

000 001 002 003 004 005 CMPS: CONSTRAINED MIXED PRECISION SEARCH 006 FOR POST-TRAINING QUANTIZATION 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100

Paper under double-blind review

ABSTRACT

The increasing complexity of deep neural networks (DNNs) requires effective model compression to reduce their computational and memory footprints for deployment on resource-constrained hardware. Mixed-precision search is a prominent bit allocation method based on neural architecture search (NAS) that has been shown to significantly reduce the DNN footprint while preserving the accuracy of the model by allocating bits to each layers based on their quantization sensitivity. However, mixed-precision search is often defined as a dual optimization problem handled with a single heuristic objective function, which does not provide strong guarantees of the resulting compression rate. We propose a post-training reformulation of mixed precision search as an explicit constrained optimization problem, solved using interior-point methods within a framework based on NAS. Our method requires minimal calibration data, as few as 128 samples, in a post-training setting. We corroborate this approach with experiments that span multiple transformer architectures with up to 4 billion parameters, using the MXFP family of data formats. We show that this constrained formulation provides users with higher resolution over compression rates, and we show that explicitly satisfying hardware budgets while optimizing for accuracy can outperform uniform allocation methods, improving performance by up to several standard deviations over the uniform baselines.

1 INTRODUCTION

The development of efficient Deep Neural Network (DNN) deployment strategies for resource-constrained hardware has led to significant advancements in reduced-precision numerical formats. Researchers and industry consortia have proposed a variety of these formats, including established integer types (e.g., INT8/4), custom floating-point representations (e.g., FP8/6), and block-level schemes such as Block Floating Point (BFP), alongside the more recent Microscaling (MX) family, which encompasses MXFP and MXINT Jacob et al. (2018); Micikevicius et al. (2022); Drumond et al. (2018); Darvish Rouhani et al. (2023); Rouhani et al. (2023). These formats improve arithmetic density and energy efficiency, frequently by amortizing exponent costs across blocks of data. The adoption of low-precision data formats in modern accelerators, such as AMD’s Instinct and Google’s TPUs, highlights their importance for high-performance inference and training MLCommons (a;b).

Despite progress in format design, a persistent challenge is that DNN exhibits distinct and varied sensitivities to reduced precision and sparsity layer-wise and column-wise (Zhang et al. (2022a); Lee et al. (2024); Dettmers et al. (2022)). This heterogeneity means that uniformly applying a single numerical format across all layers often results in suboptimal trade-offs between model accuracy and computational efficiency. Current post-training quantization approaches for mixed-precision often address this by employing heuristics, such as layer-sensitivity metrics, to guide the allocation of different formats. While very successful and beneficial for their post-training nature—aligning with the established wisdom that training a full-precision model first and then compressing often yields superior results Li et al. (2020)—these heuristic-driven allocations often prefer custom weight encodings over exploiting hardware-provided data formats, leading to compression and decompression steps of weights during inference.

In contrast, Differentiable Neural Architecture Search (DNAS) offers a more principled path, by learning the optimal layer-wise (or block-wise) assignment of hardware-provided low precision data

formats through optimization Wu et al. (2018; 2019); Cai & Vasconcelos (2020; 2021). Historically, DNAS for mixed-precision operated in a training-aware setting. While successfully demonstrating learned allocation, these methods typically handled hardware constraints by incorporating them as soft penalties within a multi-objective loss function. This often requires significant hyperparameter tuning and extensive exploration of the Pareto front to find a desirable balance between accuracy and model size, as the trade-off is not explicitly controlled.

This work seeks to bridge the advantages of both paradigms: the practicality and controllability of post-training methods with the optimized, learned allocation scheme of DNAS that can directly exploit the data formats provided by the deployment device. We revisit the challenge of hardware constraint integration for precision allocation, moving beyond soft penalties. We reformulate the problem within a DNAS-inspired post-training framework, treating hardware requirements as explicit, hard constraints. Our approach directly integrates model complexity into the optimization objective using a barrier-based interior-point method Boyd & Vandenberghe (2004); Nocedal & Wright (2006), systematically driving solutions towards feasibility while enabling fine-grained control over the final model complexity. This allows for a learnable, yet rigorously constrained, bit allocation in a post-training setting.

Our framework targets the post-training setting, using frozen weights and only a small calibration dataset. It operates on relaxed softmax-distributed architectural parameters and employs an annealed regularization schedule to efficiently solve the constrained optimization problem. This yields format allocations closely adhering to resource budgets while optimizing performance. Notably, our approach offers finer resolution in compression ratios and predictable model behavior across resource settings without retraining or finetuning. Our contributions are as follows:

- We introduce a novel, principled interior-point optimization framework for post-training, hardware-constrained bit allocation. This DNAS-inspired approach requires no model re-training or fine-tuning and operates effectively with as few as 128 calibration samples.
- Our framework provides fine-grained control over model compression, enabling stable and predictable performance across a higher resolution of intermediate compression ratios than typically available with fixed hardware format choices, bridging performance gaps.
- We demonstrate that our method enables smart, layer-wise precision allocation that goes beyond uniform quantization. This results in significant performance gains; for instance, with an average of only 4.5 effective bits, we achieve perplexity reductions of up to 9.06 points on C4 (Qwen2.5-1.5B) in few-shot settings and accuracy improvements of up to +10.7% (Qwen2.5-0.5B) in zero-shot evaluations compared to 4.25-bit uniform MXFP4 on the OpenAI Lambda benchmark.
- Crucially, our approach even allows models to outperform higher-precision uniform baselines using fewer bits. For example, our 4.5-bit mixed-precision Gemma models surpass both 6.25-bit and 8.25-bit uniform MXFP allocations on C4 perplexity and WikiText perplexity, showcasing substantial memory gains without sacrificing, and sometimes even improving, performance.

2 RELATED WORK

Low precision data formats The imperative to reduce the computational and memory footprint of Deep Neural Networks (DNNs) has spurred significant advancements in low-precision data representations. This area has seen a progression from conventional fixed-point integers (e.g., INT8, INT4) and custom floating-point types (e.g., FP8, FP6) towards more sophisticated block-based numerical formats (Jacob et al. (2018); Micikevicius et al. (2022); Gholami et al. (2021)). Block-based formats, which group multiple elements under a shared exponent or scaling factor, are particularly prominent as they improve arithmetic density while preserving essential dynamic range. For example, Drumond et al. (2018) proposed Hybrid Block Floating Point (HBFP), a representation where dot product operations utilize block floating point arithmetic, while element-wise functions and control logic retain the standard floating point. They showed that this hybrid strategy ensures comparable convergence to full-precision training (FP32) across various workloads and can achieve significant throughput gains with modest hardware modifications, positioning HBFP as a viable drop-in replacement.

More recently, Darvish Rouhani et al. (2023); Rouhani et al. (2023) developed the Microscaling (MX) data format family to support both inference and training. The MX formats combine narrow data types (e.g., INT8, FP6, FP4) with fine-grained block-level scaling. The authors designed these formats for high-performance computing environments, providing a tunable balance between computational efficiency, numerical stability, and usability. Their evaluations demonstrate that MX formats maintain model fidelity even for large-scale transformers using 8-bit and lower representations for activations, weights, and gradients. Furthermore, they show compatibility with common training pipelines and minimal need for hyperparameter or infrastructure adjustments. Consequently, MX formats are receiving considerable attention and support in next-generation hardware architectures (Open Compute Project (2023); Samson et al. (2024)).

Differentiable Neural Architecture Search The optimal bit allocation problem for neural networks is the following: Let a generic neural network of L layers labeled $l \in \mathbb{L} = \{1, \dots, L\}$ with associated weight tensors $W = \{W^l\}_{l=1}^L$. Assuming we have access to a set of quantization functions labelled $Q_d(\cdot)$ with $d \in \mathbb{D} = \{1, \dots, D\}$, we define:

$$\begin{aligned} \hat{W}^l &\stackrel{\text{def}}{=} \sum_d^D A_d^l Q_d(W^l) \\ \text{s.t.} \quad &\sum_{d=1}^D A_d^l = 1 \quad \forall l \in \mathbb{L} \\ &A_d^l \in \{0, 1\} \quad \forall (l, d) \in \mathbb{L} \times \mathbb{D} \end{aligned} \tag{1}$$

Equation (1) represents the core formulation used in differentiable mixed-precision search frameworks. Wu et al. (2018); Cai & Vasconcelos (2020; 2021); Wu et al. (2019); Clark et al. (2018) aim to find the optimal decision variables A_d^l solving the multi-objective minimization problem:

$$\begin{aligned} \min_{\hat{W}, A} \quad &\mathcal{L}(A, \hat{W}) \\ \min_A \quad &\mathcal{C}(A) \end{aligned} \tag{2}$$

Here, $\mathcal{L}(A, \hat{W})$ is the model loss function, and $\mathcal{C}(A)$ is defined as a complexity cost on the architecture A , often related to hardware constraints such as size or latency. Throughout this paper, we set $\mathcal{C}(A)$ as the average bit width per element of the target model. The exponential number of possibilities for a choice of A and the latency induced by the evaluation of \mathcal{L} make it difficult to efficiently solve the problem using combinatorial techniques. Taking inspiration from approximation algorithms, a popular approach is to relax the conditions on A and reinterpret A^l as a probability distribution.

$$\begin{cases} \sum_{d=1}^D A_d^l = 1 \\ A_d^l \in \{0, 1\} \end{cases} \implies \begin{cases} \sum_{d=1}^D A_d^l = 1 & \forall l \in \mathbb{L} \\ A_d^l \geq 0 & \forall (l, d) \in \mathbb{L} \times \mathbb{D} \end{cases} \tag{3}$$

To that end, Neural Architecture Search frameworks introduced the following parameterization of A^l in terms of logits $\{x^l\}_{l=1}^L \subset \mathbb{R}^D$:

$$A_d^l \equiv A_d^l(x^l) = \frac{\exp(x_d^l)}{\sum_{k=1}^D \exp(x_k^l)} \tag{4}$$

NAS-inspired frameworks for mixed precision quantization leverage the above relaxation by building a super-network, for which they train the weights and architectural parameters alternatively, handling the search for two sets of parameters at once. Once done, a feasible solution \bar{A} to the original decision problem is rounded from the learned solution A to the relaxation by sampling each layer's bit-width from the learned distribution A^l . Cai & Vasconcelos (2021) propose to instead

162 select, for each layer, the quantization option with maximum probability, where the data format with
 163 the largest associated parameter is sampled. Wu et al. (2019); Wan et al. (2020) also propose the
 164 use of the Gumbel-Softmax to simulate random categorical sampling steps during the search phase
 165 and enforce the convergence of the distribution by scheduling the “temperature” hyperparameter
 166 of the Gumbel-Softmax function. Most importantly, Yu et al. (2020) first introduced the intuition
 167 of incorporating hardware constraints via an additive barrier penalty within such relaxed search
 168 frameworks, our work revisits these foundational assumptions by deriving the optimization objec-
 169 tive directly from Lagrangian principles and perturbed Karush-Kuhn-Tucker conditions to develop
 170 a novel post-training algorithm.

172 3 CONSTRAINED MIXED PRECISION SEARCH

174 **Post-training compression** While neural architecture search for mixed-precision models has
 175 mostly been developed as part of a quantization-aware training framework, Li et al. (2020) have
 176 shown that the optimal approach to model compression is to first train large networks in full preci-
 177 sion, and then aggressively compress the model for deployment. By following this framework, we
 178 rework on the assumptions of the neural network bit-allocation problem. We propose to restrict the
 179 problem to the search of architectural parameters for pre-trained models, maintaining the previously
 180 learned weights W^* frozen. This significantly reduces the number of parameter updates, as the num-
 181 ber of architecture parameters only grows linearly with the depth of the associated network and is
 182 invariant with respect to the dimensions of its layers. In turn, this allows us the use of a significantly
 183 smaller calibration dataset for the search phase.

184 **User-defined architectural constraints** In practical deployment scenarios, models must conform
 185 to diverse hardware constraints, including limits on total model size, supported numerical formats,
 186 and compute budgets such as FLOPs or BOPs. These constraints are platform-dependent and are
 187 often non-negotiable. To accommodate such deployment requirements, we reformulate the bit allo-
 188 cation task not as a multi-objective trade-off between accuracy and complexity, but as a constrained
 189 optimization problem. Let $\mathcal{C}(\cdot)$ be a differentiable architectural cost function e.g., total model size
 190 in bits as follows:

$$192 \quad \mathcal{C}(A) = \frac{\sum_{l=1}^L s_l \sum_{d=1}^D A_{l,d} b_d}{\sum_{l=1}^L s_l} \quad (5)$$

194 where L is the number of layers, D is the number of format choices, s_l is the number of parameters
 195 in layer l , b_d is the bit-width of format choice d , and $A_{l,d}$ is the continuous, relaxed weight for
 196 choosing format d for layer l .

197 And let B denote an upper bound imposed by the hardware (e.g., a target average bit-width). Our
 198 goal is to minimize the loss subject to this constraint:

$$201 \quad \begin{aligned} & \underset{A}{\text{minimize}} \quad \mathcal{L}(A, \hat{W}^*) \\ & \text{subject to} \quad \mathcal{R}_B[A] = B - \mathcal{C}(A) \geq 0 \end{aligned} \quad (6)$$

204 This constrained formulation enables the principled integration of hardware-awareness into the pre-
 205 cision allocation process, ensuring that the resulting architecture is both accurate and deployable.

207 **Interior-Point Formulation** To solve the non-linear constrained optimization problem defined
 208 in equation 6, we employ techniques common in constrained optimization, specifically adopting a
 209 barrier-based interior-point method. The first step involves formulating the Lagrangian function,
 210 which incorporates the objective function and the constraint scaled by a Lagrange multiplier λ :

$$212 \quad \mathcal{L}_\lambda(A) = \mathcal{L}(A, \hat{W}^*) + \lambda \mathcal{R}_B[A] \quad (7)$$

214 Here, $\mathcal{L}(A, W^*)$ represents the original loss function (our objective to minimize) with fixed model
 215 weights W^* , and $\mathcal{R}_B[A]$ represents the hardware constraint function (which must be non-negative,
 $\mathcal{R}_B[A] \geq 0$). The variable λ is the Lagrange multiplier associated with this inequality constraint.

For a given candidate solution A^* to be a local optimum of the constrained problem equation 6 (under certain regularity conditions), it must satisfy the Karush-Kuhn-Tucker (KKT) conditions. These conditions are fundamental necessary conditions for optimality in nonlinear programming Boyd & Vandenberghe (2004). They generalize the method of Lagrange multipliers to handle inequality constraints. For our problem, the KKT conditions are:

$$\text{KKT} \left\{ \begin{array}{l} \nabla \mathcal{L}(A^*, \hat{W}^*) + \lambda \nabla_A \mathcal{R}_B[A^*] = 0 \quad (\text{Stationarity}) \\ \mathcal{R}_B[A^*] \geq 0 \quad (\text{Primal Feasibility}) \\ \lambda \geq 0 \quad (\text{Dual Feasibility}) \\ \lambda \mathcal{R}_B[A^*] = 0 \quad (\text{Complementary Slackness}) \end{array} \right. \quad (8)$$

However, in practice, satisfying the strict complementarity condition $\lambda \mathcal{R}_B[A^*] = 0$ leads to optimization challenges due to discontinuity at the boundary of the feasible region. To circumvent this, we adopt the perturbed KKT formulation, commonly used in interior point methods, which replaces the complementarity condition with a small nonzero slack μ .

$$\text{KKT}(\mu) \left\{ \begin{array}{l} \nabla \mathcal{L}(A^*, \hat{W}^*) + \lambda \nabla \mathcal{R}_B[A^*] = 0 \\ \mathcal{R}_B[A^*] \geq 0 \\ \lambda \geq 0 \\ \lambda \mathcal{R}_B[A^*] = -\mu \end{array} \right. \quad \text{s.t. } \mu \rightarrow 0 \quad (9)$$

This relaxation smooths the boundary behavior of the optimizer and permits convergence to the constrained optimum from within the feasible set. Following this approximation, the Lagrange multiplier λ can be reformulated as:

$$\lambda = \frac{-\mu}{\mathcal{R}_B[A^*]} \quad (10)$$

Plugging λ into the gradient of equation 7 induces the gradient of a logarithmic function:

$$\nabla \mathcal{L}_\lambda(A, \hat{W}^*) = \nabla \mathcal{L}(A, \hat{W}^*) - \mu \nabla \mathcal{R}_B[A] \frac{1}{\mathcal{R}_B[A]} \quad (11)$$

It corresponds to minimizing the following barrier-augmented objective:

$$\underset{A}{\text{minimize}} \quad \mathcal{L}(A, W^*) - \mu \ln(\mathcal{R}_B[A]) \quad (12)$$

Here, the logarithmic barrier $\ln(\mathcal{R}_B[A])$ diverges to $-\infty$ as the constraint approaches 0, effectively discouraging the optimizer from leaving the feasible region. In the appendix, we also propose a surrogate constraint function $\hat{\mathcal{R}}$ to smooth out the search near the boundary of the feasible region.

Algorithm Following our previous derivation, we propose the following iterative algorithm.

To minimize the model loss while staying within region defined by the memory constraint, the interior-point method adds a logarithmic barrier penalty. This penalty acts like a repulsive force that becomes very large at the constraint boundary, ensuring the solution always remains strictly feasible prior to the rounding step, which may induce negligible variations. Optimization starts with a strong repulsion (large μ), keeping the solution near the center of the feasible region. As μ is gradually decreased across iterations, the barrier's influence weakens, allowing the solution to follow a "central path" closer to the true minimum of \mathcal{L} while still being repelled from the boundary. The figure below illustrates how each step balances minimizing the objective (descent step) with staying feasible (step towards central path), ultimately converging to the constrained optimum as $\mu \rightarrow 0$.

270 **Algorithm 1** Constrained Bit Allocation

271

272 **Require:** Pretrained weights W^* , initial (relaxed) allocation parameters $A^{(0)}$, calibration dataset

273 \mathcal{D}_{cal} , loss function $\mathcal{L}(\cdot, \cdot; \mathcal{D}_{\text{cal}})$, softplus constraint surrogate $\mathcal{R}_B[\cdot]$, initial barrier weight $\mu > 0$,

274 decay factor $0 < \delta < 1$, number of outer iterations T , number of inner epochs E , learning rate

275 for A parameters η_A .

276 **Ensure:** Final discrete allocation \hat{A} satisfying $C(\hat{A}) \leq B$

277 1: $t \leftarrow 1$

278 2: $\mu^{(1)} \leftarrow \mu$

279 3: $A \leftarrow A^{(0)}$

280 4: **while** $t \leq T$ **do**

281 5: **for** $epoch = 1$ to E **do**

282 6: $g_A \leftarrow \nabla_A \left[\mathcal{L}(A, \hat{W}^*; \mathcal{D}_{\text{cal}}) - \mu^{(t)} \ln(B - C(A)) \right]$

283 7: $A \leftarrow A - \eta_A g_A$

284 8: **end for**

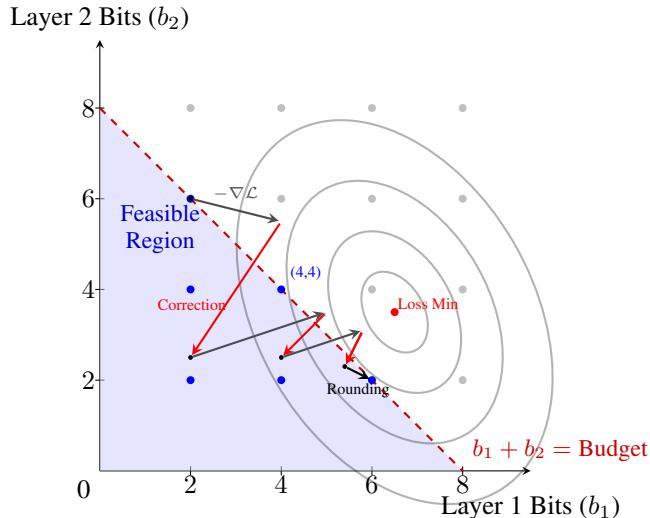
285 9: $\mu^{(t+1)} \leftarrow \delta \mu^{(t)}$

286 10: $t \leftarrow t + 1$

287 11: **end while**

288 12: $\hat{A} \leftarrow \text{round}(A)$

289 13: **return** \hat{A}



308 Figure 1: Search space for bit allocation in a 2-layer network. Axes are bits per layer (b_1, b_2) . Blue

309 dots are feasible discrete choices under a budget constraint (shaded region, $b_1 + b_2 \leq \text{Budget}$). Gray

310 dots are infeasible. Gray ellipses represent level curves of the loss function, with the true

311 (continuous) minimum marked in red, located between discrete points.

4 EXPERIMENTAL METHODOLOGY AND RESULTS

312

313

314

315 To evaluate the effectiveness of our method, we conducted a series of post-training experiments on

316 10 transformer models of varying scales, including OPT (Zhang et al. (2022b)), LLaMA (Grattafiori

317 et al. (2024)), Gemma (Team et al. (2024; 2025)), and Qwen (Team (2024a;b); Qwen et al. (2025))

318 architectures with up to 3 billion parameters. All experiments follow the setup for causal language

319 modeling provided by the open-source examples of HuggingFace. Importantly, we operate strictly

320 in the post-training regime: the model weights are frozen, and only the architectural parameters

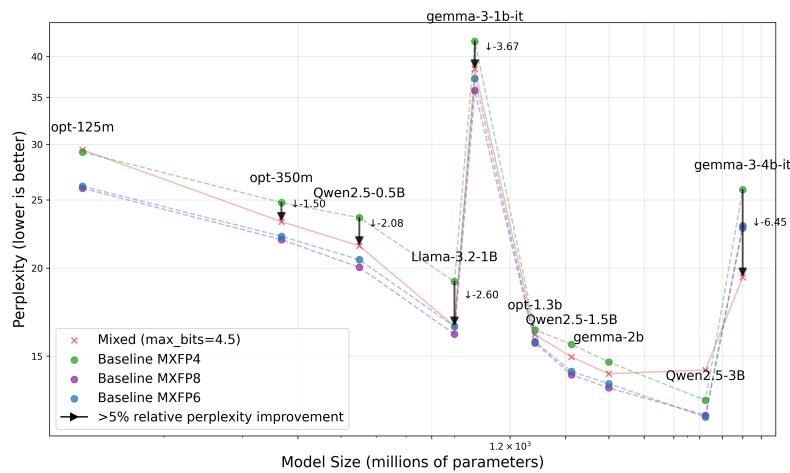
321 governing format assignment are optimized using a small calibration set. All models are adapted

322 using a mixture of MX-compliant formats, specifically MXFP4 and MXFP8. All experiments were

323 performed on a single GPU and mainly implemented using the PyTorch library, Huggingface’s trans-

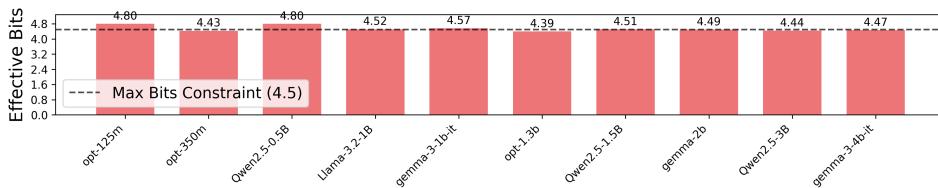
formers library, and MXFP emulation library by Microsoft (2024).

324 **Empirical study 1: few-shot scenario** In the few-shot setting, we use a small calibration set of
 325 128 samples drawn from the training split of the C4 corpus proposed by Dodge et al. (2021). We
 326 then evaluate perplexity (PPL) on the C4 validation split, gauging performance on in-distribution
 327 data under low-data conditions. Figure 2 compares the perplexity of our mixed-precision allocations
 328 constrained to an average of 4.5 bits ('Mixed', red cross) against uniform MXFP baselines. Remark-
 329 ably, this technique, initially designed to amortize the performance degradation of low-precision
 330 quantization, demonstrates that a carefully constrained 4.5-bit allocation can be competitive with,
 331 and in some cases, even outperform higher-precision uniform allocations. For instance, Gemma-3-
 332 4B-it with our 4.5-bit mix surpasses both uniform MXFP6 and MXFP8 baselines on C4 perplexity.
 333 Significant perplexity improvements are also observed for Llama-3.2-1B ($\downarrow 1.50$) and Gemma-3B-it
 334 ($\downarrow 3.67$), with both models effectively closing the performance gap to their uniform MXFP6 coun-
 335 terparts despite our mixture being predominantly composed of MXFP4 tensors. Other notable im-
 336 provements of over 5% perplexity reduction include OPT-350M ($\downarrow 1.5$ points) and Qwen2.5-0.5B
 337 ($\downarrow 2.08$ points) when compared to the MXFP4 baseline. These gains are achieved with only an ap-
 338 proximate +0.25 effective bit increase.



354 Figure 2: Few-shot perplexity (lower is better) on C4 validation set for models constrained to 4.5
 355 bits. Our mixed allocation (red cross) is compared against uniform MXFP4, MXFP6, and MXFP8
 356 baselines. Black arrows indicate perplexity improvements $\geq 5\%$ improvements over the MXFP4
 357 baseline.

359 Figure 3 shows the achieved effective bit-widths for the models under the 4.5-bit constraint. In 8
 360 out of 10 models, the resulting effective bit-widths are strictly under the user-defined constraint. For
 361 OPT-125M and Qwen2.5-0.5B, the rounding step in the final allocation resulted in a slight increase,
 362 but the framework generally adheres closely to the target hardware budget, with most deviations
 363 being minor.

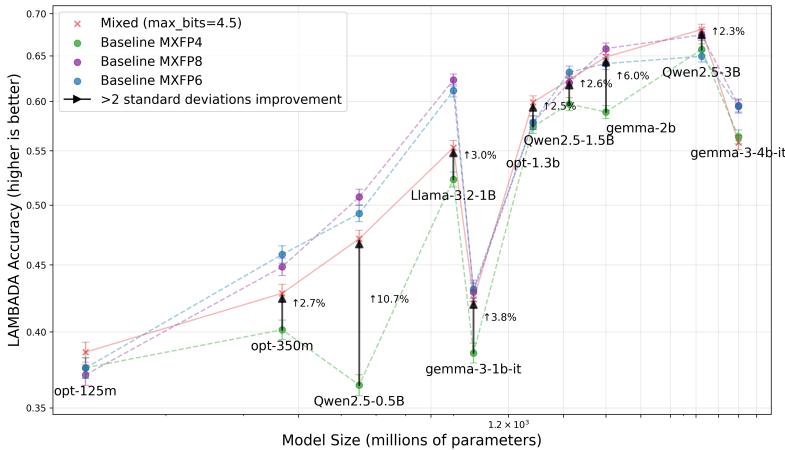


372 Figure 3: Effective bits achieved for models constrained to 4.5 bits in the few-shot setting. The
 373 dashed line indicates the target constraint.

376 **Empirical study 2: zero-shot scenario** For zero-shot evaluation, we calibrate using 256 samples
 377 from the C4 training split. We then employ the lm-eval-harness benchmark suite Biderman et al.
 378 (2024); Gao et al. (2024) to assess model performance on downstream tasks without task-specific

378 fine-tuning. We report accuracy on LAMBADA Paperno et al. (2016) (predicting the last word
 379 of a passage, testing context understanding) and perplexity on WikiText-2-raw (general language
 380 modeling capability) (Merity et al. (2016)).

381 Figure 4 presents LAMBADA accuracy for the 4.5-bit constraint. Our mixed allocation yields sub-
 382 stantial accuracy improvements over the uniform MXFP4 baseline, including a striking +10.7% for
 383 Qwen2.5-0.5B. Other significant gains (exceeding two standard deviations) are seen for OPT-350M
 384 (+2.7%) and Gemma-3-1B-it (+3.8%), with the latter closing the gap to the MXFP6 baseline. Im-
 385 pressively, for Qwen2.5-1.5B, Gemma-2B, OPT-1.3B, and Qwen2.5-3B, our 4.5-bit mixed-precision
 386 models outperform both the uniform MXFP6 (6.25 bits) and MXFP8 (8.25 bits) baselines, showcas-
 387 ing the power of strategic bit allocation.



404 Figure 4: Zero-shot LAMBADA accuracy (higher is better) for models constrained to 4.5 bits. Our
 405 mixed allocation (red cross) compared against uniform baselines. Black arrows indicate accuracy
 406 improvement over MXFP4 baseline exceeding 2 standard deviations.

407
 408 We further evaluate on WikiText perplexity (results shown in Figure 5). Consistent with other find-
 409 ings, we observe more than 5% perplexity improvements across the board. Notably, the Gemma
 410 family excels: Gemma-2B at 4.5 bits outperforms the MXFP4 baseline by 2.9 perplexity points
 411 and the MXFP6 baseline by over 45 points. Similar strong outperformance of the 6.25-bit MXFP6
 412 baseline is seen with Gemma-3-1B-it ($\downarrow 5.80$ vs MXFP4) and Gemma-3-4B-it using only 4.5 effec-
 413 tive bits. For other models, such as OPT-125M ($\downarrow 3.31$), OPT-350M ($\downarrow 2.14$), and Qwen2.5 ($\downarrow 2.46$),
 414 our method successfully closes the performance gap to higher-precision uniform allocations. These
 415 accuracy and perplexity improvements, achieved with frozen weights and calibration solely on C4
 416 data, underscore the generalization capability of the learned allocations.

417 These zero-shot findings underscore that targeted precision allocation, guided by our constrained
 418 optimization, effectively preserves crucial model capabilities for downstream tasks. This approach
 419 often yields significantly better results than uniform low-bit formats, particularly under tighter mem-
 420 ory constraints, and can even rival or exceed the performance of higher-precision uniform schemes.
 421 The method provides practitioners fine-grained control over the accuracy-compression trade-off sim-
 422 ply by selecting the appropriate average bit-width constraint.

424 5 DISCUSSIONS

425
 426 **Strengths** A key strength of this methodology lies in its combined practicality, efficiency, and the-
 427 oretical robustness. The entire allocation process operates post-training, requiring no modification
 428 or fine-tuning of the original model weights, which significantly reduces computational cost and
 429 technical complexity. Furthermore, its reliance on a remarkably small number of calibration sam-
 430 ples (e.g., 128-256) and minimal runtime (down to 2.5 minutes for OPT-125M and up to 32 minutes
 431 for Gemma-3-4B) makes it highly feasible even with limited data access. Despite this efficiency,
 the derived allocations exhibit robust generalization, improving performance on both in-distribution

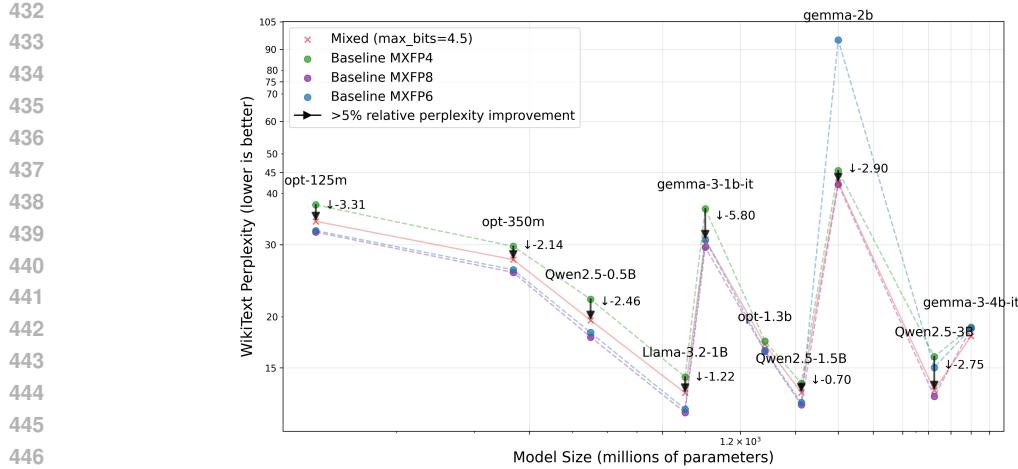


Figure 5: Zero-shot wikitext perplexity (lower is better) for models constrained to 4.5 bits. Our mixed allocation (red cross) compared against uniform baselines.

and diverse zero-shot tasks. From a theoretical standpoint, formulating the problem as a constrained optimization provides a more rigorous foundation than heuristic or multi-objective techniques lacking strong guarantees or requiring complex Pareto front analysis. The well-established interior-point method, applied with an average bit-width constraint, offers an interpretable way to directly incorporate hardware budgets.

Limitations We acknowledge certain limitations. The current approach implicitly utilizes a "supernet" concept during the search phase, where gradients for different format assignments are needed. This can temporarily increase memory usage during the allocation optimization compared to standard inference. However, the search often involves low-bit formats; the memory required to hold activations or gradients for multiple low-bit options might still be comparable to, or less than, holding a single higher-precision (e.g., FP16 or BF16) baseline tensor.

Future work Optimizing the memory of the supernet and the computational efficiency of the allocation search itself presents a viable avenue for future research. Investigating the interplay between different types of constraints (e.g., latency-aware constraints) and granularity (e.g., column-wise rather than layer-wise) within this framework is another promising direction.

Societal Impact By enabling more efficient deployment of large neural networks, this work contributes to reducing the energy consumption and computational resources required for AI model inference. This can lead to more sustainable AI practices and broader accessibility to advanced AI capabilities on less powerful hardware, potentially mitigating environmental impact and democratizing access to technology.

6 CONCLUSION

The escalating complexity of deep neural networks demands efficient deployment on resource-constrained hardware. While mixed-precision formats offer substantial potential, optimal layer-wise allocation under hardware constraints has remained a key challenge, often addressed by heuristics or training-aware searches. This paper introduced a principled, post-training framework for mixed-precision allocation grounded in constrained optimization theory. Our interior-point method directly incorporates hardware limitations, like memory footprint via average bit-width constraints, using only small calibration datasets and without requiring model retraining. Empirical evaluations across diverse transformer architectures demonstrate that strategic allocation, even with a limited set of precision formats (e.g., MXFP4 and MXFP8), bridges performance gaps between intermediate-precision formats (e.g., MXFP6), and can even outperform high-precision configurations.

486 REFERENCES
487

488 Stella Biderman, Hailey Schoelkopf, Lintang Sutawika, Leo Gao, Jonathan Tow, Baber Abbasi, Al-
489 ham Fikri Aji, Pawan Sasanka Ammanamanchi, Sidney Black, Jordan Clive, Anthony DiPofi,
490 Julen Etxaniz, Benjamin Fattori, Jessica Zosa Forde, Charles Foster, Jeffrey Hsu, Mimansa
491 Jaiswal, Wilson Y. Lee, Haonan Li, Charles Lovering, Niklas Muennighoff, Ellie Pavlick, Ja-
492 son Phang, Aviya Skowron, Samson Tan, Xiangru Tang, Kevin A. Wang, Genta Indra Winata,
493 Fran ois Yvon, and Andy Zou. Lessons from the trenches on reproducible evaluation of language
494 models, 2024. URL <https://arxiv.org/abs/2405.14782>.

495 Stephen Boyd and Lieven Vandenberghe. *Convex Optimization*. Cambridge University Press, 2004.

496 Zhaowei Cai and Nuno Vasconcelos. Rethinking differentiable search for mixed-precision neural
497 networks. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
498 nition (CVPR)*, June 2020.

499 Zhaowei Cai and Nuno Vasconcelos. Edmips: Differentiable search of mixed precision networks for
500 edge devices. In *2021 IEEE International Conference on Image Processing (ICIP)*, pp. 319–323.
501 IEEE, 2021.

502 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
503 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
504 *arXiv preprint arXiv:1803.05457*, 2018.

505 Bita Darvish Rouhani, Ritchie Zhao, Venmugil Elango, Rasoul Shafipour, Mathew Hall, Maral Mes-
506 makhosroshahi, Ankit More, Levi Melnick, Maximilian Golub, Girish Varatkar, et al. With shared
507 microexponents, a little shifting goes a long way. In *Proceedings of the 50th Annual International
508 Symposium on Computer Architecture*, pp. 1–13, 2023.

509 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix multi-
510 plication for transformers at scale, 2022. URL <https://arxiv.org/abs/2208.07339>.

511 Jesse Dodge, Maarten Sap, Ana Marasovi , William Agnew, Gabriel Ilharco, Dirk Groeneveld,
512 Margaret Mitchell, and Matt Gardner. Documenting large webtext corpora: A case study on the
513 colossal clean crawled corpus, 2021. URL <https://arxiv.org/abs/2104.08758>.

514 Mario Drumond, Tao Lin, Martin Jaggi, and Babak Falsafi. Training dnns with hybrid block floating
515 point. *Advances in Neural Information Processing Systems*, 31, 2018.

516 Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
517 ter, Laurence Golding, Jeffrey Hsu, Alain LeNac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
518 Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang
519 Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for
520 few-shot language model evaluation, 2024.

521 Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer.
522 A survey of quantization methods for efficient neural network inference, 2021. URL <https://arxiv.org/abs/2103.13630>.

523 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
524 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
525 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Ko-
526 rennev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
527 Spataru, Baptiste Roziere, Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux,
528 Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,
529 Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,
530 Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,
531 Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab
532 AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco
533 Guzm n, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind That-
534 tai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Kore-
535 vaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra,

540 Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
 541 hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
 542 Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jong-
 543 so Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala,
 544 Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid
 545 El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren
 546 Rantala-Yearly, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin,
 547 Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi,
 548 Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
 549 Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Ku-
 550 mar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoy-
 551 chev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
 552 Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan,
 553 Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ra-
 554 mon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Ro-
 555 hit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
 556 Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell,
 557 Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparth, Sheng
 558 Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer
 559 Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman,
 560 Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mi-
 561 haylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor
 562 Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei
 563 Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
 564 Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuwei Wang, Yaelle Gold-
 565 schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning
 566 Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
 567 Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria,
 568 Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein,
 569 Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, An-
 570 drew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, An-
 571 nie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
 572 Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leon-
 573 hardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu
 574 Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Mon-
 575 talvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao
 576 Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
 577 Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide
 578 Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le,
 579 Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 580 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smo-
 581 thers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni,
 582 Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia
 583 Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
 584 Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harri-
 585 son Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,
 586 Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James
 587 Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
 588 nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang,
 589 Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Jun-
 590 jie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy
 591 Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang,
 592 Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell,
 593 Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa,
 Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias
 Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
 Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
 Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari,
 Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan

594 Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong,
 595 Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent,
 596 Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar,
 597 Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Ro-
 598 driguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
 599 Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin
 600 Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon,
 601 Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ra-
 602 maswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha,
 603 Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal,
 604 Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satter-
 605 field, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj
 606 Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
 607 Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
 608 Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Ku-
 609 mar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 610 Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiao-
 611 jian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
 612 Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao,
 613 Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhao-
 614 duo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL
 615 <https://arxiv.org/abs/2407.21783>.

616 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
 617 Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
 618 efficient integer-arithmetic-only inference. In *Proceedings of the IEEE Conference on Computer
 Vision and Pattern Recognition (CVPR)*, June 2018.

619 Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Outlier-aware
 620 weight quantization for efficient fine-tuning and inference of large language models. In *Proceed-
 621 ings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 13355–13364, 2024.

622 Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joseph E. Gon-
 623 zalez. Train large, then compress: Rethinking model size for efficient training and inference of
 624 transformers, 2020. URL <https://arxiv.org/abs/2002.11794>.

625 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 626 models, 2016. URL <https://arxiv.org/abs/1609.07843>.

627 Paulius Micikevicius, Dusan Stosic, Neil Burgess, Marius Cornea, Pradeep Dubey, Richard Grisen-
 628 thwaite, Sangwon Ha, Alexander Heinecke, Patrick Judd, John Kamalu, et al. Fp8 formats for
 629 deep learning. In *arXiv preprint arXiv:2209.05433*, 2022.

630 Microsoft. Mx pytorch emulation library. <https://github.com/microsoft/microxcalcing>, 2024.

631 MLCommons. Mlperf inference benchmark. <https://mlcommons.org/en/inference-overview/>, a. Accessed: 2025-09-11.

632 MLCommons. Mlperf training benchmark. <https://mlcommons.org/en/training-overview/>, b. Accessed: 2025-09-11.

633 Jorge Nocedal and Stephen Wright. *Numerical Optimization*. Springer Series in Operations Re-
 634 search and Financial Engineering. Springer Science & Business Media, 2006.

635 Open Compute Project. Ocp microscaling formats (mx) specification version 1.0. Technical re-
 636 port, Open Compute Project, 2023. URL <https://www.opencompute.org>. Defines
 637 MXFP8/6/4 and MXINT8 formats for AI hardware.

638 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 639 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambda dataset:
 640 Word prediction requiring a broad discourse context. In *Proceedings of the 54th Annual Meeting
 641 of the Association for Computational Linguistics (Volume 1: Long Papers)*, 2016.

648 Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
 649 Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
 650 Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
 651 Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
 652 Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
 653 Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
 654 URL <https://arxiv.org/abs/2412.15115>.

655 Bita Darvish Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer
 656 Deng, Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, Stosic Dusan, Ven-
 657 mugil Elango, Maximilian Golub, Alexander Heinecke, Phil James-Roxby, Dharmesh Jani, Gau-
 658 rav Kolhe, Martin Langhammer, Ada Li, Levi Melnick, Maral Mesmakhosroshahi, Andres Ro-
 659 driguez, Michael Schulte, Rasoul Shafipour, Lei Shao, Michael Siu, Pradeep Dubey, Paulius Mi-
 660 cikevicius, Maxim Naumov, Colin Verrilli, Ralph Wittig, Doug Burger, and Eric Chung. Mi-
 661 croscaling data formats for deep learning, 2023. URL <https://arxiv.org/abs/2310.10537>.

663 Ebby Samson, Naveen Mellempudi, Wayne Luk, and George A. Constantinides. Exploring fpga
 664 designs for mx and beyond, 2024. URL <https://arxiv.org/abs/2407.01475>.

666 Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
 667 Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard
 668 Hussenot, Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam Roberts, Aditya Barua, Alex
 669 Botev, Alex Castro-Ros, Ambrose Slone, Amélie Héliou, Andrea Tacchetti, Anna Bulanova, An-
 670 tonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo,
 671 Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric
 672 Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Hen-
 673 ryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski,
 674 Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu,
 675 Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee,
 676 Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev,
 677 Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko
 678 Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo
 679 Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree
 680 Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech
 681 Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh
 682 Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin
 683 Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah
 684 Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on
 gemini research and technology, 2024. URL <https://arxiv.org/abs/2403.08295>.

685 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 686 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, Louis Rouillard, Thomas
 687 Mesnard, Geoffrey Cideron, Jean bastien Grill, Sabela Ramos, Edouard Yvinec, Michelle Cas-
 688 bon, Etienne Pot, Ivo Penchev, Gaël Liu, Francesco Visin, Kathleen Kenealy, Lucas Beyer, Xi-
 689 aohai Zhai, Anton Tsitsulin, Robert Busa-Fekete, Alex Feng, Noveen Sachdeva, Benjamin Cole-
 690 man, Yi Gao, Basil Mustafa, Iain Barr, Emilio Parisotto, David Tian, Matan Eyal, Colin Cherry,
 691 Jan-Thorsten Peter, Danila Sinopalnikov, Surya Bhupatiraju, Rishabh Agarwal, Mehran Kazemi,
 692 Dan Malkin, Ravin Kumar, David Vilar, Idan Brusilovsky, Jiaming Luo, Andreas Steiner, Abe
 693 Friesen, Abhanshu Sharma, Abheesht Sharma, Adi Mayrav Gilady, Adrian Goedeckemeyer, Alaa
 694 Saade, Alex Feng, Alexander Kolesnikov, Alexei Bendebury, Alvin Abdagic, Amit Vadi, András
 695 György, André Susano Pinto, Anil Das, Ankur Bapna, Antoine Miech, Antoine Yang, Antonia
 696 Paterson, Ashish Shenoy, Ayan Chakrabarti, Bilal Piot, Bo Wu, Bobak Shahriari, Bryce Petrini,
 697 Charlie Chen, Charline Le Lan, Christopher A. Choquette-Choo, CJ Carey, Cormac Brick, Daniel
 698 Deutsch, Danielle Eisenbud, Dee Cattle, Derek Cheng, Dimitris Paparas, Divyashree Shivaku-
 699 mar Sreepathihalli, Doug Reid, Dustin Tran, Dustin Zelle, Eric Noland, Erwin Huizenga, Eu-
 700 gene Kharitonov, Frederick Liu, Gagik Amirkhanyan, Glenn Cameron, Hadi Hashemi, Hanna
 701 Klimczak-Plucińska, Harman Singh, Harsh Mehta, Harshal Tushar Lehri, Hussein Hazimeh, Ian
 Ballantyne, Idan Szpektor, Ivan Nardini, Jean Pouget-Abadie, Jetha Chan, Joe Stanton, John Wi-
 eting, Jonathan Lai, Jordi Orbay, Joseph Fernandez, Josh Newlan, Ju yeong Ji, Jyotinder Singh,

702 Kat Black, Kathy Yu, Kevin Hui, Kiran Vodrahalli, Klaus Greff, Linhai Qiu, Marcella Valentine,
 703 Marina Coelho, Marvin Ritter, Matt Hoffman, Matthew Watson, Mayank Chaturvedi, Michael
 704 Moynihan, Min Ma, Nabila Babar, Natasha Noy, Nathan Byrd, Nick Roy, Nikola Momchev, Ni-
 705 lay Chauhan, Noveen Sachdeva, Oskar Bunyan, Pankil Botarda, Paul Caron, Paul Kishan Ruben-
 706 stein, Phil Culliton, Philipp Schmid, Pier Giuseppe Sessa, Pingmei Xu, Piotr Stanczyk, Pouya
 707 Tafti, Rakesh Shivanna, Renjie Wu, Renke Pan, Reza Rokni, Rob Willoughby, Rohith Vallu,
 708 Ryan Mullins, Sammy Jerome, Sara Smoot, Sertan Girgin, Shariq Iqbal, Shashir Reddy, Shruti
 709 Sheth, Siim Põder, Sijal Bhatnagar, Sindhu Raghuram Panyam, Sivan Eiger, Susan Zhang, Tianqi
 710 Liu, Trevor Yacovone, Tyler Liechty, Uday Kalra, Utku Evci, Vedant Misra, Vincent Roseberry,
 711 Vlad Feinberg, Vlad Kolesnikov, Woohyun Han, Woosuk Kwon, Xi Chen, Yinlam Chow, Yuvein
 712 Zhu, Zichuan Wei, Zoltan Egyed, Victor Cotruta, Minh Giang, Phoebe Kirk, Anand Rao, Kat
 713 Black, Nabila Babar, Jessica Lo, Erica Moreira, Luiz Gustavo Martins, Omar Sanseviero, Lucas
 714 Gonzalez, Zach Gleicher, Tris Warkentin, Vahab Mirrokni, Evan Senter, Eli Collins, Joelle Bar-
 715 ral, Zoubin Ghahramani, Raia Hadsell, Yossi Matias, D. Sculley, Slav Petrov, Noah Fiedel, Noam
 716 Shazeer, Oriol Vinyals, Jeff Dean, Demis Hassabis, Koray Kavukcuoglu, Clement Farabet, Elena
 717 Buchatskaya, Jean-Baptiste Alayrac, Rohan Anil, Dmitry, Lepikhin, Sebastian Borgeaud, Olivier
 718 Bachem, Armand Joulin, Alek Andreev, Cassidy Hardin, Robert Dadashi, and Léonard Hussenot.
 719 Gemma 3 technical report, 2025. URL <https://arxiv.org/abs/2503.19786>.

720 Qwen Team. Qwen1.5: Advancing Large Language Models via improved training, scaling, and
 721 post-training methodologies, 2024a.

722 Qwen Team. Qwen2: A family of strong and versatile language models, 2024b.

723 Alvin Wan, Xiaoliang Dai, Peizhao Zhang, Zijian He, Yuandong Tian, Saining Xie, Bichen Wu,
 724 Matthew Yu, Tao Xu, Kan Chen, et al. Fbnetv2: Differentiable neural architecture search for
 725 spatial and channel dimensions. In *Proceedings of the IEEE/CVF conference on computer vision*
 726 *and pattern recognition*, pp. 12965–12974, 2020.

727 Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. Mixed
 728 precision quantization of convnets via differentiable neural architecture search, 2018. URL
 729 <https://arxiv.org/abs/1812.00090>.

730 Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong Tian,
 731 Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet design
 732 via differentiable neural architecture search. In *Proceedings of the IEEE/CVF conference on*
 733 *computer vision and pattern recognition*, pp. 10734–10742, 2019.

734 Haibao Yu, Qi Han, Jianbo Li, Jianping Shi, Guangliang Cheng, and Bin Fan. Search what you
 735 want: Barrier panelty nas for mixed precision quantization. In Andrea Vedaldi, Horst Bischof,
 736 Thomas Brox, and Jan-Michael Frahm (eds.), *Computer Vision – ECCV 2020*, pp. 1–16, Cham,
 737 2020. Springer International Publishing. ISBN 978-3-030-58545-7.

738 Chiyuan Zhang, Samy Bengio, and Yoram Singer. Are all layers created equal?, 2022a. URL
 739 <https://arxiv.org/abs/1902.01996>.

740 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
 741 pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
 742 Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
 743 Opt: Open pre-trained transformer language models, 2022b. URL <https://arxiv.org/abs/2205.01068>.

744

745

746

747

748

749

750

751

752

753

754

755

756 A HEURISTIC SURROGATE FUNCTION FOR SMOOTHER SEARCH 757

758 The optimization of architectural parameters A using stochastic gradient descent based optimizers
759 for our constrained bit allocation problem introduces a practical challenge. The logarithmic barrier
760 term, $-\mu \ln(\mathcal{R}_B[A])$, where $\mathcal{R}_B[A] = B - C(A, W^*)$ is the constraint function, is undefined or
761 tends to $-\infty$ if the constraint is violated (i.e., if $C(A, W^*) \geq B$, making $\mathcal{R}_B[A] \leq 0$). With
762 SGD, due to the inherent noise in gradient estimates or potentially poor initialization of A , updates
763 might inadvertently lead to iterates $A^{(t)}$ that approach or even violate this constraint boundary.
764 Such violations can cause numerical instability (e.g., ‘ $\log(0)$ ’ or ‘ $\log(\text{negative number})$ ’) and large,
765 uninformative gradients, hindering the convergence of the optimization process.

766 To address this, we propose a surrogate function $\hat{\mathcal{R}}_B[A]$ for the constraint $\mathcal{R}_B[A]$ that behaves
767 more gracefully near and beyond the constraint boundary. Ideally, this surrogate should satisfy the
768 following properties:
769

- 770 1. When the constraint $C(A, W^*) < B$ is satisfied (i.e., $\mathcal{R}_B[A] > 0$), the surrogate $\hat{\mathcal{R}}_B[A]$
771 should approximate the original constraint function $\mathcal{R}_B[A]$.
- 772 2. When the constraint $C(A, W^*) \geq B$ is violated (i.e., $\mathcal{R}_B[A] \leq 0$), the surrogate $\hat{\mathcal{R}}_B[A]$
773 should smoothly approach 0 from the positive side (0^+). This ensures that $\ln(\hat{\mathcal{R}}_B[A])$
774 remains defined and tends to $-\infty$, preserving the barrier effect without encountering nu-
775 matical errors associated with non-positive arguments.
- 776 3. The surrogate function should be differentiable to allow for gradient-based optimization.

777 A suitable candidate that fulfills these requirements is a scaled and shifted softplus function. The
778 softplus function is a smooth approximation of the rectifier function $\text{ReLU}(x) = \max(0, x)$. We
779 define our surrogate constraint function $\hat{\mathcal{R}}_B[A]$ as:
780

$$782 \hat{\mathcal{R}}_B[A] = \beta \cdot \text{softplus} \left(\frac{\mathcal{R}_B[A]}{\beta} \right) = \beta \cdot \ln \left(1 + \exp \left(\frac{B - C(A, W^*)}{\beta} \right) \right) \quad (13)$$

783 where $\beta > 0$ is a temperature parameter that controls the smoothness of the approximation. It is
784 worth noting that the softplus function is readily available in popular deep learning libraries such
785 as PyTorch (as ‘`torch.nn.functional.softplus`’). In our implementation, we can set $\beta = \mu^{(t)}$, the
786 current barrier weight, allowing the sharpness of the surrogate to anneal along with the barrier itself.
787 For simplicity in the main text, we denoted this as $\mu \ln(1 + \exp((B - C(A, W^*))/\mu))$, which
788 corresponds to Equation 13 with $\beta = \mu$.
789

790 Let’s verify the asymptotic properties of this surrogate $\hat{\mathcal{R}}_B[A]$ as defined in Equation 13, particularly
791 focusing on its behavior as the original constraint $\mathcal{R}_B[A]$ varies:
792

793 **Case 1: Constraint is well satisfied ($\mathcal{R}_B[A] \gg 0$)** When $B - C(A, W^*) \gg 0$, then $\frac{\mathcal{R}_B[A]}{\beta} \gg 0$.
794 In this regime, $\exp \left(\frac{\mathcal{R}_B[A]}{\beta} \right)$ is very large. So, $\ln \left(1 + \exp \left(\frac{\mathcal{R}_B[A]}{\beta} \right) \right) \approx \ln \left(\exp \left(\frac{\mathcal{R}_B[A]}{\beta} \right) \right) =$
795 $\frac{\mathcal{R}_B[A]}{\beta}$. Therefore,
796

$$797 \hat{\mathcal{R}}_B[A] = \beta \cdot \text{softplus} \left(\frac{\mathcal{R}_B[A]}{\beta} \right) \approx \beta \cdot \frac{\mathcal{R}_B[A]}{\beta} = \mathcal{R}_B[A] = B - C(A, W^*). \quad (14)$$

801 This shows that when the constraint is comfortably met, the surrogate closely approximates the
802 original constraint function.
803

804 **Case 2: Constraint is violated or at the boundary ($\mathcal{R}_B[A] \ll 0$ or $\mathcal{R}_B[A] \approx 0$)** When $B -$
805 $C(A, W^*) \ll 0$ (constraint significantly violated), then $\frac{\mathcal{R}_B[A]}{\beta} \ll 0$. In this regime, $\exp \left(\frac{\mathcal{R}_B[A]}{\beta} \right) \approx$
806 0. So, $\ln \left(1 + \exp \left(\frac{\mathcal{R}_B[A]}{\beta} \right) \right) \approx \ln(1) = 0$. Therefore,
807

$$808 \hat{\mathcal{R}}_B[A] = \beta \cdot \text{softplus} \left(\frac{\mathcal{R}_B[A]}{\beta} \right) \approx \beta \cdot 0 = 0. \quad (15)$$

810 More precisely, as $\frac{\mathcal{R}_B[A]}{\beta} \rightarrow -\infty$, $\exp\left(\frac{\mathcal{R}_B[A]}{\beta}\right) \rightarrow 0^+$. Thus, $1 + \exp\left(\frac{\mathcal{R}_B[A]}{\beta}\right) \rightarrow 1^+$, and
 811 $\ln\left(1 + \exp\left(\frac{\mathcal{R}_B[A]}{\beta}\right)\right) \rightarrow 0^+$. Consequently, $\hat{\mathcal{R}}_B[A] \rightarrow 0^+$.
 812

813 If $\mathcal{R}_B[A] = 0$ (at the boundary), then $\exp(0) = 1$, so
 814

$$\hat{\mathcal{R}}_B[A] = \beta \ln(1 + \exp(0)) = \beta \ln(2). \quad (16)$$

815 As $\beta \rightarrow 0^+$ (which happens as $\mu^{(t)} \rightarrow 0^+$ during optimization), $\hat{\mathcal{R}}_B[A] \rightarrow 0^+$. This is consistent
 816 with the desired behavior where the barrier becomes increasingly sharp. The key is that for any fixed
 817 $\beta > 0$, if $\mathcal{R}_B[A]$ becomes sufficiently negative, $\hat{\mathcal{R}}_B[A]$ will approach 0 from the positive side.
 818

819 This softplus-based surrogate $\hat{\mathcal{R}}_B[A]$ effectively smooths the hard constraint boundary, ensuring
 820 that the argument of the logarithm in the barrier term always remains positive. This allows SGD
 821 to navigate near the feasible region boundary more robustly, preventing numerical issues while still
 822 strongly penalizing constraint violations as $\mu^{(t)}$ (and thus β if $\beta = \mu^{(t)}$) decreases. This modification
 823 maintains the theoretical consistency with the original interior-point method while enhancing
 824 the stability of practical optimization with stochastic gradients.
 825

827 B TABULAR RESULTS FOR THE MAIN PAPER

828 The results presented in the main paper are obtained by preserving the original activations. We
 829 use a block size of 32 for the MXFP format. Sections C appendix provide more experiments with
 830 quantized activations (MXFP4) and an additional set of experiments using 6.25 as max bit constraint
 831 (comparable to MXFP6 effective bits). Due to the supernet’s nature, models momentarily take up to
 832 a maximum of 2x their original size during the search phase before the final compression during the
 833 rounding stage of the algorithm.
 834

835 B.1 DETAILED EXPERIMENTAL SETUP

836 Table 1: Detailed Training Parameters. All experiments use Learning Rate = 0.1, Weight Decay = 0,
 837 Adam parameters ($\beta_1=0.9$, $\beta_2=0.999$, $\epsilon=1e-8$), linear LR scheduler, 10 epochs, dataset = allenai/c4,
 838 and 128 samples for "fewshots" experiments, 256 samples for "zeroshot" experiments. All of the
 839 original model weights and parameters are frozen.
 840

841 Model	842 Size	843 Max Bits	844 $\mu^{(0)}$	845 δ	846 $A^{l(0)}$	847 w.dtypes	848 Runtime
849 opt-125m	850 125M	851 4.5	852 0.50	853 0.2	854 $[0.95, 0.05]$	855 mxfp4, mxfp8	856 2.6m
857 opt-350m	858 350M	859 4.5	860 0.50	861 0.5	862 $[0.95, 0.05]$	863 mxfp4, mxfp8	864 6.9m
865 Qwen2.5-0.5B	866 500M	867 4.5	868 0.50	869 0.2	870 $[0.95, 0.05]$	871 mxfp4, mxfp8	872 9.3m
873 gemma-3-1b-it	874 1.0B	875 4.5	876 0.25	877 0.5	878 $[0.95, 0.05]$	879 mxfp4, mxfp8	880 18.2m
882 Llama-3.2-1B	883 1.0B	884 4.5	885 0.25	886 0.5	887 $[0.95, 0.05]$	888 mxfp4, mxfp8	889 20.5m
891 opt-1.3b	892 1.3B	893 4.5	894 0.25	895 0.5	896 $[0.95, 0.05]$	897 mxfp4, mxfp8	898 22.1m
899 Qwen2.5-1.5B	900 1.5B	901 4.5	902 0.50	903 0.2	904 $[0.95, 0.05]$	905 mxfp4, mxfp8	906 26.7m
907 gemma-2b	908 2.0B	909 4.5	910 0.25	911 0.5	912 $[0.95, 0.05]$	913 mxfp4, mxfp8	914 39.6m
916 Llama-3.2-3B	917 3.0B	918 4.5	919 0.25	920 0.5	921 $[0.85, 0.15]$	922 mxfp4, mxfp8	923 52.3m
925 Qwen2.5-3B	926 3.0B	927 4.5	928 0.25	929 0.5	930 $[0.95, 0.05]$	931 mxfp4, mxfp8	932 52.8m
934 gemma-3-4b-it	935 4.0B	936 4.5	937 0.50	938 0.2	939 $[0.95, 0.05]$	940 mxfp4, mxfp8	941 32.1m

852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 B.2 DETAILED FEWSHOT RESULTS
865866 Table 2: Results for **C4 Perplexity (lower is better)**. Color indicates our method outperforms:
867 MXFP4, MXFP6, or MXFP8 baseline.
868

Model	Size	MXFP4	MXFP6	MXFP8	Mixed 4.5 bits
opt-125m	125M	29.25	26.16	25.98	28.98
opt-350m	350M	24.79	22.20	21.96	22.05
Qwen2.5-0.5B	500M	23.60	20.56	20.05	21.09
gemma-3-1b-it	1.0B	42.06	37.24	35.78	35.48
Llama-3.2-1B	1.0B	19.13	16.51	16.11	16.21
opt-1.3b	1.3B	16.34	15.72	15.65	15.71
Qwen2.5-1.5B	1.5B	15.58	14.25	14.10	15.95
gemma-2b	2.0B	14.71	13.69	13.51	14.15
Llama-3.2-3B	3.0B	15.28	13.97	13.68	12.66
Qwen2.5-3B	3.0B	12.97	12.28	12.35	13.69
gemma-3-4b-it	4.0B	25.86	22.80	22.97	18.59

882 Table 3: Results for **C4 Accuracy (higher is better)**. Color indicates our method outperforms:
883 MXFP4, MXFP6, or MXFP8 baseline.
884

Model	Size	MXFP4	MXFP6	MXFP8	Mixed 4.5 bits
opt-125m	125M	37.9%	39.3%	39.4%	36.0%
opt-350m	350M	40.0%	41.4%	41.5%	41.5%
Qwen2.5-0.5B	500M	38.1%	39.9%	39.3%	40.7%
gemma-3-1b-it	1.0B	36.1%	37.8%	38.1%	36.5%
Llama-3.2-1B	1.0B	41.5%	43.6%	44.0%	42.4%
opt-1.3b	1.3B	44.4%	44.9%	45.0%	44.9%
Qwen2.5-1.5B	1.5B	43.0%	43.6%	43.7%	43.9%
gemma-2b	2.0B	44.9%	45.5%	46.1%	44.9%
Llama-3.2-3B	3.0B	44.6%	45.9%	46.2%	46.0%
Qwen2.5-3B	3.0B	44.4%	45.6%	45.8%	45.8%
gemma-3-4b-it	4.0B	42.1%	43.2%	43.4%	44.5%

899 B.3 DETAILED ZEROSHOT RESULTS
900901 Table 4: Results for **LAMBADA (higher is better)**. Color indicates our method outperforms:
902 MXFP4, MXFP6, or MXFP8 baseline.
903

Model	Size	MXFP4	MXFP6	MXFP8	Mixed 4.5 bits
opt-125m	125M	37.6%	37.5%	37.1%	37.8%
opt-350m	350M	40.2%	45.8%	44.8%	44.9%
Qwen2.5-0.5B	500M	36.4%	49.3%	50.7%	50.5%
gemma-3-1b-it	1.0B	38.5%	43.1%	42.9%	45.0%
Llama-3.2-1B	1.0B	52.3%	61.1%	62.3%	59.0%
opt-1.3b	1.3B	57.4%	57.8%	57.8%	58.4%
Qwen2.5-1.5B	1.5B	59.7%	63.2%	62.0%	60.4%
gemma-2b	2.0B	58.9%	64.1%	65.8%	64.9%
Llama-3.2-3B	3.0B	68.0%	70.5%	70.4%	69.7%
Qwen2.5-3B	3.0B	65.7%	65.0%	67.4%	64.7%
gemma-3-4b-it	4.0B	56.4%	59.5%	59.6%	57.7%

918 Table 5: Results for **Wikitext Perplexity (lower is better)**. Color indicates our method outperforms:
 919 **MXFP4**, **MXFP6**, or **MXFP8** baseline.
 920

Model	Size	MXFP4	MXFP6	MXFP8	Mixed 4.5 bits
opt-125m	125M	37.51	32.45	32.18	33.49
opt-350m	350M	29.70	26.05	25.65	25.67
Qwen2.5-0.5B	500M	22.07	18.29	17.83	18.00
gemma-3-1b-it	1.0B	36.69	30.83	29.56	27.71
Llama-3.2-1B	1.0B	14.25	11.89	11.67	12.53
opt-1.3b	1.3B	17.42	16.55	16.46	16.53
Qwen2.5-1.5B	1.5B	13.76	12.33	12.18	12.62
gemma-2b	2.0B	45.47	94.84	42.10	42.57
Llama-3.2-3B	3.0B	10.23	9.42	9.32	9.83
Qwen2.5-3B	3.0B	15.97	15.03	12.77	15.28
gemma-3-4b-it	4.0B	18.86	18.74	18.73	17.05

C MXFP4 ACTIVATIONS

C.1 EXPERIMENTAL SETUP

938 Table 6: Detailed Training Parameters. All experiments use Learning Rate = 0.1, Weight Decay = 0,
 939 Adam parameters ($\beta_1=0.9$, $\beta_2=0.999$, $\epsilon=1e-8$), linear LR scheduler, 10 epochs, dataset = wikitext-
 940 2-raw, and 128 256 samples. All of the original model weights and parameters are frozen.
 941

Model	Size	Max Bits	$\mu^{(0)}$	δ	$A^{l(0)}$	w_dtypes	Runtime
opt-125m	125M	4.5	0.50	0.5	[0.95, 0.05]	mxfp4, mxfp8	3.3m
opt-125m	125M	6.25	0.50	0.5	[0.8, 0.2]	mxfp4, mxfp8	3.3m
opt-350m	350M	4.5	0.50	0.5	[0.95, 0.05]	mxfp4, mxfp8	8.7m
opt-350m	350M	6.25	0.50	0.5	[0.8, 0.2]	mxfp4, mxfp8	8.7m
Qwen2.5-0.5B	500M	4.5	0.50	0.5	[0.95, 0.05]	mxfp4, mxfp8	11.5m
Qwen2.5-0.5B	500M	6.25	0.50	0.5	[0.8, 0.2]	mxfp4, mxfp8	11.5m
Llama-3.2-1B	1.0B	4.5	0.50	0.5	[0.95, 0.05]	mxfp4, mxfp8	23.1m
Llama-3.2-1B	1.0B	6.25	0.50	0.5	[0.8, 0.2]	mxfp4, mxfp8	23.1m
gemma-3-1b-pt	1.0B	4.5	0.50	0.5	[0.95, 0.05]	mxfp4, mxfp8	21.3m
gemma-3-1b-pt	1.0B	6.25	0.50	0.5	[0.8, 0.2]	mxfp4, mxfp8	21.3m
Qwen2.5-1.5B	1.5B	4.5	0.50	0.5	[0.95, 0.05]	mxfp4, mxfp8	31.0m
Qwen2.5-1.5B	1.5B	6.25	0.50	0.5	[0.8, 0.2]	mxfp4, mxfp8	31.0m
gemma-2-2b	2.0B	4.5	0.50	0.5	[0.95, 0.05]	mxfp4, mxfp8	49.4m
gemma-2-2b	2.0B	6.25	0.50	0.5	[0.8, 0.2]	mxfp4, mxfp8	49.5m
Llama-3.2-3B	3.0B	4.5	0.50	0.5	[0.95, 0.05]	mxfp4, mxfp8	1.0h
Llama-3.2-3B	3.0B	6.25	0.50	0.5	[0.8, 0.2]	mxfp4, mxfp8	1.0h
Qwen2.5-3B	3.0B	4.5	0.50	0.5	[0.95, 0.05]	mxfp4, mxfp8	59.3m
Qwen2.5-3B	3.0B	6.25	0.50	0.5	[0.8, 0.2]	mxfp4, mxfp8	59.3m

972 C.2 DETAILED FEWSHOTS RESULTS
973974 Table 7: Results for **WikiText-2-raw Perplexity (lower is better)**. Color indicates our method
975 outperforms: **MXFP4**, **MXFP6**, or **MXFP8** baseline.
976

Model	Size	MXFP4	MXFP6	MXFP8	Mixed 4.5	Mixed 6.25
opt-125m	125M	109.55	80.91	79.62	90.56	38.41
opt-350m	350M	68.39	55.07	53.74	58.96	28.95
Qwen2.5-0.5B	500M	33.23	21.28	20.13	23.55	12.58
Llama-3.2-1B	1.0B	50.35	29.09	27.28	32.12	20.52
gemma-3-1b-pt	1.0B	29.91	25.75	25.28	27.69	18.31
Qwen2.5-1.5B	1.5B	14.48	12.02	11.89	13.20	17.46
gemma-2-2b	2.0B	38.60	35.72	33.38	33.70	14.19
Llama-3.2-3B	3.0B	44.97	66.66	53.52	27.94	15.73
Qwen2.5-3B	3.0B	11.44	10.27	10.04	10.92	14.38

988 Table 8: Results for **WikiText-2-raw Accuracy (higher is better)**. Color indicates our method
989 outperforms: **MXFP4**, **MXFP6**, or **MXFP8** baseline.
990

Model	Size	MXFP4	MXFP6	MXFP8	Mixed 4.5	Mixed 6.25
opt-125m	125M	25.2%	27.9%	28.1%	26.9%	32.8%
opt-350m	350M	28.9%	32.0%	32.2%	30.4%	36.0%
Qwen2.5-0.5B	500M	36.9%	41.8%	42.5%	40.6%	49.8%
Llama-3.2-1B	1.0B	34.7%	40.5%	41.4%	39.2%	40.5%
gemma-3-1b-pt	1.0B	40.1%	42.1%	42.1%	40.9%	41.9%
Qwen2.5-1.5B	1.5B	46.3%	48.6%	48.8%	47.3%	41.7%
gemma-2-2b	2.0B	39.1%	40.5%	41.1%	40.4%	44.9%
Llama-3.2-3B	3.0B	36.0%	32.7%	34.6%	40.8%	44.0%
Qwen2.5-3B	3.0B	49.1%	50.6%	51.0%	49.7%	42.3%

1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026 C.3 DETAILED ZEROSHOT RESULTS
10271028 Table 9: Results for **ARC-Challenge (higher is better)**. Color indicates our method outperforms:
1029 **MXFP4**, **MXFP6**, or **MXFP8** baseline.
1030

Model	Size	MXFP4	MXFP6	MXFP8	Mixed 4.5	Mixed 6.25
opt-125m	125M	20.0%	19.6%	19.7%	19.2%	19.5%
opt-350m	350M	20.6%	20.1%	20.4%	21.1%	20.6%
Qwen2.5-0.5B	500M	27.0%	27.6%	28.9%	28.4%	28.5%
Llama-3.2-1B	1.0B	28.4%	31.9%	31.6%	29.4%	31.7%
gemma-3-1b-pt	1.0B	33.4%	34.6%	35.4%	34.0%	35.5%
Qwen2.5-1.5B	1.5B	40.4%	40.5%	42.2%	39.9%	41.2%
gemma-2-2b	2.0B	43.7%	45.6%	46.8%	44.5%	45.2%
Llama-3.2-3B	3.0B	41.3%	42.2%	41.7%	40.5%	42.1%
Qwen2.5-3B	3.0B	43.3%	44.0%	45.2%	44.1%	45.7%

1041
1042 Table 10: Results for **LAMBADA (higher is better)**. Color indicates our method outperforms:
1043 **MXFP4**, **MXFP6**, or **MXFP8** baseline.
1044

Model	Size	MXFP4	MXFP6	MXFP8	Mixed 4.5	Mixed 6.25
opt-125m	125M	37.6%	37.5%	37.1%	37.3%	36.2%
opt-350m	350M	40.2%	45.8%	44.8%	42.0%	43.3%
Qwen2.5-0.5B	500M	36.4%	49.3%	50.7%	44.1%	47.6%
Llama-3.2-1B	1.0B	52.3%	61.1%	62.3%	54.1%	62.2%
gemma-3-1b-pt	1.0B	53.0%	56.1%	55.8%	53.9%	56.8%
Qwen2.5-1.5B	1.5B	59.7%	63.2%	62.0%	61.2%	62.3%
gemma-2-2b	2.0B	64.9%	69.5%	70.0%	66.5%	69.0%
Llama-3.2-3B	3.0B	68.0%	70.5%	70.4%	68.9%	69.9%
Qwen2.5-3B	3.0B	65.7%	65.0%	67.4%	68.4%	66.8%

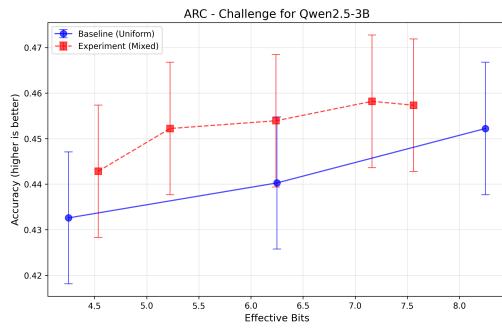
1080
1081 D ADDITIONAL EXPERIMENTS
1082
1083
1084

To demonstrate the robustness of our method across varying hardware constraints, we evaluated the performance of our Constrained Mixed Precision Search (CMPS) against uniform baselines across a continuous range of effective bit-widths.

1085

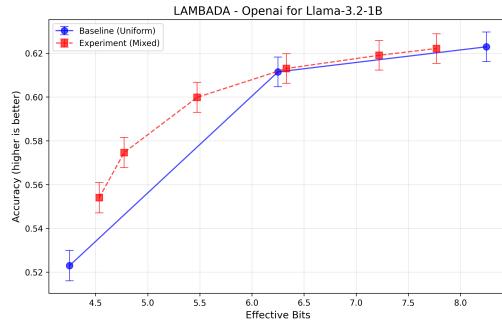


(a) Qwen2.5-0.5B

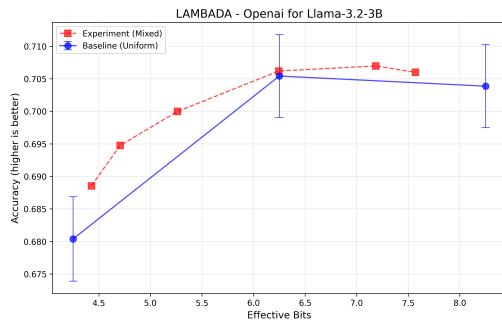


(b) Qwen2.5-3B

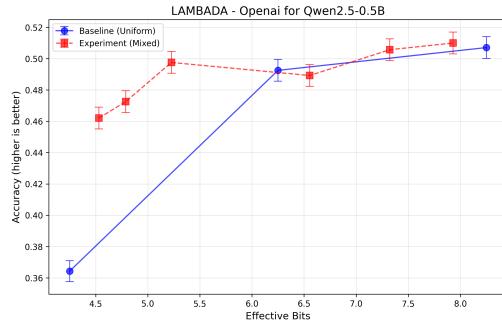
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
Figure 6: **ARC-Challenge Accuracy vs. Effective Bits.** Comparison of our Mixed-Precision Search (Red) vs. Uniform Baselines (Blue). The mixed-precision approach consistently yields a superior Pareto frontier, achieving higher accuracy for the same effective bit budget across both model sizes.



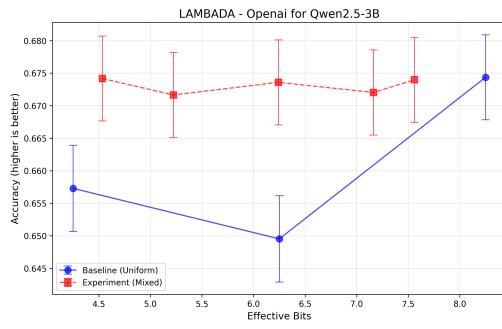
(a) Llama-3.2-1B



(b) Llama-3.2-3B



(c) Qwen2.5-0.5B



(d) Qwen2.5-3B

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
Figure 7: **LAMBADA (OpenAI) Accuracy vs. Effective Bits.** Our constrained optimization (Red dashed line) consistently outperforms the uniform quantization baseline (Blue solid line). Notably, our method frequently achieves the performance of higher-precision uniform models (e.g., 6-bit) while using significantly fewer bits (e.g., 4.5 bits).

1134

1135

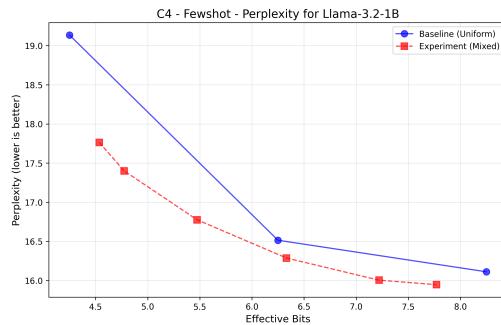
1136

1137

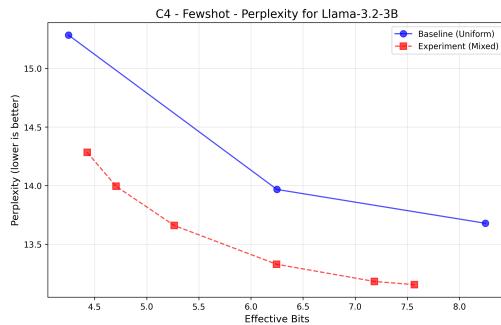
1138

1139

1140

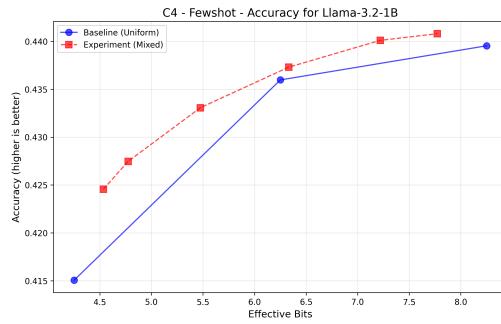


(a) Llama-3.2-1B

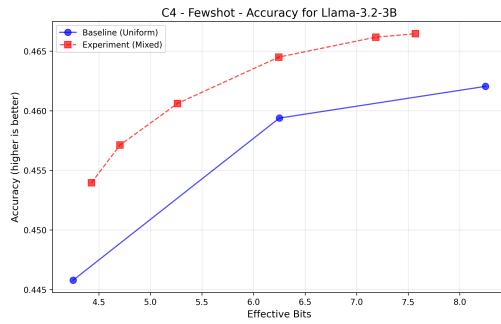


(b) Llama-3.2-3B

Figure 8: **C4 Validation Perplexity vs. Effective Bits (Lower is Better).** The mixed-precision allocation provides a strictly better trade-off curve, achieving lower perplexity at every measured bit-width constraint compared to uniform MXFP quantization.



(a) Llama-3.2-1B



(b) Llama-3.2-3B

Figure 9: **C4 Validation Accuracy vs. Effective Bits.** Similar to the perplexity results, the accuracy metric on the calibration domain (C4) shows that the learned allocation preserves model capability better than uniform baselines as the compression rate increases.

1183

1184

1185

1186

1187