. We begin
by introducing several important notations and lemmas. Then, we
break the problem into two independent subproblems based on
the buyers’ valuations in some arbitrary arrival instance I. For
each case, we proceed to show how to upper bound OPT(I), the
objective of the optimal offline algorithm on I. We then proceed
to lower bound the expected performance of r-Dynamic on that
instance, ALG(I). Ultimately, we combine everything and obtain
a performance guarantee for r-Dynamic under all adversarially
chosen instances of OSDoS for that subproblem.

E.1 Notations and Definitions
Consider an arbitrary arrival instance I = {𝑣𝑡 }𝑡 ∈[𝑇 ] . Recall that
the random price vector P = {𝑃1, · · · , 𝑃𝑘 } is generated using the
pricing functions {𝜙𝑖 }∀𝑖∈[𝑘 ] at the beginning of r-Dynamic (line
3 of Algorithm 1). In the following, we will refer to Algorithm 1
as r-Dynamic(P) to indicate that the algorithm is executed with
the random price vector being realized as P. Based on the design
of {𝜙𝑖 }∀𝑖∈[𝑘 ] in Theorem 5, the first 𝑘∗ − 1 prices in P are all 𝐿’s
(i.e., 𝑃1 = · · · = 𝑃𝑘∗−1 = 𝐿), the 𝑘∗-th price 𝑃𝑘∗ is a random variable
within [𝐿,𝑈𝑘∗ ], and for all 𝑖 ∈ {𝑘∗ +1, · · · , 𝑘], we have 𝑃𝑖 ∈ [𝐿𝑖 ,𝑈𝑖 ]
(recall that 𝑃𝑖 is also a random variable). Here, the values of

¯
𝑘∗ and

{[𝐿𝑖 ,𝑈𝑖 ]}∀𝑖 are all defined in Theorem 5.
Let P denote the support of all possible values of the random

price vector P:

P = {𝐿}¯
𝑘∗−1 × [𝐿,𝑈

¯
𝑘∗ ] ×

∏
𝑖∈{

¯
𝑘∗+1,· · · ,𝑘 }

[𝐿𝑖 ,𝑈𝑖 ] .

Given a price vector realization P ∈ P, let𝑊 (P) represent the
total number of items allocated by r-Dynamic(P) under the input
instance I. Since P is a random variable,𝑊 (P) is also a random
variable. For clarity, we will sometimes omit the price vector and
refer to it simply as𝑊 whenever the context is clear.

Let 𝜔 denote the maximum value in the support of the random
variable𝑊 (i.e., 𝜔 is the maximum possible value of𝑊 (P) for all
P ∈ P). Thus, 𝜔 is a deterministic value that depends only on the
input instance I. Furthermore, let 𝝅 ∈ P be a price vector such that
r-Dynamic(𝝅) allocates the 𝜔-th item earlier than any other price
vector in the set P. That is, for all P ∈ P, r-Dynamic(P) allocates
the 𝜔-th item no earlier than that of r-Dynamic(𝝅).

Let us define the set {(𝜈𝑖 , 𝜏𝑖 )}∀𝑖∈[𝜔 ] so that 𝜏𝑖 is the arrival time
of the buyer in the instance I to whom r-Dynamic(𝝅) allocates
the 𝑖-th unit and 𝜈𝑖 is its valuation. Note that for all 𝑖 ∈ {1, · · · , 𝜔},
𝜏𝑖 and 𝜈𝑖 are deterministic values once 𝝅 and I are given.

We can derive the following inequality regarding 𝜈𝑖 :

𝜈𝑖 ≥ 𝐿𝑖 , ∀𝑖 ∈ [𝜔], (16)

where 𝐿𝑖 is the lower bound for the range of the pricing function 𝜙𝑖 ,
used to generate the random price for the 𝑖-th unit. This inequality
holds since the buyer arriving at time 𝜏𝑖 accepts the price posted
for the 𝑖-th unit by r-Dynamic. The price for the 𝑖-th unit is at least
equal to 𝐿𝑖 based on the design of the pricing functions 𝜙𝑖 .

Let the random variable𝑊 𝜏𝜔 (P) denote the total number of
items allocated by r-Dynamic(P) after the arrival of buyer 𝜏𝜔 in
the instance I. The lemma below shows that the random variable
𝑊 𝜏𝜔 (P) is always lower bounded by 𝜔 − 1.

Lemma 7. Given an arbitrary instance I,𝑊 𝜏𝜔 (P) ≥ 𝜔 − 1 holds
for all 𝑷 ∈ P.

Proof. If 𝜔 = 1, this lemma is trivial, so we consider the case
where 𝜔 ≥ 2. Suppose before the arrival of the buyer at time 𝜏2,
no items have been sold. From Eq. (16), we know that 𝜈2 ≥ 𝐿2.
Additionally, based on the design of the pricing functions 𝜙1 (.)
and 𝜙2 (.), we have 𝐿2 ≥ 𝑈1. Consequently, it follows that 𝜈2 ≥ 𝑈1.
Since the realized price for the first unit under any sampled price
vector will be at most𝑈1 (based on design of the pricing function
𝜙1), the buyer arriving at time 𝜏2 will accept the price for the first
unit, and the algorithm will sell the first item. Thus, for all possible
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price vector P, the value of the random variable𝑊 𝜏2 (P) is at least
equal to one. By the same reasoning, if before the arrival of the
buyer at time 𝜏3, only one item has been sold, the buyer arriving at
𝜏3 will accept the price for the second unit, regardless of its price,
and the total number of items sold by r-Dynamic will increase to
two. This reasoning can be extended to the time 𝜏𝜔 . As a result,
after the arrival of the buyer at time 𝜏𝜔 , r-Dynamic sells at least
𝜔 − 1 units and thereby the claim in the lemma follows. □

Lemma 7 implies that the support of the random variable𝑊 𝜏𝜔

consists only of two values: 𝜔 − 1 and 𝜔 . This greatly simplifies the
analysis of the algorithm.

The following two lemmas help us lower bound the expected
performance of r-Dynamic under the input instance I and up-
per bound the objective of the offline optimal algorithm given the
instance I, respectively.

Lemma 8. If a buyer in instance I arrives before time 𝜏𝜔 with
a valuation within [𝐿𝜔 ,𝑈 ], then for all P ∈ P, r-Dynamic(P) will
allocate one unit of the item to that buyer.

Proof. According to the definition of 𝝅 , 𝜏𝜔 is the earliest time
across all possible price vectors in P that the production level
exceeds 𝜔 − 1, causing the posted price to exceed 𝑈𝜔−1. Thus, for
all possible realization of P, the posted prices by r-Dynamic remain
below𝑈𝜔−1 before the arrival of buyer at time 𝜏𝜔 . Consequently,
when a buyer with a valuation within [𝐿𝜔 ,𝑈 ] arrives before time
𝜏𝜔 , the buyer accepts the price posted to him (since 𝐿𝜔 ≥ 𝑈𝜔−1)
and a unit of item will thus be allocated to this buyer. □

Lemma 9. There are no buyers in instance I with a valuation
within [𝑈𝜔 ,𝑈 ] arriving after time 𝜏𝜔 , namely, the valuations of all
buyers arrive after 𝜏𝜔 are less than𝑈𝜔 .

Proof. If there exist a buyer with a valuation larger than 𝑈𝜔

arriving after the time 𝜏𝜔 , then there must exist a price vector in
P, say P′, such that the number of units sold by r-Dynamic(P′)
will exceed 𝜔 . This contradicts the definition of 𝜔 . Thus, the lemma
follows.2 □

Given an instanceI, let the setB ⊆ I contain the highest-valued
buyers that the offline optimal algorithm selects. We further divide
B into two subsets: B1 and B2. B1 comprises the highest-valued
buyers up to time 𝜏𝜔 , while B2 includes the remaining buyers in
B who arrive at or after time 𝜏𝜔 . Let us further partition B1 into
two subsets: B1,1 and B1,2. Here, B1,1 consists of buyers in B1 with
valuations at least 𝐿𝜔 , and B1,2 = B1 \ B1,1 comprises those with
valuations strictly less than 𝐿𝜔 .

For the rest of the analysis, let us study the problem for two
separate cases that may occur depending on the instance I.

E.2 Case 1: Buyer 𝜏𝜔 Has the Highest Valuation
In this case, in the set B2, no buyer has a valuation greater than
𝑈𝜔−1 except for the buyer at time 𝜏𝜔 . Therefore, the buyer at time
𝜏𝜔 possesses the highest valuation in the instance I.

2In fact, such a price vector P′ for the initial 𝜔 units should have the same prices as
the vector 𝝅 and for the (𝑖 + 1)-th unit, P′ should be equal to𝑈𝜔 (i.e., 𝑃 ′

𝑖+1 = 𝑈𝜔 ).

E.2.1 Bound OPT from Above for Case 1. The following upper
bound can be derived for OPT(I), which denotes the objective
value of the offline optimal algorithm on instance I:

OPT(I)

= 𝑉 (B1) +𝑉 (B2) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

= 𝑉 (B1,1) +𝑉 (B1,2) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ |B1,1 | ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)
+ |B1,2 | ·𝑈𝜔−1 + (|B2 | − 1) ·𝑈𝜔−1

+ 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ (𝑘 − 1) ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)

+ 𝜈𝜏𝜔 −
𝑘∑︁
𝑖=1

𝑐𝑖 ,

where the first inequality directly follows the condition of Case
1. The second inequality follows the definition of B1,1 and B1,2.
Finally, the third inequality follows the fact that we only focus on
the case when 𝑐𝑘 < 𝐿.

E.2.2 Bound ALG fromBelow for Case 1. Moving forward, we focus
on establishing a lower bound on the performance of r-Dynamic
under the arrival instance I. Let the random variables {𝑋𝑖 }∀𝑖∈[𝑘 ]
represent the value obtained by r-Dynamic from allocating the 𝑖-th
unit of the item. Given the input instance I, let E[ALG(I)] denote
the expected performance of r-Dynamic. Therefore, we have:

E[ALG(I)]

= E

[
𝑘∑︁
𝑖=1

(𝑋𝑖 − 𝑐𝑖 ) · 1{i-th item is sold under price vector P}

]
,

≥
𝜔−1∑︁
𝑖=1

E[𝑋𝑖 − 𝑐𝑖 ]

=

𝜔−1∑︁
𝑖=1

E[𝑋𝑖 ] −
𝜔−1∑︁
𝑖=1

𝑐𝑖

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) −

𝜔−1∑︁
𝑖=1

𝑐𝑖 .

In the equations above, all expectations are taken with respect to
the randomness of the price vector P. The first inequality follows
Lemma 7, indicating that under any price vector P, r-Dynamic sells
at least 𝜔 − 1 units. The first term in the second inequality follows
due to the independent sampling used to set the price of the 𝑖-th
unit using the pricing function 𝜙𝑖 , and the second term follows
Lemma 8.
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Let us define𝜓𝑖 (𝑣) = sup{𝑠 : 𝜙𝑖 (𝑠) ≤ 𝑣} for all 𝑖 ∈ [𝑘]. From the
definition of {𝜙𝑖 }∀𝑖∈[𝑘 ] in Theorem 5, it follows that:

E[ALG(I)]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 −

𝜔−1∑︁
𝑖=1

𝑐𝑖 +
(
𝑉 (B1,1) − |B1 | · 𝐿𝜔

)
=

𝜔∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+
(
𝑉 (B1,1) − |B1 | · 𝐿𝜔

)
.

Furthermore, it is evident that based on the design of {𝜙𝑖 }∀𝑖∈[𝑘 ]
with 𝛼 = 𝛼∗S (𝑘), the set of functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] follows the
same design as {𝜓𝛼

𝑖
(𝑣)}∀𝑖∈[𝑘 ] given in Proposition 2. As a result,

it follows that:
𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | · 𝐿𝜔 )

≥ 1
𝛼∗S (𝑘)

·
(
𝑘 ·𝑈𝜔−1 −

∑︁
𝑖

𝑐𝑖

)
+

(
𝑉 (B1,1) − |B1 | · 𝐿𝜔

)
.

E.2.3 Putting Everything Together for Case 1. Putting together the
lower bound and upper bound derived for the expected objective
value of r-Dynamic and the offline optimal algorithm, it follows
that:

OPT(I)
E[ALG(I)]

≤
(𝑘 − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 + (𝑉 (B1,1) − |B1,1 | · 𝐿𝜔 ) −

∑𝑘
𝑖=1 𝑐𝑖

1
𝛼∗
S (𝑘 )

· (𝑘 ·𝑈𝜔−1 −
∑
𝑖 𝑐𝑖 ) + (𝑉 (B1,1) − |B1,1 | · 𝐿𝜔 )

≤
(𝑘 − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 − ∑𝑘

𝑖=1 𝑐𝑖
1

𝛼∗
S (𝑘 )

· (𝑘 ·𝑈𝜔−1 −
∑
𝑖 𝑐𝑖 )

= 𝛼∗S (𝑘) ·
(
1 +

𝜈𝜏𝜔 −𝑈𝜔−1
𝑘 ·𝑈𝜔−1 −𝐶

)
≤ 𝛼∗S (𝑘) ·

(
1 + 𝑈𝜔 −𝑈𝜔−1

𝑘 ·𝑈𝜔−1 −𝐶

)
≤ 𝛼∗S (𝑘) · 𝑒

𝛼∗
S (𝑘 )
𝑘 .

In the equation above, the last inequality is due to the fact that
𝑈𝜔−𝑈𝜔−1
𝑈𝜔−1−𝑐𝜔 =

𝑈𝜔−𝑐𝜔
𝑈𝜔−1−𝑐𝜔 − 1 ≤ 1 + 𝑒

𝛼∗
S (𝑘 )
𝑘 , where the last inequality

follows the design in Eq. (10).

E.3 Case 2: Buyer 𝜏𝜔 Does Not Have the Highest
Valuation

In the set of buyersB2, there are other buyers with valuation greater
than𝑈𝜔−1 besides the buyer at time 𝜏𝜔 . Let 𝜆 denote the value of
the highest buyer in B2 along with the value of buyer at time 𝜏𝜔 .
First, let us consider the case that 𝜆 ≤ 𝜈𝜏𝜔 . The proof for the case
that 𝜆 > 𝜈𝜏𝜔 follows exactly the same as the following case.

E.3.1 Bound OPT from Above for Case 2. Following the same ap-
proach as the previous Case 1, let us first upper bound the objective

of the offline optimal algorithm on instance I:

OPT(I)

= 𝑉 (B1) +𝑉 (B2) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1) + (|B2 | − 1) · 𝜆 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1,1) +𝑉 (B1,2) + (|B2 | − 1) · 𝜆 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ |B1,1 | ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)+

|B1,2 | ·𝑈𝜔−1 + (|B2 | − 1) · 𝜆 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ (𝑘 − 1) · 𝜆 + 𝜈𝜏𝜔 + (𝑉 (B1) − |B1 | · 𝐿𝜔 ) −
𝑘∑︁
𝑖=1

𝑐𝑖 .

E.3.2 Bound ALG from Below for Case 2. To establish a lower
bound on the performance of r-Dynamic in this case, let us consider
the following lemma:

Lemma 10. If the random price of the 𝜔-th unit is realized to be
less than 𝜆 and further assume that 𝜆 ≤ 𝜈𝜏𝜔 , then the number of
items allocated by r-Dynamic in the end is equal to 𝜔 .

Proof. Under any price realization, as established by Lemma
7, it is proven that after the arrival of the buyer at time 𝜏𝜔 , the
number of allocated units is at least 𝜔 − 1. If the price of the 𝜔-th
unit is realized to be less than 𝜆, then upon the arrival of the buyer
with valuation 𝜆 at some time after 𝜏𝜔 , the buyer will accept the
price if the 𝜔-th unit has not already been sold. □

Next, we obtain a lower bound on the performance of r-Dynamic
as follows:

E[ALG(I)]

= E

[
𝑘∑︁
𝑖=1

(𝑋𝑖 − 𝑐𝑖 ) · 1{i-th item is sold under pricie vector P}

]
≥

𝜔−1∑︁
𝑖=1

E[𝑋𝑖 − 𝑐𝑖 ] + E[𝑋𝜔 − 𝑐𝜔 |𝑃𝜔 ≤ 𝜆]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 +

∫ 𝜙−1
𝜔 (𝜆)

0
𝜙𝜔 (𝜂)𝑑𝜂 − 𝜙−1

𝜔 (𝜆) · 𝑐𝜔

−
𝜔−1∑︁
𝑖=1

𝑐𝑖 + (𝑉 (B1) − |B1 | · 𝐿𝜔 ) .

In the equations above, all expectations are taken with respect to
the randomness of the price vector P ∈ P. The first inequality
follows Lemma 10, where 𝑃𝜔 denotes the 𝜔-element of the random
price vector P that r-Dynamic posts for the 𝜔-th unit. The second
inequality is true because of the independent sampling that is used
to set the random price of the 𝑖-th unit using 𝜙𝑖 and Lemma 8.
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Let us define 𝜓𝑖 (𝑣) = sup{𝑠 : 𝜙𝑖 (𝑠) ≤ 𝑣}, 𝑖 ∈ [𝑘]. From the
definition of {𝜙𝑖 }𝑖∈[𝑘 ] in Theorem 5, it follows that:

𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 +

∫ 𝜙−1
𝜔 (𝜆)

0
𝜙𝜔 (𝜂)𝑑𝜂 − 𝜙−1

𝜔 (𝜆) · 𝑐𝜔

−
𝜔−1∑︁
𝑖=1

𝑐𝑖 + (𝑉 (B1) − |B1 | · 𝐿𝜔 )

=

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔∑︁
𝑖=1

∫ 𝜆

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | · 𝐿𝜔 ).

Furthermore, it is evident that the set of functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ]
follows the same design as {𝜓𝛼

𝑖
(𝑣)}𝑖∈[𝑘 ] given in Lemma 2 (recall

that {𝜓𝛼
𝑖
(𝑣)}𝑖∈[𝑘 ] are based on {𝜙𝑖 }∀𝑖∈[𝑘 ] ). As a result, it follows

that:
𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖+1) +
𝜔∑︁
𝑖=1

∫ 𝜆

𝜂=𝐿

(𝜂 − 𝑐𝑖+1)𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | · 𝐿𝜔 )

≥ 1
𝛼∗S (𝑘)

·
(
𝑘 · 𝜆 −

∑︁
𝑖

𝑐𝑖 ) + (𝑉 (B1

)
− |B1 | · 𝐿𝜔 ) .

E.3.3 Putting Everything Together for Case 2. Putting together the
above lower and upper bounds, it follows that:

OPT(I)
E[ALG(I)]

≤
(𝑘 − 1) · 𝜆 + 𝜈𝜏𝜔 + (𝑉 (B1) − |B1 | · 𝐿𝜔 ) −

∑𝑘
𝑖=1 𝑐𝑖

1
𝛼∗
S (𝑘 )

· (𝑘 · 𝜆 − ∑𝑘
𝑖=1 𝑐𝑖 ) + (𝑉 (B1) − |B1 | · 𝐿𝜔 )

≤
(𝑘 − 1) · 𝜆 + 𝜈𝜏𝜔 − ∑𝑘

𝑖=1 𝑐𝑖
1

𝛼∗
S (𝑘 )

· (𝑘 · 𝜆 − ∑𝑘
𝑖=1 𝑐𝑖 )

= 𝛼∗S (𝑘) · (1 +
𝜈𝜏𝜔 − 𝜆

𝑘 · 𝜆 −𝐶
)

≤ 𝛼∗S (𝑘) · (1 +
𝜈𝜏𝜔 − 𝜆

𝑘 · 𝜆 −𝐶
)

≤ 𝛼∗S (𝑘) · (1 +
𝑈𝜔 −𝑈𝜔−1
𝑘 ·𝑈𝜔−1 −𝐶

)

≤ 𝛼∗S (𝑘) · 𝑒
𝛼∗
S (𝑘 )
𝑘 .

We thus complete the proof of Theorem 5.

Remark 1. Theorem 5 argues that r-Dynamic is asymptotically
optimal. We emphasize that our analysis of Theorem 5 is not tight be-
cause it does not differentiate between the sample paths of r-Dynamic
when the algorithm sells 𝜔 − 1 units and those when it sells 𝜔 units.
As a result, our analysis considers that r-Dynamic sells 𝜔 − 1 units of
the item on all sample paths.3 However, in the subsequent analysis
for the case of 𝑘 = 2, we can enumerate all the scenarios and therefore
do not require such a reduction. For this reason, we can prove in the
next section that r-Dynamic is indeed optimal for 𝑘 = 2 (see the proof
of Corollary 6 next).
3We conjecture that r-Dynamic is optimal even in the small inventory regime if a
tighter analysis is performed.

F Proof of Corollary 6
In this section, we prove that for an arbitrary instance I, the ex-
pected performance of r-Dynamic, denoted as E[ALG(I)], is at
least OPT(I)

𝛼∗
S (2)

.
Let 𝑣∗1, 𝑣

∗
2 denote the two highest valuations in the instance I

(we omit the proof for the trivial case with only one buyer in I).
Depending on the values of 𝑣∗1 and 𝑣∗2 , the following three cases
occur. In each scenario, we prove that E[ALG(I)] ≥ OPT(I)

𝛼∗
S (2)

=

𝑣∗1+𝑣∗2−𝑐1−𝑐2
𝛼∗
S (2)

holds.
Case I: 𝑣∗1 ≤ 𝑣∗2 ≤ 𝑈1. Let random variables 𝑋1 and 𝑋2 denote

the valuations of the buyers that purchase the first and second unit
of the item, respectively. Then, it follows that

E[ALG(I)]
= E𝒔∼𝑈 2 (0,1) [𝑋1 + 𝑋2 − 𝑐1 − 𝑐2]

≥
∫ 𝜙−1

1 (𝑣∗1 )

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

+ (𝑣∗2 − 𝑐1) · (𝜙−1
1 (𝑣∗2) − 𝜙−1

1 (𝑣∗1)),

≥
∫ 𝜙−1

1 (𝑣∗1 )

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

+
∫ 𝜙−1

1 (𝑣∗2 )

𝑠1=𝜙
−1
1 (𝑣∗1 )

(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

=

∫ 𝜙−1
1 (𝑣∗2 )

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1

≥
𝑣∗1 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=
OPT(I)
𝛼∗S (2)

,

where the first two terms in the first inequality arise from the fact
that if the realized price for the first unit of the item, denoted as
𝑃1 = 𝜙1 (𝑠1), is set below 𝑣∗1 , then in the worst-case scenario, the
value obtained from the first item will be at least equal to 𝜙1 (𝑠1).
The subsequent two terms are included because if the price for
the first item falls within the range from 𝑣∗1 to 𝑣∗2 , then the first
item is allocated to the buyer whose valuation is 𝑣∗2 . The second
inequality follows since 𝜙1 (𝑠1) is an non-decreasing function. The
third inequality follows from the design of 𝜙1 (𝑠1) in Theorem 6.

Case II: 𝑣∗1 ≤ 𝑈1 = 𝐿2 ≤ 𝑣∗2 ≤ 𝑈 . In this case, we have

E[ALG(I)]
= E𝒔∼𝑈 2 (0,1) [𝑋1 − 𝑐1] + E𝒔∼𝑈 2 (0,1) [𝑋2 − 𝑐2]

≥
∫ 𝜙−1

1 (𝑣∗1 )

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1)𝑑𝑠1 + (𝑣∗2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))

+ (𝑣∗2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) · 𝜙

−1
2 (𝑣∗2)

=
2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))

+ (𝑣∗2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) · 𝜙

−1
2 (𝑣∗2).
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To prove E[ALG(I)] ≥ OPT(I)
𝛼∗
S (2)

=
𝑣∗1+𝑣∗2−𝑐1−𝑐2

𝛼∗
S (2)

, we define the fol-
lowing function

𝐺 (𝑣∗1, 𝑣
∗
2) =

2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))+

(𝑣∗2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) · 𝜙

−1
2 (𝑣∗2) −

𝑣∗1 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)
.

Then the goal is to prove 𝐺 (𝑣∗1, 𝑣
∗
2) ≥ 0 in its domain 𝐿 ≤ 𝑣∗1 ≤ 𝑈1

and 𝐿2 ≤ 𝑣∗2 ≤ 𝑈 . The proposition below formally states this result.

Proposition 3. For all 𝑣∗1 ∈ [𝐿1,𝑈1] and 𝑣∗2 ∈ [𝐿2,𝑈2], we have
𝐺 (𝑣∗1, 𝑣

∗
2) ≥ 0.

We deferred the proof of the above proposition to Appendix G.
The idea is to simply prove that 𝐺 (𝑣∗1, 𝑣

∗
2) ≥ 0 holds at all extreme

points within its domain.
Case III: 𝐿2 ≤ 𝑣∗1 ≤ 𝑣∗2 . In this case, we show that we can lower

bound the expected performance of r-Dynamic as follows:

E[ALG(I)]
= E𝒔∼𝑈 2 (0,1) [𝑋1 − 𝑐1] + E𝒔∼𝑈 2 (0,1) [𝑋2 − 𝑐2]

≥
∫ 1

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 +

∫ 𝜙−1
2 (𝑣∗1 )

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

+ (𝑣∗2 − 𝑐2) · (𝜙−1
2 (𝑣∗2) − 𝜙−1

2 (𝑣∗1))

≥
∫ 1

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 +

∫ 𝜙−1
2 (𝑣∗1 )

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

+
∫ 𝜙−1

2 (𝑣∗2 )

𝑠2=𝜙
−1
2 (𝑣∗1 )

(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

=

∫ 1

𝑠1=0
(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 +

∫ 𝜙−1
2 (𝑣∗2 )

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

=
2 ·𝑈1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+

∫ 𝜙−1
2 (𝑣∗2 )

𝑠2=0
(𝜙2 (𝑠2) − 𝑐2) · 𝑑𝑠2

=
2 · 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

≥OPT(I)
𝛼∗S (2)

,

where the first term in the first inequality arises from the fact
that if the realized price for the first unit of the item, denoted
as 𝑃1 = 𝜙1 (𝑠1), is set below 𝐿2, then in the worst-case scenario,
the value obtained from the first item will be at least equal to
𝜙1 (𝑠1). The second and third terms follow the same reasoning. The
second inequality follows the fact that 𝜙2 (𝑠2) is non-decreasing.
The third and forth equalities follow the design of 𝜙1 (𝑠1) and 𝜙2 (𝑠2)
in Theorem 6.

Combining the analysis of the above three cases, Corollary 6
follows.

G Proof of Proposition 3
We first evaluate the value of 𝐺 (𝑣∗1, 𝑣

∗
2) at its critical points, that

is, at the points where 𝜕𝐺 (𝑣∗1 ,𝑣∗2 )
𝜕𝑣∗1

= 0 and 𝜕𝐺 (𝑣∗1 ,𝑣∗2 )
𝜕𝑣∗2

= 0, and show
that 𝐺 (𝑣∗1, 𝑣

∗
2) ≥ 0 holds at these critical points. After that, the

proposition follows by evaluating the values of𝐺 (𝑣∗1, 𝑣
∗
2) at the four

boundary hyperplanes of its domain.
First, let us compute 𝜕𝐺 (𝑣∗1 ,𝑣∗2 )

𝜕𝑣∗1
. It follows that:

𝜕𝐺 (𝑣∗1, 𝑣
∗
2)

𝜕𝑣∗1

=
1

𝛼∗S (2)
− 2
𝛼∗S (2)

·
𝑣∗2 − 𝑐1

𝑣∗1 − 𝑐1
+ 2
𝛼∗S (2)

·
𝑣∗2 − 𝑐2

𝑣∗1 − 𝑐1
· 𝜙−1

2 (𝑣∗2) .

Setting the right-hand side of above equation to be zero, we have

𝜙−1
2 (𝑣∗2) · (𝑣

∗
2 − 𝑐2) = 𝑣∗2 − 𝑐1 −

𝑣∗1 − 𝑐1

2
.

Using the equation above, we then compute 𝐺 (𝑣∗1, 𝑣
∗
2) at the points

that 𝜕𝐺 (𝑣∗1 ,𝑣∗2 )
𝜕𝑣∗1

= 0, it follows that:

𝐺 (𝑣∗1, 𝑣
∗
2)

=
𝑣∗1 − 𝑣∗2
𝛼∗S (2)

+ (𝑣∗2 − 𝑐1) · (1 − 𝜙−1
1 (𝑣∗1))

+ (𝑣∗2 − 𝑐1 −
𝑣∗1 − 𝑐1

2
) · 𝜙−1

1 (𝑣∗1)

=
𝑣∗1 − 𝑣∗2
𝛼∗S (2)

+ (𝑣∗2 − 𝑐1) −
𝑣∗1 − 𝑐1

2
· 𝜙−1

1 (𝑣∗1)

≥
𝑣∗1 − 𝑣∗2
𝛼∗S (2)

+ (𝑣∗2 − 𝑐1) −
𝑣∗1 − 𝑐1

2

=𝑣∗1 · ( 1
𝛼∗S (2)

− 1
2
) + 𝑣∗2 · (1 − 1

𝛼∗S (2)
) − 𝑐1

2

≥
𝑣∗1 − 𝑐1

2
>0,

leading to the conclusion that 𝐺 (𝑣∗1, 𝑣
∗
2) ≥ 0 holds at its critical

points.
Next, we consider the boundary hyperplanes and prove that

𝐺 (𝑣∗1, 𝑣
∗
2) is positive in all four boundary planes given below:

• 𝐺 (𝐿1, 𝑣∗2), ∀𝑣∗2 ∈ [𝐿2,𝑈2].
• 𝐺 (𝑈1, 𝑣∗2), ∀𝑣∗2 ∈ [𝐿2,𝑈2].
• 𝐺 (𝑣∗1, 𝐿2), ∀𝑣∗1 ∈ [𝐿1,𝑈1].
• 𝐺 (𝑣∗1,𝑈2), ∀𝑣∗1 ∈ [𝐿1,𝑈1].

We start with the first one 𝐺 (𝐿1, 𝑣∗2):

𝐺 (𝐿, 𝑣∗2)

=
2 · 𝐿 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐2) −

𝐿 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=(𝑣∗2 − 𝑐2) −
𝑣∗2 − 𝐿

𝛼∗S (2)
≥0, ∀𝐿2 ≤ 𝑣∗2 ≤ 𝑈2,

where the equations above follow since 𝐿 ≥ 𝑐2 holds (the assump-
tion that the marginal production costs are always less than the
valuations).
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For the second one 𝐺 (𝑈1, 𝑣∗2):

𝐺 (𝑈1, 𝑣
∗
2)

=
2 ·𝑈1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑣∗2 − 𝑐2) · 𝜙−1

2 (𝑣∗2) −
𝑈1 + 𝑣∗2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=(𝑣∗2 − 𝑐2) · 𝜙−1
2 (𝑣∗2) −

𝑣∗2 −𝑈1

𝛼∗S (2)
≥0, ∀𝐿2 ≤ 𝑣∗2 ≤ 𝑈2 = 𝑈 .

The equations above follow since (𝑣∗2−𝑐2)·𝜙−1
2 (𝑣∗2) ≥

∫ 𝜙−1
2 (𝑣∗ )

𝑠2=0 (𝜙2 (𝑠2)−

𝑐2) · 𝑑𝑠2 ≥ 2 · 𝑣
∗
2−𝑈1
𝛼∗
S (2)

based on the definition of 𝜙2 (𝑠).
For the third one 𝐺 (𝑣∗1, 𝐿2):

𝐺 (𝑣∗1, 𝐿2)

=
2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝐿2 − 𝑐1) · 𝜙−1

1 (𝑣∗1) −
𝑣∗1 + 𝐿2 − 𝑐1 − 𝑐2

𝛼∗S (2)

=(𝐿2 − 𝑐1) · (1 − 𝜙−1
1 (𝑣∗1)) −

𝐿2 − 𝑣∗1
𝛼∗S (2)

≥0, ∀𝐿1 ≤ 𝑣∗1 ≤ 𝑈1,

where the above equation follows since (𝐿2 − 𝑐1) · (1 −𝜙−1
1 (𝑣∗1)) ≥∫ 𝜙−1

1 (𝐿2 )
𝑠1=𝜙

−1
1 (𝑣∗1 )

(𝜙1 (𝑠1) − 𝑐1) · 𝑑𝑠1 ≥ 2 · 𝐿2−𝑣∗1
𝛼∗
S (2)

(based on the definition
of 𝜙1 (𝑠)).

Finally, for the last one 𝐺 (𝑣∗1,𝑈2):

𝐺 (𝑣∗1,𝑈2)

=
2 · 𝑣∗1 − 𝑐1 − 𝑐2

𝛼∗S (2)
+ (𝑈2 − 𝑐1) · (1 − 𝜙−1

1 (𝑣∗1))

+ (𝑈2 − 𝑐2) · 𝜙−1
1 (𝑣∗1) −

𝑣∗1 +𝑈2 − 𝑐1 − 𝑐2

𝛼∗S (2)

≥(𝑈2 − 𝑐2) −
𝑈2 − 𝑣∗1
𝛼∗S (2)

≥0, ∀𝐿 = 𝐿1 ≤ 𝑣∗1 ≤ 𝑈1,

where the equations above follow since 𝑣∗1 ≥ 𝑐2 holds (again, the
assumption that the marginal production costs are always less than
the valuations).

Combining all the above analysis, we thus complete the proof of
Proposition 3.

H Extension of the Lower Bound Results to
General Production Cost Functions

In this section, we extend our lower bound result in Theorem 3,
originally developed for the high-value case,4 to general cumulative
production cost functions.

Before presenting the main theorem on obtaining a lower bound
for general cost functions, let us introduce some notations. Define
𝑓 ∗ (𝑣) : [𝐿,𝑈 ] → R as the conjugate of the total production cost
function, where 𝑓 ∗ (𝑣) = max𝑖∈[𝑘 ]

(
𝑣 · 𝑖 − 𝑓 (𝑖)

)
. Additionally, let

4This corresponds to the case when 𝑐𝑘 < 𝐿, or equivalently, the lowest possible
valuation 𝐿 is no less than the highest marginal production cost 𝑐𝑘 .

𝑔(𝑣) be defined as

𝑔(𝑣) = (𝑓 ∗)′ (𝑣) =
∑︁
𝑖∈[𝑘 ]

1{𝑣≥𝑐𝑖 } ,

where 1{𝐴} is the standard indicator function. Let
¯
𝑘 denote the

smallest natural number such that:

¯
𝑘∑︁
𝑖=1

(𝐿 − 𝑐𝑖 ) >
1
𝛼
· 𝑓 ∗ (𝐿).

Following Theorem 3, we also define 𝜉 as follows:

𝜉 =

1
𝛼 · 𝑓 ∗ (𝐿) − ∑

¯
𝑘−1
𝑖=1 (𝐿 − 𝑐𝑖 )

𝐿 − 𝑐
¯
𝑘

Theorem 7 below extends our lower bound results to settings
with general cost functions.

Theorem 7. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with
𝑘 ≥ 1 and general production cost functions 𝑓 , no online algorithm,
including those with randomization, can achieve a competitive ratio
smaller than 𝛼∗S (𝑘), where 𝛼

∗
S (𝑘) is the solution to the following

system of equations of 𝛼 :∫ 𝑢
¯
𝑘

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐

¯
𝑘 )

𝑑𝜂 = 1 − 𝜉, (17)∫ 𝑢
¯
𝑖

𝜂=ℓ𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖 )

𝑑𝜂 = 1, 𝑢𝑖 = ℓ𝑖+1, 𝑖 = ¯
𝑘 + 1, . . . , 𝑘, (18)

𝑢𝑘 = 𝑈 . (19)

Proof. The proof proceeds similarly to the proof of Theorem 3
until the derivation of Eq. (5). Given the arrival instance I (𝜖 ) up
to the end of stage-𝑣 , the objective of the offline optimal algorithm
equals 𝑓 ∗ (𝑣). Therefore, we reformulate Eq. (4) as follows:

ALG
(
I (𝜖 )
𝑣

)
≥ 1

𝛼
· 𝑓 ∗ (𝑣), ∀𝑣 ∈ [𝐿,𝑈 ] .

In the case of general production cost functions, we derive the
following inequality to capture the production level changes of an
𝛼-competitive algorithm:

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 )+

𝑘∑︁
𝑖=1

∫ 𝑣

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝑖 (𝜂) ≥
1
𝛼
· 𝑓 ∗ (𝑣). (20)

In addition, we define 𝛼∗S (𝑘) as follows:

𝛼∗S (𝑘) = inf
{
𝛼 ≥ 1

��there exist a set of 𝑘 allocation

functions {𝜓𝑖 (𝑣)}∀𝑖∈[𝑘 ] ∈ Ω that satisfy Eq. (20)
}
.

From this point onward, the proof continues in the same manner as
the proof of Theorem 3. Let us define the function 𝜒𝛼 (𝑣) : [𝐿,𝑈 ] →
[0, 𝑘] and the set of functions {𝜓𝛼

𝑖
(𝑣)}

𝑖∈[𝑘 ] as specified in Eq. (6)
and Eq. (2). Consequently, Lemma 2 holds as long as we have in-
creasing marginal production costs (i.e., diseconomies of scale) and
Lemma 3 that follows the definition of {𝜓𝛼

𝑖
(𝑣)}

𝑖∈[𝑘 ] holds in this
case as well.

17



1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

Conference’17, July 2017, Washington, DC, USA Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

The primary distinction between the two proofs arises in the
following proposition, which gives an explicit design of the function
{𝜓𝛼

𝑖
}∀𝑖∈[𝑘 ] by replacing the inequality with an equality in Eq. (20).

Proposition 4. For any 𝛼 ≥ 𝛼∗S (𝑘), there exist a unique set of
functions {𝜓𝛼

𝑖
(𝑣)}∀𝑖∈[𝑘 ] that satisfy Eq. (20) with an equality:

𝜓𝛼
𝑖 (𝑣) = 1, ∀𝑣 ∈ [𝐿,𝑈 ], 1 ≤ 𝑖 ≤

¯
𝑘 − 1,

𝜓𝛼

¯
𝑘
(𝑣) =


0 𝑣 ≤ ℓ

¯
𝑘 ,

𝜉 +
∫ 𝑣

𝜂=𝐿

𝑔 (𝜂 )
𝛼 · (𝜂−𝑐𝑖 ) 𝑑𝜂, 𝑣 ∈ [𝐿,𝑢

¯
𝑘 ],

1 𝑣 ≥ 𝑢
¯
𝑘 ,

𝜓𝛼
𝑖 (𝑣) =


0 𝑣 ≤ ℓ𝑖 ,∫ 𝑣

𝜂=ℓ𝑖

𝑔 (𝜂 )
𝛼 · (𝜂−𝑐𝑖 ) 𝑑𝜂, 𝑣 ∈ [ℓ𝑖 , 𝑢𝑖 ],

1 𝑣 ≥ 𝑢𝑖 ,

, 𝑖 =
¯
𝑘 + 1, . . . , 𝑘 − 1.

𝜓𝛼
𝑘
(𝑣) =

{
0 𝑣 ≤ ℓ𝑘 ,∫ 𝑣

𝜂=ℓ𝑘

𝑔 (𝜂 )
𝛼 · (𝜂−𝑐𝑘 ) 𝑑𝜂, 𝑣 ∈ [ℓ𝑘 ,𝑈 ],

where the intervals are specified by:∫ 𝑢
¯
𝑘

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐

¯
𝑘 )

𝑑𝜂 = 1 − 𝜉, (21)∫ 𝑢
¯
𝑖

𝜂=ℓ𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖 )

𝑑𝜂 = 1, 𝑢𝑖 = ℓ𝑖+1, ∀𝑖 = ¯
𝑘 + 1, . . . , 𝑘 . (22)

In the proposition above, for any given 𝛼 ≥ 𝛼∗S (𝑘), the values of
𝑢𝑖 and ℓ𝑖 can be determined. We begin by solving Eq. (21) to find the
value of 𝑢

¯
𝑘 , and then proceed to find the value of other variables

{𝑢𝑖 }∀𝑖 using Eq. (22).
Based on the above proposition, as the value of 𝛼 decreases, the

value of 𝑢𝑘 also decreases. Again, following the same reasoning as
the proof of Theorem 3, the lower bound 𝛼∗S (𝑘) is the value of 𝛼
for which 𝑢𝑘 computed above is equal to𝑈 . We thus complete the
proof of Theorem 7. □

I Extension of the Upper Bound Results to
General Production Cost Functions

In this section, we extend the randomized dynamic pricing scheme
r-Dynamic, originally developed for the high-value case, to general
cumulative production cost functions.

Theorem 8. Given S = {𝐿,𝑈 , 𝑓 } for the OSDoS problem with
𝑘 ≥ 1, r-Dynamic (Algorithm 1) is max𝑖∈[𝑘 ] 𝛼∗S (𝑘) · (1 +

𝑈𝑖−𝑐𝑖
𝑓 ∗ (𝑈𝑖−1 ) )-

competitive for the following design of the pricing functions {𝜙𝑖 }∀𝑖∈[𝑘 ] ,
where 𝛼∗S (𝑘) is the lower bound obtained in Theorem 7:

𝜙𝑖 (𝑠) = 𝐿, ∀𝑠 ∈ [0, 1], 𝑖 ∈ [
¯
𝑘∗ − 1],

𝜙
¯
𝑘∗ (𝑠) =

{
𝐿 𝑠 ∈ [0, 𝜉∗],
𝜓−1

¯
𝑘∗ (𝑠) 𝑠 ∈ (𝜉∗, 1],

𝜙𝑖 (𝑠) = 𝜓−1
𝑖 (𝑠), ∀𝑠 ∈ [0, 1], 𝑖 =

¯
𝑘∗ + 1, . . . , 𝑘,

where the set of functions {𝜓𝑖 }∀𝑖∈{
¯
𝑘∗,· · · ,𝑘 } are defined as follows:

𝜓
¯
𝑘∗ (𝑣) = 𝜉∗ +

∫ 𝑣

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖 )

𝑑𝜂, ∀𝑣 ∈ [𝐿,𝑈
¯
𝑘∗ ],

𝜓𝑖 (𝑣) =
∫ 𝑣

𝜂=ℓ𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖 )

𝑑𝜂, ∀𝑣 ∈ [𝐿𝑖 ,𝑈𝑖 ], 𝑖 = ¯
𝑘∗ + 1, . . . , 𝑘 ;

the parameters
¯
𝑘∗ and 𝜉∗ are respectively the values of

¯
𝑘 and 𝜉 defined

in Appendix H, corresponding to 𝛼 = 𝛼∗S (𝑘), and the price intervals
{[𝐿𝑖 ,𝑈𝑖 ]}∀𝑖∈[𝑘 ] are given as follows:∫ 𝑈

¯
𝑘∗

𝜂=𝐿

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐

¯
𝑘 )

𝑑𝜂 = 1 − 𝜉,∫ 𝑈𝑖

𝜂=𝐿𝑖

𝑔(𝜂)
𝛼 · (𝜂 − 𝑐𝑖 )

𝑑𝜂 = 1, 𝑢𝑖 = ℓ𝑖+1,∀𝑖 = ¯
𝑘∗ + 1, . . . , 𝑘 .

Proof. The proof will follow the same process as the proof in
Appendix E. So we only provide a brief proof sketch.

Consider an arbitrary arrival instance I = {𝑣𝑡 }𝑡 ∈[𝑇 ] . Recall
that the random price vector P = {𝑃1, · · · , 𝑃𝑘 } is generated using
the pricing functions {𝜙𝑖 }∀𝑖∈[𝑘 ] at the beginning of r-Dynamic
(line 3 of Algorithm 1). Let us define the random variable𝑊 (P),
the variable 𝜔 and the price vector 𝝅 , the set {𝜈𝑖 , 𝜏𝑖 }∀𝑖∈[𝜔 ] , and
𝑊 𝜏𝜔 (P) in the same fashion as in Appendix E.

Following the same reasoning, the property in Eq. (16) can be
derived for {𝜈𝑖 }∀𝑖∈[𝜔 ] , and the lemmas 7, 8, and 9 follow as well.

We also define B ⊆ I, as before, to be the set of highest-valued
buyers to whom the offline optimal algorithm allocates a unit of
the item in instance I. We further divide B into two subsets: B1
and B2, as done in the previous proof. Additionally, we partition
B1 into two subsets: B1,1 and B1,2, as before.

We continue our analysis for two separate cases that can arise
depending on the instance I. In this proof, we only provide the
proof for the first case and the proof of the second case follows
similarly as Appendix E.

Case 1: In this case, no buyer in B2 has a valuation greater than
𝑈𝜔−1 except for the buyer at time 𝜏𝜔 . Therefore, the buyer at time
𝜏𝜔 possesses the highest valuation in instance I. The following up-
per bound can be derived for OPT(I), which denotes the objective
value of the offline optimal algorithm:

OPT(I) = 𝑉 (B1) +𝑉 (B2) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑉 (B1) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

= 𝑉 (B1,1) +𝑉 (B1,2) + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

≤ |B1,1 | ·𝑈𝜔−1 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1)

+ |B1,2 | ·𝑈𝜔−1 + (|B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔 −
| B |∑︁
𝑖=1

𝑐𝑖

= ( |B1,1 | + |B1,2 | + |B2 | − 1) ·𝑈𝜔−1 + 𝜈𝜏𝜔

+ (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) −
| B |∑︁
𝑖=1

𝑐𝑖

≤ 𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) + 𝜈𝜏𝜔 − 𝑐𝜔 ,

where the first inequality follows the condition of Case 1. The
second inequality follows the definition of the sets B1,1 and B1,2.
Finally, the third inequality follows since based on definition of 𝑓 ∗,
we have ( |B1,1 | + |B1,2 | + |B2 | − 1) ·𝑈𝜔−1 −

∑ | B |−1
𝑖=1 𝑐𝑖 ≤ 𝑓 ∗ (𝑈𝜔−1).
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Moving forward, we can lower bound the expected performance
of r-Dynamic under I, denoted by E[ALG(I)], using the same
approach as before.

E[ALG(I)]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) −

𝜔−1∑︁
𝑖=1

𝑐𝑖 .

Based on the definition of {𝜙𝑖 }∀𝑖∈[𝑘 ] , we have:
E[ALG(I)]

≥
𝜔−1∑︁
𝑖=1

∫ 1

0
𝜙𝑖 (𝜂)𝑑𝜂 −

𝜔−1∑︁
𝑖=1

𝑐𝑖 + (𝑉 (B1,1) − |B1 | ·𝑈𝜔−1)

=

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1,1) − |B1 | ·𝑈𝜔−1) .
Furthermore, based on the design of {𝜓𝑖 }∀𝑖∈[𝑘 ] in Theorem 8, we
have

𝑘∑︁
𝑖=1

𝜓𝑖 (𝐿) · (𝐿 − 𝑐𝑖 ) +
𝜔−1∑︁
𝑖=1

∫ 𝑈𝜔−1

𝜂=𝐿

(𝜂 − 𝑐𝑖 )𝑑𝜓𝑖 (𝜂)

+ (𝑉 (B1) − |B1 | ·𝑈𝜔−1)

≥ 1
𝛼∗S (𝑘)

𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1) − |B1 | ·𝑈𝜔−1) .

Putting together the above lower and upper bounds, it follows that:
OPT(I)

E[ALG(I)]

≤
𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1,1) − |B1,1 | ·𝑈𝜔−1) + 𝜈𝜏𝜔 − 𝑐𝜔

1
𝛼∗
S (𝑘 )

𝑓 ∗ (𝑈𝜔−1) + (𝑉 (B1) − |B1 | ·𝑈𝜔−1)

≤
𝑓 ∗ (𝑈𝜔−1) + 𝜈𝜏𝜔 − 𝑐𝜔

1
𝛼∗
S (𝑘 )

𝑓 ∗ (𝑈𝜔−1)

=𝛼∗S (𝑘) ·
(
1 +

𝜈𝜏𝜔 − 𝑐𝜔

𝑓 ∗ (𝑈𝜔−1)

)
≤𝛼∗S (𝑘) ·

(
1 + 𝑈𝜔 − 𝑐𝜔

𝑓 ∗ (𝑈𝜔−1)

)
≤ max
𝑖∈[𝑘 ]

𝛼∗S (𝑘) ·
(
1 + 𝑈𝑖 − 𝑐𝑖

𝑓 ∗ (𝑈𝑖−1)

)
.

Case 2: In the set of buyers B2, there are other buyers with
valuations greater than 𝑈𝜔−1 besides the buyer at time 𝜏𝜔 . The
proof in this case follows the same structure as the proof above and
the proof in Appendix E. □
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