
Harnessing Feature Resonance under Arbitrary Target
Alignment for Out-of-Distribution Node Detection

Shenzhi Yang1,2,5 Junbo Zhao1 Sharon Li3 Shouqing Yang1,2,5 Dingyu Yang1,2

Xiaofang Zhang4 Haobo Wang1,2,5

1 Zhejiang University
2 Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security

3 Department of Computer Sciences, University of Wisconsin-Madison
4 School of Computer Science and Technology, Soochow University

5 Innovation and Management Center, School of Software Technology(Ningbo), Zhejiang University
Corresponding to: wanghaobo@zju.edu.cn

Abstract

Out-of-distribution (OOD) node detection in graphs is a critical yet challenging task.
Most existing approaches rely heavily on fine-grained labeled data to obtain a pre-
trained supervised classifier, inherently assuming the existence of a well-defined
pretext classification task. However, when such a task is ill-defined or absent, their
applicability becomes severely limited. To overcome this limitation, there is an
urgent need to propose a more scalable OOD detection method that is independent
of both pretext tasks and label supervision. We harness a new phenomenon called
Feature Resonance, focusing on the feature space rather than the label space.
We observe that, ideally, during the optimization of known ID samples, unknown
ID samples undergo more significant representation changes than OOD samples,
even when the model is trained to align arbitrary targets. The rationale behind
it is that even without gold labels, the local manifold may still exhibit smooth
resonance. Based on this, we further develop a novel graph OOD framework,
dubbed Resonance-based Separation and Learning (RSL), which comprises two
core modules: (i)-a more practical micro-level proxy of feature resonance that
measures the movement of feature vectors in one training step. (ii)-integrate with a
synthetic OOD node strategy to train an effective OOD classifier. Theoretically,
we derive an error bound showing the superior separability of OOD nodes during
the resonance period. Extensive experiments on a total of thirteen real-world graph
datasets empirically demonstrate that RSL achieves state-of-the-art performance.
The code is available via https://github.com/ShenzhiYang2000/RSL.

1 Introduction

Graph-based machine learning models like Graph Neural Networks (GNNs) [Kipf and Welling, 2016a,
Xu et al., 2018, Abu-El-Haija et al., 2019, Zhou et al., 2024] have become increasingly prevalent
in applications such as social network analysis [Fan et al., 2019], knowledge graphs [Baek et al.,
2020], and biological networks [De Cao and Kipf, 2018]. Despite the success of GNNs, detecting
out-of-distribution (OOD) nodes remains an under-explored challenge. These OOD nodes differ
significantly from the in-distribution (ID) nodes used during training, and their presence can severely
undermine the performance and robustness of graph models. As deploying GNNs in real-world
environments becomes more common, the ability to identify and handle OOD nodes is crucial for
ensuring the reliability of using these models.
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To address this, most existing methods [Hendrycks and Gimpel, 2016, Liang et al., 2017, Hendrycks
et al., 2018, Liu et al., 2020, Wu et al., 2023] employ classifiers pretrained on a preceding classification
task to develop OOD metrics based on (i)-classifier outputs, such as Maximum Softmax Probability
(MSP) [Hendrycks and Gimpel, 2016] and Energy [Liu et al., 2020, Wu et al., 2023]; (ii)-supervised
representations, such as KNN [Sun et al., 2022] and NNGuide [Park et al., 2023]. These methods
heavily rely on two key assumptions: (i) the availability of multi-class labels, and (ii) a well-
defined pretext multi-class classification task. However, in practice, there exists a wide range of
OOD detection scenarios that fall outside these constraints. In many cases, the pretext task is not
classification—for example, OOD detection in generative modeling [Nalisnick et al., 2018, Ren
et al., 2019], regression [Lakshminarayanan et al., 2017], or reinforcement learning [Nasvytis et al.,
2024]. In some scenarios, there may not even be a defined pretext task at all, such as in one-class
OOD detection [Ruff et al., 2018]. These non-classification settings lack accessible multi-class
labels, making it difficult to directly apply existing methods. Therefore, there is an urgent need for
label-agnostic and unsupervised approaches that can operate effectively in such contexts. To date,
only a few papers [Gong and Sun, 2024, Sehwag et al., 2021, Liu et al., 2023] study this practical
setup, and there is still a large room for improvement, especially in the graph field at the node level.

(a) Toy Dataset (b) Gradient Descent Trajectory
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Figure 1: (a) We conduct a preliminary study on the changes
in ID and OOD node representations during training using a
toy dataset. (b) Projections of the representations of ID and
OOD nodes onto gradients: Proj∇ℓ(θt;·)xi = xi·∇ℓ(θt;·)
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∇ℓ(θt; ·). (c) Schematic of Feature Resonance.

In this paper, we revisit the graph
OOD detection task at the node level
from a new perspective and turn our
attention to the intrinsic similarities
within the data. An intuitive idea is
that the ID samples may still share
some commonalities in the represen-
tation space. We hypothesize that
when optimizing the representation of
known ID nodes, the representation
of unknown ID nodes and unknown
OOD nodes will change with differ-
ent trajectories. Based on the hypoth-
esis and using a toy dataset (Figure
1(a)), we design an experiment where
the features of labeled ID samples are
aligned to an arbitrarily fixed repre-
sentation vector. Interestingly, we ob-
serve a distinct behavior during this
optimization process: the representa-
tions of unlabeled wild ID samples ex-
perienced more pronounced changes
than wild OOD samples, as shown in
Figure 1(b). This phenomenon closely
resembles the concept of forced vibra-
tion, where resonance occurs when an
external force aligns with the natural
frequency of an oscillator, amplifying
its oscillation to a maximum. Analogously, we refer to this phenomenon as Feature Resonance:
during the optimization of known ID samples, the representation of unknown ID samples undergoes
more significant changes compared to OOD samples. This phenomenon reveals the intrinsic relation-
ship between ID samples, highlighting their shared underlying distribution. Evidently, this feature
resonance phenomenon can be leveraged for OOD detection: weaker representation changes during
known ID optimization indicate a higher likelihood of being OOD.

In real-world scenarios, due to the intrinsic complex pattern in data, we find that the feature resonance
phenomenon still occurs but slightly differs from the ideal conditions. To illustrate this, we further
propose a micro-level proxy for measuring feature resonance—by computing the movement of the
representation vector in one training step. Our findings reveal that in more complex scenarios, the
feature resonance phenomenon typically arises during the middle stages of the training process,
whereas during other phases, it may be overwhelmed by noise or obscured by overfitting. In such
cases, evaluating the entire trajectory often fails to yield satisfactory results. Fortunately, efficient
OOD detection can still be achieved by calculating the micro-level feature resonance measure.
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By utilizing a simple binary ID/OOD validation set1, we empirically show the feature resonance
period can be precisely identified, and we identify more minor representation differences as OOD
samples. Notably, our new micro-level feature resonance measure is still label-independent by fitting
a randomly fixed target, making it highly compelling in category-free and task-agnostic scenarios.
Theoretical and experimental proof that micro-level feature resonance can filter a set of reliable OOD
nodes with low error. Furthermore, we combine the micro-level feature resonance with the current
Langevin-based synthetic OOD nodes generating strategy to train an OOD classifier for more effective
OOD node detection performance, which we call the whole framework as RSL; for example, the
FPR95 metric is reduced by an average of 15.20% compared to the current state-of-the-art methods.

2 Method

2.1 Revealing the Feature Resonance Phenomenon

Feature 
Resonance 
Period

Figure 2: The performance of using resonance-
based score τ to detect OOD nodes varies with
training progress. The higher the AUROC, the
better, and the lower the FPR95, the better.

Previous studies [Hendrycks and Gimpel, 2016,
Liu et al., 2020, Wu et al., 2023] mostly train
a classifier on ID nodes with multi-category la-
bels and develop selection criteria based on out-
put probabilities, e.g., entropy. However, these
methods become inapplicable in category-free
and task-agnostic scenarios.

To address this problem, we turn our attention
to the intrinsic similarities within the data. An
intuitive idea is that although the output space
may no longer be reliable, the ID samples may
still share some commonalities in the represen-
tation space. We hypothesize that when opti-
mizing the representation of known ID nodes,
the representation of unknown ID nodes and un-
known OOD nodes will change with different
trajectories. Motivated by this, and under the
assumption of some specific training process, we define a feature trajectory measure F̂ (x̃i) of a
sample x̃i:

F̂ (x̃i) =
∑
t

hθt+1
(x̃i)− hθt(x̃i) (1)

where hθt denote the model that performs representation transformation on a sample x̃i, with θt
representing its parameters at the t-th epoch.

In our preliminary experiments, we first calculate the metric under supervised conditions and observe
a significant difference between the feature trajectories of ID samples and those of OOD samples.
Specifically, we perform multi-category training on known ID nodes on two datasets with true N -
category labels, Squirrel and WikiCS 2. Imagine that during multi-category training, representations
of known ID nodes within the same category align while unknown ID nodes drift toward the
corresponding category centers. However, the trajectory trends and lengths of unknown ID nodes
differ significantly from those of OOD nodes, with the former showing more distinct trends and longer
trajectories; see Figure 1 (c) for visual illustration. In other words, the well-defined in-distribution
manifold is always shaped by ID samples, whose representation trajectories tend to exhibit similar
behavior, which we refer to as feature resonance. Conversely, OOD samples belong to distinct
manifold structures, making their representations less likely to converge coherently. Evidently, this
feature resonance phenomenon can be leveraged for OOD detection.

Despite the promise, the abovementioned feature resonance phenomenon occurs under multi-category
training. But how can we induce this phenomenon in a label-agnostic scenario without multi-category
labels? Interestingly, we find that even when random labels are assigned to known ID nodes
for multi-category training, the trajectories of unknown ID nodes are still more significant than

1The use of the validation set is consistent with previous works [Katz-Samuels et al., 2022, Gong and Sun,
2024, Du et al., 2024a,b] and does not contain multi-category labels.

2N is the number of categories, and the results above with different target vectors are shown in Table 6.
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those of unknown OOD nodes. More surprisingly, on a ideal toy dataset, even when all known ID
node representations are aligned toward one single random fixed target vector, the trajectories
of unknown ID nodes are still longer than those of unknown OOD nodes, as shown in Figure 1(a).
Green points represent unknown ID samples, blue points represent unknown OOD samples, and red
points represent known ID samples aligned to a target vector. As shown in Figure 1(b), modifying the
representation of known ID samples results in longer representation change trajectories for unknown
ID samples compared to unknown OOD samples. The experiments above indicate that the feature
resonance phenomenon is label-independent and results from the intrinsic relationships between ID
node representations. Therefore, this is highly suitable for category-free and task-agnostic OOD
detection scenarios without multi-category labels.

Since the trajectory represents a global change, we call it a macroscopic feature resonance, as follows:
Definition 1. Feature Resonance (macroscopic): For any optimization objective ℓ(Xknown, ·) applied
to the representations Xknown of known ID samples derived from any model hθ(·), we have ∥
F̂ (x̃i) ∥Pwild

in
>∥ F̂ (x̃i) ∥Pwild

out
.

2.2 Utilizing the Micro-level Feature Resonance Phenomenon with An Arbitrary Target

As mentioned above, we can leverage the feature resonance phenomenon to detect OOD nodes. In
our realistic implementations, we align the features of known ID nodes to an arbitrary target vector
using mean squared error as follows:

ℓ(hθt(Xknown), e) = E(∥ 1⊤e− (XknownW
⊤) ∥22) (2)

where hθt(Xknown) = XknownW
⊤ represent the last linear layer of the model for representation

transformation and e denotes an arbitrary randomly generated target vector.

But, in contrast to our toy dataset, the real-world datasets typically exhibit much more complex
feature attributes. As a result, the feature resonance of trajectory at the macro level is not as
ideal or pronounced as observed in experiments on the toy dataset. Therefore, to explore the
reasons behind this issue, we delve deeper into the changes in finer-grained node representations
across epochs to study the feature resonance phenomenon. Specifically, we study the differences in
∆hθt(x̃i) = hθt+1(x̃i)− hθt(x̃i) between ID samples and OOD samples. Obviously, the existence
of ∥ ∆hθt(x̃i) ∥Pwild

in
>∥ ∆hθt(x̃i) ∥Pwild

out
is a necessary condition for satisfying ∥ F̂ (x̃i) ∥Pwild

in
>∥

F̂ (x̃i) ∥Pwild
out

, so we define ∥ ∆hθt(x̃i) ∥Pwild
in

>∥ ∆hθt(x̃i) ∥Pwild
out

as a feature resonance at the
microscopic level:
Definition 2. Feature Resonance (microscopic): For any optimization objective ℓ(Xknown, ·) applied
to the known ID nodes’ representations Xknown from any model hθt(·), during the optimization
process, there exists t such that ∥ ∆hθt(x̃i) ∥Pwild

in
>∥ ∆hθt(x̃i) ∥Pwild

out
. We define the resonance-

based filtering score as τi =∥ ∆hθt(x̃i) ∥2. The resonance-based scores τ of OOD nodes should be
smaller than those of ID nodes at t.

By observing τ for ID samples and OOD samples, we find that feature resonance does not persist
throughout the entire training process but rather occurs at specific stages of training. In our ex-
periments on the common benchmarks, we find that during the early stages of training, the model
is searching for the optimal optimization path, leading to chaotic representation changes and thus
making feature resonance insignificant. However, in the middle stages of training, once the model
identifies an optimization path that aligns with the patterns of the ID samples, it optimizes along the
path most relevant to the features of the ID samples, and feature resonance becomes most prominent.
As the model continues to optimize and enters the overfitting stage, the feature resonance phenomenon
begins to dissipate. Figure 2 shows the experimental results on the Amazon dataset, and others are
provided in Figure 3 of the Appendix. Through the above experiments and analyses, we find that
using F̂ (x̃i) to identify OOD nodes is affected by error accumulation and is, therefore, not a reliable
approach. However, there exists a specific period during training when micro-level feature resonance
occurs. By utilizing a validation set [Katz-Samuels et al., 2022, Gong and Sun, 2024, Du et al.,
2024a,b], we can easily identify the period during which feature resonance occurs.

Formally, our new feature resonance-based OOD nodes detector is defined as follows:

gγ(x̃i) = 1{τ∗i ≤ γ}, s.t., τ∗ = max
t

AUROC(τ tVin
val
, τ tVout

val
) (3)
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Table 1: The statistics of the real-world OOD node detection datasets. × denotes no available
multi-category labels. Notably, we do not use any true labels for all datasets.

Dataset Squirrel WikiCS Cora Citeseer Pubmed Chameleon YelpChi Amazon Reddit
# Nodes 5,201 11,701 2,708 3,327 19,717 2,277 45,954 11,944 10,984

# Features 2,089 300 1,433 3,703 500 2,325 32 25 64
Avg. Degree 41.7 36.9 7.8 5.5 9.0 31.7 175.2 800.2 15.3

OOD node (%) 20.0 29.5 66.7 45.7 20.8 40.2 14.5 9.5 3.3
# Category 5 10 3 3 2 3 × × ×

where gγ = 1 indicates the OOD nodes while gγ = 0 indicates otherwise, and γ is typically chosen to
guarantee a high percentage, such as 95%, of ID data that is correctly classified. Here, t is determined
by the validation set Vval.

To summarize our method: we calculate a resonance-based filtering score τ during the transformation
of known ID sample representations. By leveraging a validation set, we identify the period during
training when micro-level resonance is most significant. Within this period, test set nodes with
smaller τ values are more likely to be OOD nodes.

2.3 Extension with Synthetic OOD Node Strategy

Although the resonance-based filtering score effectively separates OOD nodes, recent studies [Gong
and Sun, 2024] suggest that training an OOD classifier with synthetic OOD nodes can improve OOD
node detection. Therefore, we propose a novel framework that employs feature resonance scores to
generate more realistic synthetic OOD nodes.

Specifically, we define the candidate OOD node set as Vcand = {ṽi ∈ Vwild : τi ≤ T}, where
T = minn(τ) is the n-th smallest τ of wild nodes, selecting nodes with the smallest n τ values. The
features of these nodes form Xcand. Then, we compute a trainable metric based on the weighted
mapping of node v’s representations across K GNN layers: Eθ(v) = WK

(∑K
k βkh

(k)
v

)
, where

βk ∈ R is a learnable parameter, and WK ∈ R1×d transforms the node representations to the
energy scalar. Then, we employ stochastic gradient Langevin dynamics (SGLD) [Welling and
Teh, 2011] to generate synthetic OOD nodes Vsyn = {v̂1, · · · , v̂j} with random initial features
Xsyn = {x̂1, · · · , x̂j} as follows:

x̂
(t+1)
j =λ

(
x̂
(t)
j − α

2
∇

x̂
(t)
j
Eθ

(
v̂
(t)
j

)
+ ϵ

)
+ (1− λ)Ex∼Xcand

(x− x̂
(t)
j ) (4)

where α
2 is the step size and λ is a trade-off hyperparameter. ϵ is the Gaussian noise sampled from

multivariate Gaussian distribution N (0, ζ). Unlike EnergyDef [Gong and Sun, 2024], we utilize
the candidate OOD nodes Vcand as examples to generate synthetic OOD nodes that better align
with the actual OOD nodes. After obtaining the synthetic OOD nodes, we define the training set
Vtrain = Vknown ∪ Vcand ∪ Vsyn with features Xtrain and labels Ytrain. The initially known ID
nodes Vknown are assigned a label of 1. In contrast, the candidate OOD nodes Vcand and the generated
synthetic OOD nodes Vsyn are assigned a label of 0. We use binary cross-entropy loss for training:

ℓcls = −
(
yvlog(σ(Eθ(v))) + (1− yv)log(1− σ(Eθ(v)))

)
(5)

where σ(·) is the sigmod function. Similarly, we identify the OOD nodes as follows: g′γ′(Eθ(v)) =

1{Eθ(v) ≤ γ′}. , where g′γ′ = 1 indicates the OOD nodes while g′γ′ = 0 indicates otherwise, and γ′

is chosen to guarantee a high percentage, e.g., 95%, of ID data that is correctly classified.

2.4 Theoretical Analysis

Our main theorem quantifies the separability of the outliers in the wild by using the resonance-based
filter score τ . We provide detailed theoretical proof in the Appendix C.

Let ERRt
out be the error rate of OOD data being regarded as ID at t-th epoch, i.e., ERRt

out = |{ṽi ∈
Vout

wild : τi ≥ T}|/|Vout
wild|, where Vout

wild denotes the set of outliers from the wild data Vwild. Then ERRout
has the following generalization bound:
Theorem 1. (Informal). Under mild conditions, if ℓ(x, e) is β-smooth w.r.t wt, Pwild has (γ, ξ)-
discrepancy w.r.t Pin, and there is η ∈ (0, 1) s.t. ∆ = (1 − η)2ξ2 − 8β1R

∗
in > 0, then where

5



n = Ω(d/min{η2∆, (γ − R∗
in)}),m = Ω(d/η2ξ2), with the probability at least 0.9, for 0 < T <

0.9M̂t(M̂t is the upper bound of score τi),

ERRt
out ≤

max{0, 1−∆η
ξ/π}

1− T/(
√
2/(2tα− 1))2

+O(

√
d

π2n
) +O(

√
max{d,∆η2

ξ /π2}
π2(1− π)m

) (6)

where ∆η
ξ = 0.98η2ξ2 − 8β1R

∗
in and R∗

in is the optimal ID risk, i.e., R∗
in = minw∈WEx∼Pin

ℓ(x, e).
d is the dimension of the space W , t denotes the t-th epoch, and π is the OOD class-prior probability
in the wild.

Practical implications of Therorem 1. The above theorem states that under mild assumptions, the
error ERRout is upper bounded. If the following two regulatory conditions hold: 1) the sizes of the
labeled ID n and wild data m are sufficiently large; 2) the optimal ID risk R∗

in is small, then the
upper bound is mainly depended on T and t. We further study the main error of T and t which we
defined as δ(T, t).
Theorem 2. (Informal). 1) if ∆η

ξ ≥ (1 − ϵ)π for a small error ϵ ≥ 0, then the main error δ(T, t)
satisfies that

δ(T, t) =
max{0, 1−∆η

ξ/π}
1− T/(

√
2/(2tα− 1))2

≤ ϵ

1− T/(
√
2/(2tα− 1))2

(7)

2) When learning rate α is small sufficiently, and if ξ ≥ 2.011
√

8β1R∗
in + 1.011

√
π, then there exists

η ∈ (0, 1) ensuring that ∆ > 0 and ∆η
ξ > π hold, which implies that the main error δ(T, t) = 0.

Practical implications of Therorem 2. Theorem 2 states that when the learning rate α is sufficiently
small, the primary error δ(T, t) can approach zero if the difference ζ between the two data distributions
Pwild and Pin is greater than a certain small value. Meanwhile, Theorem 2 also shows that the primary
error δ(T, t) is inversely proportional to the learning rate α and the number of epochs (t). As the t
increases, the primary error δ(T, t) also increases, while a smaller learning rate α leads to a minor
primary error δ(T, t). However, during training, there exists t at which the error reaches its minimum.

3 Experiment

In this section, we present the main experimental results, while in Appendix F.2, we investigate
feature resonance across datasets. Appendix F.3 compares scoring methods, while F.4 evaluates time
efficiency. Appendix F.5 tests RSL with different GNN encoders, and F.6 examines graph-level OOD
detection. Appendices F.8 and F.9 provide score distribution and node representation visualizations.

3.1 Experimental Setup

Datasets. We conduct extensive experiments to evaluate RSL on a total of nine real-world OOD
node detection datasets: six multi-category datasets, Squirrel [Rozemberczki et al., 2021], WikiCS
[Mernyei and Cangea, 2020], Cora, Citeseer, Pubmed [Kipf and Welling, 2016a], and Chameleon
[Rozemberczki et al., 2021] and three binary classification fraud detection datasets: YelpChi [Rayana
and Akoglu, 2015], Amazon [McAuley and Leskovec, 2013], and Reddit [Kumar et al., 2019]. The
statistics of these datasets are summarized in Table 1. Additionally, we validate our method on
four graph-level OOD detection datasets, including ENZYMES, PROTEINS [Morris et al., 2020],
ClinTox, and LIPO [Wu et al., 2018]. We provide detailed dataset description in the Appendix E.3.

Baselines. We assess the performance of RSL against a total of twenty-one baseline methods
spanning five categories: 1) Traditional outlier detection methods, including local outlier factor
[Breunig et al., 2000] like LOF-KNN and MLPAE. 2) Graph-based outlier detection models,
including GCN autoencoder [Kipf and Welling, 2016b], GAAN [Chen et al., 2020], DOMINANT
[Ding et al., 2019], ANOMALOUS [Peng et al., 2018], and SL-GAD [Zheng et al., 2021]. 3)
Transformation-based outlier detection approaches, such as GOAD [Bergman and Hoshen, 2020]
and NeuTral AD [Qiu et al., 2021]. 4) Entropy-based detection techniques, including MSP, ODIN,
OE, Energy, GKDE [Zhao et al., 2020], OODGAT [Song and Wang, 2022], GNNSafe [Wu et al.,
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Table 2: Unsupervised OOD detection on real-world datasets. “OOM” indicates out-of-memory,
“TLE” means time limit exceeded, and “-” denotes inapplicability. Detectors with ♣ use only node
attributes, while ♠ share RSL’s GNN backbone ( GCN ). Entropy-based methods with ♢ use true
multi-category labels, and ♦ rely on K-means pseudo labels. Top results: 1st, 2nd.

Method
Dataset Squirrel WikiCS YelpChi Amazon Reddit

AUROC ↑ AUPR ↑ FPR@95 ↓
LOF-KNN♣ 51.85 29.87 95.21 44.06 37.48 96.28 56.39 25.98 92.57 45.25 14.26 95.10 57.88 6.95 93.24

MLPAE♣ 43.15 24.81 97.98 70.99 63.74 77.76 51.90 24.53 92.42 74.54 51.59 57.93 52.10 5.80 94.43
GCNAE 37.87 22.64 99.08 57.95 46.32 92.97 44.20 19.22 97.06 45.07 12.38 98.54 51.78 6.14 93.75
GAAN 38.01 22.57 98.99 58.15 46.60 93.37 44.29 19.30 96.91 53.26 6.63 98.05 52.21 5.96 94.06

DOMINANT 41.78 24.73 95.53 42.55 35.43 97.22 52.77 24.90 92.86 78.08 35.96 76.05 55.89 6.03 96.48
ANOMALOUS 51.04 29.09 96.39 67.99 54.51 92.74 OOM OOM OOM 65.12 25.15 85.34 55.18 6.40 94.10

SL-GAD 48.29 27.62 97.19 51.87 44.83 95.26 56.11 26.49 93.27 82.63 56.27 51.36 51.63 6.02 94.27
GOAD♠ 62.32 37.51 92.28 50.65 37.22 99.78 58.03 28.51 89.84 72.92 45.53 66.36 52.89 5.36 94.26

NeuTral AD♠ 52.51 30.04 97.16 53.58 43.49 94.30 55.81 25.14 94.23 70.01 24.36 92.19 55.70 6.45 94.59
GKDE♢ 56.15 33.41 94.96 70.47 61.18 82.71 - - - - - - - - -

OODGAT♢ 58.84 35.13 93.31 74.13 62.47 84.48 - - - - - - - - -
GNNSafe♠♢ 56.38 32.22 95.17 73.35 66.47 76.24 - - - - - - - - -
NodeSafe♠♢ 57.82 33.57 93.64 74.81 67.93 74.85 - - - - - - - - -
GRASP♠♢ 61.38 36.95 90.77 78.46 71.52 71.08 - - - - - - - - -
OODGAT♦ 57.78 34.66 92.61 52.76 44.71 90.02 55.97 23.07 97.93 82.54 54.94 52.10 54.62 6.05 93.85
GNNSafe♠♦ 49.52 26.63 97.60 64.15 50.85 92.63 55.26 26.68 91.40 68.51 25.39 84.31 49.63 5.36 95.98
NodeSafe♠♦ 50.91 27.48 96.18 65.77 52.02 91.03 56.61 28.01 89.95 69.92 26.44 82.72 50.74 6.03 94.26
GRASP♠♦ 52.63 28.12 94.87 66.94 53.33 89.12 58.05 28.67 88.11 70.31 27.81 81.29 51.82 6.91 92.04

SSD♠ TLE TLE TLE 64.29 58.45 87.12 55.39 27.88 91.63 72.49 41.82 84.27 59.74 6.21 91.15
EnergyDef♠ 64.15 37.40 91.77 70.22 60.10 83.17 62.04 29.71 90.62 86.57 74.50 32.43 63.32 8.34 89.34

RSL w/o classifier 61.52 38.96 90.18 79.15 78.65 70.38 65.42 37.08 83.53 87.43 83.31 19.56 52.37 6.97 91.39
RSL w/o Vsyn 60.46 34.89 93.59 81.21 79.93 52.19 65.15 38.93 81.84 87.81 81.10 25.18 61.36 8.48 89.43

RSL 64.12 39.58 89.90 84.01 81.14 49.23 66.11 39.73 80.45 90.03 83.91 19.60 64.83 10.18 85.49

2023], NodeSafe [Yang et al., 2025], and GRASP [Ma et al., 2024]. 5) Category-free detection
methods, including EnergyDef [Gong and Sun, 2024] and SSD [Sehwag et al., 2021].

Additionally, we also compare our method with graph-level approaches, including 1) graph kernel
combined with a detector [Vishwanathan et al., 2010, Shervashidze et al., 2011, Neumann et al.,
2016, Breunig et al., 2000, Manevitz and Yousef, 2001, Liu et al., 2008], 2) graph contrastive
learning with a detector [You et al., 2020, Liu et al., 2008, Sehwag et al., 2021, Zhou et al., 2021,
Liu et al., 2023], and 3) end-to-end methods [Zhao and Akoglu, 2023, Ma et al., 2022].

Details of baselines and implementation are in Appendix E.4 and E.5, respectively.

Metrics. Following prior research on OOD node detection, we evaluate the detection performance
using three widely recognized, threshold-independent metrics: AUROC (↑), AUPR (↑) and FPR95(↓).
We provide a detailed metric description in the Appendix E.2.

3.2 Main Results

Table 3: Performance comparison across methods on
Cora, Citeseer, Pubmed, and Chameleon.

Method
Dataset Cora Citeseer Pubmed Chameleon

FPR@95 ↓ AUROC ↑
MSP 70.86 84.56 67.81 82.39 87.37 68.80 85.70 57.96

Energy 67.54 85.47 88.53 72.38 93.86 54.09 88.06 59.20
KNN 90.20 70.94 83.10 72.91 89.79 64.14 93.38 57.90
ODIN 68.41 84.98 67.91 82.42 87.49 68.80 85.31 57.94

Mahalanobis 69.68 85.48 99.12 54.62 96.81 56.85 95.55 53.19
GKDE 63.71 86.27 80.42 79.94 65.48 69.92 92.93 50.14
GPN 58.45 82.93 65.68 88.13 88.61 64.13 82.25 68.20

OODGAT 94.59 53.63 62.39 84.33 88.27 58.28 94.43 59.67
GNNSafe 54.71 87.52 60.15 84.85 62.47 83.70 100.00 50.42
NodeSafe 50.32 89.11 55.71 86.16 58.07 85.11 98.76 52.19
GRASP 29.70 93.50 35.23 89.75 37.41 88.43 66.88 76.93

RSL 28.76 94.14 33.67 90.44 35.15 89.10 45.81 78.04

Tables 2 and 3 present the main experi-
mental results of various methods across
nine public datasets. Specifically, when
multi-class labels are unavailable, RSL sig-
nificantly outperforms existing methods.
For methods that require multi-class la-
bels, we follow EnergyDef [Gong and Sun,
2024] by assigning pseudo-labels using K-
means. On the YelpChi, Amazon, and Red-
dit datasets, RSL achieves average improve-
ments of 3.01%, 7.09%, and 8.95% over
the SOTA methods in terms of AUROC,
AUPR, and FPR95, respectively.

When multi-class label information is available, RSL shows even more significant performance gains
on heterophilic graphs. On the Squirrel, WikiCS, and Chameleon datasets, RSL achieves an average
improvement of 14.93% in FPR95 over SOTA methods. This is because RSL does not rely on the
homophily assumption of the graph, and thus performs well on heterophilic graphs. On homophilic
graphs with multi-class labels—namely Cora, Citeseer, and Pubmed—RSL achieves performance
comparable to SOTA methods. Notably, RSL does not leverage multi-class labels for training in any

7



Table 4: Performance of RSL at achievable label proportion R in the WikiCS dataset.
R = 0.0 R = 0.1 R = 0.2 R = 0.4 R = 0.6 R = 0.8 R = 1.0

AUROC(↑) 84.01 86.41 87.46 87.89 88.35 88.57 89.07
AUPR(↑) 81.14 83.35 84.80 85.24 85.42 86.16 86.85

FPR@95(↓) 49.23 44.95 42.69 41.25 39.50 39.68 38.78

Table 5: Performance of different models on the Citeseer under varying homophily ratio R values.

Model R = 0.0 R = 0.1 R = 0.2 R = 0.3 R = 0.4 R = 0.5
FPR@95 ↓ AUROC ↑

GNNSafe 60.15 84.85 52.92 86.56 47.68 87.40 45.64 89.30 42.22 90.42 37.19 91.78
NodeSafe 55.71 86.16 49.47 87.45 42.23 90.47 38.62 92.31 34.79 93.68 30.57 94.93
GRASP 35.23 89.75 30.63 91.26 27.35 94.00 16.01 96.36 13.69 97.33 10.08 98.25

RSL 33.67 90.44 28.91 91.75 16.62 94.45 9.82 96.09 7.71 97.30 4.53 98.23

of the above experiments. This highlights its label-agnostic and task-independent nature, contributing
to its broader applicability.

How effective is resonance-based filter score τ? The experimental results in the row labeled “RSL
w/o classifier" of Table 2 show that using the raw resonance-based score τ to filter OOD nodes is
already more effective than the SOTA method on most datasets. On the FPR95 metric, the score τ
achieves an average reduction of 9.70% compared to current SOTA methods in Table 2.

How effective are the synthetic OOD nodes combined with the feature resonance score? The
experimental results in the row labeled “RSL w/o Vsyn" of Table 2 show that after removing the
synthetic OOD nodes, the performance of the trained OOD classifier declined to varying degrees.
This indicates that synthetic OOD nodes enhance the generalization ability of the OOD classifier,
allowing it to detect more OOD nodes more accurately. It is worth noting that our synthetic OOD
nodes, generated by leveraging real OOD nodes selected using τ , better align with real-world OOD
scenarios and, therefore, outperform EnergyDef.

Table 6: The effectiveness of the resonance-based filter
score τ in filtering OOD nodes with different align-
ment targets for known ID node representations. True
multi-label means aligning ID node representations
with multiple target vectors based on true multi-class
labels. Multiple random vectors means aligning ID
node representations with random target vectors. A ran-
dom vector means aligning ID node representations
with a single target vector.

Method
Dataset Target Squirrel WikiCS

AUROC ↑ AUPR ↑ FPR@95 ↓
EnergyDef - 64.15 37.40 91.77 70.22 60.10 83.17

RSL w/o classifier True multi-label 61.63 37.12 90.62 71.03 72.47 81.96
RSL w/o classifier Multiple random vectors 61.44 37.39 90.62 73.64 74.13 69.25
RSL w/o classifier A random vector 61.52 38.96 90.18 79.15 78.65 70.38

Can label information bring gains to
RSL? Although RSL can perform well in
scenarios without multi-class labels, we
want to investigate whether multi-class la-
bels can bring similar benefits to RSL as
they do for other methods. On the WikiCS
dataset, we first pre-train the representa-
tions of the training set’s ID nodes using su-
pervised contrastive learning loss [Khosla
et al., 2020] with training set labels at dif-
ferent proportions R, and then apply RSL.
When R = 1.0, it indicates that RSL, like
other methods that strictly require labels,
uses all the training set labels. The results
in Table 4 show that as the available label proportion increases, the ID node representations of the
training set are better initialized, and RSL performs better. We believe this is because when the
ID node representations are well-initialized, feature resonance is more easily induced and is more
pronounced.

Can graph homophily bring gains to RSL? Most existing OOD node detection methods benefit
from graph homophily, so we aim to explore whether RSL can also gain from it. We conduct
experiments on the Citeseer dataset under varying levels of homophily, by removing a proportion R
of heterophilous edges and adding the same proportion R of homophilous edges. The results in Table
5 show that as graph homophily improves, the performance of RSL also improves. We believe this is
because enhanced graph homophily leads to more consistent representations among ID nodes and
more pronounced differences between ID and OOD node representations, thereby making feature
resonance easier to induce and more strongly expressed.

How does feature resonance occur due to different target vectors? We explore micro-level
feature resonance using different target vectors through experiments on Squirrel and WikiCS datasets
with true N -category labels. Based on neural collapse theory [Papyan et al., 2020, Zhou et al.,
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Table 7: The effectiveness of different OOD candidate node selection strategies.

Method
Dataset Squirrel WikiCS YelpChi Amazon Reddit

AUROC ↑ AUPR ↑ FPR@95 ↓
RSL w/ Cosine Similarity 64.00 38.11 91.46 81.61 76.36 70.38 59.76 35.03 85.89 83.35 74.85 27.63 54.07 7.25 92.21

RSL w/ Euclidean Distance 64.01 39.30 90.45 78.63 74.28 63.26 52.53 24.20 93.53 53.08 18.29 93.64 62.19 8.38 90.90
RSL w/ Mahalanobis Distance TLE TLE TLE 83.18 79.11 58.03 54.07 25.44 92.40 63.71 30.66 79.96 60.81 8.42 90.08

RSL w/ EnergyDef 63.66 38.29 91.69 61.21 50.41 90.42 57.33 26.79 91.90 77.72 55.23 54.52 61.90 8.55 89.51
RSL w/ Resonance-based Score τ 64.12 39.58 89.90 84.01 81.14 49.23 66.11 39.73 80.45 90.03 83.91 19.60 64.83 10.18 85.49

2022], we set N target vectors that form a simplex equiangular tight frame 3, maximizing separation.
As shown in Table 6, the "True multi-label" row demonstrates the effectiveness of this approach.
Interestingly, even when random labels are assigned (the "Multiple random vectors" row) or when all
ID representations align with a fixed vector (the "A random vector" row), unknown ID nodes still show
larger τ than unknown OOD nodes, as seen in Table 6. These results suggest that feature resonance is
label-independent, stemming from intrinsic relationships between ID node representations.

How do other OOD node selection methods perform? We aim to evaluate the performance of
RSL when integrated with methods other than the resonance-based score for selecting reliable OOD
nodes. To ensure fairness, we used the same parameters and selected the same number of OOD
nodes. From a metric learning perspective, we computed the cosine similarity, Euclidean distance,
and Mahalanobis distance between unknown nodes and the prototypes of known ID nodes, with
smaller values indicating a higher likelihood of being OOD nodes. We also applied EnergyDef for
OOD node selection. The results, presented in Table 7, show that, under the same conditions, the
OOD nodes selected using τ are more reliable than those selected by the other methods.

4 Related Work

General OOD Detection Methods. OOD detection methods fall into three main categories: entropy-
based, density-based, and representation-based approaches. Entropy-based methods (e.g., MSP
[Hendrycks and Gimpel, 2016], Energy [Liu et al., 2020], and others [Liang et al., 2017, Bendale
and Boult, 2016, Hendrycks et al., 2018, Geifman and El-Yaniv, 2019, Malinin and Gales, 2018,
Jeong and Kim, 2020, Chen et al., 2021, Wei et al., 2021, Ming et al., 2022b,a]) compute scores
from class distributions but rely heavily on labeled data, making them less suitable for label-free
scenarios. Density-based methods [Lee et al., 2018, Zisselman and Tamar, 2020] estimate sample
likelihoods but struggle with high-dimensional, complex data [Ren et al., 2019, Serrà et al., 2019].
Representation-based methods like KNN [Sun et al., 2022] and NNGuide [Park et al., 2023] operate
in embedding space but still require pre-trained ID classifiers. In contrast, SSD [Sehwag et al., 2021]
avoids label dependence by using self-supervised learning on unlabeled ID data.

General OOD Node Detection Methods. Entropy-based methods, such as MSP Hendrycks and
Gimpel [2016], ODIN Liang et al. [2017], OE Hendrycks et al. [2018], Energy & Energy FineTune
Liu et al. [2020], OODGAT [Song and Wang, 2022], GNNSafe [Wu et al., 2023], NodeSafe [Yang
et al., 2025], and GRASP [Ma et al., 2024], as well as recent approaches like GOLD [Wang et al.,
2025], EDBD [Um et al., 2025], and DeGEM [Chen et al., 2025], all rely on the outputs of a pre-
trained classifier, making them unsuitable for unsupervised settings. Graph anomaly detection
methods, like DOMINANT [Ding et al., 2019] and SL-GAD [Zheng et al., 2021], detect general
anomalies through reconstruction errors, but they struggle to distinguish between OOD nodes and
general anomalies.

Unsupervised OOD Node Detection Methods. Unsupervised OOD node detection in graphs aims to
identify OOD nodes without relying on multi-category labels and pretext classification tasks, posing
unique challenges for traditional methods. Recent works [Li et al., 2022, Bazhenov et al., 2022, Liu
et al., 2023, Ding and Shi, 2023] explore graph-level OOD detection but can not be directly applied
to node-level OOD detection due to the complexity of node dependencies. EnergyDef [Gong and
Sun, 2024] employs a synthetic OOD node strategy for unsupervised OOD node detection, and we
follow up by significantly improving OOD node detection performance in the unsupervised setting.

3The definition of the simplex equiangular tight frame is introduced in Appendix 6.
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5 Conclusion

In this paper, we introduce the concept of Feature Resonance for unsupervised OOD node detection,
demonstrating that unknown ID samples undergo more substantial representation changes compared
to OOD samples during the optimization of known ID samples, even in the absence of multi-class
labels. To effectively capture this phenomenon, we propose a label-independent, micro-level proxy
that measures feature vector movements in a single training step. Building on this, we present the RSL
framework, which integrates the micro-level feature resonance with synthetic OOD node generation
via SGLD, enhancing OOD detection performance and offering an efficient and practical solution for
unsupervised OOD node detection.

6 Acknowledgement

This paper is mainly supported by the NSFC under Grants (No. 62402424). Haobo Wang is also
supported by the Fundamental Research Funds for the Central Universities (No. 226-2025-00085)
and Zhejiang Provincial Universities (No. 226-2025-00065).

References
Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr

Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learning,
pages 21–29. PMLR, 2019.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. In 2021 IEEE 62nd annual symposium on foundations of computer science (FOCS),
pages 977–988. IEEE, 2022.

Jinheon Baek, Dong Bok Lee, and Sung Ju Hwang. Learning to extrapolate knowledge: Transductive
few-shot out-of-graph link prediction. Advances in Neural Information Processing Systems, 33:
546–560, 2020.

Gleb Bazhenov, Sergei Ivanov, Maxim Panov, Alexey Zaytsev, and Evgeny Burnaev. Towards
ood detection in graph classification from uncertainty estimation perspective. arXiv preprint
arXiv:2206.10691, 2022.

Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1563–1572, 2016.

Liron Bergman and Yedid Hoshen. Classification-based anomaly detection for general data. arXiv
preprint arXiv:2005.02359, 2020.

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-
based local outliers. In Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, pages 93–104, 2000.

Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer convo-
lutional neural networks. Advances in neural information processing systems, 35:25237–25250,
2022.

Jiefeng Chen, Yixuan Li, Xi Wu, Yingyu Liang, and Somesh Jha. Atom: Robustifying out-of-
distribution detection using outlier mining. In Machine Learning and Knowledge Discovery in
Databases. Research Track: European Conference, ECML PKDD 2021, Bilbao, Spain, September
13–17, 2021, Proceedings, Part III 21, pages 430–445. Springer, 2021.

Yuhan Chen, Yihong Luo, Yifan Song, Pengwen Dai, Jing Tang, and Xiaochun Cao. Decoupled
graph energy-based model for node out-of-distribution detection on heterophilic graphs. arXiv
preprint arXiv:2502.17912, 2025.

Zhenxing Chen, Bo Liu, Meiqing Wang, Peng Dai, Jun Lv, and Liefeng Bo. Generative adversarial
attributed network anomaly detection. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, pages 1989–1992, 2020.

10



Nicola De Cao and Thomas Kipf. Molgan: An implicit generative model for small molecular graphs.
arXiv preprint arXiv:1805.11973, 2018.

Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed
networks. In Proceedings of the 2019 SIAM international conference on data mining, pages
594–602. SIAM, 2019.

Zhihao Ding and Jieming Shi. Sgood: Substructure-enhanced graph-level out-of-distribution detection.
arXiv preprint arXiv:2310.10237, 2023.

Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th
ACM international conference on information & knowledge management, pages 315–324, 2020.

Xuefeng Du, Zhen Fang, Ilias Diakonikolas, and Yixuan Li. How does unlabeled data provably help
out-of-distribution detection? arXiv preprint arXiv:2402.03502, 2024a.

Xuefeng Du, Chaowei Xiao, and Yixuan Li. Haloscope: Harnessing unlabeled llm generations for
hallucination detection. arXiv preprint arXiv:2409.17504, 2024b.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In The world wide web conference, pages 417–426, 2019.

Matthias Fey and Jan Eric Lenssen. Fast graph representation learning with pytorch geometric. arXiv
preprint arXiv:1903.02428, 2019.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. Simcse: Simple contrastive learning of sentence
embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, pages 6894–6910, 2021.

Yonatan Geifman and Ran El-Yaniv. Selectivenet: A deep neural network with an integrated reject
option. In International conference on machine learning, pages 2151–2159. PMLR, 2019.

Zheng Gong and Ying Sun. An energy-centric framework for category-free out-of-distribution
node detection in graphs. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 908–919, 2024.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606, 2018.

Rui Huang, Andrew Geng, and Yixuan Li. On the importance of gradients for detecting distributional
shifts in the wild. Advances in Neural Information Processing Systems, 34:677–689, 2021.

Taewon Jeong and Heeyoung Kim. Ood-maml: Meta-learning for few-shot out-of-distribution
detection and classification. Advances in Neural Information Processing Systems, 33:3907–3916,
2020.

Julian Katz-Samuels, Julia B Nakhleh, Robert Nowak, and Yixuan Li. Training ood detectors in their
natural habitats. In International Conference on Machine Learning, pages 10848–10865. PMLR,
2022.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola,
Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-
12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016a.

11

https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html


Thomas N. Kipf and Max Welling. Variational graph auto-encoders. CoRR, abs/1611.07308, 2016b.
URL http://arxiv.org/abs/1611.07308.

Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in
temporal interaction networks. In Proceedings of the 25th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 1269–1278, 2019.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. Advances in neural information processing systems,
30, 2017.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018.

Zenan Li, Qitian Wu, Fan Nie, and Junchi Yan. Graphde: A generative framework for debiased
learning and out-of-distribution detection on graphs. Advances in Neural Information Processing
Systems, 35:30277–30290, 2022.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth ieee international
conference on data mining, pages 413–422. IEEE, 2008.

Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu
Chen, Hao Peng, Kai Shu, et al. Bond: Benchmarking unsupervised outlier node detection on
static attributed graphs. Advances in Neural Information Processing Systems, 35:27021–27035,
2022.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
Advances in neural information processing systems, 33:21464–21475, 2020.

Yixin Liu, Kaize Ding, Huan Liu, and Shirui Pan. Good-d: On unsupervised graph out-of-distribution
detection. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data
Mining, pages 339–347, 2023.

Longfei Ma, Yiyou Sun, Kaize Ding, Zemin Liu, and Fei Wu. Revisiting score propagation in graph
out-of-distribution detection. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024.

Rongrong Ma, Guansong Pang, Ling Chen, and Anton van den Hengel. Deep graph-level anomaly
detection by glocal knowledge distillation. In Proceedings of the fifteenth ACM international
conference on web search and data mining, pages 704–714, 2022.

Andrey Malinin and Mark Gales. Predictive uncertainty estimation via prior networks. Advances in
neural information processing systems, 31, 2018.

Larry M Manevitz and Malik Yousef. One-class svms for document classification. Journal of machine
Learning research, 2(Dec):139–154, 2001.

Julian John McAuley and Jure Leskovec. From amateurs to connoisseurs: modeling the evolution
of user expertise through online reviews. In Proceedings of the 22nd international conference on
World Wide Web, pages 897–908, 2013.
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A Notations, Definitions, Assumptions and Important Constants

A.1 Notations

Table 8: Table of Notations and Descriptions
Notation Description

Spaces
X , Y the input space and the label space.
W the hypothesis spaces.

Distributions
Pwild,Pin,Pout data distribution for wild data, labeled ID data and OOD data.

PXY the joint data distribution for ID data..
Data and Models

w,x weight, input.
∇̂, τ the average gradients on labeled ID data, uncertainty score.
e randomly generated unit vector.
y target unit vector e for ID node representations.
ŷx predicted vector for input x.
hθt predictor on labeled in-distribution

X in
wild,X

out
wild inliers and outliers in the wild dataset.

X in,Xwild labeled ID data and unlabeled wild data.
n,m size of X in, size of Xwild
T the filtering threshold
XT wild data whose uncertainty score higher than threshold T

Distances
r1 the radius of the hypothesis spaces W

∥ · ∥2 ℓ2 norm
Loss, Risk and Predictor

ℓ(·, ·) ID loss function
RX(hθt) the empirical risk w.r.t. predictor hθt over data X
RPXY

(hθt) the risk w.r.t. predictor hθt over distribution PXY .
ERRout the error rate of regarding OOD as ID.

A.2 Definitions

Definition 3. (β -smooth).We say a loss function ℓ(hθt(x), y) (defined over X × Y ) is β -smooth, if
forany x ∈ X and y ∈ Y

∥∇ℓ(hθt(x), y)−∇ℓ(hθt(x), y)∥2 ≤ β∥w −w′∥2
Definition 4. (Gradient-based Distribution Discrepancy). Given distributions P and Q defined over
X , the Gradient-based Distribution Discrepancy w.r.t. predictor fw and loss t is

dℓw(P,Q) =
∥∥∥∇RP(hθt , ĥθ)−∇RQ(hθt , ĥθ)

∥∥∥
2
,

where ĥθ is a classifier which returns the closest one-hot vector of hw: RP(hθt , ĥθ) = Ex∼Pℓ(hθt , ĥθ)

and RQ(hθt , ĥθ) = Ex∼Qℓ(hθt , ĥθ)

Definition 5. (γ, ξ) -discrepancy). We say a wild distribution Pwild has (γ, ξ) -discrepancy w.r.t. an
ID joint distribution Pin n, if γ > minw∈W RPXY

(hθ) and for any parameter w ∈ W satisfying
that RP,XY (hθt) ≤ γ should meet the following condition

dℓw(Pin,Pwild) > ξ,

where RPXY
(hθ) = E(x,y)∼PXY

ℓ(hθ(x), y)
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A.3 Assumptions

Assumption 1.

• The parameter space W ⊂ B(w0, r1) ⊂ Rd (ℓ2 ball of radius r1 around W0);
• ℓ(hθt(x), y) ≥ 0 and ℓ(hθt(x), y) is β1 -smooth;
• sup(x,y)∈X×Y ∥∇ℓ(hθ0(x), y)∥2 = b1;

• sup(x,y)∈X×Y ℓ(hθ0(x), y) = B1.

Assumption 2. ℓ(f(x), ŷx) ≤ miny∈Y ℓ(f(x), y) , where ŷx returns the closest vector of the
predictor f ’s output on x

A.4 Constants in Theory

Table 9: Constants in theory.
Constants Description

M = β1r
2
1 + b1r1 +B1 the upper bound of loss ℓ(hθt(x), y).

M ′ = 2(β1r1 + b1)
2 the upper bound of gradient-based filtering score [Du et al., 2024a]

M̂t = (
√

M ′/2 + 1)/(2t) the upper bound of our resonance-based filtering score τ at the t-th epoch
M̃ = β1M a constant for simplified representation

d the dimensions of parameter spaces W
R∗

in the optimal ID risk, i.e., R∗
in = minw∈WEx∼Pin

L1(x, e)
δ(T, t) the main error in Eq. 7

ξ the discrepancy between Pin and Pwild
π the ratio of OOD distribution in Pwild
α learning rate

B Main Theorems

Theorem 3. If Assumptions 1 and 2 hold, Pwild has (γ, ξ) -discrepancy w.r.t. Pxy ,and there exists
η ∈ (0, 1) s.t. ∆ = (1− η)2ξ2 − 8β1R

∗
in > 0, then for

n = Ω
(M̃ +M(r1 + 1)d

η2∆
+

M2d

(γ −R∗
in)

2

)
, m = Ω

(M̃ +M(r1 + 1)d

η2ξ2
)
,

with the probability at least 9/10 for any 0 < T < M̂t (here M̂t is the upper bound of filtering score
τi at t-th epoch, i.e., τi ≤ M̂t )

ERRt
out ≤

max{0, 1−∆η
ξ/π}

1− T/(
√
2/(2tα− 1))2

+O(

√
d

π2n
) +O(

√
max{d,∆η2

ξ /π2}
π2(1− π)m

) (8)

where ∆η
ξ = 0.98η2ξ2−8β1R

∗
in and R∗

in is the optimal ID risk, i.e., R∗
in = minw∈WEx∼PinL1(x, e).

d is the dimension of the space W , t denotes the t-th epoch, and π is the OOD class-prior probability
in the wild.

M = β1r
2
1 + b1r1 +B1, M̃ = Mβ1 (9)

Theorem 4. 1) if ∆η
ξ ≥ (1− ϵ)π for a small error ϵ ≥ 0, then the main error δ(T, t) satisfies that

δ(T, t) =
max{0, 1−∆η

ξ/π}
1− T/(

√
2/(2tα− 1))2

≤ ϵ

1− T/(
√
2/(2tα− 1))2

(10)

2) When learning rate α is small sufficiently, and if ξ ≥ 2.011
√

8β1R∗
in + 1.011

√
π, then there exists

η ∈ (0, 1) ensuring that ∆ > 0 and ∆η
ξ > π hold, which implies that the main error δ(T, t) = 0.
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C Proofs of Main Theorems

C.1 Proof of Theorem 1

Step 1. With the probability at least 1− 7
3δ > 0

Ex̃i∼Sin
wildτi

≤ 8β1R
∗
in

+ 4β1

[
C

√
Mr1(β1r1 + b1)d

n
+ C

√
Mr1(β1r1 + b1)d

(1− π)m−
√
m log(6/δ)/2

+ 3M

√
2 log(6/δ)

n
+M

√
2 log(6/δ)

(1− π)m−
√
m log(6/δ)/2

]
,

This can be proven by Lemma 7 in [Du et al., 2024a] and following inequality

Ex̃i∼Sin
wild

τi ≥ Ex̃i∼Xm
wild

∥∥∥∇ℓ(hθXm (x̃i), ĥθXm (x̃i))− E(xj ,yj)∼Xm∇ℓ(hθXm (xj), yj)
∥∥∥2
2
,

Step 2.It is easy to check that

Ex̃i∼Xwild
τi =

|X in
wild|

|Xwild|
Ex̃i∼Xin

wild
τi +

|Xout
wild|

|Xwild|
Ex̃i∼Xout

wild
τi.

Step 3.Let

ϵ(n,m) = 4β1[C

√
Mr1(β1r1 + b1)d

n
+ C

√
Mr1(β1r1 + b1)d

(1− π)m−
√

m log(6/δ)/2

+3M

√
2 log(6/δ)

n
+M

√
2 log(6/δ)

(1− π)m−
√
m log(6/δ)/2

].

Under the condition in Theorem 5 in [Du et al., 2024a], with the probability at least 97
100 − 7

3δ > 0

Ex̃i∼Xout
wildτi

≤ m

|Xout
wild|

[98η2ξ2
100

− |X in
wild|
m

8β1R
∗
in − |X in

wild|
m

ϵ(n,m)
]

≤ m

|Xout
wild|

[98η2ξ2
100

− 8β1R
∗
in − ϵ(n,m)

]
≤ [

1

π
−

√
log 6/δ

π2
√
2m+ π

√
log(6/δ)

][98η2ξ2
100

− 8β1R
∗
in − ϵ(n,m)

]
.

In this proof, we set

∆(n,m) =
[ 1
π
−

√
log 6/δ

π2
√
2m+ π

√
log(6/δ)

][98η2ξ2
100

− 8β1R
∗
in − ϵ(n,m)

]
.

Note that ∆η
ξ = 0.98η2ξ2 − 8β1R

∗
in , then

∆(n,m) =
1

π
∆η

ξ −
1

π
ϵ(n,m)−∆η

ξ ϵ(m) + ϵ(n)ϵ(n,m),

where ϵ(m) =
√
log 6/δ/(π2

√
2m+ π

√
log(6/δ)).
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Step 4. Under the conditions in Theorem 5 in [Du et al., 2024a] and Proposition 4, with the probability
at least 97

100 − 7
3δ > 0

|{x̃i ∈ Xout
wild : τi ≤ T}|
|Xout

wild|
≤ 1−min{1,∆(n,m)}

1− T/(
√
2

2tα−1 )
2

, (11)

We prove this step: let Z be the uniform random variable with Sout
wild as its support and Z(i) =

τi/(
√
2

2tα−1 )
2 , then by the Markov inequality, we have

|{x̃i ∈ Xout
wild : τi < T}|
|Xout

wild|
= P (Z(I) < T/(

√
2

2tα− 1
)2) ≥

∆(n,m)− T/(
√
2

2tα−1 )
2

1− T/(
√
2

2tα−1 )
2

. (12)

Step 5. If π ≤ ∆η
ξ/(1− ϵ/M ′) , then with the probability at least 97

100 − 7
3δ > 0

|{x̃i ∈ Xout
wild : τi ≤ T}|
|Xout

wild|
≤

ϵ+ (
√
2

2tα−1 )
2ϵ′(n,m)

(
√
2

2tα−1 )
2 − T

, (13)

where ϵ′(n,m) = ϵ(n,m)/π +∆η
ξ ϵ(m)− ϵ(n)ϵ(n,m).

Step 6. If we set δ = 3/100 , then it is easy to see that

ϵ(m) ≤ O(
1

π2
√
m
),

ϵ(n,m) ≤ O(β1M

√
d

n
) +O(β1M

√
d

(1− π)m
),

ϵ′(n,m) ≤ O(
β1M

π

√
d

n
) +O

(
(β1M

√
d+

√
1− π∆η

ξ/π)

√
1

π2(1− π)m

)
.

Step 7. By results in Steps 4, 5 and 6, We complete this proof

C.2 Proof of Theorem 2

The first result is trivial. Hence,we omit it.We mainly focus on the second result in this theorem In
this proof, then we set

η =
√
8β1R∗

in + 0.99π/(
√
0.98

√
8β1R∗

in +
√
8β1R∗

in + π)

Note that it is easy to check that

ξ ≥ 2.011
√
8β1R∗

in + 1.011
√
π ≥

√
8β1R∗

in + 1.011
√

8β1R∗
in + π.

Therefore,

ηξ ≥ 1√
0.98

√
8β1R∗

in + 0.99π >
√
8β1R∗

in + π,

which implies that ∆η
ξ > π Note that

(1− η)ξ ≥ 1√
0.98

(√
0.98

√
8β1R∗

m +
√
8β1R∗

m + π −
√
8β1R∗

m + 0.99π
)
>

√
8β1R∗

m,

which implies that ∆ > 0 We have completed this proof
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D Necessary Propositions

D.1 Boundedness

Proposition 1. If Assumption 1 holds,

sup
w∈W

sup
(x,y)∈X×Y

∥∇ℓ(hθt(x), y)∥2 ≤ β1r1 + b1 =
√
M ′/2,

sup
w∈W

sup
(x,y)∈X×Y

ℓ(hθt(x), y) ≤ β1r
2
1 + b1r1 +B1 = M,

Proof. One can prove this by Mean Value Theorem of Integrals easily.

Proposition 2. If Assumption 1 holds, for any w ∈ W ,

∥∇ℓ(hθt(x), y)∥
2
2 ≤ 2β1ℓ(hθt(x), y).

Proof. The details of the self-bounding property can be found in Appendix B of Lei Ying

Proposition 3. If Assumption 1 holds, for any labeled data X and distribution P.

∥∇RX(hθt)∥
2
2 ≤ 2β1RX(hθt), ∀w ∈ W, (14)

∥∇RP(hθt)∥
2
2 ≤ 2β1RP(hθt), ∀w ∈ W. (15)

Proof. Jensen’s inequality implies that RS(hθt) and RP(fw) are β1 -smooth.Then Proposition 2
implies the results.

Proposition 4. If Assumption 1 holds, for any wt ∈ W ,

∥ ∆hθt(x) ∥2≤ (
√

M ′/2 + 1)/(2t) = M̂t

Proof. It is trivial that

∥ x⊤∇ℓ(hθt(x), y) ∥≤∥ ∇ℓ(hθt(x), y) ∥≤ β1r1 + b1 =
√
M ′/2

Then

∥ x⊤∇ℓ(hθt(x), y) ∥=∥ 2(xW⊤−y) ∥≥ 2 ∥
∑
t

∆hθt(x)−y ∥≥ 2 ∥ t∆hθt(x)−y ∥≥ 2t ∥ ∆hθt(x) ∥ −1

It is straightforward to verify that:

∥∆hθt(x)∥2 ≤
√
M ′/2 + 1

2t
≤ α

√
M ′/2 = M̂t.

Here, α is the learning rate. From the inequality above, we establish a relationship between
√
M ′/2,

α, and t as follows:

M ′ ≥ (

√
2

2tα− 1
)2.

E Experiment Details

We supplement experiment details for reproducibility. Our implementation is based on Ubuntu 20.04,
Cuda 12.1, Pytorch 2.1.2, and Pytorch Geometric 2.6.1. All the experiments run with an NVIDIA
3090 with 24GB memory.

E.1 Hyperparameter

As shown in Table 10.
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Table 10: Hyper-parameters for training.
Dataset Squirrel WikiCS YelpChi Amazon Reddit Cora Citeseer Pubmed Chameleon

Learning rate (α) 0.005 0.01 0.005 0.005 0.01 0.005 0.005 0.01 0.005
hθ layers 1 1 1 1 1 1 1 1 1

gθ(·) layers 2 2 2 2 2 2 2 2 2
Hidden states 16 16 16 16 16 16 16 16 16
Dropout rate 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

n 2 1 2 2 1 10 10 5 2
λ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

E.2 Metric

Following prior research on OOD node detection, we evaluate the detection performance using
three widely recognized, threshold-independent metrics: AUROC (↑), AUPR (↑) and FPR95(↓). (1)
AUROC measures the area under the receiver operating characteristic curve, capturing the trade-off
between the true positive rate and the false positive rate across different threshold values. (2) AUPR
calculates the area under the precision-recall curve, representing the balance between the precision
rate and recall rate for OOD nodes across varying thresholds. (3) FPR95 is defined as the probability
that an OOD sample is misclassified as an ID node when the true positive rate is set at 95%.

E.3 Dataset Description

To thoroughly evaluate the effectiveness of RSL, we perform experiments on real-world node-level
and graph-level OOD detection datasets:

• Node-level Datasets:
– Squirrel [Rozemberczki et al., 2021]: A Wikipedia network where nodes correspond to

English Wikipedia articles, and edges represent mutual hyperlinks. Nodes are categorized into
five classes following Geom-GCN [Pei et al., 2020] annotations, with the network exhibiting
a high level of heterophily.

– WikiCS [Mernyei and Cangea, 2020]: This dataset consists of nodes representing articles in
the Computer Science domain. Edges are based on hyperlinks, and nodes are classified into
10 categories, each corresponding to a unique sub-field of Computer Science.

– YelpChi [Rayana and Akoglu, 2015]: Derived from Yelp, this dataset includes hotel and
restaurant reviews. Legitimate reviews are labeled as ID nodes, while spam reviews are
considered OOD nodes.

– Amazon [McAuley and Leskovec, 2013]: Contains reviews from the Musical Instrument
category on Amazon.com. ID nodes represent benign users, while OOD nodes correspond to
fraudulent users.

– Reddit [Kumar et al., 2019]: A dataset comprising user posts collected from various subreddits
over a month. Normal users are treated as ID nodes, while banned users are labeled as OOD
nodes.

– Chameleon Rozemberczki et al. [2021] is a Wikipedia network with 5 classes, where nodes
represent web pages and edges represent hyperlinks between them. Node features represent
several informative nouns in the Wikipedia pages, and the task is to predict the average daily
traffic of the web page Fey and Lenssen [2019].

– Cora [Kipf and Welling, 2016a] is a citation graph with 2,708 nodes, 5,429 edges, 1,433
features, and 7 classes, widely used for node classification and link prediction. Under the
Label Leave-out setting, 3 classes are treated as ID and 4 as OOD.

– Citeseer [Kipf and Welling, 2016a] contains 3,327 nodes, 4,732 edges, 3,703 features, and 6
classes. We apply the same OOD generation strategies as above, designating 3 classes as ID
and 3 as OOD under the Label Leave-out setting.

– PubMed [Kipf and Welling, 2016a], a biomedical citation graph, includes 19,717 nodes,
44,338 edges, 500 features, and 3 classes. We follow the same OOD generation and semi-
supervised training procedure, using 2 classes as ID and 1 as OOD under the Label Leave-out
setting.

For the Squirrel, WikiCS, YelpChi, Amazon, and Reddit datasets, we follow the same data
preprocessing steps as EnergyDef [Gong and Sun, 2024]. Both Squirrel and WikiCS datasets are
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loaded using the DGL [Wang et al., 2019] package. For Squirrel, class {1} is selected as the OOD
class, while {0, 2, 3, 4} are designated as ID classes. In the case of WikiCS, {4, 5} are chosen as
OOD classes, with the remaining eight classes treated as ID. The YelpChi and Amazon datasets
are processed based on the methodology described in [Dou et al., 2020], and the Reddit dataset is
prepared using the PyGod [Liu et al., 2022] package. For the Cora and Chameleon datasets, we
follow the data processing procedure used in GRASP [Ma et al., 2024].

• Graph-level Datasets:
– ENZYMES Morris et al. [2020] is a graph dataset constructed based on the structural

properties of protein molecules. It contains a total of 600 graphs, each representing one
protein sample, across six different classes. The dataset includes 19,580 nodes and 174,564
edges, with each node having a feature vector of dimension 3.

– PROTEINS Morris et al. [2020] is a dataset of proteins that are classified as enzymes or
non-enzymes. The dataset includes 1,113 graphs.

– ClinTox [Wu et al., 2018] compares drugs approved by the FDA and drugs that have failed
clinical trials for toxicity reasons. The dataset includes two classification tasks for 1491 drug
compounds with known chemical structures: (1) clinical trial toxicity (or absence of toxicity)
and (2) FDA approval status.

– LIPO [Wu et al., 2018] is a dataset included in MoleculeNet [Wu et al., 2018]. It measures
the experimental results of octanol/water distribution coefficient(logD at pH 7.4).

We follow the data processing procedure used in GOOD-D [Liu et al., 2023] that 90% of ID
samples are used for training, and 10% of ID samples and the same number of OOD samples are
integrated together for testing.

E.4 Baseline Description

• Node-level Baselines:
– LOF-KNN [Breunig et al., 2000] calculates the OOD scores of node attributes by assessing

the deviation in local density relative to the k-nearest node attributes.
– MLPAE uses an MLP-based autoencoder, where the reconstruction error of node attributes is

used as the OOD score. It is trained by minimizing the reconstruction error on ID training
nodes.

– GCNAE [Kipf and Welling, 2016b] swaps the MLP backbone for a GCN in the autoencoder.
The OOD score is determined in the same way as MLPAE, following the same training
process.

– GAAN [Chen et al., 2020] is a generative adversarial network for attributes that evaluates
sample reconstruction error and the confidence of recognizing real samples to predict OOD
nodes.

– DOMINANT [Ding et al., 2019] combines a structure reconstruction decoder and an attribute
reconstruction decoder. The total reconstruction error for each node consists of the errors
from both decoders.

– ANOMALOUS [Peng et al., 2018] is an anomaly detection method that utilizes CUR decom-
position and residual analysis for identifying OOD nodes.

– SL-GAD [Zheng et al., 2021] derives OOD scores for nodes by considering two aspects:
reconstruction error and contrastive scores.

– GOAD [Bergman and Hoshen, 2020] enhances training data by transforming it into inde-
pendent spaces and trains a classifier to align the augmented data with the corresponding
transformations. OOD scores are then calculated based on the distances between OOD inputs
and the centers of the transformation spaces. For graph-structured data, we use the same GNN
backbone as EnergyDef-h.

– NeuTral AD [Qiu et al., 2021] uses learnable transformations to embed data into a semantic
space. The OOD score is determined by a contrastive loss applied to the transformed data.

– MSP Hendrycks and Gimpel [2016]: Uses the maximum softmax probability as the OOD
score. The method is simple but has limited performance on models with high confidence.

– ODIN Liang et al. [2017]: Improves OOD detection by temperature scaling and input
perturbation, but is sensitive to hyperparameters.

– Mahalanobis Lee et al. [2018]: Calculates the feature distance between a sample and ID data
based on Mahalanobis distance, suitable for scenarios assuming a Gaussian distribution.
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– OE Hendrycks et al. [2018]: Optimizes using additional OOD data during training, relying on
the availability of OOD data.

– Energy & Energy FineTune Liu et al. [2020]: Uses an energy function instead of softmax
probabilities for OOD scoring, and can improve detection performance by fine-tuning with
OOD data.

– GKDE [Zhao et al., 2020] predicts Dirichlet distributions for nodes and derives uncertainty as
OOD scores by aggregating information from multiple sources.

– GPN Stadler et al. [2021]: Based on Bayesian posterior inference, performs OOD detection
through uncertainty estimation. It is suitable for graph data but sensitive to hyperparameters.

– OODGAT [Song and Wang, 2022] is an entropy-based OOD detector that assumes node cate-
gory labels are available. It uses a Graph Attention Network as the backbone and determines
OOD nodes based on category distribution outcomes.

– GNNSafe [Wu et al., 2023] calculates OOD scores by applying the LogSumExp function
over the output logits of a GNN classifier, which is trained with multi-category labels. The
rationale for the OOD score is the similarity between the Softmax function and the Boltzmann
distribution.

– NodeSafe [Yang et al., 2025] reduces the occurrence of extreme energy values by enforcing
consistency in the logit norms, thereby decreasing the variance within both the ID and OOD
energy distributions, which enhances the performance of OOD node detection.

– GRASP [Ma et al., 2024] enhances OOD node detection performance by amplifying the
graph’s homophily through rewiring, thereby improving the effect of score propagation.

– SSD [Sehwag et al., 2021] is an outlier detector that leverages self-supervised representation
learning and Mahalanobis distance-based detection on unlabeled ID data. We use twice
dropout to generate positive pairs for contrastive learning like SimCSE [Gao et al., 2021].

– EnergyDef Gong and Sun [2024] uses Langevin dynamics to generate synthetic OOD nodes
for training the OOD node classifier.

• Graph-level Baselines:
– Graph kernel + detector: This category of methods involves two main steps: first, graph

kernel techniques are employed to transform graphs into vector-based features Vishwanathan
et al. [2010]; next, out-of-distribution (OOD) detection algorithms are applied to these feature
vectors. Specifically, we adopt the Weisfeiler-Lehman (WL) kernel Shervashidze et al. [2011]
and the propagation kernel (PK) Neumann et al. [2016] for representation, combined with
anomaly detectors such as local outlier factor (LOF) Breunig et al. [2000], one-class SVM
(OCSVM) Manevitz and Yousef [2001], and isolation forest (iF) Liu et al. [2008].

– GCL + detector: These approaches leverage recent advances in Graph Contrastive Learning
(GCL) to derive graph-level embeddings, which are then assessed by OOD detection methods.
We employ two representative GCL techniques—InfoGraph Sun et al. [2020] and GraphCL
You et al. [2020]—to generate node or graph representations. For detecting OOD instances, we
consider both the isolation forest (iF) Liu et al. [2008] and a Mahalanobis distance-based (MD)
detector, which has demonstrated strong performance in identifying OOD data Sehwag et al.
[2021], Zhou et al. [2021]. GOOD-D Liu et al. [2023] can capture the latent ID patterns and
accurately detect OOD graphs based on the semantic inconsistency in different granularities
by performing hierarchical contrastive learning on the augmented graphs.

– End-to-end: We also evaluate our model against end-to-end graph anomaly detection base-
lines. One such approach is OCGIN Zhao and Akoglu [2023], which utilizes a GIN encoder
trained with a support vector data description (SVDD) loss. Another is GLocalKD Ma et al.
[2022], which detects anomalous samples through a knowledge distillation framework.

E.5 Implementation Details

We adopt the same dataset settings as EnergyDef [Gong and Sun, 2024], and we use GCN [Kipf
and Welling, 2016a] as the encoder. It is worth noting that, under this dataset setup, the features of
unknown nodes are accessible. Therefore, using the features of unknown nodes during the training
phase to filter reliable OOD nodes is a legitimate strategy. Specifically, for the Squirrel and WikiCS
datasets, we randomly select one and two classes as OOD classes, respectively. In the case of fraud
detection datasets, we categorize a large number of legitimate entities as ID nodes and fraudsters as
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(a) Reddit (b) Squirrel (c) YelpChi (d) WikiCS

Figure 3: The performance of using resonance-based score τ to detect OOD nodes varies with training
progress. The higher the AUROC, the better, and the lower the FPR95, the better.

OOD nodes. We allocate 40% of the ID class nodes for training, with the remaining nodes split into a
1:2 ratio for validation and testing, ensuring stratified random sampling based on ID/OOD labels.

We report the average value of five runs for each dataset. The hyper-parameters are shown in Table
10. The anomaly detection baselines are trained entirely based on graph structures and node attributes
without requiring ID annotations. We adapt these models to the specifications of our OOD node
detection tasks by minimizing the corresponding loss items solely on the ID nodes, where applicable.

F More Experiments

F.1 The Feature Resonance Phenomenon Induced by Different Target Vectors

We explore the phenomenon of feature resonance using different target vectors. Experiments are
conducted on two datasets with real N -category labels, Squirrel and WikiCS (N represents the
number of categories). First, based on the neural collapse theory [Papyan et al., 2020, Zhou et al.,
2022], we preset N target vectors, each representing a category. These N target vectors form an
equiangular tight frame, maximizing the separation between them. The definition of the simplex
equiangular tight frame is introduced as follows:

Definition 6. Simplex ETF. [Xiao et al., 2024] A simplex equiangular tight frame (ETF) refers
to a collection of K equal-length and maximally-equiangular P-dimensional embedding vectors
E = [e1, · · · , eK ] ∈ RP×K which satisfies:

E =

√
K

K − 1
U
(
IK − 1

K
1K1⊤

K

)
(16)

where IK is the identity matrix,1K is an all-ones vector, and U ∈ RP×K(P ≥ K) allows a rotation.

All vectors in a simplex ETF E have an equal l2 norm and the same pair-wise maximal equiangular
angle − 1

K−1 ,

e⊤k1
ek2

=
K

K − 1
δk1,k2

− 1

K − 1
,∀k1, k2 ∈ [1,K] (17)

where δk1,k2
= 1 when k1 = k2 and 0 otherwise.

We use MSE loss to pull the representations of known ID nodes toward their corresponding target
vectors based on their labels, as follows:

ℓ(hθt(Xknown), e) = E(∥ Eknown − (XknownW
⊤) ∥22) (18)

where Eknown denotes the target vector matrix corresponding to the known ID nodes.

The trajectory trends and lengths of unknown ID nodes differ significantly from those of OOD nodes,
with the former showing more distinct trends and longer trajectories. We refer to this as the feature
resonance phenomenon and leverage it to filter OOD nodes. As shown in Table 6, under the “True
multi-label" row, the experimental results demonstrate that this method is effective and performs well.
Interestingly, even with random labels for known ID nodes or aligning all known ID representations
to a fixed target vector, unknown ID nodes consistently exhibit longer trajectories than unknown
OOD nodes, as shown in Table 6.
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Figure 4: Performance of detecting OOD nodes with different metrics. τ represents the resonance-
based score, the “Overall Trajectory" represents the total cumulative length of the training trajectory
F̂ (x̃i) =

∑
t τi, and the “Sliding Window" refers to the cumulative τ within a window of width 10:

F̂10(x̃i) =
∑t

t−10 τi.

(a) WikiCS (b) YelpChi

Figure 5: The impact of different sliding window widths on the performance of detecting OOD nodes.
When the width is 1, it corresponds to the resonance-based score τ .

(a) EnergyDef (b) Score τ (Ours) (c) RSL (Ours)

Figure 6: The score distribution of ID nodes and OOD nodes on Amazon.

(a) Pre-training (En-
ergyDef )

(b) Pre-training (Ours) (c) Post-training (En-
ergyDef )

(d) Post-training (Ours)

Figure 7: T-SNE visualization of node embeddings on the dataset WikiCS. (a) Synthetic nodes (red)
generated by EnergyDef fail to accurately represent the actual features of OOD nodes (blue), whereas
ours can, as shown in (b). (c) Representations of ID (green) and OOD (blue) nodes trained with
synthetic nodes generated by EnergyDef are poorly separated, whereas ours can, as shown in (d).

The experiments above indicate that the feature resonance phenomenon is label-independent and
results from the intrinsic relationships between ID node representations. Therefore, this is highly
suitable for category-free OOD detection scenarios without multi-category labels.
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Table 11: Time cost (s).

Method
Dataset Squirrel WikiCS YelpChi Amazon Reddit

EnergyDef 10.94 27.11 76.51 33.81 26.44
RSL w/o classifier 5.25 4.03 5.41 5.75 3.71

RSL 11.54 17.53 74.83 36.33 38.23

Table 12: Comparison on WikiCS and Amazon datasets using different GNN encoders.
GNN

Encoder Method WikiCS Amazon
AUROC ↑ AUPR ↑ FPR@95 ↓

GCN EnergyDef 70.22 60.10 83.17 86.57 74.50 32.43
GCN RSL 84.01 81.14 49.23 90.03 83.91 19.60
GAT EnergyDef 74.22 64.15 79.80 88.20 78.40 27.88
GAT RSL 88.01 86.37 41.02 88.28 82.90 20.48
GIN EnergyDef 72.18 62.35 80.56 85.98 75.10 31.47
GIN RSL 83.74 82.58 43.50 91.58 84.39 19.74

Table 13: Performance comparison across different methods on graph-level OOD detection (AUROC).
Model ID: ENZYMES / OOD: PROTEIN ID: ClinTox / OOD: Lipo

PK-LOF 50.47±2.87 50.00±2.17
PK-OCSVM 50.46±2.78 50.06±2.19

PK-iF 51.67±2.69 50.81±1.10
WL-LOF 52.66±2.47 51.29±3.40

WL-OCSVM 51.77±2.21 50.77±3.69
WL-iF 51.17±2.01 50.41±2.17

InfoGraph-iF 60.00±1.83 48.51±1.87
InfoGraph-MD 55.25±3.51 48.12±5.72

GraphCL-iF 61.33±2.27 47.84±0.92
GraphCL-MD 52.87±6.11 51.58±3.64

OCGIN 57.65±2.96 49.13±4.13
GLocalKD 57.18±2.03 55.71±3.81

GOOD-Dsimp 61.89±2.51 66.13±2.98
GOOD-D 61.84±1.94 69.18±3.61

RSL (ours) 62.53±1.89 72.03±2.87

F.2 Variation of Microscopic Feature Resonance During Training

We also observe the variation of the microscopic feature resonance phenomenon during the training
process on other datasets, as shown in Figure 3. We find that the changes on Reddit, YelpChi, and
WikiCS are generally consistent with Amazon, with the most significant feature resonance occurring
in the middle of the training process. However, for Squirrel, the feature resonance phenomenon
reaches its most pronounced level early in the training. We believe this is due to the relatively rich
features in Squirrel, which allow the model to quickly identify the optimal optimization path for ID
samples in the early stage of training.

F.3 Effectiveness of Different Scoring Strategies Based on Feature Resonance

We evaluate the effectiveness of three score design strategies based on feature resonance: the
resonance-based score τ , the global trajectory norm, and the sliding window accumulation (width
10). As shown in Figure 4, τ outperforms the other two scores on most datasets. The sliding window
approach performs better than the global trajectory norm. The experimental results in Figure 5 show
that as the sliding window width increases, the detection performance for OOD nodes gradually
decreases, which indicates that finer-grained information improves OOD node detection, so we select
τ as the primary score for filtering OOD nodes in our method.

F.4 Time Efficiency

We compare the time consumption of our method, RSL, with the current SOTA method, EnergyDef.
The experimental results are shown in Table 11. The experiments show that the overall time efficiency
of RSL is comparable to that of EnergyDef, with similar time consumption across different datasets.
However, it is worth noting that when we use the resonance-based score τ alone for OOD node
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Table 14: Results on CIFAR-10. Comparison with competitive OOD detection methods. ↑ indicates
larger values are better and vice versa.

Method SVHN LSUN iSUN Texture Average

FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
Without Contrastive Learning

MSP 59.66 91.25 45.21 93.80 54.57 92.12 66.45 88.50 56.47 91.42
ODIN 53.78 91.30 10.93 97.93 28.44 95.51 55.59 89.47 37.19 93.55
Energy 54.41 91.22 10.19 98.05 27.52 95.59 55.23 89.37 36.83 93.56
GODIN 18.72 96.10 11.52 97.12 30.02 94.02 33.58 92.20 23.46 94.86
Mahalanobis 9.24 97.80 67.73 73.61 6.02 98.63 23.21 92.91 26.55 90.74
KNN 27.97 95.48 18.50 96.84 24.68 95.52 26.74 94.96 24.47 95.70
FR τ (ours) 23.50 94.85 11.48 97.80 20.93 95.67 29.22 95.28 21.28 95.90

With Contrastive Learning
CSI 37.38 94.69 5.88 98.86 10.36 98.01 28.85 94.87 20.62 96.61
SSD+ 1.51 99.68 6.09 98.48 33.60 95.16 12.98 97.70 13.55 97.76
KNN+ 2.42 99.52 1.78 99.48 20.06 96.74 8.09 98.56 8.09 98.56
FR τ (ours) 3.27 99.34 0.44 99.84 9.24 98.23 14.57 97.28 6.88 98.67

Table 15: Evaluation on hard OOD detection tasks. Model is trained on CIFAR-10 with SupCon
loss.

Method LSUN-FIX ImageNet-FIX ImageNet-R Average

AUROC↑ AUPR↑ FPR↓ AUROC↑ AUPR↑ FPR↓ AUROC↑ AUPR↑ FPR↓ AUROC↑ AUPR↑ FPR↓
SSD+ 95.52 96.47 29.88 94.85 95.77 32.29 93.40 94.93 45.88 94.59 95.72 36.02
KNN+ 96.51 97.20 21.54 95.71 96.37 25.93 95.08 95.95 30.20 95.77 96.51 25.89
FR τ (ours) 96.41 97.10 21.80 95.13 95.66 26.76 97.33 97.74 15.27 96.29 96.83 21.28

detection, its efficiency improves significantly over EnergyDef, with an average reduction of 79.81%
in time consumption. This indicates that τ not only demonstrates significant effectiveness in detecting
OOD nodes but also offers high efficiency.

F.5 RSL Performance with Different GNN Encoders

We conduct experiments on WikiCS and Amazon datasets using GCN [Kipf and Welling, 2016a],
GAT [Velickovic et al., 2018], and GIN [Xu et al., 2019] as the encoders, respectively. The results in
Table 12 show that our RSL consistently outperforms the state-of-the-art method EnergyDef across
all settings.

F.6 Graph-Level OOD Detection

Since RSL can be easily extended to independent samples beyond nodes—such as entire graphs—we
aim to evaluate its performance on graph-level OOD detection tasks. The results in Table 13 show
that RSL maintains strong performance in this setting. On the ENZYMES, PROTEINS, ClinTox, and
Lipo datasets, RSL outperforms the previous strong baseline, GOOD-D. This highlights the superior
scalability of RSL, demonstrating that it is not limited to node-level OOD detection.

F.7 The Generality of Feature Resonance

While our method is developed in the graph context, its core idea stems from representation dy-
namics rather than graph-specific structural properties. Nevertheless, graph structure—particularly
homophily—can influence feature evolution and thus affect the resonance patterns. As shown in Table
5 of the main paper, higher graph homophily correlates with more pronounced node feature resonance
and improved OOD node detection performance. This is because greater homophily generally results
in higher-quality node representations. Therefore, the feature resonance phenomenon itself is not
solely dependent on the graph structure. To demonstrate its generality, we apply our method to
standard image datasets following the setup in Sun et al. [2022] strictly—using image representations
extracted from ResNet-18 models trained on CIFAR-10 with either cross-entropy loss ("without
contrastive learning") or supervised contrastive learning ("with contrastive learning"). We induce
resonance by aligning known ID features to a target vector consisting of the mean of all known ID
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samples and measure step-wise changes in unknown samples. As shown in Table 14, our method
remains effective on images. Models with stronger initialization (via contrastive learning) exhibit
more pronounced resonance, consistent with Table 4 of the main paper. Further, Table 15 shows
strong performance on a more challenging image OOD benchmark. We also evaluate our method on
graph-level OOD detection (Table 13), where representations are independent like in images, and
observe similarly strong results—supporting the universality of the feature resonance phenomenon.

F.8 Score Distribution Visualization

We visualize the score distributions of ID and OOD nodes on the Amazon dataset obtained using
different methods, as shown in Figure 6. When using the resonance-based score (Figure 6 (b)), the
majority of unknown ID nodes show more significant representation changes compared to unknown
OOD nodes. This separation of OOD nodes already exceeds EnergyDef (Figure 6 (a)). After training
with synthetic OOD nodes (Figure 6 (c)), the separation between the energy scores of ID and OOD
nodes still improves compared to EnergyDef, which demonstrates the effectiveness of RSL.

F.9 Node Representation Visualization

EnergyDef generates auxiliary synthetic OOD nodes via SGLD to train an OOD classifier for
category-free OOD node detection. However, we find that the synthetic OOD nodes from EnergyDef
do not accurately capture the features of actual OOD nodes. As shown in Figure 7(a), most synthetic
OOD nodes are separated from actual OOD nodes and even overlap with ID nodes, limiting the
classifier’s performance. The severe overlap between ID and OOD node representations after training
by EnergyDef (Figure 7(c)) further highlights this issue. In contrast, we use feature resonance to
identify reliable OOD nodes and synthesize new ones based on these. As seen in Figure 7(b), our
synthetic OOD nodes align more closely with the actual OOD nodes. Training with these nodes
results in better separation between ID and OOD node representations, as shown in Figure 7(d).

G Discussion

G.1 A Straightforward Explanation of Feature Resonance

To verify the phenomenon of Feature Resonance, we calculate the change ∆hθt(x̃i) in the represen-
tation hθt(x̃i) of an unlabeled node i from the t-th (t ≥ 0) epoch to the (t+ 1)-th epoch, defined as
follows:

∆hθt(x̃i)

= hθt+1
(x̃i)− hθt(x̃i)

= −α x̃i ∇θtℓ(Xknown)

= 2αE(x̃iX
⊤
known︸ ︷︷ ︸

Term 1

((XknownW
⊤
t )− 1⊤e)︸ ︷︷ ︸

Term 2

)

(19)

where α is the learning rate. Term 1 in the Equation 19 illustrates that when the features of x̃i are
consistent with the overall features of the labeled ID nodes Xknown, the representation of x̃i undergoes
a more significant change. Meanwhile, since term 2 in the Equation 19 and x̃i are independent, the
choice of the target vector can be arbitrary. It is highly suitable for category-free OOD detection
scenarios, requiring no multi-category labels as ground truth.

G.2 Why Feature Resonance Tends to Occur in the Middle Stages of Training

Empirically, we observe that feature resonance peaks in the middle of training. Although it is
challenging to fully explain why feature resonance is most prominent in the middle stages of training,
we aim to provide some theoretical insights. This aligns with the Information Bottleneck (IB)
theory Tishby and Zaslavsky [2015], Saxe et al. [2019] and recent feature learning studies Allen-Zhu
and Li [2022], Cao et al. [2022], which suggest that models initially memorize broad information, then
gradually compress irrelevant parts while preserving task-relevant features—reflecting an emerging
inductive bias. This compression phase in the middle of training corresponds to a point where
irrelevant variation is reduced, allowing feature resonance to become most salient.
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According to the IB principle, the representation T is optimized by:

min
p(T |X)

I(X;T )− I(T ;Y ), (20)

where I(X;T ) measures how much input information is retained, and I(T ;Y ) indicates task rele-
vance.

The training dynamics can be interpreted as follows:

1. Early training: I(X;T ) ↑, I(T ;Y ) is low ⇒ large information redundancy, unstable represen-
tations, and little or no resonance.

2. Middle training: I(X;T ) ↓, I(T ;Y ) ↑ ⇒ irrelevant information is compressed, task-relevant
features are amplified, resulting in strong feature resonance.

3. Late training: possible overfitting, I(X;T ) ↑ again, but no further gain in I(T ;Y )⇒ represen-
tations become more complex, and feature resonance diminishes.

This dynamic explains why feature resonance tends to emerge most clearly during the middle stages
of training.

G.3 Differences from Gradient-Based Methods

It is important to note that our method RSL differs significantly from previous gradient-based
methods:

1) Originating from the Commonality of Representations. Our method is based on the conjecture that
there are inherent commonalities between the representations of the ID sample, which are independent
of gradients.

2) No Pre-trained Multi-category Classifier Required. Gradient-based methods like GradNorm
[Huang et al., 2021] compute the KL divergence between an unknown sample’s softmax output from
a multi-category classifier and a uniform distribution, using the gradient norm to distinguish OOD
samples. OOD samples, with uniform softmax outputs, yield more minor gradient norms, whereas
sharper outputs for ID samples produce more significant norms. Similarly, SAL [Du et al., 2024a] uses
pseudo-labels from a multi-category classifier for unknown samples, continuing training to compute
gradients, and identifies OOD samples via the gradient’s principal component projection. These
methods require a pre-trained multi-category classifier, making them unsuitable for category-free
scenarios without labels, whereas our RSL method avoids this limitation.

3) No Need to Compute Gradients for Unknown Samples. As shown in Equation 19, we only need
the representations of unknown samples to compute our resonance-based score. This significantly
enhances the flexibility of our method, as we can detect OOD samples during any optimization of
known ID representations without the need to wait until after the optimization is complete.

G.4 Limitations and Future Directions

While our method demonstrates strong performance in OOD detection within the graph domain, its
applicability and effectiveness in other domains, such as computer vision (CV), natural language
processing (NLP), and multimodal data, remain largely unexplored. These domains often come
with distinct data structures, noise characteristics, and task-specific challenges, which may affect
the dynamics of feature resonance and the general behavior of our approach. Future work could
investigate how the core principles of RSL, such as feature resonance and unsupervised separation
of ID and OOD distributions, translate to domains where data representations are less structured or
more abstract than in graphs.

Although our use of the validation set strictly follows the setting of the latest baseline EnergyDef
[Gong and Sun, 2024], where the validation and test sets are constructed by randomly splitting
the unknown ID and OOD nodes at a 1:2 ratio, the roles of the validation set differ slightly in our
approach. In EnergyDef [Gong and Sun, 2024], the validation set is used solely for selecting the best
checkpoint. In our method, however, it serves two purposes: during Stage 1, it is used to determine
the optimal threshold t when identifying high-confidence OOD nodes through feature resonance, and
during Stage 2, it is used to select the best checkpoint for training the OOD classifier. Nevertheless,
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we acknowledge that relying on a validation set introduces certain limitations, and in future work, we
aim to develop a feature resonance–based induction method that can operate without the need for a
validation set.

Moreover, as a general-purpose algorithm originally designed for unsupervised scenarios, RSL
inherently does not rely on label information. In situations where label data is available, especially
in high-resource settings, it currently leverages such information only indirectly through node or
sample features. However, this represents an opportunity rather than a limitation. A more deliberate
integration of label signals could significantly enhance the learning process, especially for improving
the discriminability between ID and OOD instances.

One promising direction is to augment RSL with lightweight supervision or semi-supervised tech-
niques. For example, incorporating label propagation methods could help better spread the influence
of known ID categories across the feature space, strengthening the boundary between in-distribution
and out-of-distribution regions. Other techniques, such as consistency regularization, pseudo-labeling,
or contrastive learning guided by label information, may also be explored to bridge the gap between
unsupervised robustness and label-aware precision.

G.5 Broader Impacts

On the positive side, our method can enhance the robustness and reliability of graph-based systems in
various applications, such as fraud detection, cybersecurity, and scientific discovery, by identifying
anomalous or out-of-distribution nodes without relying on labels. This has the potential to improve
safety and trust in real-world systems.

On the other hand, we recognize that misuse of OOD detection—such as for unjustified surveillance
or exclusion of minority data—could raise ethical concerns. To mitigate such risks, we emphasize
the importance of transparent usage, fairness-aware evaluation, and domain-specific safeguards.
While our method is label-free and unsupervised, it is critical to apply it with caution, particularly in
sensitive or high-stakes domains.
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H Algorithm Pseudo-code

Algorithm 1 Resonance-based Separate and Learn (RSL) Framework for Category-Free OOD
Detection

1: Input: Known ID nodes Vknown, Wild nodes Vwild, Target vector e with random initial, Validation
set Vval

2: Output: OOD classifier Eθ

3: Phase 1: Feature Resonance Phenomenon
4: Initialize model hθ with random parameters θ
5: for t = 1 to T (training epochs) do
6: Optimize hθt(·) to align Vknown with target e:

ℓ(hθt(Xknown), e) = E(∥ 1⊤e− (XknownW
⊤) ∥22)

7: Calculate the representation change of ṽi ∈ Vwild : ∆hθt(x̃i) = hθt+1
(x̃i)− hθt(x̃i)

8: Compute resonance-based score τi =∥ ∆hθt(x̃i) ∥2
9: end for

10: Identify the period of feature resonance using the validation set, selecting t where τ best separates
ID and OOD nodes.

11: Phase 2: Candidate OOD Node Selection
12: Define candidate OOD set:

Vcand = {ṽi ∈ Vwild : τi ≤ T}

13: Phase 3: Synthetic OOD Node Generation
14: for each v̂j ∈ Vsyn (synthetic OOD nodes) do
15: Generate x̂

(t+1)
j with random initial using:

x̂
(t+1)
j = λ

(
x̂
(t)
j − α

2
∇

x̂
(t)
j
Eθ(v̂

(t)
j ) + ϵ

)
+ (1− λ)Ex∼Xcand

(x− x̂
(t)
j ), , ϵ ∼ N (0, ζ)

16: end for
17: Phase 4: OOD Classifier Training
18: Define training set Vtrain = Vknown ∪ Vcand ∪ Vsyn

19: Assign labels Ytrain for ID nodes (1) and OOD nodes (0)
20: Train Eθ using binary cross-entropy loss:

ℓcls = Ev∼Vtrain

(
yvlog(σ(Eθ(v))) + (1− yv)log(1− σ(Eθ(v)))

)
21: Return: Trained OOD classifier Eθ
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s contributions, including
the DADO framework’s innovations in distribution alignment and diversity optimization.
Claims are supported by theoretical and experimental results in subsequent sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper includes a dedicated Limitations section (Appendix G.4), which
highlights that the generalization ability of our method to other domains such as computer
vision (CV) and natural language processing (NLP) still requires further investigation.
Moreover, as a general-purpose algorithm designed for unsupervised settings, our method
can only utilize label information indirectly through features when category labels are
available. In scenarios with abundant label information, how to better integrate RSL with
supervision remains an open question. For example, incorporating techniques like label
propagation could enhance the utilization of ID category information and is a promising
direction for future development.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate "Limitations" section in their paper.
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will be specifically instructed to not penalize honesty concerning limitations.
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Answer: [Yes]
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D.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
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to have some path to reproducing or verifying the results.
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Answer: [Yes]
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6. Experimental setting/details
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper details the experimental setup (Section 3.1, Appendix E), including
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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Justification: The experimental results in the paper use three commonly adopted OOD
detection metrics: AUROC, AUPR, and FPR95 (see Table 2 and Section 3).
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of Normality of errors is not verified.
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide the hardware setup in Appendix E and compare the time efficiency
in Table 11.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research presented in this paper fully complies with the NeurIPS Code of
Ethics. We have carefully considered issues such as reproducibility, fairness, transparency,
potential societal impact, and the responsible use of data. All experiments were conducted
ethically, and any datasets used were publicly available and appropriately cited. Code is
provided in the supplementary material to support reproducibility.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in Appendix G.5.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
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groups), privacy considerations, and security considerations.
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work does not involve high-risk releases (e.g., pretrained models or
scraped datasets)
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
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Justification: Datasets and methods are properly cited with references.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets, models, or code are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human subjects or crowdsourcing were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: Not applicable, as no human subjects research was conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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important, original, or non-standard components.
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involve LLMs as any important, original, or non-standard components.
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for what should or should not be described.

38

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Method
	Revealing the Feature Resonance Phenomenon
	Utilizing the Micro-level Feature Resonance Phenomenon with An Arbitrary Target
	Extension with Synthetic OOD Node Strategy
	Theoretical Analysis

	Experiment
	Experimental Setup
	Main Results

	Related Work
	Conclusion
	Acknowledgement
	Notations, Definitions, Assumptions and Important Constants
	Notations
	Definitions
	Assumptions
	Constants in Theory

	Main Theorems
	Proofs of Main Theorems
	Proof of Theorem 1
	Proof of Theorem 2

	Necessary Propositions
	Boundedness

	Experiment Details
	Hyperparameter
	Metric
	Dataset Description
	Baseline Description
	Implementation Details

	More Experiments
	The Feature Resonance Phenomenon Induced by Different Target Vectors
	Variation of Microscopic Feature Resonance During Training
	Effectiveness of Different Scoring Strategies Based on Feature Resonance
	Time Efficiency
	RSL Performance with Different GNN Encoders
	Graph-Level OOD Detection
	The Generality of Feature Resonance
	Score Distribution Visualization
	Node Representation Visualization

	Discussion
	A Straightforward Explanation of Feature Resonance
	Why Feature Resonance Tends to Occur in the Middle Stages of Training
	Differences from Gradient-Based Methods
	Limitations and Future Directions
	Broader Impacts

	Algorithm Pseudo-code

