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Abstract

Ligand-based drug design aims to identify novel drug candidates of similar shapes
with known active molecules. In this paper, we formulated an in silico shape-
conditioned molecule generation problem to generate 3D molecule structures
conditioned on the shape of a given molecule. To address this problem, we de-
veloped an equivariant shape-conditioned generative model ShapeMol. ShapeMol
consists of an equivariant shape encoder that maps molecular surface shapes into
latent embeddings, and an equivariant diffusion model that generates 3D molecules
based on these embeddings. Experimental results show that ShapeMol can generate
novel, diverse, drug-like molecules that retain 3D molecular shapes similar to the
given shape condition. These results demonstrate the potential of ShapeMol in
designing drug candidates of desired 3D shapes binding to protein target pockets.

1 Introduction

Generating novel drug candidates is a critical step in drug discovery to identify possible therapeutic
solutions. Recently, several models [1–3] have been designed to generate 3D molecules conditioned
on the protein targets, aiming to facilitate structured-based drug design (SBDD) [4], given that
molecules exist in 3D space and the efficacy of drug molecules depends on their 3D structures fitting
into protein pockets. However, SBDD needs high-quality 3D structures of protein binding pockets,
which are often unavailable [5]. Different from SBDD, ligand-based drug design (LBDD) [6] utilizes
ligands known to interact with a protein target, and does not require knowledge of protein structures.
In LBDD, shape-based virtual screening tools such as ROCS [7] have been widely used to identify
molecules with similar shapes to known ligands by enumerating molecules in chemical libraries.
However, virtual screen tools cannot probe the novel chemical space. Therefore, it is highly needed
to develop generative methods to generate novel molecules with desired 3D shapes.

In this paper, we present a novel generative model for 3D molecule generation conditioned on given
3D shapes. Our method, denoted as ShapeMol, employs an equivariant shape embedding module to
map 3D molecule surface shapes into shape latent embeddings. It then uses an equivariant diffusion
generative model to generate molecules conditioned on these embeddings, by iteratively denoising
atom positions and features. During molecule generation, ShapeMol can utilize additional shape guid-
ance by pushing the predicted atoms far from the condition shapes to those shapes. ShapeMol with
shape guidance achieves the highest average 3D shape similarity between the generated molecules and
condition molecules compared to the state-of-the-art baseline. A comprehensive review of existing
molecule generation methods is available in Supplementary Section S1.
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2 Method

We represent a 3D molecule M as a set of atoms M = {a1, a2, · · · , a|M|}, where |M| is the number
of atoms in M; each atom ai has a 3D coordinate xi ∈ R3 and a one-hot feature vector vi ∈ RK
indicating the atom type and its aromaticity. We represent the 3D surface shape s of a molecule M as
a point cloud P constructed by sampling points over the molecular surface. We develop ShapeMol
to generate a new molecule My, conditioned on the 3D shape P of a given molecule Mx. ShapeMol
consists of an equivariant shape embedding module SE that maps P to latent embeddings Hs, and an
equivariant diffusion model DIFF that generates 3D molecules conditioned on Hs. Figure 1 presents
the overall architecture of ShapeMol.

Molecule
Surface

Point Cloud

...

...

...

...

... ...

Figure 1: Model Architecture of ShapeMol

Equivariant Shape Embedding (SE)
ShapeMol pre-trains a shape embedding
module SE to generate surface shape
embeddings Hs. SE uses an encoder
SE-enc to map P to the equivariant latent
embedding Hs. Following the previous
work [3, 8, 9], to ensure translation equiv-
ariance, SE-enc shifts the center of each
P to zero to eliminate all translations.
To ensure rotation equivariance, SE-enc
leverages Vector Neurons (VNs) [10] and
Dynamic Graph Convolutional Neural
Networks (DGCNNs) [11] to encode P
into Hs. SE employs a decoder SE-dec
to optimize Hs by recovering the signed
distances [12] of sampled query points in 3D space to the molecule surface based on Hs. The details
of SE is available in Supplementary Section S2.

Shape-Conditioned Molecule Generation In ShapeMol, a shape-conditioned molecule diffusion
model, referred to as DIFF, is used to generate a 3D molecule structure (i.e., atom coordinates and
features) conditioned on a given 3D surface shape that is represented by the shape latent embedding
Hs. Following the denoising diffusion probabilistic models [13], DIFF includes a forward diffusion
process based on a Markov chain, denoted as DIFF-forward, which gradually adds noises step by
step to the training molecules. Following Guan et al. [3], at step t ∈ [1, T ], a small Gaussian noise
and a small categorical noise are added to transform the continuous atom positions and discrete atom
features from {(xt−1,vt−1)} into {(xt,vt)}, respectively. At the final step T , {(xT ,vT )} resemble
a simple distribution like a standard normal distribution and a uniform categorical distribution,
respectively. During training, DIFF is learned to reverse the forward diffusion process via another
Markov chain, referred to as the backward generative process and denoted as DIFF-backward, to
remove the noises in the noisy molecules. The details of DIFF-forward and DIFF-backward are
available in Supplementary Section S3.1 and S3.2, respectively.

Equivariant Shape-Conditioned Molecule Predictor In DIFF-backward, the predictor
fΘ(xt,vt,H

s) predicts the atom positions and features (x̃0,t, ṽ0,t) given the noisy data (xt,vt)
conditioned on Hs. For brevity, in this subsection, we eliminate the subscript t in the notations when
no ambiguity arises. fΘ(·) leverages two multi-layer graph neural networks: (1) an equivariant graph
neural network, denoted as EQ-GNN, that equivariantly predicts atom positions that change under
transformations, and (2) an invariant graph neural network, denoted as INV-GNN, that invariantly
predicts atom features that remain unchanged under transformations.

In EQ-GNN, the atom position xl+1
i ∈ R3 of ai at the (l+1)-th layer is calculated in an equivariant

way as below,
∆xl+1

i =
∑

j∈N(ai),i6=j

(xli − xlj)MHAx(dlij ,h
l+1
i ,h

l+1
j ,VN-In(Hs)),

xl+1
i = xli+Mean(∆xl+1

i )+VN-Lin(xli,∆xl+1
i ,Hs), (1)

where N(ai) is the set of N -nearest neighbors of ai based on atomic distances; ∆xl+1
i ∈ Rnh×3

aggregates the neighborhood information of ai; MHAx(·) denotes the multi-head attention layer in
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EQ-GNN with nh heads; dlij is the distance between i-th and j-th atom positions xli and xlj at the
l-th layer; Mean(∆xl+1

i ) converts ∆xl+1
i into a 3D vector via meaning pooling to adjust the atom

position; VN-Lin(·) ∈ R3 denotes the equivariant VN-based linear layer [10]. VN-Lin(·) adjusts the
atom positions to fit the shape condition represented by Hs, by considering the current atom positions
xli and the neighborhood information ∆xl+1

i . The learned atom position xLi at the last layer L of
EQ-GNN is used as the prediction of x̃i,0.

In INV-GNN, inspired by the previous work [3] and VN-Layer [10], the atom feature embedding
h
l+1
i ∈ Rdh of the i-th atom ai at the (l+1)-th layer is updated in an invariant way as follows,

h
l+1
i = h

l
i +

∑
j∈N(ai),i6=j

MHAh(dlij ,h
l
i,h

l
j ,VN-In(Hs)), h

0
i = vi, (2)

where MHAh(·) ∈ Rdh denotes the multi-head attention layer in INV-GNN. The learned atom feature
embedding hLi at the last layer L encodes the neighborhood information of ai and the conditioned
molecular shape, and is used to predict the atom features ṽi,0 via an MLP layer. The proof of
equivariance in Eq. 1 and invariance in Eq. 2 is available in Supplementary Section S3.5 and S3.6.

Model Training ShapeMol optimizes DIFF by minimizing the squared errors between the predicted
positions (x̃0,t) and the ground-truth positions (x0) of atoms in molecules as follows:

Lxt (M) = wx
t

∑
∀a∈M

‖x̃0,t − x0‖2, where wx
t = min(λt, δ), λt = ᾱx

t/(1− ᾱx
t ), (3)

where wx
t is a weight at step t, and is calculated by clipping the signal-to-noise ratio λt > 0 with a

threshold δ > 0; ᾱx
t ∈ [0, 1] is a signal ratio at step t. As ᾱx

t decreases monotonically as t increases
from 1 to T , wx

t decreases as well when λt is smaller then δ. Thus, wx
t imposes lower weights on

the loss when the noise level in xt is higher. This encourages the model training to focus more on
accurately recovering molecule structures when there are sufficient signals in the data, rather than
being potentially confused by major noises in the data. Following the literature [14], ShapeMol also
minimizes the KL divergence Lvt (M) between the ground-truth posterior p(vt−1|vt,v0) and its ap-
proximate pθ(vt−1|vt, ṽ0,t) for atom features. The overall ShapeMol loss function is a weighted sum
of atom position loss and atom feature loss: Lt(M) = Lxt (M)+ξLvt (M), in which ξ is a hyperparameter.
The derivation of the loss functions is available in Supplementary Section S3.7.

Molecule Generation and Shape Guidance During inference, ShapeMol generates novel
molecules by gradually denoising (xT ,vT ) to (x0,v0) using the equivariant shape-conditioned
molecule predictor. Specifically, ShapeMol samples xT and vT from N (0, I) and C(1/K), respec-
tively. After that, ShapeMol samples xt−1 from xt using pΘ(xt−1|xt, x̃0,t) and vt−1 from vt using
pΘ(vt−1|vt, ṽ0,t) until t reaches 1.

During molecule generation, ShapeMol can also utilize additional shape guidance by pushing the
predicted atoms to the shape of the given molecule Mx. Following Adams and Coley et al. [17],
the shape used for guidance is defined as a set of points Q sampled according to atom positions in
Mx. Particularly, for each atom ai in Mx, 20 points are randomly sampled into Q from a Gaussian
distribution centered at xi with variance φ. Given the predicted atom position x̃0,t at step t, ShapeMol
applies the shape guidance by adjusting the predicted positions to Mx as follows:

x∗0,t = (1− σ)x̃0,t +σ
∑

z∈n(x̃0,t;Q)

z/n,when
∑

z∈n(x̃0,t;Q)

d(x̃0,t, z)/n > γ, (4)

where σ > 0 is the weight used to balance the prediction x̃0,t and the adjustment; d(x̃0,t, z) is the
Euclidean distance between x̃0,t and z; n(x̃0,t;Q) is the set of n-nearest neighbors of x̃0,t in Q
based on d(·); γ > 0 is a distance threshold. By doing the above adjustment, the predicted atom
positions will be pushed to those of Mx if they are sufficiently far away. Note that the shape guidance
is applied exclusively for steps

t = T, T − 1, · · · , S, where S > 1, (5)

not for all the steps, and thus it only adjusts predicted atom positions when there are a lot of noises and
the prediction needs more guidance. ShapeMol with the shape guidance is referred to as ShapeMol+g.
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Table 1: Overall Comparison on Shape-Conditioned Molecule Generation

method #v% #s% #u% QED avgSims(std) avgSimg(std) maxSims(std) maxSimg(std) div

VS 100.0 100.0 100.0 0.795 0.729 (0.039) 0.226 (0.038) 0.807 (0.042) 0.241 (0.087) 0.759
SQUID (λ=0.3) 100.0 100.0 94.2 0.766 0.717 (0.083) 0.349 (0.088) 0.904 (0.070) 0.549 (0.243) 0.677
SQUID (λ=1.0) 100.0 100.0 95.0 0.760 0.670 (0.069) 0.235 (0.045) 0.842 (0.061) 0.271 (0.096) 0.744
ShapeMol 99.6 98.8 100.0 0.748 0.689 (0.044) 0.239 (0.049) 0.803 (0.042) 0.243 (0.068) 0.712
ShapeMol+g 99.6 98.7 100.0 0.749 0.746 (0.036) 0.241 (0.050) 0.852 (0.034) 0.247 (0.068) 0.703

Columns represent: “#v%”: the percentage of valid molecules; “#s%”: the percentage of valid and complete
molecules; “#u%”: the percentage of unique molecules; “QED”: the average drug-likeness of generated
molecules; “avgSims/avgSimg”: the average of shape or graph similarities between condition molecules and
generated molecules; “std": the standard deviation; “maxSims”: the maximum of shape similarities between
condition molecules and generated molecules; “maxSimg”: the graph similarities between condition molecules
and generated molecules with highest shape similarities; “div”: the diversity among generated molecules.

3 Experiments

Experimental Setup We used molecules in the MOSES dataset [15], with their 3D conformers
calculated by RDKit [16]. We used the same training and test split as in the previous work [17].
We compared ShapeMol and ShapeMol+g with the state-of-the-art baseline SQUID and a virtual
screening method denoted as VS. The details about the dataset, baselines, and evaluation metrics
are available in Supplementary Section S4. Detailed parameters in all the experiments, code, and
data are reported in Supplementary Section S5. Additional experimental results are available in
Supplementary Section S6, including a comparison between ShapeMol with the diffusion weighting
scheme wx

t (in Eq. 3) and the version without the scheme, a parameter study of shape guidance on
distance threshold γ and step threshold S and an ablation study of ShapeMol with and without shape
condition.

Experimental Results As shown in Table 1, ShapeMol+g achieves the highest average shape simi-
larity 0.746±0.036, with 2.3% improvement from the best baseline VS (0.729±0.039), although at the
cost of a slightly higher graph similarity. This indicates that ShapeMol+g could generate molecules
that align more closely with the shape conditions than those in the dataset. Furthermore, ShapeMol+g
achieves the second-best performance in maximum shape similarity maxSims at 0.852±0.034 among
all the methods. While it underperforms the best baseline (0.904±0.070 for SQUID with λ=0.3)
on this metric, ShapeMol+g achieves substantially lower maximum graph similarity maxSimg of
0.247±0.068 compared with the best baseline (0.549±0.243). Please note that unlike SQUID, which
neglects distorted bonding geometries in real molecules and limits itself to generating molecules
with fixed bond lengths and angles and based on a pre-defined fragment library, both ShapeMol and
ShapeMol+g are able to generate molecules without such limitations.

Figure 2 presents three generated molecules from three methods given the same condition molecule.
As shown in Figure 2, the molecule generated by ShapeMol has higher shape similarity with the
condition molecule than those from the baselines. Particularly, the molecule from ShapeMol has
the surface shape (represented as blue shade in Figure 2d) most similar to that of the condition
molecule. All three molecules have low graph similarities with the condition molecule and higher
QED scores than the condition molecule. This example shows the ability of ShapeMol to generate
novel molecules that are more similar in 3D shape to condition molecules than those from baselines.

4 Discussions and Conclusions

In this paper, we develop a novel generative model ShapeMol, which generates 3D molecules
conditioned on the 3D shape of given molecules. ShapeMol utilizes a pre-trained equivariant shape
encoder to generate equivariant embeddings for 3D shapes of given molecules. Conditioned on
the embeddings, ShapeMol learns an equivariant diffusion model to generate novel molecules. To
improve the shape similarities between the given molecule and the generated ones, we develop
ShapeMol+g, which incorporates shape guidance to push the generated atom positions to the shape
of the given molecule. We compare ShapeMol and ShapeMol+g against state-of-the-art baseline
methods. Our experimental results demonstrate that ShapeMol and ShapeMol+g could generate
molecules with higher shape similarities, and competitive qualities compared to the baseline methods.
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(a) condition molecule Mx, QED = 0.462 (b) My from VS: Sims = 0.759, Simg = 0.168,
QED = 0.907

(c) My from SQUID: Sims = 0.749, Simg = 0.243,
QED = 0.779

(d) My from ShapeMol: Sims = 0.835, Simg = 0.242,
QED = 0.818

Figure 2: Generated 3D Molecules and Their 2D Molecular Graphs from Different Methods.
Molecule shapes are in shades; generated molecules are superpositioned with the condition molecule.

References
[1] Shitong Luo, Jiaqi Guan, Jianzhu Ma, and Jian Peng. A 3d generative model for structure-based

drug design. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021.

[2] Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, and Jianzhu Ma. Pocket2Mol:
Efficient molecular sampling based on 3D protein pockets. In Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceedings of Machine
Learning Research, pages 17644–17655. PMLR, 17–23 Jul 2022.

[3] Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d
equivariant diffusion for target-aware molecule generation and affinity prediction. In The
Eleventh International Conference on Learning Representations, 2023.

[4] Maria Batool, Bilal Ahmad, and Sangdun Choi. A structure-based drug discovery paradigm.
International Journal of Molecular Sciences, 20(11):2783, Jun 2019.

[5] Heping Zheng, Jing Hou, Matthew D Zimmerman, Alexander Wlodawer, and Wladek Minor.
The future of crystallography in drug discovery. Expert Opinion on Drug Discovery, 9(2):
125–137, Dec 2013.

[6] Chayan Acharya, Andrew Coop, James E. Polli, and Alexander D. MacKerell. Recent ad-
vances in ligand-based drug design: Relevance and utility of the conformationally sampled
pharmacophore approach. Current Computer Aided-Drug Design, 7(1):10–22, Mar 2011.

[7] Paul C. D. Hawkins, A. Geoffrey Skillman, and Anthony Nicholls. Comparison of shape-
matching and docking as virtual screening tools. Journal of Medicinal Chemistry, 50(1):74–82,
Dec 2006.

[8] Emiel Hoogeboom, Víctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3D. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors, Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 8867–8887. PMLR, 17–23 Jul 2022.

[9] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A
geometric diffusion model for molecular conformation generation. In International Conference
on Learning Representations, 2022.

[10] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J.
Guibas. Vector neurons: A general framework for so(3)-equivariant networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 12200–12209,
Oct 2021.

5



[11] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M.
Solomon. Dynamic graph cnn for learning on point clouds. ACM Trans. Graph., 38(5), Oct
2019. ISSN 0730-0301.

[12] Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[13] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.

[14] Emiel Hoogeboom, Didrik Nielsen, Priyank Jaini, Patrick Forré, and Max Welling. Argmax
flows and multinomial diffusion: Learning categorical distributions. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 12454–12465. Curran Associates, Inc., 2021.

[15] Daniil Polykovskiy, Alexander Zhebrak, Benjamin Sanchez-Lengeling, Sergey Golovanov,
Oktai Tatanov, Stanislav Belyaev, Rauf Kurbanov, Aleksey Artamonov, Vladimir Aladinskiy,
Mark Veselov, Artur Kadurin, Simon Johansson, Hongming Chen, Sergey Nikolenko, Alán
Aspuru-Guzik, and Alex Zhavoronkov. Molecular sets (moses): A benchmarking platform for
molecular generation models. Frontiers in Pharmacology, 11, 2020. ISSN 1663-9812.

[16] Greg Landrum, Paolo Tosco, Brian Kelley, Ric, David Cosgrove, Sriniker, Gedeck, Riccardo
Vianello, NadineSchneider, Eisuke Kawashima, Dan N, Gareth Jones, Andrew Dalke, Brian
Cole, Matt Swain, Samo Turk, AlexanderSavelyev, Alain Vaucher, Maciej Wójcikowski, Ichiru
Take, Daniel Probst, Kazuya Ujihara, Vincent F. Scalfani, Guillaume Godin, Juuso Lehti-
varjo, Axel Pahl, Rachel Walker, Francois Berenger, Jasondbiggs, and Strets123. rdkit/rdkit:
2023_03_2 (q1 2023) release, 2023.

[17] Keir Adams and Connor W. Coley. Equivariant shape-conditioned generation of 3d molecules
for ligand-based drug design. In The Eleventh International Conference on Learning Represen-
tations, 2023.

6



Shape-conditioned 3D Molecule Generation via
Equivariant Diffusion Models

(Supplementary Materials)

S1 Related Work

S1.1 Molecule Generation

A variety of deep generative models have been developed to generate molecules using various
molecule representations, incliuding generating SMILES string representations [1], or 2D molecular
graph representations [2, 3]. Recent efforts have been dedicated to the generation of 3D molecules.
These 3D molecule generative models can be divided into two categories: autoregressive models
and non-autoregressive models. Autoregressive models generate 3D molecules by sequentially
adding atoms into the 3D space [4, 5]. While these models ensure the validity and connectivity
of generated molecules, any errors made in sequential predictions could accumulate in subsequent
predictions. Non-autoregressive models generate 3D molecules using flow-based methods [6] or
diffusion methods [7–9]. In these models, atoms are generated or adjusted all together. For example,
Hoogeboom et al. [8] developed an equivariant diffusion model, in which an equivariant network is
employed to jointly predict both the positions and features of all atoms.

S1.2 Shape-Conditioned Molecule Generation

Following the idea of ligand-based drug design (LBDD) [10], previous work has been focused on
generating molecules with similar 3D shapes to those of efficacy, based on the observation that
structurally similar molecules tend to have similar properties. Papadopoulos et al. [11] developed a
reinforcement learning method to generate SMILES strings of molecules that are similar to known
antagonists of DRD2 receptors in 3D shapes and pharmacophores. Imrie et al. [12] generated 2D
molecular graphs conditioned on 3D pharmacophores using a graph-based autoencoder. However,
there is limited work that generates 3D molecule structures conditioned on 3D shapes. Adams and
Coley [13] developed a shape-conditioned generative framework SQUID for 3D molecule generation.
SQUID learns a variational autoencoder to generate fragments conditioned on given 3D shapes, and
decodes molecules by sequentially attaching fragments with fixed bond lengths and angles. Long
et al. [14] developed a two-stage framework to generate molecules binding to protein targets by first
sketching the desired molecular shapes and then generating molecules corresponding to those shapes.
To generate molecules, they pre-trained an autoencoder, referred to as Shape2Mol, which encodes
the voxel grids of given 3D shapes and decodes the sequence of molecular fragments. While LBDD
plays a vital role in drug discovery, the problem of generating 3D molecule structures conditioned on
3D shapes is still under-addressed.

S2 Equivariant Shape Embedding (SE)

S2.1 Shape Encoder (SE-enc)

SE-enc generates equivariant shape embeddings Hs from the 3D surface shape P of molecules,
such that Hs is equivariant to both translation and rotation of P . That is, any translation and
rotation applied to P is reflected in Hs accordingly. To ensure translation equivariance, SE-enc
shifts the center of each P to zero to eliminate all translations. To ensure rotation equivariance,
SE-enc leverages Vector Neurons (VNs) [15] and Dynamic Graph Convolutional Neural Networks
(DGCNNs) [16] as follows:

{Hp
1,H

p
2, · · · ,H

p

|P|} = VN-DGCNN({z1, z2, · · · , z|P|}),

NeurIPS 2023 Generative AI and Biology Workshop.



H
s =

∑
j
H

p
j/|P|,

where VN-DGCNN(·) is a VN-based DGCNN network to generate equivariant embedding H
p
j ∈

Rdp×3 for each point zj in P ; and Hs ∈ Rdp×3 is the embedding of P generated via a mean-pooling
over the embeddings of all the points. Note that VN-DGCNN(·) generates a matrix as the embedding
of each point (i.e., H

p
j) to guarantee the equivariance.

S2.2 Shape Decoder (SE-dec)

To optimize Hs, following Deng et al. [15], SE learns a decoder SE-dec to predict the signed distance
of a query point zq sampled from 3D space using Multilayer Perceptrons (MLPs) as follows:

õq = MLP(concat(〈zq,Hs〉, ‖zq‖2,VN-In(H
s))), (S1)

where õq is the predicted signed distance of zq, with positive and negative values indicating zq
is inside or outside the surface shape, respectively; 〈·, ·〉 is the dot-product operator; ‖zq‖2 is the
Euclidean norm of the coordinates of zq; VN-In(·) is an invariant VN network [15] that converts the
equivariant shape embedding Hs ∈ Rdp×3 into an invariant shape embedding. Thus, SE-dec predicts
the signed distance between the query point and 3D surface by jointly considering the position of the
query point (‖zq‖2), the molecular surface shape (VN-In(·)) and the interaction between the point
and surface 〈·, ·〉. The predicted signed distance õq is used to calculate the loss for the optimization
of Hs (discussed below). As shown in the literature [15], õq remains invariant to the rotation of the
3D molecule surface shapes (i.e., P). We present the sampling process of zq in the Supplementary
Section S2.5.

S2.3 SE Pre-training

ShapeMol pre-trains SE by minimizing the squared-errors loss between the predicted and the ground-
truth signed distances of query points as follows:

Ls =
∑

zq∈Z
‖oq − õq‖2, (S2)

where Z is the set of sampled query points and oq is the ground-truth signed distance of query point
zq. By pretraining SE, ShapeMol learns Hs that will be used as the condition in the following 3D
molecule generation.

S2.4 Point Cloud Construction

In ShapeMol, we represented molecular surface shapes using point clouds (P). P serves as input to
ShapeMol-enc, from which we derive shape latent embeddings. To generate P , we initially generated
a molecular surface mesh using the algorithm from the Open Drug Discovery Toolkit [17]. Following
this, we uniformly sampled points on the mesh surface with probability proportional to the face area,
using the algorithm from PyTorch3D [18]. This point cloud P is then centralized by setting the center
of its points to zero.

S2.5 Query Point Sampling

As described in Supplementary Section S2.2, the signed distances of query points zq to molecule
surface shape P are used to optimize SE. In this section, we present how to sample these points zq in
3D space. Particularly, we first determined the bounding box around the molecular surface shape,
using the maximum and minimum (x, y, z)-axis coordinates for points in our point cloud P , denoted
as (xmin, ymin, zmin) and (xmax, ymax, zmax). We extended this box slightly by defining its corners as
(xmin − 1, ymin − 1, zmin − 1) and (xmax + 1, ymax + 1, zmax + 1). For sampling |Z| query points, we
wanted an even distribution of points inside and outside the molecule surface shape. When a bounding
box is defined around the molecule surface shape, there could be a lot of empty spaces within the
box that the molecule does not occupy due to its complex and irregular shape. This could lead to
that fewer points within the molecule surface shape could be sampled within the box. Therefore, we
started by randomly sampling 3k points within our bounding box to ensure that there are sufficient
points within the surface. We then determined whether each point lies within the molecular surface,
using an algorithm from Trimesh 1 based on the molecule surface mesh. If there are nw points found

1https://trimsh.org/
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within the surface, we selected n = min(nw, k/2) points from these points, and randomly choose
the remaining k − n points from those outside the surface. For each query point, we determined its
signed distance to the molecule surface by its closest distance to points in P with a sign indicating
whether it is inside the surface.

S3 Shape-Conditioned Molecule Generation

S3.1 Forward Diffusion Process (DIFF-forward)

Following the previous work [9], at step t ∈ [1, T ], a small Gaussian noise and a small categorical
noise are added to the continuous atom positions and discrete atom features {(xi,t−1,vi,t−1)},
respectively. When no ambiguity arises, we will eliminate subscript i in the notations and use
(xt−1,vt−1) for brevity. The noise levels of the Gaussian and categorical noises are determined by
two predefined variance schedules (βxt , β

v
t ) ∈ (0, 1), where βxt and βvt are selected to be sufficiently

small to ensure the smoothness of DIFF-forward. The details about variance schedules are available
in Supplementary Section S3.3. Formally, for atom positions, the probability of xt sampled given
xt−1, denoted as q(xt|xt−1), is defined as follows,

q(xt|xt−1) = N (xt|
√

1− βxtxt−1, β
x
t I), (S3)

whereN (·) is a Gaussian distribution of xt with mean
√

1− βxtxt−1 and covariance βxt I. Following
Hoogeboom et al. Hoogeboom et al. [19], for atom features, the probability of vt across K classes
given vt−1 is defined as follows,

q(vt|vt−1) = C(vt|(1− βvt )vt−1 + βvt 1/K), (S4)

where C is a categorical distribution of vt derived by noising vt−1 with a uniform noise βvt 1/K
across K classes.

Since the above distributions form Markov chains, the probability of any xt or vt can be derived
from x0 or v0:

q(xt|x0) = N (xt|
√
ᾱx
tx0, (1− ᾱx

t )I), (S5)
q(vt|v0) = C(vt|ᾱv

tv0 + (1− ᾱv
t )1/K), (S6)

where ᾱu
t =

∏t

τ=1
αu
τ , α

u
τ = 1− βuτ , u = x or v. (S7)

Note that ᾱu
t (u = x or v) is monotonically decreasing from 1 to 0 over t = [1, T ]. As t→ 1, ᾱx

t and
ᾱv
t are close to 1, leading to that xt or vt approximates x0 or v0. Conversely, as t→ T , ᾱx

t and ᾱv
t

are close to 0, leading to that q(xT |x0) resembles N (0, I) and q(vT |v0) resembles C(1/K).

Using Bayes theorem, the ground-truth Normal posterior of atom positions p(xt−1|xt,x0) can be
calculated in a closed-form [20] as below,

p(xt−1|xt,x0) = N (xt−1|µ(xt,x0), β̃xt I), (S8)

µ(xt,x0)=

√
ᾱx

t−1β
x
t

1−ᾱx
t

x0+

√
αx

t(1−ᾱ
x
t−1)

1−ᾱx
t

xt, β̃
x
t =

1−ᾱx
t−1

1−ᾱx
t
βxt . (S9)

Similarly, the ground-truth categorical posterior of atom features p(vt−1|vt,v0) can be calcu-
lated [19] as below,

p(vt−1|vt,v0) = C(vt−1|c(vt,v0)), (S10)

c(vt,v0) = c̃/
∑K
k=1 c̃k, (S11)

c̃ = [αv
tvt +

1−αv
t

K ]� [ᾱv
t−1v0 +

1−ᾱv
t−1

K ], (S12)

where c̃k denotes the likelihood of k-th class across K classes in c̃; � denotes the element-wise
product operation; c̃ is calculated using vt and v0 and normalized so as to represent probabilities.
The proof of the above equations is available in Supplementary Section S3.4.

S3.2 Backward Generative Process (DIFF-backward)

DIFF learns to reverse DIFF-forward by denoising from (xt,vt) to (xt−1,vt−1) at t ∈ [1, T ],
conditioned on the shape latent embedding Hs. Specifically, the probabilities of (xt−1,vt−1) de-
noised from (xt,vt) are estimated by the approximates of the ground-truth posteriors p(xt−1|xt,x0)

9
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(Eq. S8) and p(vt−1|vt,v0) (Eq. S10). Given that (x0,v0) is unknown in the generative process, a
predictor fΘ(xt,vt,H

s) is employed to predict at t the atom position and feature (x0,v0) as below,

(x̃0,t, ṽ0,t) = fΘ(xt,vt,H
s), (S13)

where x̃0,t and ṽ0,t are the predictions of x0 and v0 at t; Θ is the learnable parameter. Following
Ho et al. [20], with x̃0,t, the probability of xt−1 denoised from xt, denoted as p(xt−1|xt), can be
estimated by the approximated posterior pΘ((xt−1|xt, x̃0,t) as below,

p(xt−1|xt) ≈ pΘ(xt−1|xt, x̃0,t)

= N (xt−1|µΘ(xt, x̃0,t), β̃
x
t I),

(S14)

where µΘ(xt, x̃0,t) is an estimate of µ(xt,x0) by replacing x0 with its estimate x̃0,t in Eq. S8.
Similarly, with ṽ0,t, the probability of vt−1 denoised from vt, denoted as p(vt−1|vt), can be
estimated by the approximated posterior pΘ(vt−1|vt, ṽ0,t) as below,

p(vt−1|vt) ≈ pΘ(vt−1|vt, ṽ0,t) = C(vt−1|cΘ(vt, ṽ0,t)), (S15)

where cΘ(vt, ṽ0,t) is an estimate of c(vt,v0) by replacing v0 with its estimate ṽ0,t in Eq. S10.

S3.3 Variance Scheduling in DIFF-forward

Following Guan et al. [9], we used a sigmoid β schedule for the variance schedule βxt of atom
coordinates as below,

βxt = sigmoid(w1(2t/T − 1))(w2 − w3) + w3, (S16)

in which wi(i=1,2, or 3) are hyperparameters; T is the maximum step. We set w1 = 6, w2 = 1.e− 7
and w3 = 0.01. For atom types, we used a cosine β schedule [21] for βvt as below,

ᾱv
t =

f(t)

f(0)
, f(t) = cos(

t/T + s

1 + s
· π

2
)2,

βvt = 1− αv
t = 1− ᾱv

t

ᾱv
t−1

,

(S17)

in which s is a hyperparameter and set as 0.01.

As shown in Supplementary Section S3.1, the values of βxt and βvt should be sufficiently small to
ensure the smoothness of forward diffusion process. In the meanwhile, their corresponding ᾱt values
should decrease from 1 to 0 over t = [1, T ]. Figure S1 shows the values of βt and ᾱt for atom
coordinates and atom types with our hyperparameters. Please note that the value of βxt is less than 0.1
for 990 out of 1,000 steps. This guarantees the smoothness of the forward diffusion process.
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S3.4 Derivation of Forward Diffusion Process

In ShapeMol, a Gaussian noise and a categorical noise are added to continuous atom position and
discrete atom features, respectively. Here, we briefly describe the derivation of posterior equations
(i.e., Eq. S8, and S10) for atom positions and atom types in our work. We refer readers to Ho
et al. [20] and Kong et al. [22] for a detailed description of diffusion process for continuous variables
and Hoogeboom et al. [19] for the description of diffusion process for discrete variables.

For continuous atom positions, as shown in Kong et al. [22], according to Bayes theorem, given
q(xt|xt−1) defined in Eq. S3 and q(xt|x0) defined in Eq. S5, the posterior q(xt−1|xt,x0) is derived
as below (superscript x is omitted for brevity),

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)

=
N (xt|

√
1− βtxt−1, βtI)N (xt−1|

√
ᾱt−1x0, (1− ᾱt−1)I)

N (xt|
√
ᾱtx0, (1− ᾱt)I)

= (2πβt)
− 3

2 (2π(1− ᾱt−1))−
3
2 (2π(1− ᾱt))

3
2

× exp(−‖
xt −

√
αtxt−1‖2

2βt
−
‖xt−1 −

√
ᾱt−1x0‖2

2(1− ᾱt−1)
+
‖xt −

√
ᾱtx0‖2

2(1− ᾱt)
)

= (2πβ̃t)
− 3

2 exp(− 1

2β̃t
‖xt−1 −

√
ᾱt−1βt

1− ᾱt
x0 −

√
αt(1− ᾱt−1)

1− ᾱt
xt‖2),

where β̃t =
1− ᾱt−1

1− ᾱt
βt.

(S18)

Therefore, the posterior of atom positions is derived as below,

q(xt−1|xt,x0) = N (xt−1|
√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, β̃tI). (S19)

For discrete atom features, as shown in Hoogeboom et al. [19] and Guan et al. [9], according to Bayes
theorem, the posterior q(vt−1|vt,v0) is derived as below (supperscript v is omitted for brevity),

q(vt−1|vt,v0) =
q(vt|vt−1,v0)q(vt−1|v0)∑

vt−1
q(vt|vt−1,v0)q(vt−1|v0)

. (S20)

For q(vt|vt−1,v0), we have

q(vt|vt−1,v0) = C(vt|(1− βt)vt−1 + βt/K)

=

{
1− βt + βt/K, when vt = vt−1,

βt/K, when vt 6= vt−1,

= C(vt−1|(1− βt)vt + βt/K).

(S21)

Therefore, we have

q(vt|vt−1,v0)q(vt−1|v0)

= C(vt−1|(1− βt)vt + βt
1

K
)C(vt−1|ᾱt−1v0 + (1− ᾱt−1)

1

K
)

= [αtvt +
1− αt
K

]� [ᾱt−1v0 +
1− ᾱt−1

K
].

(S22)

Therefore, with q(vt|vt−1,v0)q(vt−1|v0) = c̃, the posterior is as below,

q(vt−1|vt,v0) = C(vt−1|c(vt,v0)) =
c̃∑K
k c̃k

. (S23)
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S3.5 Proof of Equivariance in Atom Coordinate Prediction

In this section, we prove that our design in Eq. 1 in the main manuscript updates atom coordinates
in an equivariant way. A function f(x) is equivariant with respect to rotation, if given any rotation
matrix R ∈ R3×3, it satisfies,

f(Rx) = Rf(x). (S24)

In Eq. 1, the embedding ∆xl+1
i ∈ Rnh×3, which aggregates the neighborhood information of ai, is

updated by atom coordinates xli from previous layer and embeddings from multi-head attention layer
MHAx(·) as below,

∆xl+1
i =

∑
j∈N(ai),i6=j

(xli − xlj)MHAx(dlij ,h
l+1
i ,h

l+1
j ,VN-In(Hs)),

xl+1
i = xli+Mean(∆xl+1

i )+VN-Lin(xli,∆xl+1
i ,Hs).

The embeddings from MHAx(·) and atom feature embeddings hli will be proved to be invariant in
Supplementary Section S3.6 later. Therefore, MHAx(·) and h

l+1
i remain the same with rotation R.

Then, we can prove that ∆xl+1
i is updated in an equivariant way as below,∑

j∈N(ai),i6=j

(Rxli −Rxlj)MHAx(dlij ,h
l+1
i ,h

l+1
j ,VN-In(Hs))

= R
∑

j∈N(ai),i6=j

(xli − xlj)MHAx(dlij ,h
l+1
i ,h

l+1
j ,VN-In(Hs))

= R∆xl+1
i .

Given that mean pooling is a linear operation that respects rotation equivariance, Mean(∆xl+1
i ) is

equivariant to rotations. The vector-neuron-based linear layer VN-Lin(·) with leaky-ReLu activation
function also produces rotational equivariant embeddings according to Deng et al. [15]. Therefore,
we prove that atom coordinates xl+1

i are updated in an equivariant way as below,

Rxli+Mean(R∆xl+1
i )+VN-Lin(Rxli,R∆xl+1

i ,RHs))

= Rxli+RMean(∆xl+1
i )+RVN-Lin(xli,∆xl+1

i ,Hs)

= R(xli+Mean(∆xl+1
i )+VN-Lin(xli,∆xl+1

i ,Hs))

= Rxl+1
i

(S25)

S3.6 Proof of Invariance in Atom Feature Prediction

In this section, we prove that our design in Eq. 2 in the main manuscript updates atom features in an
invariant way. A function f(x) is invariant with respect to rotation, if it satisfies,

f(Rx) = f(x). (S26)

Recall that in Eq. 2, atom feature embeddings h
l+1
i is updated according to atomic distances dlij ,

embeddings hi from previous layer and invariant shape embeddings VN-In(Hs) from the vector-
neuron based invariant layer adapted by [23] as follows,

h
l+1
i = h

l
i +
∑

j∈N(ai),i6=j

MHAh(dlij ,h
l
i,h

l
j ,VN-In(Hs)),h

0
i = vi.

Atomic distances are invariant to transformations. Atom feature embeddings are initialized with atom
feature vectors, which are also invariant to transformations. The VN-In(.) layer maps the equivariant
shape embedding Hs ∈ Rdp×3 into the invariant shape embedding hs ∈ Rdp as below,

h
s
c = MLP(〈Hs

c,
H̄

s

‖H̄s‖
〉).

where H̄
s = 1

dp

∑dp
c=1 Hs

c and Hs
c is the c-th channel of Hs; hs

c denotes the c-th channel of hs; 〈·〉
is the inner-product operation which the results will not be changed by any rotation vector. Given

12



that all the variables in the right-hand side of Eq. 2 are invariant to rotations, we prove that the atom
feature embeddings are updated in an invariant way. Therefore, the invariant atom feature embeddings
lead to invariant atom feature predictions. Similarly, we can prove that the embeddings from MHAx

layer (Eq. 1) are invariant to rotations.

S3.7 ShapeMol Loss Function Derivation

In this section, we demonstrate that a step weight wx
t based on the signal-to-noise ratio λt should be

included into the atom position loss (Eq. 3). In the diffusion process for continuous variables, the
optimization problem is defined as below [20],

arg min
Θ

KL(q(xt−1|xt,x0)|pΘ(xt−1|xt, x̃0,t))

= arg min
Θ

ᾱt−1(1− αt)
2(1− ᾱt−1)(1− ᾱt)

‖x̃0,t − x0‖2

= arg min
Θ

1− αt
2(1− ᾱt−1)αt

‖ε̃0,t − ε0‖2,

where ε0 = xt−
√
ᾱtx0√

1−ᾱt
is the ground-truth noise variable sampled from N (0,1) and is used to

sample xt fromN (xt|
√
ᾱtx0, (1− ᾱt)I) in Eq. S6; ε̃0 =

xt−
√
ᾱtx̃0,t√

1−ᾱt
is the predicted noise variable.

Ho et al. [20] further simplified the above objective as below and demonstrated that the simplified
one can achieve better performance:

arg min
Θ
‖ε̃0,t − ε0‖2 = arg min

Θ

ᾱt
1− ᾱt

‖x̃0,t − x0‖2, (S27)

where λt = ᾱt

1−ᾱt
is the signal-to-noise ratio. While previous work [9] applies uniform step weights

across different steps, we demonstrate that a step weight should be included into the atom position
loss according to Eq. S27. However, the value of λt could be very large when ᾱt is close to 1 as t
approaches 1. Therefore, we clip the value of λt with threshold δ in Eq. 3.

S4 Experimental Setup

S4.1 Data

Following SQUID [13], we used molecules in the MOSES dataset [24], with their 3D conformers
calculated by RDKit [25]. We used the same training and test split as in SQUID. Please note that
SQUID further modifies the generated conformers into artificial ones, by adjusting acyclic bond
distances to their empirical means and fixing acyclic bond angles using heuristic rules. Unlike
SQUID, we did not make any additional adjustments to the calculated 3D conformers, as ShapeMol
is designed with sufficient flexibility to accept any 3D conformers as input and generate 3D molecules
without restrictions on fixed bond lengths or angles. Limited by the predefined fragment library,
SQUID also removes molecules with fragments not present in its fragment library. In contrast, we
kept all the molecules, as ShapeMol is not based on fragments. Our final training dataset contains
1,593,653 molecules, out of which a random set of 1,000 molecules was selected for validation. Both
the SE and DIFF models are trained using this training set. 1,000 test molecules (i.e., conditions) as
used in SQUID are used to test ShapeMol.

S4.2 Baselines

We compared ShapeMol and ShapeMol+g with the state-of-the-art baseline SQUID and a virtual
screening method over the training dataset, denoted as VS. SQUID consists of a fragment-based
generative model based on variational autoencoder that sequentially decodes fragments from molecule
latent embeddings and shape embeddings, and a rotatable bond scoring framework that adjusts the
angles of rotatable bonds between fragments to maximize the 3D shape similarity with the condition
molecule. VS aims to sift through the training set to identify molecules with high shape similarities
with the condition molecule. For SQUID, we assessed two interpolation levels, λ = 0.3 and 1.0
(prior), following the original SQUID paper [13]. For SQUID, ShapeMol and ShapeMol+g, we

13



generated 50 molecules for each testing molecule (i.e., condition) as the candidates for evaluation.
For VS, we randomly sampled 500 training molecules for each testing molecule, and considered the
top-50 molecules with the highest shape similarities as candidates for evaluation. Note that we did
not consider Shape2Mol [14] as our baseline. The code they provided is closely tied to Bytedance
infrastructure 2. This infrastructure is not publicly available, which makes it difficult to run their code
on other infrastructures. Moreover, the training of Shape2Mol requires the use of 32 Tesla V100
GPUs for 2 weeks as reported in their paper. Both of these factors make it infeasible for us to train
and test Shape2Mol on our dataset with our infrastructure and hardware resources.

S4.3 Evaluation Metrics

We calculated the shape similarity Sims(sx, sy) via the overlap volumes between two aligned
molecules as in the literature [13]. Each molecule candidate My for evaluation is aligned with the
condition molecule Mx by the ShaEP tool [26]. For the molecular graph similarity Simg(Mx, My), we
used the Tanimoto similarity over Morgan fingerprints between Mx and My calculated by RDKit [25].

S5 Parameters for Reproducibility

We implemented both SE and DIFF using Python-3.7.16, PyTorch-1.11.0, PyTorch-scatter-2.0.9,
Numpy-1.21.5, Scikit-learn-1.0.2. We trained the models using a Tesla V100 GPU with 32GB
memory and a CPU with 80GB memory on Red Hat Enterprise 7.7. We released the code, data, and
the trained model at Google Drive 3.

S5.1 Parameters of SE

In SE, we tuned the dimension of all the hidden layers including VN-DGCNN layers (Eq. S2.1),
MLP layers (Eq. S1) and VN-In layer (Eq. S1), and the dimension dp of generated shape latent
embeddings Hs with the grid-search algorithm in the parameter space presented in Table S1. We
determined the optimal hyper-parameters according to the mean squared errors of the predictions
of signed distances for 1,000 validation molecules that are selected as described in Supplementary
Section S4.1. The optimal dimension of all the hidden layers is 128, and the optimal dimension dp of
shape latent embedding Hs is 32. The optimal number of points |P| in the point cloud P is 512. We
sampled 1,024 query points in Z for each molecule shape. We constructed graphs from point clouds,
which are employed to learn Hs with VN-DGCNN layer (Eq. S2.1), using the k-nearest neighbors
based on Euclidean distance with k = 20. We set the number of VN-DGCNN layers as 4. We set the
number of MLP layers in the decoder (Eq. S1) as 4. We set the number of VN-In layers as 1.

We optimized the SE model via Adam [27] with its parameters (0.950, 0.999), learning rate 0.001,
and batch size 16. We evaluated the validation loss every 2,000 training steps. We scheduled to decay
the learning rate with a factor of 0.6 and a minimum learning rate of 1e-6 if the validation loss does
not decrease in 5 consecutive evaluations. The optimal SE model has 27.3K learnable parameters.
We trained the SE model with ∼172,600 training steps. The training took 80 hours with our GPUs.
The trained SE model achieved the minimum validation loss at 162,000 steps.

Table S1: Hyper-Parameter Space for SE Optimization
Hyper-parameters Space

hidden layer dimension {64, 128}
dimension dp of Hs {32, 64}
# points in P {512, 1024}
# query points in Z 1024
# nearest neighbors 20
# VN-DGCNN layers (Eq S2.1) 4
# MLP layers in Eq S1 4

2https://github.com/longlongman/DESERT/tree/830562e13a0089e9bb3d77956ab70e606316ae78
3https://drive.google.com/drive/folders/146cpjuwenKGTd6Zh4sYBy-Wv6BMfGwe4?usp=

sharing
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Table S2: Hyper-Parameter Space for DIFF Optimization
Hyper-parameters Space

hidden layer dimension 128
weight of atom type loss ξ 100
threshold of step weight δ (Eq. 3) 10
# atom features K 15
# EQ-GNN/INV-GNN layers 8
# heads nh in MHAx/MHAv 16
# nearest neighbors N (Eq. 1 and 2) 8
# diffusion steps T 1,000

S5.2 Parameters of DIFF

Table S2 presents the parameters used to train DIFF. In DIFF, we set the dimension of all the hidden
layers including MHAx and VN-Lin layer (Eq. 1), MHAh and VN-In layer (Eq. 2) and MLP layer
as 128. We set the number of layers L in EQ-GNN and INV-GNN as 8. Each layer is a multi-head
attention layer (MHAx or MHAh) with 16 heads. We set the number of VN-Lin and VN-In layer as
1, and the number of MLP layer as 2.

We constructed graphs from atoms in molecules, which are employed to predict atom coordinates
and features (Eq. 1 and 2), using the N -nearest neighbors based on Euclidean distance with N = 8.
We used K = 15 atom features in total, indicating the atom types and its aromaticity. These atom
features include 10 non-aromatic atoms (i.e., “H”, “C”, “N”, “O”, “F”, “P”, “S”, “Cl”, “Br”, “I”), and
5 aromatic atoms (i.e., “C”, “N”, “O”, “P”, “S”). We set the number of diffusion steps T as 1,000. We
set the weight ξ of atom type loss as 100 to balance the values of atom type loss and atom coordinate
loss. We set the threshold δ (Eq. 3) as 10. The parameters βxt and βvt of variance scheduling in the
forward diffusion process of DIFF are discussed in Supplementary Section S3.3. Following SQUID,
we did not perform extensive hyperparameter tunning for DIFF given that the used hyperparameters
have enabled good performance.

We optimized the DIFF model via Adam [27] with its parameters (0.950, 0.999), learning rate 0.001,
and batch size 32. We evaluated the validation loss every 2,000 training steps. We scheduled to decay
the learning rate with a factor of 0.6 and a minimum learning rate of 1e-5 if the validation loss does
not decrease in 10 consecutive evaluations. The DIFF model has 2.7M learnable parameters. We
trained the DIFF model with ∼900,000 training steps. The training took 60 hours with our GPUs.
The trained DIFF achieved the minimum validation loss at 746,000 steps.

During inference, given a condition molecule, we determined the number of atoms for the molecule
to be generated, according to the shape size of the condition molecule. We assumed that molecules
with similar shape sizes should have similar numbers of atoms. Therefore, we identified the training
molecules with similar shape sizes to the condition molecule. From these molecules, we built an
atom number distribution and sampled the number of atoms in the molecule to be generated from it.
Particularly, to calculate the shape size of each molecule, we first converted it into an atomic density
grid of side length 22 Å with 0.5 Å resolution and then counted the non-empty voxels in this grid.
For a condition molecule with shape size ns, we selected training molecules with shape sizes in the
range [ns − 200, ns + 200] to build the atom number distribution. Following Adams and Coley [13],
we set the variance φ of atom-centered Gaussians as 0.049, which is used to build a set of points
for shape guidance in Section “Molecule Generation and Shape Guidance” in the main manuscript.
The optimal distance threshold γ is 0.2, and the optimal stop step S for shape guidance is 300. With
shape guidance, each time we updated the atom position (Eq. 4), we randomly sampled the weight σ
from [0.2, 0.8]. For each condition molecule, it took around 40 seconds on average to generate 50
molecule candidates with our GPUs.

S6 Additional Experimental Results
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Table S3: Comparison of Diffusion Weighting Schemes

method weights #v% #s% #u% QED
JS divergence

bond C-C

ShapeMol
wx

t 99.6 98.8 100.0 0.748 0.095 0.321
uniform 99.2 89.4 100.0 0.660 0.115 0.393

ShapeMol+g wx
t 99.6 98.7 100.0 0.749 0.093 0.317

uniform 99.1 90.1 100.0 0.671 0.112 0.384

Columns represent: “weights": different weighting schemes; “#v%”:
the percentage of valid molecules; “#s%”: the percentage of valid
and complete molecules; “#u%”: the percentage of unique molecules;
“QED”: the average drug-likeness of generated molecules; “JS dis-
tance of bond/C-C”: the Jensen-Shannon (JS) divergence of bond length
among all the bond types (“bond")/carbon-carbon single bonds (“C-C")
between real molecules and generated molecules;

S6.1 Comparison of Diffusion Weighting Schemes

While previous work [28, 9] applied uniform weights on different diffusion steps, ShapeMol uses
different weights (i.e., wx

t in Eq. 3). We conducted an ablation study to demonstrate the effectiveness
of this new weighting scheme. Particularly, we trained two DIFF modules with the varying step
weights wx

t (with δ = 10 in Eq. 3) and uniform weights, respectively, while fixing all the other
hyper-parameters in ShapeMol and ShapeMol+g. Table S3 presents their performance comparison.

The results in Table S3 show that the different weights on different steps substantially improve the
quality of the generated molecules. Specifically, ShapeMol with different weights ensures more
valid and complete molecules and higher drug-likeness than that with uniform weights (98.8% vs
89.4% for valid and complete molecules; 0.748 vs 0.660 for QED). ShapeMol with different weights
also produces molecules with bond length distributions closer to those of real molecules (i.e., lower
Jensen-Shannon divergence), for example, the Jensen-Shannon (JS) divergence of bond lengths
between real and generated molecules decreases from 0.115 to 0.095 when different weights are
applied. The same trend can be observed for ShapeMol+g, for which the different weights also
improve the generated molecule qualities. Since wx

t increases as the noise level in the data decreases
(See discussions earlier in “Model Training"), the results in Table S3 demonstrate the effectiveness of
the new weighting scheme in promoting new molecules generated more similarly to real ones when
the noise level in data is small.

S6.2 Parameter Study in Shape Guidance

We conducted a parameter study to evaluate the impact of the distance threshold γ (Eq. 4) and
the step threshold S in the shape guidance. Particularly, using the same trained DIFF module,
we sampled molecules with different values of γ and S and present the results in Table S4. As
shown in Table S4, the average shape similarities avgSims and maximum shape similarities maxSims

consistently decrease as γ and S increase. For example, when S = 50, avgSims and maxSims

decreases from 0.794 to 0.763 and 0.890 to 0.861, respectively, as γ increases from 0.2 to 0.6.
Similarly, when γ = 0.2, avgSims and maxSims decreases from 0.794 to 0.746 and 0.890 to 0.852,
respectively, as S increases from 50 to 300. As presented in “ShapeMol with Shape Guidance", larger
γ and S indicate stronger shape guidance in ShapeMol+g. These results demonstrate that stronger
shape guidance in ShapeMol+g could effectively induce higher shape similarities between the given
molecule and generated molecules.

It is also noticed that as shown in Table S4, incorporating shape guidance enables a trade-off between
the quality of the generated molecules (QED), and the shape similarities (avgSims and maxSims)
between the given molecule and the generated ones. For example, when γ = 0.2, QED increases
from 0.630 to 0.749 and avgSims decreases from 0.794 to 0.746 as S increases from 50 to 300. These
results indicate the effects of γ and S in guiding molecule generation conditioned on given shapes.
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Table S4: Parameter Study of Shape Guidance and Comparison between ShapeMol
with and without Shape Condition

γ S
with shape condition Hs without shape condition Hs

QED avgSims avgSimg maxSims maxSimg QED avgSims avgSimg maxSims maxSimg

- - 0.748 0.689 0.239 0.803 0.243 0.752 0.584 0.239 0.751 0.241

0.2 50 0.630 0.794 0.236 0.890 0.244 0.474 0.697 0.233 0.859 0.241
0.2 100 0.666 0.786 0.238 0.883 0.245 0.541 0.691 0.238 0.851 0.242
0.2 300 0.749 0.746 0.241 0.852 0.247 0.732 0.650 0.248 0.809 0.246

0.4 50 0.678 0.779 0.240 0.875 0.245 0.562 0.676 0.242 0.834 0.243
0.4 100 0.700 0.772 0.241 0.870 0.247 0.614 0.670 0.245 0.828 0.246
0.4 300 0.752 0.738 0.242 0.845 0.247 0.737 0.636 0.248 0.796 0.250

0.6 50 0.706 0.763 0.242 0.861 0.246 0.617 0.656 0.246 0.813 0.246
0.6 100 0.720 0.758 0.242 0.857 0.247 0.655 0.651 0.247 0.808 0.247
0.6 300 0.753 0.731 0.242 0.838 0.247 0.741 0.626 0.251 0.791 0.258

Columns represent: “γ”/“S”: distance threshold/step threshold in shape guidance; “QED”: the average
drug-likeness of generated molecules; “avgSims/avgSimg”: the average of shape or graph similarities between
the condition molecules and generated molecules; “std": the standard deviation; “maxSims”: the maximum
of shape similarities between the condition molecules and generated molecules; “maxSimg”: the graph
similarities between the condition molecules and the molecules with the maximum shape similarities;

S6.3 Ablation Study of Shape Condition

We conducted an ablation study to demonstrate the effectiveness of shape condition Hs by comparing
the performance of ShapeMol with and without this shape condition. Particularly, to evaluate the
performance of ShapeMol without Hs, we removed the shape embeddings Hs from the predictor
fΘ(xt,vt,H

s) and trained an unconditional diffusion model for molecule generation. As in Supple-
mentary Section S6.2, we sampled molecules using the unconditional diffusion model with different
values of γ and S and present the results in Table S4. As shown in Table S4, ShapeMol with Hs

consistently outperforms that without it, in terms of both avgSims and maxSims. For example, when
γ = 0.2 and S = 300, incorporating shape condition into ShapeMol boosts avgSims from 0.650
to 0.746 and maxSims from 0.809 to 0.852. Moreover, the increase in QED from 0.732 to 0.749
also indicates that shape condition could mitigate distortion in the generated molecule structures
due to shape guidance. This might be because shape condition can move atom positions in the
same direction as shape guidance and thus reduce the discrepancy between x̃0,t and x∗0,t (in Eq. 4).
These results demonstrate that incorporating the shape condition in ShapeMol and ShapeMol+g can
effectively improve the shape similarities between the given molecule and generated molecules and
maintain the drug-likeness of generated molecules under shape guidance.
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