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ABSTRACT

Foundation models have significantly advanced in various applications, including
text-to-image generation, open-vocabulary segmentation, and natural language
processing. This paper presents Instruct2Act, a framework that leverages
Large Language Models (LLMs) to convert multi-modal instructions to sequen-
tial actions for robotic manipulation tasks. Specifically, Instruct2Act uses
LLMs to generate Python programs that form a comprehensive perception, plan-
ning, and action loop for robotic tasks. It uses pre-defined APIs to access mul-
tiple foundation models, with the Segment Anything Model (SAM) identifying
potential objects and CLIP semantically classifying them. This approach com-
bines the strengths of foundation models and robotic actions to transform com-
plex high-level instructions into precise policy codes. Our approach is adaptable
and versatile, capable of handling various instruction modalities and input types,
and meeting specific task requirements. We validated the practicality and effi-
ciency of our approach on robotic tasks including different tabletop and 6 De-
gree of Freedom(DoF) manipulation scenarios in both simulation and real-world
environments. Furthermore, our zero-shot method surpasses many state-of-the-
art learning-based policies in several tasks. The code for our proposed approach
is available at https://anonymous.4open.science/r/Instruct2Act, providing a solid
benchmark for high-level robotic instruction tasks with diverse modality inputs.

1 INTRODUCTION

Large Language Models (LLMs) such as GPT-3 (Brown et al., 2020), LLaMA (Touvron et al., 2023),
and ChatGPT have made unprecedented progress in generating human-like text and understanding
natural language instructions. These models exhibit impressive zero-shot generalization abilities,
having been trained on extensive corpora and refined through human feedback. Subsequent work,
such as Visual ChatGPT (Wu et al., 2023a), incorporates a various visual foundation models to
enable visual drawing and editing through a prompt manager. Similarly, VISPROG (Gupta & Kem-
bhavi, 2022) introduces a neuro-symbolic approach for intricate visual tasks, including image un-
derstanding, manipulation, and knowledge retrieval. Inspired by the immense potential of merging
LLMs with multi-modality foundation models, we aim to develop comprehensive robotic manipu-
lation systems. The question we pose is: Can we construct robotic systems akin to ChatGPT that
support robotic manipulation, visual goal achievement, and visual reasoning?

Developing a versatile robotic system that can perform complex tasks in dynamic environments is a
significant challenge in robotics research. Such a system needs to perceive its environments, choose
appropriate robotic skills, and sequence them accordingly to accomplish long-term objectives. This
requires the integration of various technologies, including perception, planning, and control, to allow
the robot to function autonomously in unstructured environments. Inspired by the LLMs’ impres-
sive ability to generate simple Python programs from docstrings, CaP (Liang et al., 2022) directly
generates the robot-centric policy code based on several in-context example language commands.
However, its capabilities are limited to what the perception APIs can provide, and it struggles with
interpreting longer and more complex commands due to the high precision requirements of the code.

To address these challenges, we propose a novel approach that utilizes multi-modality foundation
models and LLMs to simultaneously execute perceptual recognition, task planning, and low-level
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(a) Robots are able to execute instructions that are (b) Module examples utilized in Instruct2Act.
provided as input in natural language. The modules’ definitions are hierarchical and aligned
with the robotic system design.

Figure 1: A robotic task (a) is executed through the invocation of several modules (b) in
Instruct2Act.

control modules. Unlike existing methods such as CaP (Liang et al., 2022), which directly generates
policy codes, our approach generates decision-making actions that can help reduce the error rate
when performing complex tasks. Specifically, we use various foundation models, including SAM
and CLIP, to accurately identify and classify objects in the environment. We then integrate this
information with robotic skills to generate decision-making actions using LLMs.

We evaluate our proposed method across various domains and scenarios, encompassing simple ob-
ject manipulation, visual goal achievement, and visual reasoning. Our framework offers a user-
friendly, general-purpose robotic system and demonstrates robust performance on six representative
meta-tasks from VIMABench (Jiang et al., 2022). Our proposed approach could serve as a solid
baseline in the field of robotics research, contributing to the advancement of more intelligent and
capable robots.

The contributions of our papers can be summarized as follows:

* General-purpose robotic system. We present a versatile robotic system, named
Instruct2Act, which utilizes the in-context learning capabilities of LLMs and multi-
modal instructions to generate mid-level decision-making actions from both natural lan-
guage and visual instructions.

* Flexible modality inputs. This paper explores the use of unified modality instruction
inputs in robotic tasks, including manipulation and reasoning, and introduces a flexible
retrieval architecture capable of managing different types of instructions.

* Strong zero-shot performance with minimal code overhead. The proposed
Instrcut2Act has demonstrated superior performance compared to current state-of-
the-art learning-based policies, even without the need for fine-tuning. Moreover, the impact
of using foundational models is relatively minor compared to methods that involve training
from scratch.

2 RELATED WORKS

2.1 LANGUAGE-DRIVEN ROBOTICS

Language in robotics offers not only a user-friendly interface but also the potential for cross-task
skill generalization and long-horizon task reasoning. As a result, instruction-based policies have
been a popular area of research in robotics (Brohan et al., 2023; Shao et al., 2021; Shridhar & Hsu,
2018). Recently, with the emergence of multi-modality models, CLIPORT (Shridhar et al., 2022) has
given Transporter (Zeng et al., 2021) the ability to understand semantics and manipulate objects by
encoding text input through CLIP (Radford et al., 2021). Perceiver (Shridhar et al., 2023) extended
the CLIPORT to the 3D domain by employing voxelized observation and action spaces in their
Perceiver-Actor model. SayCan (Brohan et al., 2023) employed the 540B PaLM (Chowdhery et al.,
2022) to accomplish zero-shot concept grounding. Language-planner (Huang et al., 2022a) utilized
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two LLMs in their approach, where one was used for zero-shot planning generation and the other one
was used for admissible action mapping. Inner monologue- (Huang et al., 2022b) enhanced their
method by integrating closed-loop feedback, such as scene descriptors and success detectors, for
performing robotic tasks. VIMA (Jiang et al., 2022) developed a large-scale benchmarking dataset
by designing a multimodal prompts-conditioned framework. CaP (Liang et al., 2022) directly gen-
erates policy codes with detailed comments and context-specific examples to guide LLM output.
LILAC (Cui et al., 2023) conducted a further investigation of the shared autonomy regime. Their
approach involves a fusion of the correction signal from human instruction and the static controller
with the original policy during inference. PaLM-E(Driess et al., 2023) built a large vision-language
model for embodied agents by integrating the power of 540B PaLM (Chowdhery et al., 2022) and
22B ViT (Dehghani et al., 2023). Text2Motion (Lin et al., 2023) predicted the goal state and selected
feasible actions using LL.Ms while considering geometric constraints. Socratic Models (Zeng et al.,
2022) generated prompts in their approach by incorporating perceptual information into LLMs using
vision-language models. TidyBot (Wu et al., 2023b) used LLMs to summarize the human’s prefer-
ences given a few examples. Recently, VoxPoser (Huang et al., 2023) constructed a 3D value map
to reflect the workspace and then used LLM interacting with a visual language model to update it,
based on which robotic trajectories are generated with an additional planner. Our Instruct2Act
framework achieves great flexibility while retaining expert domain knowledge by combining robotic
primitive skills represented in API-style with the reasoning ability of LLMs.

2.2 FOUNDATION MODELS ON COMPUTER VISION TASKS

Several studies (Chen et al., 2020; Zhang et al., 2021) have utilized frozen pre-trained image en-
coders to improve the visual features extracted from images. And Internlmage (Wang et al., 2022)
adopted deformable convolutions in their large-scale visual foundation models for better image anal-
ysis. In addition, leveraging self-training and a massive dataset of 27M image-text pairs, GLIP (Li
et al., 2022a)achieved strong zero-shot transfer ability. Segment Anything Model (SAM) (Kirillov
et al., 2023), a segmentation foundation model trained on more than one billion mask samples, al-
lows for zero-shot transfer to diverse tasks through prompt engineering. MaskCLIP+ (Liang et al.,
2023) (Zhou et al., 2022) also discussed the zero-shot grounding ability of the visual foundation
models. Furthermore, pre-trained LLMs have shown significant progress in text understanding and
generation (Vaswani et al., 2017; Brown et al., 2020; Gao et al., 2023; Touvron et al., 2023). Such
breakthrough in LLMs also benefits the VL tasks (Fu et al., 2021; Zhang et al., 2021). Recently, there
have been explorations to combine the reasoning capacity of LLMs with the visual understanding
ability of visual foundation models. VISPROG (Gupta & Kembhavi, 2022) utilizes in-context learn-
ing in GPT-3 to generate a program for new instruction and demonstrates the system’s compositional
visual reasoning ability. ViperGPT (Suris et al., 2023) leverages code-generation models to produce
the results of language queries by means of composing foundation models into subroutines. Vi-
sual ChatGPT (Wu et al., 2023a) incorporates multiple visual foundation models and allows users
to interact with ChatGPT through the proposed prompt manager, which allows multiple Al mod-
els reasoning ability with multi-steps. Similarly, the proposed Instruct2Act aims at endowing
robotics the perception ability by incorporating advanced foundation models through the reasoning
ability of LLMs.

2.3 FOUNDATION MODELS IN ROBOTICS

In addition to language-conditioned robotic manipulation, the use of foundation models has also
led to significant advancements in robotics. LID (Li et al., 2022b) proposes a general approach
to sequential decision-making that uses a pre-trained language model (LM) to initialize a policy
network where goals and observations are embedded. R3M (Nair et al., 2022) explores how visual
representations obtained by training on diverse human video data (Grauman et al., 2022) can enable
data-efficient learning of downstream robotic manipulation tasks. Meanwhile, CACTI (Mandi et al.,
2022) suggests a scalable framework for visual imitation learning that utilizes pre-trained models to
map pixel values to low-dimensional latent embeddings for improved generalization ability. DALL-
E-Bot (Kapelyukh et al., 2022) uses Stable Diffusion (Rombach et al., 2022) to generate goal scene
images that function as guides for robot actions, providing a distinct approach compared to the
aforementioned works. Recently, a few works (Wang et al., 2023; Kalithasan et al., 2022) proposed
neuro-symbolic representations for robotic manipulation. However, they are limited to the close-set
instructions and are not training-free. In contrast, our Instruct2Act framework employs visual
foundation models as modular tools that can be invoked with APIs without the need for fine-tuning,
thereby eliminating the need for data collection and training costs.
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Figure 2: The paradigm of our proposed Instruct2Act framework. The framework employs an
LLM to generate executable code that calls upon visual foundation models using APIs to recognize
the environment. Once the object’s semantic information is recognized, we generate plausible ac-
tions that are then sent to the low-level controller to execute the task. The instructions highlighted
in green and blue represent pure-language and multimodal instructions, respectively.

3 METHODS

In general, Instruct2Act enables a robot arm to perform a series of actions based on user in-
structions and an image captured by a top-view camera. It is a language-based robotic system that
generates perception-to-action codes using a large language model (LLM). The goal is to modify the
state of objects in the environment to match the configuration described in the instructions. First, we
explain how to control a robotic arm by LLM. Task-related variables, such as image crops from the
task instruction and image-to-robot coordinate transformations, are stored in an environment cache
C that can be accessed through an API. Next, we present the prompt design of Instruct2Act,
including API definitions and in-context examples. Finally, we introduce the perception modules in
detail.

3.1 How 1O DRIVE ROBOTIC ARM BY LLM

To facilitate LLMs in completing robotic manipulation tasks, a designed prompt that guides the
LLMs’ generation is provided together with specific task instructions. The prompt includes applica-
tion programming interfaces (APIs) and in-context examples to demonstrate their usage, which are
introduced in the following section. The LLM’s final input is a series of code APIs, usage examples,
and task instructions. The LLM’s output is a Python function in string format that can be executed
by the Python interpreter to drive the robot’s action.

Certain sections of the generated code lines invoke visual foundation models to extract pertinent
visual information from the environment. This visual information, including the location and se-
mantics of the target object, is then formulated as parameters used in the policy codes. After that,
a mapping between the image space and the action space is established with a pre-defined transfor-
mation matrix. We also apply boundary clamping to avoid unintended actions.

Using LLM as the robotic driver offers several benefits. Firstly, the robotic policies generated by
the LLM’s API are highly adaptable and versatile, as in-context examples can be modified to guide
LLM’s behavior and adjust to new tasks. Secondly, by directly using visual foundation models,
there’s no need for data collection or training processes, and any enhancements in foundation models
can improve action accuracy without additional costs. Lastly, the straightforward API naming and
readable Python code make the generated policy code highly interpretable.
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Figure 3: Robotic program generation process. The complete prompt consists of third-party import

libraries, API definitions, and in-context examples.

3.2 PROMPTS FOR INSTRUCT2ACT

Fig 3 illustrates that a complete prompt should include essential information about third-party li-
braries, API definitions, and in-context examples. Importing third-party libraries allows the LLM
to understand how APIs use parameter types defined by these libraries for calculations and even
creating new functions. We showcase its effectiveness in Section 4.4. We also provide API defini-
tions and descriptions, along with a few in-context examples to demonstrate their usage, similar to
VISPROG (Gupta & Kembhavi, 2022). However, in our approach, we distribute and organize APIs
based on robotic system information, as shown in Fig 1(b). Specifically, these APIs are classified ac-
cording to their functionality within the robot system hierarchy, and this categorized information is
provided in the prompt. For example, the SAM () function belongs to Percept ion module which
is the second level core module in the robotic system. So we add # Second Level:Core
Modules and ## Perception Modules before introducing the SAM () API in the prompt.
Moreover, unlike ViperGPT (Suris et al., 2023), which only offers function-level usage examples,
we provide full-logical code examples invoking different modules similar to the approach of VIS-
PROG (Gupta & Kembhavi, 2022). This choice is based on the notion that robotic tasks tend to be
complex yet organized. In contrast to VISPROG (Gupta & Kembhavi, 2022), we design a prompt
that provides coverage for all tasks and has fewer in-context examples. To encourage chain-of-
thought reasoning, as done in (Kojima et al., 2022), we add the prompt Think step by step
to carry out the instruction before the inserted specific task instruction. To avoid the
LLM from generating too many redundant lines, we explicitly instruct it to only implement the
main () function. Examples of complete prompts are available in Appendix A.S.

3.3 PERCEPTION WITH OFF-THE-SHELF FOUNDATION MODELS

Instruct2Act utilizes off-the-shelf visual foundation models, specifically, the Segment Any-
thing Model (SAM) and CLIP models. These are accessed by the LLM via two designated APIs:
SAM () and CLIPRetrieval (). These Python functions load and call the models to conduct
the visual analysis. SAM outputs masks for all potential objects in the input image, based on these
masks, object crops I; are extracted correspondingly. These crops are then encoded into Fy, using
the CLIP image encoder and later utilized for the classification task. However, pre-trained visual
models used directly on downstream tasks without any fine-tuning often suffer from incompleteness
or incorrectness. To address these issues caused by the zero-shot paradigm, we insert processing
modules between the output of the large model and the downstream tasks. To mitigate the effect of
shadows, we apply a gray threshold filter followed by a morphological closing operation to fill up
small holes before sending the image to the SAM. After SAM’s segmentation operation, we perform
a morphological opening operation to eliminate overly small holes or unconnected gaps. We also
filter out masks with unreasonable sizes and reduce redundant mask output using Non-Maximum
Suppression (NMS). For detailed discussions and visualizations of the processing steps, please refer
to Appendix A.3.
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3.4 FLEXIBLE INSTRUCTION MODALITY MANAGER

Instruct2Act is flexible and can handle inputs of multiple modalities, such as pure language
and language-visual instructions, as depicted in Fig 2. We design a unified retrieval system that
utilizes different types of queries to ensure the use of a unified architecture for both types of inputs.

Pure-Language Instruction. For pure language inputs, descriptive sentences are utilized to specify
the target object and action. For example, a sentence such as Put the green and purple
polka dot block into the green container can be employed. Instruct2Act
utilizes the LLM to deduce that the robot needs to fetch the polka dot block from the environment.
Therefore, the phrase the green and purple polka dot block acts as the query and is
inputted into the CLIP text encoder to obtain the feature vector F7r. Finally, the similarity between
the query embedding Fr and the image crop features F; can localize the intended object precisely.

Language-Visual Instruction. For the multimodal inputs, the instruction uses an image to de-
scribe the target object or the target state. An example instruction is Put <dragged_obj> into
<base_obj>. The placeholders in curly braces represent the corresponding images of individual
objects, aligning with the LLM model’s input format. Given the instruction, the LLM determines
the placeholder strings to complete the query which is used to fetch the corresponding object image
crop I from the cache C. Then the image crop I is sent to the CLIP image encoder to obtain the
feature vector Fr. We use F to calculate the similarity with observation image feature vectors F7,.

Certain tasks require scene-level understanding, as demonstrated by the task of Rearrange to
this <scene>. To fulfill this instruction, we first obtain every possible object and its corre-
sponding feature vectors in the target scene image. We then use the Hungarian algorithm to deter-
mine the correspondences between the target scene image and the currently observed images.

Pointing-Language Enhanced Instruction. Pointing-language instructions are an effective alter-
native when the target object cannot be described using pure language instructions and providing
image crops is impractical. Specifically, we adopt the cursor movement method from (Liu et al.,
2023) and use cursor clicks to generate point prompts that guide the SAM’s segmentation. Addi-
tional details can be found in Appendix A.4.

Put ’ ino € Rotate "I 30 degrees. Put(5 intols{i then 2% Restore Rearrange to - Rearrange then restore.

Close the gray jar. Open the middle drawer. Push the buttons. Slide the block to blue target. Stack two oliver blocks.

Put the blue block on the Put the orange block

lock ¢
brown bowl. top-right comer.

Figure 4: Instruction-Conditioned Manipulation Tasks: We conduct experiments on 17 tabletop
manipulation tasks in VIMABench (Jiang et al., 2022)(a-e; only 5 shown), 5 six DoF manipulation
tasks in RLBench (James et al., 2020)(f-i), and 5 tabtop manipulation tasks as done in CaP (Liang
et al., 2022)(k-1; only 2 shown). We also demonstrate our approach with a Franka Panda on 5
real-world tasks(m-n; only 3 shown). The instructions in and blue boxes are uni-modal and
multi-modal instructions for the same task respectively.

6
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4 EXPERIMENTS
4.1 EVALUATION TASK

Multimodal Prompts Benchmark of Robot Manipulation. We conducted multi-modality prompt
manipulation tasks on VIMABench (Jiang et al., 2022), spanning from simple object manipula-
tion to visual reasoning in the tabletop manipulation domain. These tasks are illustrated in Fig 4.
VIMABench incorporates a 4-level generalization ability evaluation protocol, consisting of L1
placement, L2 combinatorial, L3 novel object, and L4 novel task generalization. Each level pro-
gressively deviates more from the training dataset distribution. For more detailed information about
the evaluation setting, please refer to (Jiang et al., 2022).

Textual Prompts Benchmark of Robot Manipulation. VIMABench is currently the only avail-
able benchmark for multi-modality prompt manipulation tasks. To demonstrate the robustness and
generalization ability of our versatile framework, we conducted experiments on additional textual
prompt benchmarks. These benchmarks included 6-DoF manipulation tasks in RLBench (James
et al., 2020) and 5 tabletop manipulation tasks similar to those in CaP (Liang et al., 2022), as shown
in Fig 4. To make a fair comparison, we implemented an Instruct2Act-Oracle version,
where we assume the object detection module returns the ground truth information. Additionally,
we evaluated the performance of our approach on 5 real-world tasks using a Franka Panda robot.

4.2 IMPLEMENTATION DETAILS

In our experiments, we utilized two different types of Language Models (LLMs) to validate that the
effectiveness of Instruct2Act is not significantly dependent on the choice of LLM. The first
type is the fext-davinci-003 language model, accessed through the OpenAl API. This model is a
fine-tuned variant of the InstructGPT (Ouyang et al., 2022) language model, optimized using human
feedback. The second type is the LLaMA-Adapter (Gao et al., 2023; Zhang et al., 2023b), which we
accessed through the user interface. This adapter is a lightweight adaptation of the original LLaMA
models (Touvron et al., 2023). Our approach involved providing limited prompts to influence the
output behavior of the language models, without any training or fine-tuning. Although the language
models may occasionally generate incomplete or incorrect code, such as missing brackets, punctua-
tion, or mismatched cases, the Python Interpreter can detect these errors and prompt us to generate
new code.

For open-vocabulary segmentation, we used open-sourced models such as SAM ViT-H and CLIP
ViT-H-14 for classification. To evaluate task success rates, we conducted experiments on 150 in-
stances for each representative meta-task. For each meta-task, we selected three random seeds to
calculate average success rates. The VIMABench simulator determined task success by compar-
ing the final states with the configurations specified in the instructions. These experiments were
conducted on an NVIDIA 3090Ti GPU. Additionally, we directly utilized the experiment result of
different baselines (20M parameter version) in VIMABench from (Jiang et al., 2022).

To extend the original tabletop manipulation skills and evaluate the agent with 6 DoF tasks, we
used the RGB-D camera as the input sensor following PerAct (Shridhar et al., 2023) and made the
following medications. For simple 3D tasks, such as stacking objects, we introduced an additional
parameter to indicate the current occupancy. For more complex tasks, such as opening a drawer,
we added some heuristic movements to ease the execution. Further details regarding the 6 DoF
manipulations and real-world experiments can be found in Appendix A.5.

4.3 RESULTS

Results on Multimodal Prompts Bench-
mark. We demonstrate the effectiveness

of our proposed method through experiments o
on various generalization tasks, including L1, .. |

L2, L3, and L4 levels of VIMABench.
Fig. 5 displays the results of these meth-
ods. Compared with Gato (Reed et al., 2022),
Flamingo (Alayrac et al.,, 2022), and Deci-
sion Transformer (DT) (Chen et al., 2021),
our method consistently yielded positive results ~ Figure 5: Evaluation results on VIMABench.
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across all levels and tasks. In the case of VIMA, our framework achieves comparable performance
without the necessity of training, further showcasing its versatility and effectiveness. In contrast,
VIMA requires about 650K training trajectories and multiple GPUs for its training process.

Results on Other Textual Prompts Benchmarks. Besides the multimodal prompts benchmark, we
evaluate our proposed approach on several textual prompts benchmarks to confirm its generalization
ability. Table 1 shows that we achieve a 3.8% SR gain compared to the PerAct (Shridhar et al.,
2023) method. For the CaP benchmark, we obtain a 1.2% SR gain using significantly fewer tokens
compared to CaP (Liang et al., 2022).

Benchmark | Method | SR(%) | Benchmark | Method SR(%) | Token
PerAct 59.2 CaP 84.8 3919
ML Ours 63 el Ours-Oracle 86 1600

Table 1: Evaluation results on textual prompts benchmarks.

4.4 ABLATION STUDIES

Effectiveness of Prompt Components. We conducted an investigation into the effectiveness of each
prompt component in generating policy code. To thoroughly validate this effectiveness, we created
two additional task sets: the Reformatted Instruction set (where instructions such as representing
angles in degrees were replaced with radians) and the Unseen Tasks set (where information about
RR was removed from the prompts). Table 2 shows that when all prompt components are provided to
the LLM, the agent achieves the best performance. Due to the absence of full-logic code examples,
as in ViperGPT, the agent experiences a significant decline in performance, e.g. SR drop from 83%
to 28%. We attribute this to the complexity of robotic tasks, which often involve multiple steps
and variables during execution. The lack of demonstrations using complete policy codes poses
challenges for the LLM in generating accurate codes. Additionally, we discovered that information
on Libraries and APIs proves advantageous when dealing with both novel task instructions and tasks
that have not been previously encountered.

Library | API | Full Examples | Normal Tasks | Reformated Instruction | Unseen Tasks | Average
v v 33 30 20 28
v v 80 75 60 72
v v 85 75 80 80
v v v 85 80 85 83

Table 2: Ablation on the effectiveness of prompt components.

Different Foundational Models. We conducted experiments using different visual foundation
models to assess their impact on performance. Specifically, we replaced the original models with
SAM-Base and SAM-Large for the semantic segmentation module, and Base-16 and Large-14 for
the CLIP model. Considering the deployment in the robotic domain, we further provided the re-
sults with FastSAM (Zhao et al., 2023) and MobileSAM (Zhang et al., 2023a). The results, dis-
played in Table 3, consistently indicate that larger foundation models improve the performance of
Instruct2Act. This finding suggests that our approach could benefit from even more powerful
foundation models in the future. Moreover, since the visual models are accessed via APIs, they
can be easily substituted with other visual foundation models. We provide a task-level result in
Appendix A.6.

CLIP | H-14 | H-14 | H-14 H-14 H-14 B-16 | L-14
SAM Base | Large | Huge | FastSAM | MobileSAM | Huge | Huge
SR(%) | 75.3 83 84.4 83.2 76.2 704 | 76.5

Table 3: Ablation on the visual foundation models.

Effectiveness of Processing Modules. Table 4 presents ablation studies that validate the effective-
ness of the proposed processing modules, including image pre-processing and mask post-processing.
The absence of any processing methods leads to significant performance degradation, with only 51%
SR, in line with the findings of the analysis in Section 3.3. Mask post-processing directly boosts the
success rate to 83.0%, while further incorporation of image pre-processing achieves the peak suc-
cess rate of 84.1%. It is worth noting that using only image pre-processing leads to no improvement
in performance and may even cause degradation in some tasks. This could be attributed to the fact
that the current heuristic method would inevitably destroy some features on target objects since
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some tested objects also have parts with a color similar to the background. In other words, image
pre-processing offers potentially better segmentation results at the cost of losing some visual parts.

Process Method | vy | g7 | RT | RA | RR | POR | Average
Image | Mask
704 | 34.6 | 88.6 | 41.7 | 159 | 547 | 510
v 69.7 | 339 | 87.7 | 40.9 | 149 | 529 | 50.0
v [ 917 [ 782 | 974 | 729 | 695 | 883 | 83.0
v Vv | 916 | 80.8 | 97.8 | 784 | 60.1 | 87.2 | 84.1

Table 4: Ablation studies on the effectiveness of the proposed processing modules. The success rates
were calculated as the average of performance across three generalized levels. The tasks included
Visual Manipulation (VM), Scene Understanding (SU), Rotation (RT), Rearrange (RA), Rotate and
Restore (RR), and Pick in Order then Restore (POR).

Comparison between Different LLMs.

We  demonstrate  that our  proposed VM Direct | More Trail | Filtering
Instruct2Act is potentially effective SR(%) | 72.5 77.5 85.5
with open-source LLM, in addition to the Table 5: Results with LLaMA-Adapter.

commercial ChatGPT. Specifically, we use the

LLaMA-Adapter (Gao et al., 2023) and choose Visual Manipulation(VM), reporting the success
rate on 40 instances in Table 5. Remarkably, our Instruct2Act already achieves plausible
performance with the LLaMA-Adapter’s original output. Furthermore, our performance improves
to 77.5% when we increase the number of generation trials when the Python interpreter raises an
exception. And comparable results can be achieved by using basic filtering, such as re-generating
when the environment cache usage is missed in the code.

Flexibility and Robustness of Instruct2Act. We demonstrate the flexibility and robustness
of Instruct2Act on the Out-of-distribution (OOD) instructions. Specifically, we evaluate our
approach in three scenarios: Human Intervention(HI), Missing Characteristics(MC), Synonym Re-
placement(SR), and Instruction Reformat(IR). We conducted the experiments on the Task Rotation
and reported a success rate of 20 runs. As shown in Table 6, VIMA failed to handle HI and SR.
In contrast, Instruct2Act can ground the instruction correctly. Furthermore, it can use the im-
ported 3-rd library such as numpy to convert the radians to degrees before passing to the action
function.

OOD Instruction Examples Ours | VIMA
Human Intervention ”Cancel the task, stop!” 100% 0%
Missing Characteristic Drop one characteristic from “Rotate” randomly. | 100% | 100%
Synomym Replacement | Replace "Rotate” with ”’Spin”. 100% | 95%
Reform Task Represent the angle degrees with radians. 95% 0%

Table 6: Flexibility of Inst ruct2Act with OOD instructions.

Further Analysis. We further conducted the error analysis across different tasks and defined five
error types accordingly. The detailed error analysis can be found in Appendix A.l. Besides, we pro-
vide a further discussion on the prompt designs within the LLM-based API-tool domain, which can
be found in Appendix A.2. Deeper analyses with full evaluation results tables are in Appendix A.7.

Limitations. Our method is presently limited by the basic action primitives, such as Pick and Place.
However, we intend to expand our approach by incorporating more complex actions through API
extensions in future work. Additionally, we have only tested our method with simple real-world
manipulation tasks, and will investigate more complex real-world applications in the future.

5 CONCLUSION

We proposed a Instruct2Act framework to utilize LLM to map multi-modality instructions to
sequential actions in the robotics domain. With the LLM-generated policy codes, various visual
foundation models are invoked with APIs to gain a visual understanding of the task sets. To mitigate
the gaps in the zero-shot setting, some processing modules are plugged in. Extensive experiments in
the simulation and real-world setting verify that Inst ruct2Act is effective and flexible in robotic
manipulation tasks.
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A APPENDIX

A.1 TASK ERROR ANALYSIS

We conducted an error analysis on the generated policy codes. The code-style policy in
Instruct2Act provides a robust mechanism for pinpointing error/failure sources. We manu-
ally go over 100 examples on the first 10 tasks of VIMABench, where each task has 10 different
policy codes. Using criteria inspired by VISPROG (Gupta & Kembhavi, 2022), we categorized
errors as API misuse; Attributes hallucination (using the attributes that do not exist); Syntax er-
ror(including referring the inaccessible parameters); Inaccurate Perception(detection and segmenta-
tion); Limited API’s ability (correct logic codes while wrong execution results except the perception
reason). Among these factors, API misuse, attributes hallucination and syntax error can be taken
as policy generation errors while the other two are inherent in the API implementation. As shown
in Table 7, the policy generation error rate in Instruct2Act is much lower than in ViperGPT,
indicating the effectiveness of in-context full policy code examples which help the LLM understand
the usage of different APIs and construct a complete policy code.

Type of Error Description of Error Ours | ViperGPT
API misuse Use the incorrect API during execution 4% 16%
Attributes hallucination | Use the nonexistent attribute 2% 4%
Syntax error Program syntax error rasing from interpreter | 3% 14%
Inaccurate Perception Inaccurate detection or segmentation result 6% 5%
Limited APTI’s ability Inaccuracy during the API’s execution 5% 6%
Correct Execute successfully 76% 55%

Table 7: Error distribution across 100 task runs on VIMABench.

Since the tasks on VIMABench are diverse and focus on different robotic abilities, we conduct
further error analysis on the task-specific level. We chose three representative tasks from the
VIMABench: Visual Manipulation (VM, one of the simplest tasks), Rearrange then Restore (RR,
requiring multi-steps), and Twist (TW, requiring stronger reasoning ability on instructions).

As shown in Table 8, the task Visual Manipulation has the least errors in code generation since it
requires few task understanding and almost no new function generation ability. For Task Rearrange
then Restore, the predominant source of error is 'Inaccurate Perceotion’. This can largely be at-
tributed to the scene in that the task often encompasses multiple objects, some of which possess
analogous textures, posing challenges for CLIP’s differentiation capabilities. Meanwhile, for Task
Twist, "Limited API’s ability’ emerges as the primary error cause. This task necessitates the policy
to first deduce the intended rotation angle from template images prior to task execution. With current
heuristic methods, obtaining a precise and reliable value proves challenging.

Type of Error VM | RR | TW
API misuse 2% 8% 6%
Attributes hallucination | 2% 4% 4%
Syntax error 0% | 4% | 4%

Inaccurate Perception 6% | 12% | 8%
Limited API’s ability 0% | 2% | 24%
Correct 90% | 70% | 54%

Table 8: Error distribution across 3 meta tasks on VIMABench.

A.2 FURTHER DISCUSSION ON PROMPT DESIGN

Based on the evaluation results and error analysis, we further elucidate our findings regarding the
prompt design in API usage with LLM. Current methodologies can be categorized into three primary
groups:

Pure Text Prompt with Online Low-level Code Generation: This approach instructs the LLM
to autonomously produce the requisite codes. Notably, while this method offers tremendous flexi-
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bility, it consumes a significant amount of tokens. Additionally, the LLM’s inherent limitations in
spatial reasoning render it ineffective for certain tasks. The representative work in this category is
CaP (Liang et al., 2022).

API-Only Information: Here, the LLM is granted a high degree of latitude in selecting the API
tools. Nonetheless, it occasionally struggles with crafting multi-step tool utilization for intricate
tasks. Furthermore, inherent randomness in the LLM can lead to variable naming inconsistencies.
ViperGPT (Suris et al., 2023) exemplifies this category.

Logic-Only Codes: This approach solely offers logic codes, potentially restricting the LLM’s ca-
pacity to architect new code logic. Consequently, this might curtail its adaptability to novel tasks.
VISPROG (Gupta & Kembhavi, 2022) epitomizes this group.

In conclusion, the selection of prompt design should be tailored to the specific requirements of
the task at hand. Instruct2Act amalgamates both API information and complete logical code
samples, ensuring it caters to structured robotic task settings while preserving the flexibility to adapt
to new tasks.

A.3 PROCESSING MODULE IN INSTRUCT2ACT

When pre-trained models are utilized directly on downstream tasks without any fine-tuning, they
inevitably suffer from problems like incompleteness or incorrectness. In light of this, it is advisable
to insert processing modules or adapters between the output of the large model and the downstream
tasks which can effectively tackle the issues caused by this zero-shot paradigm. The entire loop of
execution for robot tasks comprises three modules, namely, perception, planning, and execution. We
have curated various processing programs for each of these modules designed for tabletop manipu-
lation domains.

Image Pre-Processing In the case of zero-shot SAM outputs, a significant challenge is distinguish-
ing the target object from shadow regions that might appear within the image. As object shadows
cannot be grasped, their presence poses additional difficulty for robot grasping tasks. Furthermore,
tabletop manipulation domains typically involve camera placement above the robotic arm, leading
to large shadows cast onto the operating table. To account for this, we adopted a simple yet efficient
image preprocessing methodology: to mitigate the effect of shadows, we employed the gray thresh-
old filter followed by the close morphological operation to fill in small gaps that the filter might
produce.

Mask Post-Processing In the zero-shot setting, it is observed that the SAM produces multiple seg-
ments (e.g. masks) that may be discontinuous or discrete. There may also be detected objects with
missing parts, or holes inside, as shown in Fig 6-C. These misleading semantic mask outputs will
inevitably confuse the subsequent modules and greatly challenge the robot grasping task. In order
to address the given problem, we have developed a set of processing modules to work with the SAM
output. The modules include the following methods:

* We apply a filtering process on the output based on the mask’s size. This process removes
any output that is clearly not part of the target object. Such output may include objects that
cannot be moved, like tables or patterns on the target object.

* A dilation operation is used to effectively eliminate unrealistic small holes or unconnected
gaps. To avoid significant changes to the mask’s size due to dilation, we then use an ero-
sion operation. These two procedures combine to create what is known as the opening
morphological operation.

* In some instances where there are multiple segmentation outputs for a single object, we
employ the Non-Maximum Suppression (NMS) operator to reduce redundant mask output.

A.4 FURTHER DISCUSSION ON INSTRUCTION MODALITIES ON VIMABENCH
Pure-Language Instruction In addition to the original multimodal prompt instruction in the

VIMABench, we extract object descriptions from the simulator and create a task prompt utilizing
natural language that is more commonly used by actual users in their day-to-day lives.
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A. Input image C. SAM results-1 E. SAM results-3
B. Pre-processed Image D. SAM results-2 F. SAM results-4

Figure 6: The segmentation outputs w / wo the processing methods. Fig A is the original image
which is produced by a top-down camera. Fig B is the image with the proposed image pre-processing
pipeline. Fig- {C, D, E, F'} are the SAM results directly on the original image, only with the mask
post-processing, only with image pre-processing, and with both processing modules respectively.
The portion highlighted by the red circle demonstrates the redundant output of the SAM without
additional processing applied to a texture object.

Pointing-Language Enhanced Instruction When utilizing the pointing-language mode of
Instruct2Act, the system will display the initial task instruction and observation image. Next,
the user will select the target objects by clicking on them with the cursor. These click points will
then act as point prompts to guide the SAM’s segmentation process. We evaluated this mode on
Visual Manipulation (VM), Rotate(RT), and Pick in Order the Restore (POR), averaging the results
over 100 instances with one seed.

Instruction Modal VM | RT | POR
Original (Visual-Language Instruction) 913 | 98.2 | 85.2
Pure-Language Instruction 86.7 | 94.6 | 63.0
Pointing-Language Enhanced Instruction | 90.7 | 98.0 | 97.5

Table 9: Results with pointing-language enhanced instruction.

As shown in Table 9, the performance of multimodal instructions is generally better than that of
single-modal instructions. We believe that this is because the former provides a more comprehensive
range of information to the model, thereby reducing difficulties for the robot when attempting to
reason about the current execution scenario. Moreover, it achieves better results with the pointing-
language enhanced mode than with the pure-language instruction mode. This could be due to the
stronger prior information provided by the user’s click operations.

A.5 EVALUATION TASK DESCRIPTION
A.5.1 TASKS oN VIMABENCH

VIMABench (Jiang et al., 2022) presents a 4-level evaluation protocol that progressively increases in
difficulty for trained agents. Level 1 (L1) placement generalization randomly arranges the placement
of target objects, whereas L2 combinatorial generalization generates new combinations of target ma-
terials and object descriptions. L3 novel object generalization tests our agents’ ability to generalize
to novel materials and objects. L4 novel task generalization needs the agent to ground and execute
tasks that are previously unseen. We describe the tasks in the order of their corresponding task index
which is identical to the VIMABench.

* Visual Manipulation. The agent is required to pick a specific object and place it into a

specified container. The agent needs to first recognize the target objects aligning with the
task instruction specified by the natural language description or by the image pattern.
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* Scene Understanding. The agent must first identify the target object with the described
texture by grounding the natural language description and the scene image simultaneously
and then put the target object into the container with a specific color.

* Rotation. The agent is required to rotate a specific object by certain degrees along the
Z-axis.

» Rearrange. The agent is required to rearrange the target objects to reach the goal configu-
ration. The agent needs to identify the possible existing distractors and move them away to
avoid position conflicts.

* Rearrange then restore. The agent is required to restore the object placements after the
rearrangement operations.

* Novel adjectives understanding. The agent needs to ground new adjectives by comparing
the size or the textural of objects at first.

¢ Novel nouns. Similar to the above but with novel nouns.

* Novel nouns and adjectives. The combination of Novel adjectives understanding and novel
nouns understanding.

* Novel concept understanding. The agent needs to infer what is the exact angle to rotate
from the prompt.

* Follow the motion. The agent is required to place the target object to match the pose in the
corresponding video frame.

¢ Stack the blocks. Similar to the above.

» Sweep without exceeding. The agent needs to sweep target objects inside the specified
region without exceeding the constraint.

* Sweep without touching. Similar to the above except that the agent needs to not touch the
red line.

» Same texture. The agent needs to pick objects with the same texture as the descriptor in the
prompt and place them in the container.

* Same shape. All objects with the same shape as the container should be placed in the
container.

* Manipulate the old neighbor. The agent should first place the target object into the con-
tainer, then put one of its old neighbors into the same container.

* Pick in order then restore. The agent is required to pick and place the target object sequen-
tially into different containers and finally restore it to the initial container.

A.5.2 TASKS ON RLBENCH

RLBench James et al. (2020) is one of the most popular vision-guided manipulation benchmarks.
Following the PerAct (Shridhar et al., 2023), we evaluated our methods on the subset of the RL-
Bench. Similarly, we also use the RGB-D camera mounted at the robot’s wrist as our input sensor.

* Close jar. The robot needs to put the lid on the jar with a specific color. We use the depth
information to distinguish the lid and the jar.

* Push buttons. The agent is required to push the colored buttons in the specified sequence.
The depth difference is used to estimate the button size and we heuristically set the button-
pressing action.

« Slide blocks. The agent needs to slide the block to one of the colored square targets. And
we used similar methods as the task PushButtons.

 Stack blocks. The agent needs to stack N blocks of the specified color on the green plat-
form. We maintain an addition parameter to indicate the current occupancy, e.g. below 1.5
cm is occupied for Position A due to the existence of Block 1.

* Open drawer. The agent is required to open one of the three drawers: top, middle, and
bottom. We first heuristically move the robotic arm and let the camera on the wrist face the
drawer. Then we use the image from the wrist camera as the main input.
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A.5.3 TASKS ON CAP BENCHMARKS

To compare with CaP (Liang et al., 2022), we also evaluate our method on the tasks provided in
their open-source projects. To mark a fair comparison, we use the ground truth information of the
objects’ existence from the simulator as done in CaP.

* Pick and place. Pick up the object and place it on the receptacle bowl.

e Put in corner. Put all the blocks on the corner/side.

* Directional corner. Pick up the block to the defined direction of the specific receptacle bowl
and place it on the defined corner/side.

Stack blocks. Stack all the blocks.

 Put in line. Put all blocks in a specific line.

A.5.4 TASKS ON REAL-WORLD SETTING

The real-world experiments use a Franka Panda manipulator with a parallel gripper. or perception,
we use a RealSense camera mounted on the gripper. The extrinsic calibration between the camera
and the robot base frame is computed through ARUCO ROS' in previous. We use the Python con-
troller provided by Deoxys”. In real-world experiments, we conducted five tasks. And we provide
real-world demos in the supplementary material.

* Rotate. Rotate a specific object with the given angle.
* Place the block. Place the block with the given color into the receptacle.

¢ Stack blocks.

* Stack blocks then restore. First stack the blocks, then restore the moved one to its original
position.

* Place the can. Place a cola can into the receptacle. This is used for testing the open-
vocabulary ability of our method.

A.6 TASK-LEVEL EVALUATION RESULTS WITH DIFFERENT VISUAL FOUNDATION MODELS

As we can see from Table 10, with a stronger off-the-shelf perception model, the overall performance
could get better. However, we also noticed that with about 10% percent parameters, the FastSAM
could have a comparable performance. This could partly be due to the fact that the tested environ-
ment is relatively structured and with fewer visual reasoning challenges. In such a case, FastSAM
could be a better choice since the computation cost is much lower.

Method FastSAM | MobileSAM | SAM
Parameters 68M 10M 641M
Visual manipulation 89.2 83.2 91.3
Scene understanding 82.0 76.3 81.4
Rotate 97.9 95.3 98.2
Rearrange 76.7 70.6 78.5
Rearrange then restore 70.2 65.5 72.0
Pick in order then restore | 83.2 66.4 85.2
Average 83.2 76.2 84.4

Table 10: Task-level ablation on the visual foundation models. The ViT-H is chosen as the default
CLIP model.

'https://github.com/pal-robotics/aruco_ros
thtps ://github.com/UT-Austin-RPL/deoxys_control
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A.7 FULL EVALUATION RESULT TABLES

This section contains more detailed tables corresponding to the results shown in Figure 5 and Table 1.

Based on the evaluation results, several conclusions can be drawn:

* Nero-symbolic representation demonstrates a clear advantage in long-horizon tasks. This
is attributed to the utilization of a more compact representation of action sequences, where
multiple-step actions can be represented by API calls. The superiority of this approach is
validated through the evaluation of VIMABench Task 05 RearrangethenRestore and Task
17 PickIinOrderthenRestore, where our method outperforms previous state-of-the-art mod-
els significantly.

* The utilization of Python code for implicit memory module and position reasoning simpli-
fies task execution. Memory (such as tracking manipulated objects) and position reasoning
(such as determining the relative position of objects), are typically challenging to model in
the field of robot learning. However, we find that these difficulties can be overcome with
the incorporation of Python code invoked by LLM. This is demonstrated by the success-
ful completion of Task 16 ManipulateOldNeighbours. Moreover, the deterministic usage
of Python code helps prevent the occurrence of hallucination phenomena in LLM, as evi-
denced by Task directional corner on CaP.

* The integration of LLM in Instruct2Act serves as an effective task reasoner. Through
the use of our designed prompts, our method exhibits the ability to synthesize new task
skills for novel tasks, as indicated by the L4 evaluation results on VIMABench 14. Addi-
tionally, by leveraging visual foundation models, the system is capable of extracting visual
information efficiently. This, combined with the reasoning abilities of LLM, enables the
agent to comprehend novel and complex tasks, as exemplified by Task 09 Tivist.

Method 01 02 03 04 05 06 07 09 |11 | 12 15 16 17
Gato-20M 615 | 62 | 325 | 49 38 46 60 5 68 | 83 47 | 46.5 2
Flamingo-20M | 63 | 61.5 | 55 50 | 425 | 415 | 58 6 62 | 83 44 | 38.5 1
DT-20M 605 | 64 | 505 | 44 41 48 | 61.5 7 8 | 84 | 445 | 39 2.5

VIMA-20M 100 | 100 | 100 | 100 | 59.5 | 100 | 100 | 13.5 | 74 | 72.5 | 96.5 | 39.5 | 47.5
VIMA-200M 100 | 100 | 99.5 | 100 | 56.5 | 100 | 100 | 18 |77 | 93 97 | 76.5 | 43
Ours 91.3 | 814 | 982 | 785 | 72 82 88 42 | 72| 68 78 64 | 85.2

Table 11: VIMABench L1 level generalization results. The number in the method column indi-
cates the controller parameter count. Integers in the first row refer to the order described in Ap-
pendix A.5.1.

Method 01 02 03 04 05 06 07 09 11 [ 12| 15 16 17

Gato-20M 44 1 51.5 39 51 | 385 | 47.5 | 52.5 6 | 65.5 | 84 | 52.5 | 40.5 1
Flamingo-20M | 48.5 49 | 55.5 48 | 42.5 | 46.5 52 6 66 | 82 | 47.5 371 05
DT-20M 50.5 | 49.5 53 ] 445 | 435 47 46 8 | 835 |80 | 46.5 41 2.5
VIMA-20M 100 | 100 | 100 | 100 61 | 100 | 100 | 16.5 | 75.5 | 75 96 | 37.5 | 475
VIMA-200M 100 | 100 | 99.5 | 100 | 54.5 | 100 | 100 | 17.5 77 | 93 | 98.5 75 45
Ours 91.7 | 80.8 | 97.8 | 749 | 69.5 81 86 44 | 70.5 | 65 80 66 84

Table 12: VIMABench L2 level generalization results. The number in the method column indi-
cates the controller parameter count. Integers in the first row refer to the order described in Ap-
pendix A.5.1.
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Method 01 02 03 04 05 06 07 09 11 15 16 17
Gato-20M 46.5 55 | 445 57 | 315 | 475 | 515 | 25| 725 | 30.5 44 10
Flamingo-20M 47 | 54.5 53 55 36 | 42.5 48 | 6.5 70 3314150
DT-20M 50 | 60.5 | 56.5 48 | 335 51 46 | 65| 925|325 (435 | 1.5
VIMA-20M 98 | 100 | 100 | 98.5 | 55.5 | 100 | 99.5 15 | 88.5 | 99.5 44 | 29.5
VIMA-200M 99 | 100 | 100 97 | 545 | 100 99 | 17.5 ] 90.5 | 97.5 46 | 43.5
Ours 91.8 | 80.2 | 97.4 | 81.8 | 65.8 79 89 38 71 78 62 | 82

Table 13: VIMABench L3 level generalization results. The number in the method column indi-
cates the controller parameter count. Integers in the first row refer to the order described in Ap-

pendix A.5.1.

Method 08 | 10 | 13 | 14
Gato-20M 205 O 0 29
Flamingo-20M | 21 0 0 | 275
DT-20M 20570571 0 36
VIMA-20M 100 | O 0 [ 955
VIMA-200M 100 | O 0 | 945
Ours 84 [ 35| 0 80

Table 14: VIMABench L4 level generalization results. The number in the method column indi-
cates the controller parameter count. Integers in the first row refer to the order described in Ap-

pendix A.5.1.

Model | close jar | open drawer | push buttons | slide blocks | stack blocks

PerAct 60 80 48 72 36

Ours 55 60 70 75 55

Table 15: Evaluation results on RLBench.

Model pick and place | putin corner | directional corner | stack blocks | put in line
CaP 38 92 72 82 90
Ours-Oracle 100 95 90 90 55

Table 16: Evaluation results on CaP.
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A.8 FULL PROMPTS IN INSTRUCT2ACT

Listing 1: An example of a full prompt in Instruct2Act

THIRD-PARTY TOOLS:

You have access to the following tools:

# Libraries

from PIL import Image
import numpy as np
import scipy

import torch

import cv2

import math

from typing import Union

IMPLEMENTED TOOLS:

You have access to the following tools:

# First Level: File IO

templates = {} # dictionary to store and cache the multi-modality
instruction

# possible keys in templates: "scene", "dragged_obj", "base_obj"

# NOTE: the word in one instruction inside {} stands for the visual part
of the instruction and will be obtained with get operation

# Example: {scene} -> templates.get (’scene’)

BOUNDS = {} # dictionary to store action space boundary

def GetObsImage (obs) —-> Image.Image:
"""Get the current image to start the system.
Examples:
image = GetObsImage (obs)

nun

pass

def SaveFailurelImage() —-> str:
"""Save images when execution fails
Examples:
info = SaveFailureImage ()

nun

pass

# Second Level: Core Modules
## Perception Modules
def SAM(image: Image.Image) -> dict:
"""Get segmentation results with SAM
Examples:
masks = SAM (image=image)

nun

pass

def ImageCrop (image: Image.Image, masks: dict):
"""Crop image with given masks
Examples:
objs, masks = ImageCrop (image=image, masks=masks)

nun

pass

def CLIPRetrieval (objs: list, query: str | Image.Image , pre_objl: int =
None, pre_obj2: int = None) -> np.ndarray:
"""Retrieve the desired object (s) with CLIP, the query could be
string or an image
Examples:
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obj_0 = CLIPRetrieval (objs=objs, query='the yellow and purple
polka dot pan’) # the query is a string

obj_0 = CLIPRetrieval (objs=objs, query=templates[’dragged_obj’]) #
the query is image, stored in templates

nun

pass

def get_obijs_match(objs_listl: list, objs_list2: list) -> tuple:
"""Get correspondences of objects between two lists using the
Hungarian Algorithm"""
return (list, list)

## Action Modules

def Pixel2Loc(obj: np.ndarray, masks: np.ndarray) —-> np.ndarray:
"""Map masks to specific locations"""
pass

def PickPlace(pick: np.ndarray, place: np.ndarray, bounds: np.ndarray,

yaw_angle_degree: float = None, tool: str = "suction") -> str:
"""pick and place the object based on given locations and bounds"""
pass

def DistractorActions (mask_obs: list, obj_list: list, tool: str =
"suction") —-> list:
"""Remove observed objects that conflict with the goal object list"""
pass

def RearrangeActions (pick_masks: list, place_masks: list, pick_ind:

list, place_ind: list, bounds: np.ndarray, tool: str = "suction") ->
list:

"""Composite multiple pick and place actions"""

pass

# Third Level: Connect to Robotic Hardware

def RobotExecution (action) —-> dict
"""Execute the robot, then return the execution result as a dict """
pass

Examples:

Use the following examples to understand tools:

## Example 1

# Instruction: Put the checkerboard round into the yellow and purple
polka dot pan.

def main_1() -> dict:
"""Execute the given instructions of placing the checkerboard round

into the yellow and purple polka dot pan"""

image = GetObsImage (obs)

masks = SAM (image=image)

objs, masks = ImageCrop (image=image, masks=masks)

obj_0 = CLIPRetrieval (objs=objs, query='the yellow and purple polka
dot pan’)

loc_0 = Pixel2Loc (obj=0obj_0, masks=masks)

obj_1 = CLIPRetrieval (objs=objs, query=’the checkerboard round’,
pre_objl=obj_0)

loc_1 = Pixel2Loc (obj=obj_1, masks=masks)

action = PickPlace (pick=loc_1, place=loc_0, bounds=BOUNDS)

info = RobotExecution (action=action)

return info

## Example 2:
# Instruction: Rotate the {dragged_obj} 150 degrees.
def main_2() -> dict:
"""Execute the given instructions of rotating the {dragged_obj} 150
degrees"""
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image = GetObsImage (obs)
masks = SAM(image=image)
objs, masks = ImageCrop (image=image, masks=masks)

obj_0 = CLIPRetrieval (objs=objs, query=templates.get ("dragged_obij"))

loc_0 = Pixel2Loc (obj=obj_0, masks=masks)

action = PickPlace (pick=loc_0, place=loc_0, bounds=BOUNDS,
vaw_angle_degree=150)

info = RobotExecution (action=action)

return info

## Example 3

# Instruction: Rearrange to this {scene} then restore.

# Note: for RESTORE operation, direct conduct an inverse operation
def main_3() -> dict:

"""Execute the given instructions of rearranging the objects to match

the objects in the given scene"""
image_obs = GetObsImage (obs)
image_goal = templates.get ("scene")

masks_obs = SAM(image=image_obs)

objs_obs, masks_obs = ImageCrop (image=image_obs, masks=masks_obs)
masks_goal = SAM(image=image_goal)

objs_goal, masks_goal = ImageCrop (image=image_goal, masks=masks_goal)
row, col = get_objs_match(objs_listl=objs_goal, objs_list2=objs_obs)
action_1 = DistractorActions (mask_obs=masks_obs, obj_list=col)
action_2 = RearrangeActions (pick_masks=masks_obs,

place_masks=masks_goal, pick_ind=col, place_ind=row,
bounds=BOUNDS)
action_3 = RearrangeActions (pick_masks=masks_goal,

place_masks=masks_obs, pick_ind=row, place_ind=col, bounds=BOUNDS)

actions = []

actions.extend(action_1) .extend(action_2) .extend (action_3)
info = RobotExecution (action=actions)

return info

## Example 4

# Instruction: Put the yellow and blue stripe object in {scene} into the

orange object.
def main_4 () -> dict:

"""Execute the given instructions of placing the yellow and blue
stripe object in scene into the orange object"""

image = GetObsImage (obs)

masks_obs = SAM(image=image)

objs_goal, masks_goal = ImageCrop (image=templates|[’scene’],
masks=SAM (image=templates [’ scene’]))

goal = CLIPRetrieval (objs=objs_goal, query=’the yellow and blue
stripe object’)

target = CLIPRetrieval (objs=objs_obs, query=objs_goal[goall)

loc_0 = Pixel2Loc (obj=target, masks=masks_obs)

obj_1 = CLIPRetrieval (objs=objs_obs, query=’the orange object’,
pre_objl=target)

loc_1 = Pixel2Loc (obj=obj_1, masks=masks_obs)
action = PickPlace (pick=loc_0, place=loc_1l, bounds=BOUNDS)
info = RobotExecution (action=action)

return info

## Example 5
# Instruction: Put the {dragged_obj} into the {base_obj_1} then
{base_obj_2}. Finally restore it into its original container.
def mian_5() —> dict:
masks = SAM (obs_image)
objs, masks = ImageCrop (obs_image, masks)
base_obj_1 = CLIPRetrieval (objs, templates[’base_obj_1'1)
base_obj_2 = CLIPRetrieval (objs, templates[’base_obj 2’71,
pre_objl=base_obj_1)
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dragged_obj = CLIPRetrieval (objs, templates|[’dragged_obj’],
pre_objl=base_obj_1, pre_obj2=base_obj_2)
loc_base_obj_1 = Pixel2Loc (base_obj_1, masks)
loc_base_obj_2 = Pixel2Loc (base_obj_2, masks)
loc_dragged_obj = Pixel2Loc (dragged_obj, masks)

action_1 = PickPlace (pick=loc_dragged_obj, place=loc_base_obj_1,
bounds=BOUNDS)

action_2 = PickPlace (pick=loc_base_obj_1, place=loc_base_obj_2,
bounds=BOUNDS)

action_3 = PickPlace (pick=loc_base_obj_2, place=loc_dragged_obj,
bounds=BOUNDS)

actions = [action_1, action_2, action_3]

info = RobotExecution (action=actions)
return info

Begin to execute the task:

Please solve the following instruction step-by-step. You should
implement the main() function and output in the Python-code style.

Instruction: INSERT INSTRUCTION HERE.

A.9 QUANTATIVE ABLATION STUDIES ON PROMPT ELEMENT
We use the same task instruction Put the polka dot block into the green

container. for all experiments here. Because the outputs of LLMs are somewhat random,
we will display the results of three consecutive outputs.

Listing 2: Generation with Only API Definition provided in Prompt. First Trial

def main() :
# Step 1: Get the current observation image
image = GetObsImage (obs)

# Step 2: Segment the image to get masks
masks = SAM (image=image)

# Step 3: Crop the image based on masks
objs, masks = ImageCrop (image=image, masks=masks)

# Step 4: Retrieve the object(s) of interest using CLIP
query = ’'polka dot block’ # define the query
polka_dot_block = CLIPRetrieval (objs=objs, query=query)

# Step 5: Map masks to specific object locations
obj_loc = Pixel2Loc (obj=polka_dot_block, masks=masks)

# Step 6: Get the pick and place locations and action boundaries

pick_loc = obj_loc # we want to pick up the polka dot block

place_loc = BOUNDS|[’green_container’] # the green container is the
place location

bounds = BOUNDS[’PickPlace_bounds’] # limits of the pick and place
action

# Step 7: Perform any necessary distracting actions

obj_list = [’polka dot block’] # define the goal object list

masks_obs = np.delete (masks, polka_dot_block, axis=0) # remove the
polka dot block from the observation masks

DistractorActions = DistractorActions (mask_obs=masks_obs,
obj_list=obj_list)
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# Step 8: Plan and execute the pick and place action

pick_masks = masks[polka_dot_block]

pick_ind = [0] # We only want to pick up one object

place_masks = np.expand_dims (place_loc, axis=0) # expand dims to
match the pick loc array

place_ind = [0] # We only have one object to place

action_seqg = RearrangeActions (pick_masks=pick_masks,
place_masks=place_masks, pick_ind=pick_ind, place_ind=place_ind,
bounds=bounds)

action_seq = DistractorActions + action_seqg # combine distractor
actions with pick and place actions

for action in action_seq:
result = RobotExecution (action)
time.sleep(result[’time_elapsed’]) # wait for the robot to finish

the action
return result

Listing 3: Generation with Only API Definition provided in Prompt. Second Trial

def main() :
# Step 1: Get the current observation image
obs_image = GetObsImage (obs)

# Step 2: Use SAM to get segmentation results
masks = SAM (image=obs_image)

# Step 3: Crop the image to get object bounding boxes
objs, masks = ImageCrop (image=obs_image, masks=masks)

# Step 4: Use CLIP to retrieve the polka dot block
polka_dot = CLIPRetrieval (objs=obijs, query='polka dot block’)

# Step 5: Use CLIP to retrieve the green container
green_container = CLIPRetrieval (objs=objs, query=’'green container’)

# Step 6: Map masks to specific locations
polka_dot_loc = Pixel2Loc (obj=polka_dot, masks=masks)
green_container_loc = Pixel2Loc (obj=green_container, masks=masks)

# Step 7: Pick and place the polka dot into the green container
action = PickPlace (pick=polka_dot_loc, place=green_container_loc,
bounds=BOUNDS)

# Step 8: Execute the action using the robotic hardware
result = RobotExecution (action)

# Step 9: Save images if execution fails
if not result[’success’]:
SaveFailurelImage ()

# Step 10: return the result
return result

Listing 4: Generation with Only API Definition provided in Prompt. Third Trial

def main() :
# Step 1: Get the current observation image
obs_image = GetObsImage (obs)

# Step 2: Use SAM to get segmentation results
masks = SAM (image=obs_image)

# Step 3: Crop the image to get object bounding boxes
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objs, masks = ImageCrop (image=obs_image, masks=masks)

# Step 4: Use CLIP to retrieve the polka dot block
polka_dot = CLIPRetrieval (objs=obijs, query='polka dot block’)

# Step 5: Use CLIP to retrieve the green container
green_container = CLIPRetrieval (objs=objs, query='green container’)

# Step 6: Map masks to specific locations
polka_dot_loc = Pixel2Loc (obj=polka_dot, masks=masks)
green_container_loc = Pixel2Loc (obj=green_container, masks=masks)

# Step 7: Pick and place the polka dot into the green container
action = PickPlace (pick=polka_dot_loc, place=green_container_loc,
bounds=BOUNDS)

# Step 8: Execute the action using the robotic hardware
result = RobotExecution (action)

# Step 9: Save images if execution fails
if not result[’success’]:
SaveFailureImage ()

# Step 10: Print the result
print (result)

Listing 5: Generation with Only In-Context Examples provided in Prompt. First Trial

def main() -> dict:
"""Execute the given instructions of placing the polka dot block into
the green container"""

image = GetObsImage (obs)

masks = SAM (image=image)

objs, masks = ImageCrop (image=image, masks=masks)

obj_0 = CLIPRetrieval (objs=objs, query="the polka dot block")
loc_0 = Pixel2Loc (obj=obj_0, masks=masks)

obj_1 = CLIPRetrieval (objs=objs, query="the green container")
loc_1 = Pixel2Loc (obj=obj_1, masks=masks)

action = PickPlace (pick=loc_0, place=loc_1, bounds=BOUNDS)
info = RobotExecution (action=action)
return info

Listing 6: Generation with Only In-Context Examples provided in Prompt. Second Trial

def main() —-> dict:
# Use object detection to get the object and container locations from
the RGB image.

image = GetObsImage (obs)

masks = SAM (image=image)

objs, masks = ImageCrop (image=image, masks=masks)

block_obj = CLIPRetrieval (objs=objs, query=’'the polka dot block’)
container_obj = CLIPRetrieval (objs=objs, query=’'the green container’)

# Convert the pixel locations of the objects into robot reference
frame (in meters).

block_loc = Pixel2Loc (obj=block_obj, masks=masks)

container_loc = Pixel2Loc (obj=container_obj, masks=masks)

# Move the robot’s arm to pick and place the block into the container.
action = PickPlace (pick=block_loc, place=container_loc, bounds=BOUNDS)
info = RobotExecution (action=action)

return info
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Listing 7: Generation with Only In-Context Examples provided in Prompt. Third Trial

def main() —-> dict:
"""Execute the given instructions of placing the polka dot block into
the green container"""
# Obtain the image of the scene
image = GetObsImage (obs)

# Segment the image using Semantic Affinity Module (SAM)
masks = SAM (image=image)

# Crop image to obtain individual objects and their masks
objs, masks = ImageCrop (image=image, masks=masks)

# Retrieve the polka dot block object using OpenAl’s CLIP model
obj_0 = CLIPRetrieval (objs=objs, query=’'the polka dot block’)

# Get the location of the green container
obj_1 = CLIPRetrieval (objs=objs, query=’'the green container’)
loc_1 = Pixel2Loc (obj=obj_1, masks=masks)

# Move the polka dot block from its current location to the green
container

loc_0 = Pixel2Loc (obj=0obj_0, masks=masks)

action = PickPlace (pick=loc_0, place=loc_1, bounds=BOUNDS)

info = RobotExecution (action=action)

# Return the execution information
return info

Listing 8: Generation with both API Definition and In-context Examples provided in Prompt. First
Trial

def main() -> dict:
# first, capture an image of the current scene
image = GetObsImage (obs)

# generate object masks using the SAM module
masks = SAM (image=image)

# identify the objects in the scene using the masks
objs, masks = ImageCrop (image=image, masks=masks)

# use CLIPRetrieval to find the polka dot block and the green

container

polka_dot_block = CLIPRetrieval (objs=objs, query="the polka dot
block™")

green_container = CLIPRetrieval (objs=objs, query="the green
container")

# convert the object masks to location coordinates
polka_dot_block_loc = Pixel2Loc (obj=polka_dot_block, masks=masks)
green_container_loc = Pixel2Loc (obj=green_container, masks=masks)

# use the PickPlace function to pick up the polka dot block and place
it in the green container

action = PickPlace (pick=polka_dot_block_loc,
place=green_container_loc, bounds=BOUNDS)

# execute the action on the robot using the RobotExecution function
and return the result

info = RobotExecution (action=action)

return info
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