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ABSTRACT

The increasing complexity of deep neural networks (DNNs) requires effective
model compression to reduce their computational and memory footprints for de-
ployment on resource-constrained hardware. Mixed-precision search is a promi-
nent bit allocation method based on neural architecture search (NAS) that has been
shown to significantly reduce the DNN footprint while preserving the accuracy of
the model by allocating bits to each layers based on their quantization sensitivity.
However, mixed-precision search is often defined as a dual optimization prob-
lem handled with a single heuristic objective function, which does not provide
strong guarantees of the resulting compression rate. We propose a post-training
reformulation of mixed precision search as an explicit constrained optimization
problem, solved using interior-point methods within a framework based on NAS.
Our method requires minimal calibration data, as few as 128 samples, in a post-
training setting. We corroborate this approach with experiments that span multiple
transformer architectures with up to 4 billion parameters, using the MXFP family
of data formats. We show that this constrained formulation provides users with
higher resolution over compression rates, and we show that explicitly satisfying
hardware budgets while optimizing for accuracy can outperform uniform alloca-
tion methods, improving performance by up to several standard deviations over
the uniform baselines.

1 INTRODUCTION

The development of efficient Deep Neural Network (DNN) deployment strategies for resource-
constrained hardware has led to significant advancements in reduced-precision numerical formats.
Researchers and industry consortia have proposed a variety of these formats, including established
integer types (e.g., INT8/4), custom floating-point representations (e.g., FP8/6), and block-level
schemes such as Block Floating Point (BFP), alongside the more recent Microscaling (MX) family,
which encompasses MXFP and MXINT Jacob et al. (2018); Micikevicius et al. (2022); Drumond
et al. (2018); Darvish Rouhani et al. (2023); Rouhani et al. (2023). These formats improve arithmetic
density and energy efficiency, frequently by amortizing exponent costs across blocks of data. The
adoption of low-precision data formats in modern accelerators, such as AMD’s Instinct and Google’s
TPUs, highlights their importance for high-performance inference and training MLCommons (a;b).

Despite progress in format design, a persistent challenge is that DNN exhibits distinct and varied
sensitivities to reduced precision and sparsity layer-wise and column-wise (Zhang et al. (2022a);
Lee et al. (2024); Dettmers et al. (2022)). This heterogeneity means that uniformly applying a single
numerical format across all layers often results in suboptimal trade-offs between model accuracy
and computational efficiency. Current post-training quantization approaches for mixed-precision of-
ten address this by employing heuristics, such as layer-sensitivity metrics, to guide the allocation of
different formats. While very successful and beneficial for their post-training nature—aligning with
the established wisdom that training a full-precision model first and then compressing often yields
superior results Li et al. (2020)—these heuristic-driven allocations often prefer custom weight en-
codings over exploiting hardware-provided data formats, leading to compression and decompression
steps of weights during inference.

In contrast, Differentiable Neural Architecture Search (DNAS) offers a more principled path, by
learning the optimal layer-wise (or block-wise) assignment of hardware-provided low precision data
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formats through optimization Wu et al. (2018; 2019); Cai & Vasconcelos (2020; 2021). Historically,
DNAS for mixed-precision operated in a training-aware setting. While successfully demonstrating
learned allocation, these methods typically handled hardware constraints by incorporating them as
soft penalties within a multi-objective loss function. This often requires significant hyperparameter
tuning and extensive exploration of the Pareto front to find a desirable balance between accuracy
and model size, as the trade-off is not explicitly controlled.

This work seeks to bridge the advantages of both paradigms: the practicality and controllability
of post-training methods with the optimized, learned allocation scheme of DNAS that can directly
exploit the data formats provided by the deployment device. We revisit the challenge of hardware
constraint integration for precision allocation, moving beyond soft penalties. We reformulate the
problem within a DNAS-inspired post-training framework, treating hardware requirements as ex-
plicit, hard constraints. Our approach directly integrates model complexity into the optimization
objective using a barrier-based interior-point method Boyd & Vandenberghen (2004); Nocedal &
Wright (2006), systematically driving solutions towards feasibility while enabling fine-grained con-
trol over the final model complexity. This allows for a learnable, yet rigorously constrained, bit
allocation in a post-training setting.

Our framework targets the post-training setting, using frozen weights and only a small calibration
dataset. It operates on relaxed softmax-distributed architectural parameters and employs an annealed
regularization schedule to efficiently solve the constrained optimization problem. This yields format
allocations closely adhering to resource budgets while optimizing performance. Notably, our ap-
proach offers finer resolution in compression ratios and predictable model behavior across resource
settings without retraining or finetuning. Our contributions are as follows:

• We introduce a novel, principled interior-point optimization framework for post-training,
hardware-constrained bit allocation. This DNAS-inspired approach requires no model re-
training or fine-tuning and operates effectively with as few as 128 calibration samples.

• Our framework provides fine-grained control over model compression, enabling stable and
predictable performance across a higher resolution of intermediate compression ratios than
typically available with fixed hardware format choices, bridging performance gaps.

• We demonstrate that our method enables smart, layer-wise precision allocation that goes
beyond uniform quantization. This results in significant performance gains; for instance,
with an average of only 4.5 effective bits, we achieve perplexity reductions of up to 9.06
points on C4 (Qwen2.5-1.5B) in few-shot settings and accuracy improvements of up to
+10.7% (Qwen2.5-0.5B) in zero-shot evaluations compared to 4.25-bit uniform MXFP4
on the OpenAI Lambada benchmark.

• Crucially, our approach even allows models to outperform higher-precision uniform base-
lines using fewer bits. For example, our 4.5-bit mixed-precision Gemma models surpass
both 6.25-bit and 8.25-bit uniform MXFP allocations on C4 perplexity and WikiText per-
plexity, showcasing substantial memory gains without sacrificing, and sometimes even im-
proving, performance.

2 RELATED WORK

Low precision data formats The imperative to reduce the computational and memory footprint
of Deep Neural Networks (DNNs) has spurred significant advancements in low-precision data rep-
resentations. This area has seen a progression from conventional fixed-point integers (e.g., INT8,
INT4) and custom floating-point types (e.g., FP8, FP6) towards more sophisticated block-based nu-
merical formats (Jacob et al. (2018); Micikevicius et al. (2022); Gholami et al. (2021)). Block-based
formats, which group multiple elements under a shared exponent or scaling factor, are particu-
larly prominent as they improve arithmetic density while preserving essential dynamic range. For
example, Drumond et al. (2018) proposed Hybrid Block Floating Point (HBFP), a representation
where dot product operations utilize block floating point arithmetic, while element-wise functions
and control logic retain the standard floating point. They showed that this hybrid strategy ensures
comparable convergence to full-precision training (FP32) across various workloads and can achieve
significant throughput gains with modest hardware modifications, positioning HBFP as a viable
drop-in replacement.
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More recently, Darvish Rouhani et al. (2023); Rouhani et al. (2023) developed the Microscaling
(MX) data format family to support both inference and training. The MX formats combine narrow
data types (e.g., INT8, FP6, FP4) with fine-grained block-level scaling. The authors designed these
formats for high-performance computing environments, providing a tunable balance between com-
putational efficiency, numerical stability, and usability. Their evaluations demonstrate that MX for-
mats maintain model fidelity even for large-scale transformers using 8-bit and lower representations
for activations, weights, and gradients. Furthermore, they show compatibility with common training
pipelines and minimal need for hyperparameter or infrastructure adjustments. Consequently, MX
formats are receiving considerable attention and support in next-generation hardware architectures
(Open Compute Project (2023); Samson et al. (2024)).

Differentiable Neural Architecture Search The optimal bit allocation problem for neural net-
works is the following: Let a generic neural network of L layers labeled l ∈ L = {1, ..., L} with
associated weight tensors W = {W l}Ll=1. Assuming we have access to a set of quantization func-
tions labelled Qd(.) with d ∈ D = {1, ..., D}, we define:

Ŵ l def
=

D∑
d

Al
dQd(W

l)

s.t.

D∑
d=1

Al
d = 1 ∀l ∈ L

Al
d ∈ {0, 1} ∀(l, d) ∈ L× D

(1)

Equation (1) represents the core formulation used in differentiable mixed-precision search frame-
works. Wu et al. (2018); Cai & Vasconcelos (2020; 2021); Wu et al. (2019); Clark et al. (2018) aim
to find the optimal decision variables Al

d solving the multi-objective minimization problem:

min
Ŵ ,A

L(A, Ŵ )

min
A

C(A)
(2)

Here, L(A, Ŵ ) is the model loss function, and C(A) is defined as a complexity cost on the ar-
chitecture A, often related to hardware constraints such as size or latency. Throughout this paper,
we set C(A) as the average bit width per element of the target model. The exponential number of
possibilities for a choice of A and the latency induced by the evaluation of L make it difficult to
efficiently solve the problem using combinatorial techniques. Taking inspiration from approxima-
tion algorithms, a popular approach is to relax the conditions on A and reinterpet Al as a probability
distribution. {∑D

d=1 A
l
d = 1

Al
d ∈ {0, 1}

=⇒

{∑D
d=1 A

l
d = 1 ∀l ∈ L

Al
d ≥ 0 ∀(l, d) ∈ L× D

(3)

To that end, Neural Architecture Search frameworks introduced the following parameterization of
Al in terms of logits {xl}Ll=1 ⊂ RD:

Al
d ≡ Al

d(x
l) =

exp(xl
d)∑D

k=1 exp(x
l
k)

(4)

NAS-inspired frameworks for mixed precision quantization leverage the above relaxation by build-
ing a super-network, for which they train the weights and architectural parameters alternatively,
handling the search for two sets of parameters at once. Once done, a feasible solution Ā to the
original decision problem is rounded from the learned solution A to the relaxation by sampling each
layer’s bit-width from the learned distribution Al. Cai & Vasconcelos (2021) propose to instead
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select, for each layer, the quantization option with maximum probability, where the data format with
the largest associated parameter is sampled. Wu et al. (2019); Wan et al. (2020) also propose the
use of the Gumbel-Softmax to simulate random categorical sampling steps during the search phase
and enforce the convergence of the distribution by scheduling the ”temperature” hyperparameter
of the Gumbel-Softmax function. Most importantly, Yu et al. (2020) first introduced the intuition
of incorporating hardware constraints via an additive barrier penalty within such relaxed search
frameworks, our work revisits these foundational assumptions by deriving the optimization objec-
tive directly from Lagrangian principles and perturbed Karush-Kuhn-Tucker conditions to develop
a novel post-training algorithm.

3 CONSTRAINED MIXED PRECISION SEARCH

Post-training compression While neural architecture search for mixed-precision models has
mostly been developed as part of a quantization-aware training framework, Li et al. (2020) have
shown that the optimal approach to model compression is to first train large networks in full preci-
sion, and then aggressively compress the model for deployment. By following this framework, we
rework on the assumptions of the neural network bit-allocation problem. We propose to restrict the
problem to the search of architectural parameters for pre-trained models, maintaining the previously
learned weights W ∗ frozen. This significantly reduces the number of parameter updates, as the num-
ber of architecture parameters only grows linearly with the depth of the associated network and is
invariant with respect to the dimensions of its layers. In turn, this allows us the use of a significantly
smaller calibration dataset for the search phase.

User-defined architectural constraints In practical deployment scenarios, models must conform
to diverse hardware constraints, including limits on total model size, supported numerical formats,
and compute budgets such as FLOPs or BOPs. These constraints are platform-dependent and are
often non-negotiable. To accommodate such deployment requirements, we reformulate the bit allo-
cation task not as a multi-objective trade-off between accuracy and complexity, but as a constrained
optimization problem. Let C(.) be a differentiable architectural cost function e.g., total model size
in bits as follows:

C(A) =

∑L
l=1 sl

∑D
d=1 Al,dbd∑L

l=1 sl
(5)

where L is the number of layers, D is the number of format choices, sl is the number of parameters
in layer l, bd is the bit-width of format choice d, and Al,d is the continuous, relaxed weight for
choosing format d for layer l.

And let B denote an upper bound imposed by the hardware (e.g., a target average bit-width). Our
goal is to minimize the loss subject to this constraint:

minimize
A

L(A, Ŵ ∗)

subject to RB [A] = B − C(A) ≥ 0
(6)

This constrained formulation enables the principled integration of hardware-awareness into the pre-
cision allocation process, ensuring that the resulting architecture is both accurate and deployable.

Interior-Point Formulation To solve the non-linear constrained optimization problem defined
in equation 6, we employ techniques common in constrained optimization, specifically adopting a
barrier-based interior-point method. The first step involves formulating the Lagrangian function,
which incorporates the objective function and the constraint scaled by a Lagrange multiplier λ:

Lλ(A) = L(A, Ŵ ∗) + λRB [A] (7)

Here, L(A,W ∗) represents the original loss function (our objective to minimize) with fixed model
weights W ∗, and RB [A] represents the hardware constraint function (which must be non-negative,
RB [A] ≥ 0). The variable λ is the Lagrange multiplier associated with this inequality constraint.
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For a given candidate solution A∗ to be a local optimum of the constrained problem equation 6
(under certain regularity conditions), it must satisfy the Karush-Kuhn-Tucker (KKT) conditions.
These conditions are fundamental necessary conditions for optimality in nonlinear programming
Boyd & Vandenberghen (2004). They generalize the method of Lagrange multipliers to handle
inequality constraints. For our problem, the KKT conditions are:

KKT


∇L(A∗, Ŵ ∗) + λ∇ARB [A

∗] = 0 (Stationarity)
RB [A

∗] ≥ 0 (Primal Feasibility)
λ ≥ 0 (Dual Feasibility)
λRB [A

∗] = 0 (Complementary Slackness)

(8)

However, in practice, satisfying the strict complementarity condition λRB [A
∗] = 0 leads to opti-

mization challenges due to discontinuity at the boundary of the feasible region. To circumvent this,
we adopt the perturbed KKT formulation, commonly used in interior point methods, which replaces
the complementarity condition with a small nonzero slack µ.

KKT(µ)


∇L(A∗, Ŵ ∗) + λ∇RB [A

∗] = 0

RB [A
∗] ≥ 0

λ ≥ 0

λRB [A
∗] = −µ

s.t. µ→ 0 (9)

This relaxation smooths the boundary behavior of the optimizer and permits convergence to the
constrained optimum from within the feasible set. Following this approximation, the Lagrange
multiplier λ can be reformulated as:

λ =
−µ
RB [A∗]

(10)

Plugging λ into the gradient of equation 7 induces the gradient of a logarithmic function:

∇Lλ(A, Ŵ ∗) = ∇L(A, Ŵ ∗)− µ∇RB [A]
1

RB [A]
(11)

It corresponds to minimizing the following barrier-augmented objective:

minimize
A

L(A,W ∗)− µ ln(RB [A]) (12)

Here, the logarithmic barrier ln(RB [A]) diverges to −∞ as the constraint approaches 0, effectively
discouraging the optimizer from leaving the feasible region. In the appendix, we also propose a
surrogate constraint function R̂ to smooth out the search near the boundary of the feasible region.

Algorithm Following our previous derivation, we propose the following iterative algorithm.

To minimize the model loss while staying within region defined by the memory constraint, the
interior-point method adds a logarithmic barrier penalty. This penalty acts like a repulsive force that
becomes very large at the constraint boundary, ensuring the solution always remains strictly feasible
prior to the rounding step, which may induce negligible variations. Optimization starts with a strong
repulsion (large µ), keeping the solution near the center of the feasible region. As µ is gradually
decreased across iterations, the barrier’s influence weakens, allowing the solution to follow a ”central
path” closer to the true minimum of L while still being repelled from the boundary. The figure below
illustrates how each step balances minimizing the objective (descent step) with staying feasible (step
towards central path), ultimately converging to the constrained optimum as µ→ 0.
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Algorithm 1 Constrained Bit Allocation

Require: Pretrained weights W ∗, initial (relaxed) allocation parameters A(0), calibration dataset
Dcal, loss function L(·, ·;Dcal), softplus constraint surrogateRB [·], initial barrier weight µ > 0,
decay factor 0 < δ < 1, number of outer iterations T , number of inner epochs E, learning rate
for A parameters ηA.

Ensure: Final discrete allocation Â satisfying C(Â) ≤ B
1: t← 1
2: µ(1) ← µ
3: A← A(0)

4: while t ≤ T do
5: for epoch = 1 to E do
6: gA ← ∇A

[
L(A, Ŵ ∗;Dcal)− µ(t) ln

(
B − C(A)

)]
7: A← A− ηAgA
8: end for
9: µ(t+1) ← δµ(t)

10: t← t+ 1
11: end while
12: Â← round(A)

13: return Â

Layer 1 Bits (b1)

Layer 2 Bits (b2)

2 4 6 8

2

4

6

8

0

Feasible
Region

Loss Min

b1 + b2 = Budget

(4,4)

−∇L

Correction

Rounding

Figure 1: Search space for bit allocation in a 2-layer network. Axes are bits per layer (b1, b2). Blue
dots are feasible discrete choices under a budget constraint (shaded region, b1 + b2 ≤ Budget).
Gray dots are infeasible. Gray ellipses represent level curves of the loss function, with the true
(continuous) minimum marked in red, located between discrete points.

4 EXPERIMENTAL METHODOLOGY AND RESULTS

To evaluate the effectiveness of our method, we conducted a series of post-training experiments on
10 transformer models of varying scales, including OPT (Zhang et al. (2022b)), LLaMA (Grattafiori
et al. (2024)), Gemma (Team et al. (2024; 2025)), and Qwen (Team (2024a;b); Qwen et al. (2025))
architectures with up to 3 billion parameters. All experiments follow the setup for causal language
modeling provided by the open-source examples of HuggingFace. Importantly, we operate strictly
in the post-training regime: the model weights are frozen, and only the architectural parameters
governing format assignment are optimized using a small calibration set. All models are adapted
using a mixture of MX-compliant formats, specifically MXFP4 and MXFP8. All experiments were
performed on a single GPU and mainly implemented using the PyTorch library, Huggingface’s trans-
formers library, and MXFP emulation library by Microsoft (2024).
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Empirical study 1: few-shot scenario In the few-shot setting, we use a small calibration set of
128 samples drawn from the training split of the C4 corpus proposed by Dodge et al. (2021). We
then evaluate perplexity (PPL) on the C4 validation split, gauging performance on in-distribution
data under low-data conditions. Figure 2 compares the perplexity of our mixed-precision allocations
constrained to an average of 4.5 bits (’Mixed’, red cross) against uniform MXFP baselines. Remark-
ably, this technique, initially designed to amortize the performance degradation of low-precision
quantization, demonstrates that a carefully constrained 4.5-bit allocation can be competitive with,
and in some cases, even outperform higher-precision uniform allocations. For instance, Gemma-3-
4B-it with our 4.5-bit mix surpasses both uniform MXFP6 and MXFP8 baselines on C4 perplexity.
Significant perplexity improvements are also observed for Llama-3.2-1B (↓2.60) and Gemma-3B-it
(↓3.67), with both models effectively closing the performance gap to their uniform MXFP6 coun-
terparts despite our mixture being predominantly composed of MXFP4 tensors. Other notable im-
provements of over 5% perplexity reduction include OPT-350M (↓1.5 points) and Qwen2.5-0.5B
(↓2.08 points) when compared to the MXFP4 baseline. These gains are achieved with only an ap-
proximate +0.25 effective bit increase.

Figure 2: Few-shot perplexity (lower is better) on C4 validation set for models constrained to 4.5
bits. Our mixed allocation (red cross) is compared against uniform MXFP4, MXFP6, and MXFP8
baselines. Black arrows indicate perplexity improvements ≥ 5% improvements over the MXFP4
baseline.

Figure 3 shows the achieved effective bit-widths for the models under the 4.5-bit constraint. In 8
out of 10 models, the resulting effective bit-widths are strictly under the user-defined constraint. For
OPT-125M and Qwen2.5-0.5B, the rounding step in the final allocation resulted in a slight increase,
but the framework generally adheres closely to the target hardware budget, with most deviations
being minor.

Figure 3: Effective bits achieved for models constrained to 4.5 bits in the few-shot setting. The
dashed line indicates the target constraint.

Empirical study 2: zero-shot scenario For zero-shot evaluation, we calibrate using 256 samples
from the C4 training split. We then employ the lm-eval-harness benchmark suite Biderman et al.
(2024); Gao et al. (2024) to assess model performance on downstream tasks without task-specific
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fine-tuning. We report accuracy on LAMBADA Paperno et al. (2016) (predicting the last word
of a passage, testing context understanding) and perplexity on WikiText-2-raw (general language
modeling capability) (Merity et al. (2016)).

Figure 4 presents LAMBADA accuracy for the 4.5-bit constraint. Our mixed allocation yields sub-
stantial accuracy improvements over the uniform MXFP4 baseline, including a striking +10.7% for
Qwen2.5-0.5B. Other significant gains (exceeding two standard deviations) are seen for OPT-350M
(+2.7%) and Gemma-3-1B-it (+3.8%), with the latter closing the gap to the MXFP6 baseline. Im-
pressively, for Qwen2.5-1.5B, Gemma-2B, OPT-1.3B, and Qwen2.5-3B, our 4.5-bit mixed-precision
models outperform both the uniform MXFP6 (6.25 bits) and MXFP8 (8.25 bits) baselines, showcas-
ing the power of strategic bit allocation.

Figure 4: Zero-shot LAMBADA accuracy (higher is better) for models constrained to 4.5 bits. Our
mixed allocation (red cross) compared against uniform baselines. Black arrows indicate accuracy
improvement over MXFP4 baseline exceeding 2 standard deviations.

We further evaluate on WikiText perplexity (results shown in Figure 5). Consistent with other find-
ings, we observe more than 5% perplexity improvements across the board. Notably, the Gemma
family excels: Gemma-2B at 4.5 bits outperforms the MXFP4 baseline by 2.9 perplexity points
and the MXFP6 baseline by over 45 points. Similar strong outperformance of the 6.25-bit MXFP6
baseline is seen with Gemma-3-1B-it (↓5.80 vs MXFP4) and Gemma-3-4B-it using only 4.5 effec-
tive bits. For other models, such as OPT-125M (↓3.31), OPT-350M (↓2.14), and Qwen2.5 (↓2.46),
our method successfully closes the performance gap to higher-precision uniform allocations. These
accuracy and perplexity improvements, achieved with frozen weights and calibration solely on C4
data, underscore the generalization capability of the learned allocations.

These zero-shot findings underscore that targeted precision allocation, guided by our constrained
optimization, effectively preserves crucial model capabilities for downstream tasks. This approach
often yields significantly better results than uniform low-bit formats, particularly under tighter mem-
ory constraints, and can even rival or exceed the performance of higher-precision uniform schemes.
The method provides practitioners fine-grained control over the accuracy-compression trade-off sim-
ply by selecting the appropriate average bit-width constraint.

5 DISCUSSIONS

Strengths A key strength of this methodology lies in its combined practicality, efficiency, and the-
oretical robustness. The entire allocation process operates post-training, requiring no modification
or fine-tuning of the original model weights, which significantly reduces computational cost and
technical complexity. Furthermore, its reliance on a remarkably small number of calibration sam-
ples (e.g., 128-256) and minimal runtime (down to 2.5 minutes for OPT-125M and up to 32 minutes
for Gemma-3-4B) makes it highly feasible even with limited data access. Despite this efficiency,
the derived allocations exhibit robust generalization, improving performance on both in-distribution
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Figure 5: Zero-shot wikitext perplexity (lower is better) for models constrained to 4.5 bits. Our
mixed allocation (red cross) compared against uniform baselines.

and diverse zero-shot tasks. From a theoretical standpoint, formulating the problem as a constrained
optimization provides a more rigorous foundation than heuristic or multi-objective techniques lack-
ing strong guarantees or requiring complex Pareto front analysis. The well-established interior-point
method, applied with an average bit-width constraint, offers an interpretable way to directly incor-
porate hardware budgets.

Limitations We acknowledge certain limitations. The current approach implicitly utilizes a ”su-
pernet” concept during the search phase, where gradients for different format assignments are
needed. This can temporarily increase memory usage during the allocation optimization compared
to standard inference. However, the search often involves low-bit formats; the memory required to
hold activations or gradients for multiple low-bit options might still be comparable to, or less than,
holding a single higher-precision (e.g., FP16 or BF16) baseline tensor.

Future work Optimizing the memory of the supernet and the computational efficiency of the allo-
cation search itself presents a viable avenue for future research. Investigating the interplay between
different types of constraints (e.g., latency-aware constraints) and granularity (e.g., column-wise
rather than layer-wise) within this framework is another promising direction.

Societal Impact By enabling more efficient deployment of large neural networks, this work con-
tributes to reducing the energy consumption and computational resources required for AI model
inference. This can lead to more sustainable AI practices and broader accessibility to advanced AI
capabilities on less powerful hardware, potentially mitigating environmental impact and democra-
tizing access to technology.

6 CONCLUSION

The escalating complexity of deep neural networks demands efficient deployment on resource-
constrained hardware. While mixed-precision formats offer substantial potential, optimal layer-wise
allocation under hardware constraints has remained a key challenge, often addressed by heuristics
or training-aware searches. This paper introduced a principled, post-training framework for mixed-
precision allocation grounded in constrained optimization theory. Our interior-point method di-
rectly incorporates hardware limitations, like memory footprint via average bit-width constraints,
using only small calibration datasets and without requiring model retraining. Empirical evaluations
across diverse transformer architectures demonstrate that strategic allocation, even with a limited set
of precision formats (e.g., MXFP4 and MXFP8), bridges performance gaps between intermediate-
precision formats (e.g., MXFP6), and can even outperform high-precision configurations.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi, Al-
ham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony DiPofi,
Julen Etxaniz, Benjamin Fattori, Jessica Zosa Forde, Charles Foster, Jeffrey Hsu, Mimansa
Jaiswal, Wilson Y. Lee, Haonan Li, Charles Lovering, Niklas Muennighoff, Ellie Pavlick, Ja-
son Phang, Aviya Skowron, Samson Tan, Xiangru Tang, Kevin A. Wang, Genta Indra Winata,
François Yvon, and Andy Zou. Lessons from the trenches on reproducible evaluation of language
models, 2024. URL https://arxiv.org/abs/2405.14782.

Stephen Boyd and Lieven Vandenberghen. Convex Optimization. Cambridge University Press, 2004.

Zhaowei Cai and Nuno Vasconcelos. Rethinking differentiable search for mixed-precision neural
networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2020.

Zhaowei Cai and Nuno Vasconcelos. Edmips: Differentiable search of mixed precision networks for
edge devices. In 2021 IEEE International Conference on Image Processing (ICIP), pp. 319–323.
IEEE, 2021.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Bita Darvish Rouhani, Ritchie Zhao, Venmugil Elango, Rasoul Shafipour, Mathew Hall, Maral Mes-
makhosroshahi, Ankit More, Levi Melnick, Maximilian Golub, Girish Varatkar, et al. With shared
microexponents, a little shifting goes a long way. In Proceedings of the 50th Annual International
Symposium on Computer Architecture, pp. 1–13, 2023.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
plication for transformers at scale, 2022. URL https://arxiv.org/abs/2208.07339.
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A HEURISTIC SURROGATE FUNCTION FOR SMOOTHER SEARCH

The optimization of architectural parameters A using stochastic gradient descent based optimizers
for our constrained bit allocation problem introduces a practical challenge. The logarithmic barrier
term, −µ ln(RB [A]), where RB [A] = B − C(A,W ∗) is the constraint function, is undefined or
tends to −∞ if the constraint is violated (i.e., if C(A,W ∗) ≥ B, making RB [A] ≤ 0). With
SGD, due to the inherent noise in gradient estimates or potentially poor initialization of A, updates
might inadvertently lead to iterates A(t) that approach or even violate this constraint boundary.
Such violations can cause numerical instability (e.g., ‘log(0)‘ or ‘log(negative number)‘) and large,
uninformative gradients, hindering the convergence of the optimization process.

To address this, we propose a surrogate function R̂B [A] for the constraint RB [A] that behaves
more gracefully near and beyond the constraint boundary. Ideally, this surrogate should satisfy the
following properties:

1. When the constraint C(A,W ∗) < B is satisfied (i.e., RB [A] > 0), the surrogate R̂B [A]
should approximate the original constraint functionRB [A].

2. When the constraint C(A,W ∗) ≥ B is violated (i.e., RB [A] ≤ 0), the surrogate R̂B [A]

should smoothly approach 0 from the positive side (0+). This ensures that ln(R̂B [A])
remains defined and tends to −∞, preserving the barrier effect without encountering nu-
merical errors associated with non-positive arguments.

3. The surrogate function should be differentiable to allow for gradient-based optimization.

A suitable candidate that fulfills these requirements is a scaled and shifted softplus function. The
softplus function is a smooth approximation of the rectifier function ReLU(x) = max(0, x). We
define our surrogate constraint function R̂B [A] as:

R̂B [A] = β · softplus
(
RB [A]

β

)
= β · ln

(
1 + exp

(
B − C(A,W ∗)

β

))
(13)

where β > 0 is a temperature parameter that controls the smoothness of the approximation. It is
worth noting that the softplus function is readily available in popular deep learning libraries such
as PyTorch (as ‘torch.nn.functional.softplus‘). In our implementation, we can set β = µ(t), the
current barrier weight, allowing the sharpness of the surrogate to anneal along with the barrier itself.
For simplicity in the main text, we denoted this as µ ln(1 + exp((B − C(A,W ∗))/µ)), which
corresponds to Equation 13 with β = µ.

Let’s verify the asymptotic properties of this surrogate R̂B [A] as defined in Equation 13, particularly
focusing on its behavior as the original constraintRB [A] varies:

Case 1: Constraint is well satisfied (RB [A]≫ 0) When B −C(A,W ∗)≫ 0, then RB [A]
β ≫ 0.

In this regime, exp
(

RB [A]
β

)
is very large. So, ln

(
1 + exp

(
RB [A]

β

))
≈ ln

(
exp

(
RB [A]

β

))
=

RB [A]
β . Therefore,

R̂B [A] = β · softplus
(
RB [A]

β

)
≈ β · RB [A]

β
= RB [A] = B − C(A,W ∗). (14)

This shows that when the constraint is comfortably met, the surrogate closely approximates the
original constraint function.

Case 2: Constraint is violated or at the boundary (RB [A] ≪ 0 or RB [A] ≈ 0) When B −
C(A,W ∗)≪ 0 (constraint significantly violated), then RB [A]

β ≪ 0. In this regime, exp
(

RB [A]
β

)
≈

0. So, ln
(
1 + exp

(
RB [A]

β

))
≈ ln(1) = 0. Therefore,

R̂B [A] = β · softplus
(
RB [A]

β

)
≈ β · 0 = 0. (15)
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More precisely, as RB [A]
β → −∞, exp

(
RB [A]

β

)
→ 0+. Thus, 1 + exp

(
RB [A]

β

)
→ 1+, and

ln
(
1 + exp

(
RB [A]

β

))
→ 0+. Consequently, R̂B [A]→ 0+.

IfRB [A] = 0 (at the boundary), then exp(0) = 1, so

R̂B [A] = β ln(1 + exp(0)) = β ln(2). (16)

As β → 0+ (which happens as µ(t) → 0+ during optimization), R̂B [A] → 0+. This is consistent
with the desired behavior where the barrier becomes increasingly sharp. The key is that for any fixed
β > 0, ifRB [A] becomes sufficiently negative, R̂B [A] will approach 0 from the positive side.

This softplus-based surrogate R̂B [A] effectively smooths the hard constraint boundary, ensuring
that the argument of the logarithm in the barrier term always remains positive. This allows SGD
to navigate near the feasible region boundary more robustly, preventing numerical issues while still
strongly penalizing constraint violations as µ(t) (and thus β if β = µ(t)) decreases. This modifica-
tion maintains the theoretical consistency with the original interior-point method while enhancing
the stability of practical optimization with stochastic gradients.

B TABULAR RESULTS FOR THE MAIN PAPER

The results presented in the main paper are obtained by preserving the original activations. We
use a block size of 32 for the MXFP format. Sections C appendix provide more experiments with
quantized activations (MXFP4) and an additional set of experiments using 6.25 as max bit constraint
(comparable to MXFP6 effective bits). Due to the supernet’s nature, models momentarily take up to
a maximum of 2x their original size during the search phase before the final compression during the
rounding stage of the algorithm.

B.1 DETAILED EXPERIMENTAL SETUP

Table 1: Detailed Training Parameters. All experiments use Learning Rate = 0.1, Weight Decay = 0,
Adam parameters (β1=0.9, β2=0.999, ϵ=1e-8), linear LR scheduler, 10 epochs, dataset = allenai/c4,
and 128 samples for ”fewshots” experiments, 256 samples for ”zeroshot” experiments. All of the
original model weights and parameters are frozen.

Model Size Max Bits µ(0) δ Al(0) w dtypes Runtime

opt-125m 125M 4.5 0.50 0.2 [0.95, 0.05] mxfp4, mxfp8 2.6m
opt-350m 350M 4.5 0.50 0.5 [0.95, 0.05] mxfp4, mxfp8 6.9m
Qwen2.5-0.5B 500M 4.5 0.50 0.2 [0.95, 0.05] mxfp4, mxfp8 9.3m
gemma-3-1b-it 1.0B 4.5 0.25 0.5 [0.95, 0.05] mxfp4, mxfp8 18.2m
Llama-3.2-1B 1.0B 4.5 0.25 0.5 [0.95, 0.05] mxfp4, mxfp8 20.5m
opt-1.3b 1.3B 4.5 0.25 0.5 [0.95, 0.05] mxfp4, mxfp8 22.1m
Qwen2.5-1.5B 1.5B 4.5 0.50 0.2 [0.95, 0.05] mxfp4, mxfp8 26.7m
gemma-2b 2.0B 4.5 0.25 0.5 [0.95, 0.05] mxfp4, mxfp8 39.6m
Llama-3.2-3B 3.0B 4.5 0.25 0.5 [0.85, 0.15] mxfp4, mxfp8 52.3m
Qwen2.5-3B 3.0B 4.5 0.25 0.5 [0.95, 0.05] mxfp4, mxfp8 52.8m
gemma-3-4b-it 4.0B 4.5 0.50 0.2 [0.95, 0.05] mxfp4, mxfp8 32.1m
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B.2 DETAILED FEWSHOT RESULTS

Table 2: Results for C4 Perplexity (lower is better). Color indicates our method outperforms:
MXFP4 , MXFP6 , or MXFP8 baseline.

Model Size MXFP4 MXFP6 MXFP8 Mixed 4.5 bits

opt-125m 125M 29.25 26.16 25.98 28.98
opt-350m 350M 24.79 22.20 21.96 22.05
Qwen2.5-0.5B 500M 23.60 20.56 20.05 21.09
gemma-3-1b-it 1.0B 42.06 37.24 35.78 35.48
Llama-3.2-1B 1.0B 19.13 16.51 16.11 16.21
opt-1.3b 1.3B 16.34 15.72 15.65 15.71
Qwen2.5-1.5B 1.5B 15.58 14.25 14.10 15.95
gemma-2b 2.0B 14.71 13.69 13.51 14.15
Llama-3.2-3B 3.0B 15.28 13.97 13.68 12.66
Qwen2.5-3B 3.0B 12.97 12.28 12.35 13.69
gemma-3-4b-it 4.0B 25.86 22.80 22.97 18.59

Table 3: Results for C4 Accuracy (higher is better). Color indicates our method outperforms:
MXFP4 , MXFP6 , or MXFP8 baseline.

Model Size MXFP4 MXFP6 MXFP8 Mixed 4.5 bits

opt-125m 125M 37.9% 39.3% 39.4% 36.0%
opt-350m 350M 40.0% 41.4% 41.5% 41.5%
Qwen2.5-0.5B 500M 38.1% 39.9% 39.3% 40.7%
gemma-3-1b-it 1.0B 36.1% 37.8% 38.1% 36.5%
Llama-3.2-1B 1.0B 41.5% 43.6% 44.0% 42.4%
opt-1.3b 1.3B 44.4% 44.9% 45.0% 44.9%
Qwen2.5-1.5B 1.5B 43.0% 43.6% 43.7% 43.9%
gemma-2b 2.0B 44.9% 45.5% 46.1% 44.9%
Llama-3.2-3B 3.0B 44.6% 45.9% 46.2% 46.0%
Qwen2.5-3B 3.0B 44.4% 45.6% 45.8% 45.8%
gemma-3-4b-it 4.0B 42.1% 43.2% 43.4% 44.5%

B.3 DETAILED ZEROSHOT RESULTS

Table 4: Results for LAMBADA (higher is better). Color indicates our method outperforms:
MXFP4 , MXFP6 , or MXFP8 baseline.

Model Size MXFP4 MXFP6 MXFP8 Mixed 4.5 bits

opt-125m 125M 37.6% 37.5% 37.1% 37.8%
opt-350m 350M 40.2% 45.8% 44.8% 44.9%
Qwen2.5-0.5B 500M 36.4% 49.3% 50.7% 50.5%
gemma-3-1b-it 1.0B 38.5% 43.1% 42.9% 45.0%
Llama-3.2-1B 1.0B 52.3% 61.1% 62.3% 59.0%
opt-1.3b 1.3B 57.4% 57.8% 57.8% 58.4%
Qwen2.5-1.5B 1.5B 59.7% 63.2% 62.0% 60.4%
gemma-2b 2.0B 58.9% 64.1% 65.8% 64.9%
Llama-3.2-3B 3.0B 68.0% 70.5% 70.4% 69.7%
Qwen2.5-3B 3.0B 65.7% 65.0% 67.4% 64.7%
gemma-3-4b-it 4.0B 56.4% 59.5% 59.6% 57.7%
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Table 5: Results for Wikitext Perplexity (lower is better). Color indicates our method outperforms:
MXFP4 , MXFP6 , or MXFP8 baseline.

Model Size MXFP4 MXFP6 MXFP8 Mixed 4.5 bits

opt-125m 125M 37.51 32.45 32.18 33.49
opt-350m 350M 29.70 26.05 25.65 25.67
Qwen2.5-0.5B 500M 22.07 18.29 17.83 18.00
gemma-3-1b-it 1.0B 36.69 30.83 29.56 27.71
Llama-3.2-1B 1.0B 14.25 11.89 11.67 12.53
opt-1.3b 1.3B 17.42 16.55 16.46 16.53
Qwen2.5-1.5B 1.5B 13.76 12.33 12.18 12.62
gemma-2b 2.0B 45.47 94.84 42.10 42.57
Llama-3.2-3B 3.0B 10.23 9.42 9.32 9.83
Qwen2.5-3B 3.0B 15.97 15.03 12.77 15.28
gemma-3-4b-it 4.0B 18.86 18.74 18.73 17.05

C MXFP4 ACTIVATIONS

C.1 EXPERIMENTAL SETUP

Table 6: Detailed Training Parameters. All experiments use Learning Rate = 0.1, Weight Decay = 0,
Adam parameters (β1=0.9, β2=0.999, ϵ=1e-8), linear LR scheduler, 10 epochs, dataset = wikitext-
2-raw, and 128 256 samples. All of the original model weights and parameters are frozen.

Model Size Max Bits µ(0) δ Al(0) w dtypes Runtime

opt-125m 125M 4.5 0.50 0.5 [0.95, 0.05] mxfp4, mxfp8 3.3m
opt-125m 125M 6.25 0.50 0.5 [0.8, 0.2] mxfp4, mxfp8 3.3m
opt-350m 350M 4.5 0.50 0.5 [0.95, 0.05] mxfp4, mxfp8 8.7m
opt-350m 350M 6.25 0.50 0.5 [0.8, 0.2] mxfp4, mxfp8 8.7m
Qwen2.5-0.5B 500M 4.5 0.50 0.5 [0.95, 0.05] mxfp4, mxfp8 11.5m
Qwen2.5-0.5B 500M 6.25 0.50 0.5 [0.8, 0.2] mxfp4, mxfp8 11.5m
Llama-3.2-1B 1.0B 4.5 0.50 0.5 [0.95, 0.05] mxfp4, mxfp8 23.1m
Llama-3.2-1B 1.0B 6.25 0.50 0.5 [0.8, 0.2] mxfp4, mxfp8 23.1m
gemma-3-1b-pt 1.0B 4.5 0.50 0.5 [0.95, 0.05] mxfp4, mxfp8 21.3m
gemma-3-1b-pt 1.0B 6.25 0.50 0.5 [0.8, 0.2] mxfp4, mxfp8 21.3m
Qwen2.5-1.5B 1.5B 4.5 0.50 0.5 [0.95, 0.05] mxfp4, mxfp8 31.0m
Qwen2.5-1.5B 1.5B 6.25 0.50 0.5 [0.8, 0.2] mxfp4, mxfp8 31.0m
gemma-2-2b 2.0B 4.5 0.50 0.5 [0.95, 0.05] mxfp4, mxfp8 49.4m
gemma-2-2b 2.0B 6.25 0.50 0.5 [0.8, 0.2] mxfp4, mxfp8 49.5m
Llama-3.2-3B 3.0B 4.5 0.50 0.5 [0.95, 0.05] mxfp4, mxfp8 1.0h
Llama-3.2-3B 3.0B 6.25 0.50 0.5 [0.8, 0.2] mxfp4, mxfp8 1.0h
Qwen2.5-3B 3.0B 4.5 0.50 0.5 [0.95, 0.05] mxfp4, mxfp8 59.3m
Qwen2.5-3B 3.0B 6.25 0.50 0.5 [0.8, 0.2] mxfp4, mxfp8 59.3m
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C.2 DETAILED FEWSHOTS RESULTS

Table 7: Results for WikiText-2-raw Perplexity (lower is better). Color indicates our method
outperforms: MXFP4 , MXFP6 , or MXFP8 baseline.

Model Size MXFP4 MXFP6 MXFP8 Mixed 4.5 Mixed 6.25

opt-125m 125M 109.55 80.91 79.62 90.56 38.41
opt-350m 350M 68.39 55.07 53.74 58.96 28.95
Qwen2.5-0.5B 500M 33.23 21.28 20.13 23.55 12.58
Llama-3.2-1B 1.0B 50.35 29.09 27.28 32.12 20.52
gemma-3-1b-pt 1.0B 29.91 25.75 25.28 27.69 18.31
Qwen2.5-1.5B 1.5B 14.48 12.02 11.89 13.20 17.46
gemma-2-2b 2.0B 38.60 35.72 33.38 33.70 14.19
Llama-3.2-3B 3.0B 44.97 66.66 53.52 27.94 15.73
Qwen2.5-3B 3.0B 11.44 10.27 10.04 10.92 14.38

Table 8: Results for WikiText-2-raw Accuracy (higher is better). Color indicates our method
outperforms: MXFP4 , MXFP6 , or MXFP8 baseline.

Model Size MXFP4 MXFP6 MXFP8 Mixed 4.5 Mixed 6.25

opt-125m 125M 25.2% 27.9% 28.1% 26.9% 32.8%
opt-350m 350M 28.9% 32.0% 32.2% 30.4% 36.0%
Qwen2.5-0.5B 500M 36.9% 41.8% 42.5% 40.6% 49.8%
Llama-3.2-1B 1.0B 34.7% 40.5% 41.4% 39.2% 40.5%
gemma-3-1b-pt 1.0B 40.1% 42.1% 42.1% 40.9% 41.9%
Qwen2.5-1.5B 1.5B 46.3% 48.6% 48.8% 47.3% 41.7%
gemma-2-2b 2.0B 39.1% 40.5% 41.1% 40.4% 44.9%
Llama-3.2-3B 3.0B 36.0% 32.7% 34.6% 40.8% 44.0%
Qwen2.5-3B 3.0B 49.1% 50.6% 51.0% 49.7% 42.3%
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C.3 DETAILED ZEROSHOT RESULTS

Table 9: Results for ARC-Challenge (higher is better). Color indicates our method outperforms:
MXFP4 , MXFP6 , or MXFP8 baseline.

Model Size MXFP4 MXFP6 MXFP8 Mixed 4.5 Mixed 6.25

opt-125m 125M 20.0% 19.6% 19.7% 19.2% 19.5%
opt-350m 350M 20.6% 20.1% 20.4% 21.1% 20.6%
Qwen2.5-0.5B 500M 27.0% 27.6% 28.9% 28.4% 28.5%
Llama-3.2-1B 1.0B 28.4% 31.9% 31.6% 29.4% 31.7%
gemma-3-1b-pt 1.0B 33.4% 34.6% 35.4% 34.0% 35.5%
Qwen2.5-1.5B 1.5B 40.4% 40.5% 42.2% 39.9% 41.2%
gemma-2-2b 2.0B 43.7% 45.6% 46.8% 44.5% 45.2%
Llama-3.2-3B 3.0B 41.3% 42.2% 41.7% 40.5% 42.1%
Qwen2.5-3B 3.0B 43.3% 44.0% 45.2% 44.1% 45.7%

Table 10: Results for LAMBADA (higher is better). Color indicates our method outperforms:
MXFP4 , MXFP6 , or MXFP8 baseline.

Model Size MXFP4 MXFP6 MXFP8 Mixed 4.5 Mixed 6.25

opt-125m 125M 37.6% 37.5% 37.1% 37.3% 36.2%
opt-350m 350M 40.2% 45.8% 44.8% 42.0% 43.3%
Qwen2.5-0.5B 500M 36.4% 49.3% 50.7% 44.1% 47.6%
Llama-3.2-1B 1.0B 52.3% 61.1% 62.3% 54.1% 62.2%
gemma-3-1b-pt 1.0B 53.0% 56.1% 55.8% 53.9% 56.8%
Qwen2.5-1.5B 1.5B 59.7% 63.2% 62.0% 61.2% 62.3%
gemma-2-2b 2.0B 64.9% 69.5% 70.0% 66.5% 69.0%
Llama-3.2-3B 3.0B 68.0% 70.5% 70.4% 68.9% 69.9%
Qwen2.5-3B 3.0B 65.7% 65.0% 67.4% 68.4% 66.8%
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D ADDITIONAL EXPERIMENTS

To demonstrate the robustness of our method across varying hardware constraints, we evaluated the
performance of our Constrained Mixed Precision Search (CMPS) against uniform baselines across
a continuous range of effective bit-widths.

(a) Qwen2.5-0.5B (b) Qwen2.5-3B

Figure 6: ARC-Challenge Accuracy vs. Effective Bits. Comparison of our Mixed-Precision
Search (Red) vs. Uniform Baselines (Blue). The mixed-precision approach consistently yields a
superior Pareto frontier, achieving higher accuracy for the same effective bit budget across both
model sizes.

(a) Llama-3.2-1B (b) Llama-3.2-3B

(c) Qwen2.5-0.5B (d) Qwen2.5-3B

Figure 7: LAMBADA (OpenAI) Accuracy vs. Effective Bits. Our constrained optimization (Red
dashed line) consistently outperforms the uniform quantization baseline (Blue solid line). Notably,
our method frequently achieves the performance of higher-precision uniform models (e.g., 6-bit)
while using significantly fewer bits (e.g., 4.5 bits).
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(a) Llama-3.2-1B (b) Llama-3.2-3B

Figure 8: C4 Validation Perplexity vs. Effective Bits (Lower is Better). The mixed-precision
allocation provides a strictly better trade-off curve, achieving lower perplexity at every measured
bit-width constraint compared to uniform MXFP quantization.

(a) Llama-3.2-1B (b) Llama-3.2-3B

Figure 9: C4 Validation Accuracy vs. Effective Bits. Similar to the perplexity results, the accuracy
metric on the calibration domain (C4) shows that the learned allocation preserves model capability
better than uniform baselines as the compression rate increases.
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