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ABSTRACT

This work introduces a novel generative continual learning framework based on
self-organizing maps (SOMs) extended with learned distributional statistics and
encoder—decoder models which enable memory-efficient replay, eliminating the
need to store raw data samples or task labels. For high-dimensional input spaces,
the SOM operates over the latent space of the encoder—decoder, whereas, for
lower-dimensional inputs, the SOM operates in a standalone fashion. Our method
stores a running mean, variance, and covariance for each SOM unit, from which
synthetic samples are then generated during future learning iterations. For the
encoder—decoder method, generated samples are then fed through the decoder
to then be used in subsequent replay. Experimental results on standard class-
incremental benchmarks show that our approach performs competitively with
state-of-the-art memory-based methods and outperforms memory-free methods,
notably improving over the best state-of-the-art single class incremental perfor-
mance without pretrained encoders on CIFAR-10 and CIFAR-100 by nearly 10%
and 7%, respectively. We also find best performance on single class incremental
CIFAR-100 utilizing a foundational encoder—decoder, and present the first base-
line results for single class incremental TinyImageNet. Our methodology facili-
tates easy visualization of the learning process and can also be utilized as a gen-
erative model post-training. Results show our method’s capability as a scalable,
task-label-free, and memory-efficient solution for continual learning.

1 INTRODUCTION

Computational systems deployed in real-world environments are often exposed to continuous
streams of information, where the data distribution(s) that the system receives change over time.
In such environments, the machine learning models that are set up must adapt to new tasks sequen-
tially, without revisiting previous data, while ensuring that they retain knowledge extracted from
previous tasks. The ability of systems to learn new tasks, while retaining knowledge of past experi-
ences, is referred to as continual learning (CL), or lifelong learning (Thrun}|1998)), and is central to
building robust intelligent systems.

Continual learning research typically considers three main scenarios: task-incremental (TIL),
domain-incremental (DIL), and class-incremental (CIL) (van de Ven et al.| 2022). In TIL, task
identity is provided at inference, making it the easiest setting. DIL removes task identity but keeps
the same class set across domains. CIL is the most challenging, as task identity is unknown and
the model must discriminate among all classes seen so far while being exposed to only a subset at
a time. The extreme case is single-class CIL, where data arrives one class at a time. Prior surveys
on continual learning note that many benchmarks are defined in a multi-class-per-task fashion (e.g.,
Split-MNIST, Split-CIFAR), where each task introduces several new classes simultaneously (Yang
et al.}|2025;|Zhou et al., [2024a;|Wickramasinghe et al.,|2024). In contrast, this work focuses on the
single-class-incremental learning setting, widely recognized as the most challenging protocol (Mal-
tont & Lomonaco}|2019), since the model must incrementally separate classes without ever jointly
observing them.

The challenges of CL become particularly evident in the context of deep neural networks (DNNs).
While DNNs have achieved remarkable success across vision, language, and reinforcement learn-
ing tasks (Samek et al.||2021} Doon et al.| {2018} |Ying et al.| 2024), they are highly susceptible to



catastrophic forgetting (Parisi et al.| [2019{[McCloskey & Cohen! 1989} |Ororbia et al.|[2022) when
trained on sequential, non-i.i.d. data streams. Several DNN-based approaches have been developed
in the field of CL (Wang et al.||2024); however, most focus on supervised methods, which are of-
ten difficult to interpret due to model complexity. To better explore CL more clearly, some studies
have turned to unsupervised methods (Ashfahani & Pratama, |2023||Madaan et al., {2022} |[Hirani
et al.||2024; Ororbial |2021). These methods aim to learn evolving data distributions while main-
taining previously acquired representations, often by leveraging latent space structure or clustering
dynamics.

While extensive research has been done with DNNSs in the area of CL (Zhou et al.| [2024b), self-
organizing maps (SOMs) (Kohonen, [1990), a class of unsupervised, topology-preserving neural
models, have received relatively little attention despite their natural suitability for such settings.
SOMs consist of a number of unit vectors, and, during training, only the best matching unit and
its neighbors are updated in response to an input. This localized plasticity can help preserve pre-
viously learned representations and prevent forgetting; and this has lead to several studies of their
use in CL (Ororbia||2021). Recent work has explored combining SOMs with neural architectures
to improve continual learning — SOMLP (Bashivan et al.||2019) utilizes a SOM layer to gate an
MLP’s hidden units to reduce forgetting without requiring memory buffers or task labels. More
recently, the dendritic SOM (DendSOM) (Pinitas et al.||2021) utilizes multiple localized SOMs to
mimic dendritic processing, enabling sparse, task-specific learning. A related approach, the contin-
ual SOM (c-SOM) (Vaidya et al.;|2021), introduces internal Gaussian replay in the input space, but
the absence of a proper generative model limits its scalability and sample diversity.

This paper proposes a novel family of unsupervised continual learning models that integrates ex-
tended Self-Organizing Maps (SOMs) with encoder—decoder architectures (for this work, convolu-
tional VAEs (Kingma & Welling]2013)) and the foundational CLIP model (Radford et al.|[2021)) to
address catastrophic forgetting in class-incremental settings. Main contributions of this paper are:

* A novel SOM-based CL framework that combines generative modeling with topology-
preserving clustering for easily visualized unsupervised class-incremental learning.

* Three variants of the framework: (i) a SOM-only for low-dimensional data, (ii) a global
encoder—decoder model jointly trained with the SOM to provide structured latent spaces,
and (iii) per-BMU specialized encoder—decoder models for fine-grained generative replay.

* A memory-efficient generative replay scheme that stores only summary statistics (mean,
variance, and covariance) per SOM unit, avoiding external buffers or replay data.

 Extensive evaluation in both non-pretrained and pretrained settings on MNIST, CIFAR-10,
CIFAR-100, and TinyImageNet. Experiments demonstrate strong knowledge retention and
scalability across increasing data complexity, showing state-of-the-art results in both single
and multi class incremental settings.

2 METHODOLOGY

SOMS (also known as Kohonen maps) (Kohonen, |1990) offer a unique approach to unsupervised
learning by mapping complex, multidimensional data into a two-dimensional grid. The strength of
SOMs lies in their ability to capture the high-dimensional variance of data and represent it on a
grid that is visually interpretable. SOMs contain a grid of unit vectors, and during training sample
vectors are mapped to their best matching unit (BMU), which pulls the BMU and other unit vectors
within a neighborhood radius towards the sample — with unit vectors farther away from the BMU
having smaller updates. Once the SOM is trained, an input vector can be assigned to its BMU,
which serves as a representative anchor point for that input in the topological map. In the context of
labeled datasets, each BMU can accumulate label distributions support downstream interpretability
or weakly supervised clustering.

We propose a class-incremental continual learning framework that utilizes self-organizing maps
(SOM) extended with learned per-unit distributions (running mean, variance and covariance), shown
in Algorithm The SOM is trained with raw or embedding-level samples, and the per-unit summary
statistics are utilized for generative replay — either of raw data or by passing generated embeddings
into a decoder — allowing the SOM units to play a central role in learning by acting as generative
memory units. This approach is capable of adapting to the complexity of the input data: simple
grayscale images (e.g., MNIST) can be processed using raw data and the SOM alone, whereas



higher-dimensional RGB images (e.g., CIFAR-10/100, TinyImageNet) can utilize embeddings from
a larger scale model such as a variational autoencoder or foundation model for a more efficient and
structured representation. Note this method is entirely unsupervised as class labels are not used
to drive the weight updates in the SOM or embedding models. Class labels are tracked on BMU
matches during training only so they can be used for testing the performance of using the SOM
for inference. As labels are not required, this allows our methodology to be used for single class
incremental learning, unlike many other continual learning models (Yang et al.||2025}|Wang et al.}
2024} (Wickramasinghe et al.l|2024). For evaluation, we use the final, trained SOM output as a
classifier, where each unit is assigned a class label based on the most frequent label among the
samples mapped to it during training, i.e., majority voting based on best matching unit (BMU) “hit”
counts.

2.1 TRACKING SOM UNIT DISTRIBUTION STATISTICS

For an n x n SOM grid and a momentum factor «, each input x is projected to its corresponding
BMU, which is used to update the BMU’s core properties: i), a running mean vector: [i;; <—
(1 — ), + ey ii), a running variance vector U?j, capturing per-dimension variability, calculated
by: 07, + (1 — @)o}; + a(p; — x)*; and iii), a running covariance matrix ¥;;, which helps in
modeling inter-feature relationships, calculated by: ;; < (1 — @)%, + a(z — pij)(x — pij) "
Here, = denotes a sample pattern vector when the SOM is standalone, otherwise, it is the latent
vector encoding of the input, and is assigned to the BMU at position (4, j) on the SOM grid. These
running statistics characterize the local distribution of latent codes associated with each BMU.

However, a practical issue with these running statistics is that they are biased toward their initial-
ization in the early stages of training. For example, when updating the running mean of a BMU at
location (3, ) as pij: = apij—1 + (1 — )z, when initialized as p;; 0 = 0, the estimate p;; ¢
underestimates the true mean since it is implicitly influenced by the zero initialization. This ef-
fect is especially problematic in continual learning settings, where some BMUs may receive very
few samples early on. To mitigate this, we employ bias correction in the style of the Adam opti-
mizer (Kingma & Ba}|2017). Specifically, the corrected estimates for each BMU (4, j) are:
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where t denotes the number of update steps (BMU matches) received by the BMU, and 8,,, 8+, Bs €
[0,1) are the statistic specific exponential decay rates. This bias correction ensures that BMU pa-
rameters (L, Ufj, ¥;;) remain unbiased from the start, yielding stable local distribution estimates
and well-conditioned covariances for synthetic sampling. The neighboring units are updated with
decayed learning rates based on their distance to the BMU, preserving SOM topology.

2.2 CONTINUAL LEARNING AND SOM UNIT SYNTHETIC REPLAY

To utilize this method for class incremental learning, our model is trained sequentially as new classes
arrive. At task ¢, only the data from class C} is available. To retain knowledge from previous classes
Cop,C4,...,Ci_1, our method generates synthetic samples using these distributional statistics, and
replays them alongside new class data. For multi-class incremental learning, more than one class
can be provided per task. The unit distribution statistics allow the SOM to serve as a class- and
region-specific memory that accumulates information over time, mitigating forgetting. When a new
task ¢ consisting of a disjoint subset of classes is introduced, synthetic data from previous classes is
generated by sampling from the stored Gaussian distributions of their corresponding BMUs:
& ~ N (juij,67;)  (for MNIST)

Z ~ N (fuij, )Op i) (for CIFAR-10/CIFAR-100/TinyImageNet).

It should be noted that, when using the covariance method to generate the samples from the distribu-
tion, we need to apply eigenvalue regularization to ensure numerically stable sampling (Algorithm
Appendix . This procedure eliminates negative or near-zero variance directions that may other-
wise lead to instability during sampling and ensures that the multivariate normal distribution remains
valid and well-conditioned.



While we use boundaries to organize the training phases (for experimental simulation) and trigger
the generation of synthetic samples from previously seen classes, the model itself is trained without
access to task IDs or class labels. Replay is scheduled externally, but the CLIP, VAE and SOM mod-
ules update solely based on input data, making no distinction between real and replayed samples.
This places our method in a more challenging CL context, closely aligned with task-free CL
let al.}|2020}|Ororbia} 2021), where explicit supervision about task transitions is not available during
model updates.

Note that, unlike classi-
cal buffer-based replay, our
SOM system design lever-
ages only these statistical
summaries stored at each
BMU. This enables highly
compact memory usage as
it scales with respect to the
fixed SOM grid size as op- ! o e
posed to the dataset size. ‘ [ 2R 0 |

Figure [T] shows syntheic [ § ilNEHAS & @ WO - & BV | @& MED 4
samples generated from an

SOM fully trained, class- Figure 1: Synthetic CIFAR-100 samples for the first 10 classes gener-
incrementally, on CIFAR- ated by sampling latent vectors from an SOM trained on VAE latent
100, where each latent space (left) and CLIP embeddings (right). Each row corresponds to
vector was sampled from one class (0-9).

the full-covariance Gaus-

sian distribution of a BMU associated with the target class and subsequently decoded by the VAE.
For experiments that use CLIP embeddings, we employ a decoder trained on CLIP embeddings to
reconstruct images from the sampled latent vectors. Appendixprovides similar visualizations of
images generated from the SOM unit vectors for other datasets. Over all datasets, we find that the
SOM systems generate feasible variations of their learned class.

Our methodology also provides interpretability via the SOM grid’s topological visualization of class
structure and supports modularity, since synthetic replay depends solely on local BMU statistics.
This makes it possible to easily view the progress of the SOM by decoding unit vectors after each
task to visually see how the model is performing (see Appendix . If the method is performing
well, classes have well formed clusters within the SOM.

2.3 HIGH-DIMENSIONAL REPLAY CHALLENGES AND THE ROLE OF LATENT COMPRESSION

For low-dimensional image datasets such as MNIST, synthetic sample generation using SOMs
is generally efficient and effective due to the low dimensionality of the feature space (28 x 28
grayscale pixels), where the variance along each independent dimension is sufficient to model the
data distribution. However, this mean-variance sampling strategy is insufficient when applied to
high-dimensional datasets, e.g., CIFAR-10 and CIFAR-100; and with preliminary results for sample
generation using the mean-variance method above were of poor quality and degraded classification
performance. Additionally, using the mean covariance method in pixel space introduces memory
storage issues, e.g., CIFAR-10/100 requires storing a full 3072 x 3072 covariance matrix for each
BMU.

To address this, we allow the use of embeddings from any generative model, which serve to compress
high-dimensional images into a compact latent space. In this work, we investigate two instantiations:
a non-pretrained convolutional VAE (Kingma & Welling!|2013}/2019) and a pretrained foundation
model, CLIP (ViT-B/32) (Radford et al.||[2021). This significantly reduces the dimensionality of each
SOM BMU; for example, the CLIP encoder produces a 512-dimensional embedding, while our VAE
configuration uses a d-dimensional latent space (e.g., d = 128). Such compression makes it feasi-
ble to model and store full covariance matrices. By sampling from the full multivariate Gaussian
N (i, %) in this latent space, we generate high-quality synthetic representations by feeding these
synthetic samples through the models decoder, replaying them in subsequent training phases. This
hybrid approach ensures scalable, efficient, and expressive sample replay for complex image distri-
butions in CL settings. It is also flexible in that different encoder/decoder models can be substituted




Algorithm 1 Unified Algorithm for Class-Incremental Learning with SOM and Optional En-
coder/Decoder Models (e.g., VAE, CLIP)

Input: Dataset D = {Dc}f;()l; flags USE_GLOBAL_ENCDEC, USE_PER_BMU_ENCDEC; replay samples per BMU K
Output: SOM, (optional) global encoder/decoder, (optional) per-BMU encoders/decoders V

1: Initialize SOM; initialize replay buffer R < ()
2: if USE_.GLOBAL_ENCDEC then initialize global encoder/decoder
3: if USE_PER_BMU_ENCDEC then initialize per-BMU model dictionary V <« @
4: forc = 0to C—1do
5: Te < D, ifc=0¢else D UR
6: // Encode features for SOM update
7: if USE_.GLOBAL_ENCDEC then
8: Train global encoder/decoder on 7.
9: Z. + Encgiopa (Te)
10: Update SOM with Z.. (including neighborhood updates)
11: else
12: Update SOM with 7. (including neighborhood updates)
13:  endif
14: // Train per-BMU encoders/decoders on assigned subsets
15: if USE_.PER_-BMU_ENCDEC then
16: Assign each z € T, to BMU (%, j) using its current representation (Z.. if global encoder used, else raw 7.)
17: for each BMU (4, j) with assigned set S;; C 7. do
18: Train or update local model M ; on S;;
19: Store/refresh V([(i, j)] + M,
20: Re-encode S;; with M ; encoder to refine SOM neighborhood updates
21: end for
22: end if
23:  // Build replay for next class
24: R« 0
25:  for each BMU (3, j) do
26: Obtain BMU stats (p35, 34;) (from running latent/feature stats at (¢, 5))
27: (fuij, 535, 345) + BIASCORRECTION (115, 055, Lij, B iz, N)
28: for k = 1to K do
29: ENN([:L”,E”)
Dec;; (%), USE_PER_BMU_ENCDEC & (%,5) €V
30: 744 Decy (%), USE.GLOBAL.ENCDEC
z, SOM-only
31: Append Z to R..
32: end for
33:  endfor
34 SetR + R
35: end for

36: return SOM, (global encoder/decoder if used), (per-BMU models V if used)

depending on the dataset and experimental requirements. This setup emphasizes that our contribu-
tion lies not in the specific encoder—decoder, but in the replay framework itself. Whether the latent
codes or embeddings originate from a VAE or a large pretrained transformer, the SOM provides the
same modular structure for clustering, memory-efficient replay, and continual adaptation.

VAE Instantiation. The VAE encoder maps inputs into a structured latent distribution parameter-
ized by mean y and log-variance log o2, with sampling performed via the reparameterization trick:
z2=p+0ooe€ €~ N(0,I). The VAE decoder reconstructs the image from z, enabling genera-
tive replay by reconstructing synthetic samples drawn from SOM statistics (means and covariances).
The encoder and decoder are implemented using residual downsampling and upsampling blocks (He
et al., [2016), providing stable and expressive nonlinear transformations. Depending on the config-
uration, the VAE compresses images into latent vectors of dimension d (e.g., d = 128), achieving
over 90% dimensionality reduction compared to raw pixel space.

CLIP Instantiation. To demonstrate the generality of the framework, we also evaluate our replay
strategy using CLIP (ViT-B/32) (Radford et al.;|2021)), a large vision—language foundation model.
Instead of training an encoder from scratch, we extract 512-dimensional embeddings from CLIP’s
penultimate transformer block. The CLIP encoder are either kept frozen or fine-tuned, depending on
the experimental setting. Once the embeddings are extracted, they are fed directly into the SOM, and
the replay mechanism is identical to the VAE case, where the SOM maintains class-specific statistics
over the embeddings and uses them to generate synthetic embeddings. These sampled embeddings
are then passed through a decoder trained on CLIP embeddings to reconstruct images for replay.
The full decoder architecture used for CLIP-based reconstruction is provided in Appendix



Perceptual Quality via Feature Loss. To improve reconstruction quality during replay, we add a
perceptual feature loss in addition to pixel-level and KL terms. Given real images x and reconstruc-
tions z, the loss is

L
Licw =Y _ [l¢e(x) — de(2)]3, )
=1

where ¢y are activations from a frozen pretrained feature extractor. For VAEs, we use VGG-19 (Si-
monyan & Zisserman)2015); for CLIP-based replay, we instead use the frozen CLIP encoder (Rad-
ford et al.||2021). This unified formulation ensures reconstructions preserve high-level semantics
while the SOM maintains consistent latent representations.

The encoder-decoder framework, as described above, provides several advantages in CL by reducing
input dimensionality, enabling efficient memory usage for SOM BMU statistics, and supporting
fast, realistic synthetic replay for SOMs. It acts as a front-end compression module, transforming
high-dimensional images into a structured, low-dimensional latent space. This ultimately makes the
overall SOM-based system training faster and allows for reliable Gaussian-based sample generation
to induce replay.

2.4 LOCALIZED REPLAY WITH BMU-SPECIFIC ENCODER-DECODERS

As an extension to our core CL framework, we explored a modular generative replay strategy
wherein a separate model is trained for each SOM BMU (Algorithm . While a single global
encoder—decoder (e.g., VAE) combined with the SOM is efficient and benefits from training across
all data, its decoder must generalize over a wide variety of samples, including those that may be
underrepresented in the global latent space. In contrast, the per-BMU approach assigns a dedicated
local model to each SOM unit, at the cost of additional memory. After training the global encoder
and SOM, each input is mapped to its BMU, and the original images associated with that unit are
used to train its local model. Once trained, the encoder part of the local model provides refined
latent representations that can be used to update SOM weights for the BMU and its neighbors, while
the decoder specializes in reconstructing samples from that region of the latent space. This results
in a collection of localized decoders aligned with the topological structure of the SOM. During re-
play, synthetic latent vectors are sampled from the SOM’s bias-corrected statistics at the BMU, and
decoded using the corresponding local model rather than the shared global decoder. The motiva-
tion behind this variation is to align generative capacity with the SOM’s topology, so each decoder
specializes in a region of the latent space—Ileading to improved reconstructions.

3 RESULTS

Our methodology was evaluated across widely-adopted CL benchmarks: MNIST, CIFAR-10,
CIFAR-100 and TinyImageNet, first in the more challenging single class incremental setting, where
classes are presented one at a time (that is, class 0, then class 1, etc.). We also evaluated our method-
ology on standard split versions of these datasets, set up in a task-incremental fashion, where each
task contains IV disjoint classes, e.g., for a task size of two the first task would have classes 0-1,
the second 2-3, etc. Results utilize the best found training and initialization hyperparameters, which
were taken after significant ablation studies (see Appendices[A]and[B).

3.1 ONE CLASS PER TASK INCREMENTAL LEARNING

Tablecompares our methodology with several well-known CL methods for the single class incre-
mental setting (MNIST and CIFAR 10 have 10 tasks, CIFAR-100 has 100 tasks, and TinyImageNet
has 200 tasks; one class per task for each). We compare pretrained and non-pretrained methodolo-
gies, bias and non-bias correction, and our three methods for incorporating generative models — a
global fixed model (frozen, global), a global model that is trained concurrently with the SOM (FT
global), and models concurrently trained for each SOM unit (FT BMU specific). For MNIST, our
SOM-only approach achieves an accuracy of 95.16% without the bias correction, closely match-
ing the best performing rehearsal-based methods, including DisCOIL (96.69%) and PCL (95.75%).
With bias correction, the accuracy increased to 95.88%. Traditional regularization-based approaches
such as EWC and LwF perform poorly on CIFAR-10 (10.01%, 10.05%) and CIFAR-100 (1.03%,



Table 1: Final classification accuracy for single class incremental learning.

Method w/o pretraining w/ pretraining TinyImageNet
MNIST  CIFAR10 CIFAR100 CIFAR10 CIFAR100
EWC 9.91 10.01 1.03 10.21 2.93 -
LwF 19.96 10.05 2.13 19.39 6.25 -
IMM 29.16 10.25 1.21 51.22 12.58 -
PGMA 71.36 20.08 1.86 56.22 12.37 -
RPSNet 40.29 16.31 1.96 55.54 4.13 -
OWM 94.46 19.63 3.67 83.03 63.26 -
PCL 95.75 31.58 5.58 84.93 63.61 -
DisCOIL 96.69 44.54 - - - -
PCL-L2 - - - 77.95 54.83 -
Ours (SOM-based w/o bias)
SOM only 95.16 - - - - -
VAE (FT global) 93.22 54.16 12.41 - - 7.14
VAE (FT BMU specific) 92.85 46.10 12.15 - - 6.45
SOM+CLIP (frozen, global) - - - 78.12 61.22 40.99
SOM+CLIP (FT global) - - - 81.22 63.12 41.67
SOM+CLIP (FT BMU specific) — - - 83.11 63.78 43.11
Ours (SOM-based w bias)
SOM only 95.88 - - - - -
VAE (FT global) 93.26 54.58 12.66 - - 7.66
VAE (FT BMU specific) 92.97 49.22 12.18 - - 6.78
SOM+CLIP (frozen, global) - - - 79.11 62.65 42.48
SOM+CLIP (FT global) - - - 81.34 63.22 43.26
SOM+CLIP (FT BMU specific) — - - 83.56 64.88 45.11

2.13%), indicating significant forgetting in the one-class stream. More advanced strategies like
PGMA (Hu et al.;[2019), RPSNet (Rajasegaran et al.||2020), and OWM (Zeng et al.||2018) achieve
lower gains, with CIFAR-100 scores ranging from 1.86% to 3.67%. The memory-based approaches,
such as PCL (Hu et al.; [2021) and DisCOIL (Sun et al.||2022), perform significantly better (up to
44.54% in CIFAR-10), although they often rely on external memory/labels. In contrast, our method
(with bias correction) achieves 54.58% in CIFAR-10 and 12.66% in CIFAR-100 without access to
external exemplars or task identifiers, outperforming most baselines by large margins. Notably, the
VAE (FT BMU specific) variant surpasses previous methods on CIFAR-100 (12.15% without bias
correction; 12.18% with bias correction), highlighting the effectiveness of our generative replay
strategy based on structured topological organization. With CLIP embeddings, SOM replay again
delivers strong gains: frozen global features achieve 79.11% on CIFAR-10, while fine-tuned global
reaches 81.22% and BMU-specific fine-tuning achieves 83.56%, with bias correction. On CIFAR-
100, the BMU-specific configuration reaches 63.78%, well above rehearsal-based PCL (54.83%)
and other baselines, even without bias correction. With bias correction, the accuracy increases to
64.88%. This demonstrates that while per-BMU replay struggles with non-pretrained VAEs due to
limited data, it is highly effective when paired with pretrained encoders like CLIP.

Benchmark: Single Class Incremental TinyImageNet. To the best of our knowledge, no prior
work reports single class-incremental results on TinyImageNet. Existing CIL studies that include
TinylmageNet use multiple classes per task (e.g., 2, 5, or 10), as shown in Table We observe that
training VAEs with SOM (bias-corrected) from scratch on TinyImageNet in the single class incre-
mental setting yields very low accuracies (7.66% for the global model and 6.78% for the per-BMU
variant), similar to CIFAR-100. This reflects the difficulty of scaling generative replay on complex
datasets from limited data when both encoder and decoder must be learned jointly from scratch. In
contrast, leveraging pretrained CLIP embeddings with SOM substantially boosts performance. The
frozen global variant without the bias correction in SOM already achieves 40.99%, and fine-tuning
further improves results to 41.67%. The per-BMU fine-tuning with the bias correction configuration
achieves the best score (45.11%), highlighting that localized adaptation on top of a strong pretrained
backbone can provide effective replay signals even under the strict one-class stream. All reported
numbers are averaged over three independent runs to account for variability. To our knowledge,
these results are the first presented for single class incremental TinyImageNet.



Table 2: Final classification accuracy for multi class-incremental learning, non-pretrained models.

Method MNIST CIFAR-10 CIFAR-100 TinyImageNet
(5 tasks) (5 tasks) (10 tasks) (10 tasks)

Baseline

iid-offline 95.82 +0.33 80.54 + 0.63 48.09 4+ 0.90 59.99 £+ 0.34

Fine-Tune 19.68 £ 0.02 19.19 £ 0.06 8.32 +0.23 7.92 £ 0.05

Memory-free

EWC 19.92 £ 0.35 16.18 £ 1.37 441+ 0.37 7.58 +£0.76

SI 19.76 £+ 0.01 17.27 £ 0.87 5.87 £0.21 6.58 £ 0.14

LwF 20.54 + 0.64 18.53 £ 0.12 6.93 £ 0.32 8.46 + 0.46

Memory-based

GEM 48.57 £5.26 25.54 £ 0.19 6.18 £ 0.20 -

iCaRL 72.55 +£0.45 35.88 + 1.43 1576 £ 0.15 7.53 £0.79

GSS 54.14 + 4.68 49.22 + 1.71 11.33 £ 0.40 -

ER-MIR 86.60 £ 1.60 37.80 £+ 1.80 9.20 £ 0.40 -

CN-DPM 93.81 £ 0.07 47.05 £+ 0.62 16.13 £ 0.14 -

DER++ 92.21 +£0.54 52.01 £ 3.06 15.04 £ 1.04 10.96 £ 0.17

ER-ACE 82.98 + 1.79 35.16 + 1.34 8.92 + 0.25 12.11 £ 0.06

Biologically Inspired

NNA-CIL (INEL+MNIST) 77.25 £ 1.02 45.95 £ 0.90 25.56 + 0.69 -

Our Method (w/o bias)

SOM-only 92.51 £ 1.10 - - -

VAE (FT global) 91.60 £ 1.12 53.01 £0.92 14.55 £ 0.05 12.86 £ 0.67

VAE (FT BMU specific) 90.11 £ 1.31 46.45 + 1.39 13.19 £ 0.12 1221 £ 0.11

Our Method (w bias)

SOM-only 92.64 + 1.10 - - -

VAE (FT global) 91.77 £ 1.12 53.52 + 1.02 14.88 + 0.15 12.97 + 0.78

VAE (FT BMU specific) 91.12 £ 1.31 47.12 £ 1.39 13.62 4+ 0.47 12.33 £ 0.12

3.2 STANDARD MULTI CLASS INCREMENTAL BENCHMARKS

To further highlight the applicability of our methodology, we evaluate it on multi class incremental
methods on split versions of the benchmark datasets. Tables and |3|present classification accu-
racy (mean = standard deviation) over ten independent runs, comparing our method with baseline,
memory-free, memory buffer, and biologically-inspired CL approaches for non-pretrained and pre-
trained methodologies. MNIST and CIFAR-10 have 2 classes per task, CIFAR-100 has 10 classes
per task, and TinyImageNet has 20 classes per task. Confusion matrices for each data set are shown
in the Appendix@], highlighting that our methodology retains accuracy across all tasks.

On Split-MNIST, our method achieves 92.51 £ 1.1 % when using SOM-based replay with Gaussian
sampling without bias correction. This outperforms all memory-free approaches (i.e., EWC: 19.92%
(Kirkpatrick et al.,[2017), SI: 19.76% (Zenke et al.;|2017), LwF: 20.54% (Li & Hoiem,/2018)) and
bio-inspired NNA-CIL (77.25%) (Madireddy et al.}|2023)). In particular, it performs comparably to
the best memory-based methods like CN-DPM (93.81%) (Lee et al.|[2020) and DER++ (92.21%).
With bias correction, accuracy improves further to 92.64 + 1.10% , approaching strong memory-
based methods such as CN-DPM (93.81%) and DER++ (92.21%), despite not storing any replay
exemplars. On Split-CIFAR-10, our VAE (FT global) variant reaches an accuracy of 53.01% without
bias correction, outperforming DER++ (52.01%), ER-MIR (37.80%) (Aljundi et al.;|2019a), GSS
(49.22%) (Aljundi et al.;2019b), and NNA-CIL (52.55%). With bias correction, the result improves
to 53.52 £ 1.02%. For the more complex Split-CIFAR-100, where forgetting is more severe, our
method demonstrates competitive performance. VAE (FT global) achieves 14.554-0.05%, exceeding
most memory-free schemes and approaching the performance of CN-DPM (16.13%) and DER++
(15.04%). In contrast, the VAE (FT BMU specific) variant achieves 13.19 4 0.12%, despite being
computationally more complex.

On Split-TinyImageNet, the most complex benchmark due to its larger class set and higher intra-
class variability, our methodology outperforms all other methods. VAE (FT global) with bias cor-
rection achieves 12.97 4= 0.78%, outperforming memory-free baselines such as EWC (7.53%), SI
(6.92%), and LwF (8.41%). While memory-based strategies like DER++ (11.09%) and ER-ACE
(12.11%) also perform well, our approach surpasses them without relying on a replay buffer. The
per-BMU variant achieves 12.33 4= 0.12%, confirming that even under higher visual complexity,
SOM-driven generative replay offers robustness and adaptability. When extending to CLIP embed-
dings (ViT-B/32), SOM replay yields substantial additional gains (Table. In the split CIFAR-10
benchmark, SOM+CLIP achieves 78.23% with frozen features, 80.5% when fine-tuned globally, and



Table 3: Final classification accuracy for multi class-incremental learning, pre-trained models.

Method CIFAR-10 CIFAR-100 TinyImageNet
(5 tasks) (10 tasks) (10 tasks)
EWC 31.82 - 7.53
SI 27.43 - 6.58
LwF 21.43 43.39 8.46
iCaRL 71.15 50.74 23.22
PGMA 74.31 17.47 -
RPSNet 83.37 25.27 -
OWM 83.36 57.70 40.29
PCL 85.78 63.72 39.19
DisCOIL 71.35 - 19.75
DyTox - 51.68 47.23
NNA-CIL (INEL+CIFAR10) 52.55 18.87 -
Continual-CLIP - 66.72 66.43
DDGR - 63.40 -
Ours (SOM+CLIP w/o bias)
SOM+CLIP (frozen global) 78.23 65.33 59.04
SOM+CLIP (FT global) 80.5 67.01 59.77
SOM+CLIP (FT BMU specific) 84.11 68.46 62.51
Ours (SOM+CLIP w bias)
SOM+CLIP (frozen global) 79.15 65.77 60.11
SOM+CLIP (FT global) 81.99 67.82 60.67
SOM+CLIP (FT BMU specific) 84.66 69.81 63.22

84.66% with BMU-specific fine-tuning. On CIFAR-100, the BMU-specific variant reaches 69.81%,
outperforming PCL (63.72%) and DyTox (51.68%) and even almost competitive with Continual-
Clip (66.72%, with bias correction) (Thengane et al.||2022). On TinyImageNet, SOM+CLIP at-
tains 63.22%, far above PCL (39.19%) and DyTox (47.23%), and competitive with continual-CLIP
(66.43%). Compared to DDGR |Gao & Liu (2023), a recent diffusion-based generative replay
method, our SOM+CLIP variants consistently achieve higher accuracy on CIFAR-100, highlighting
the effectiveness of our lightweight replay strategy. These results highlight that while VAE-based
SOM replay is competitive with replay-buffer baselines, combining our extended SOM methodology
with foundation models like CLIP scales the framework to large, complex datasets. Interestingly,
while per-BMU VAEs under-perform in the generative-from-scratch setting due to sparse training
data per unit, the same design yields strong gains when applied to pretrained encoders such as CLIP,
surpassing global fine-tuning.

4 CONCLUSION AND FUTURE WORK

This work introduces an incremental continual learning framework that integrates extended self-
organizing maps (SOMs) with encoder—decoder models to enable memory-efficient replay. SOM
units learn distribution statistics (running mean, variance and covariance) which can be utilized to
generate synthetic samples to prevent forgetting. This methodology provides a number of benefits,
including eliminating the need to store raw data in a memory buffer, easy visualization of progress,
the ability to plug in any type of encoder/decoder (including foundation) models, and, additionally,
the trained model can serve as a generative model of feasible examples of classes.

Experimental results across datasets, including complex ones such as CIFAR10, CIFAR100, and
TinyImageNet show that the extended SOM acts as an effective memory (sub)system capable of mit-
igating forgetting. The standalone SOM method is effective for low-dimensional datasets whereas
the hybrid variants (non-pretrained VAEs or pretrained CLIP) scale well to high-dimensional ones.
Our method outperform or compete with state-of-the-art memory-based and memory-less architec-
tures. Notably, our framework outperforms previous best methods on CIFAR-10 and CIFAR-100
single class incremental learning by nearly 10% and 7%, respectively, yielding significant improve-
ment, and we also provide the first baseline results for single class incremental TinyImageNet.

Although our work shows an effective, memory-efficient form of continual learning, there are still
areas to improve. One drawback is that the per-BMU VAE variant suffers from limited training
data, reducing its effectiveness despite offering modularity and interpretability. In addition, the
reliance on Gaussian statistics for replay may not fully capture complex class distributions, leading
to reduced generative capability. Alternatively, the Gaussian distributions could potentially match



multiple classes, reducing inference accuracy. We also note that while our experiments simulate
class boundaries to pace replay, future work will evaluate boundary-free scheduling (e.g., fixed-
period replay or drift detection) to more fully align with task-free continual learning. Future work
will involve the use of a dynamic or growing SOMs that can adapt more effectively to varying
class complexities, potentially leading to improved accuracy in higher-dimensional and higher-class
cases. Moreover, this work can be extended with a deeper study of robust sampling strategies to
improve the synthetic sample generation. Our methodology can also be extended to non-vision
domains such as language models, reinforcement learning or time series prediction, which would
further validate its applicability.

REFERENCES

Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin, Laurent Charlin, and
Tinne Tuytelaars. Online continual learning with maximally interfered retrieval, 2019a. URL
https://arxiv.org/abs/1908.04742

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning, 2019b. URL https://arxiv.org/abs/1903.08671,

Saleh Aly. Learning invariant local image descriptor using convolutional mahalanobis self-
organising map. Neurocomputing, 142:239-247, 2014. ISSN 0925-2312. doi: https://doi.org/
10.1016/j.neucom.2014.03.060. URL https://www.sciencedirect.com/science/
article/pii/S0925231214006432| SI Computational Intelligence Techniques for New
Product Development.

Andri Ashfahani and Mahardhika Pratama. Unsupervised continual learning in streaming environ-
ments. IEEE Transactions on Neural Networks and Learning Systems, 34(12):9992—-10003, 2023.
doi: 10.1109/TNNLS.2022.3163362.

Pouya Bashivan, Martin Schrimpf, Robert Ajemian, Irina Rish, Matthew Riemer, and Yuhai Tu.
Continual learning with self-organizing maps, 2019. URL https://arxiv.org/abs/
1904.09330!

Raveen Doon, Tarun Kumar Rawat, and Shweta Gautam. Cifar-10 classification using deep convo-
lutional neural network. In 2018 IEEE Punecon, pp. 1-5, 2018. doi: 10.1109/PUNECON.2018.
8745428.

Rui Gao and Weiwei Liu. DDGR: Continual learning with deep diffusion-based generative replay.
In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and
Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pp. 10744-10763. PMLR, 23-29 Jul
2023. URL https://proceedings.mlr.press/v202/gao23e.html|

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Gaurav Hirani, Kevin [-Kai Wang, and Waleed Abdulla. Continual learning with self-organizing
maps: A novel group-based unsupervised sequential training approach. In 2024 Asia Pacific
Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC),
pp. 1-6, 2024. doi: 10.1109/APSIPAASC63619.2025.10848884.

Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zhengwei Tao, Jinwen Ma, Dongyan Zhao,
and Rui Yan. Overcoming catastrophic forgetting via model adaptation. In International Confer-
ence on Learning Representations, 2019. URL lhttps://openreview.net/forum?id=
ryGvcoAbLYX,

Wenpeng Hu, Qi Qin, Mengyu Wang, Jinwen Ma, and Bing Liu. Continual learning by us-
ing information of each class holistically. Proceedings of the AAAI Conference on Artificial
Intelligence, 35(9):7797-7805, May 2021. doi: 10.1609/aaai.v35i9.16952. URL https:
//0js.aaai.org/index.php/AAAI/article/view/16952,



Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
https://arxiv.org/abs/1412.6980]

Diederik P Kingma and Max Welling.  Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Diederik P. Kingma and Max Welling. An introduction to variational autoencoders. Foun-
dations and Trends® in Machine Learning, 12(4):307-392, 2019. ISSN 1935-8245. doi:
10.1561/2200000056. URL http://dx.doi.org/10.1561/2200000056,

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A.
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, Demis Has-
sabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521—
3526, 2017. doi: 10.1073/pnas.1611835114. URL |https://www.pnas.org/doi/abs/
10.1073/pnas.1611835114,

T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464—1480, 1990. doi:
10.1109/5.58325. URL|https://doi.org/10.1109/5.58325

Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture
model for task-free continual learning. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SJxSOJStPr|

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40(12):2935-2947, 2018. doi: 10.1109/TPAMI.2017.2773081.

David Lopez-Paz and Marc’ Aurelio Ranzato. Gradient episodic memory for continuum learning.
CoRR, abs/1706.08840, 2017. URL http://arxiv.org/abs/1706.08840.

Divyam Madaan, Jaechong Yoon, Yuanchun Li, Yunxin Liu, and Sung Ju Hwang. Representa-
tional continuity for unsupervised continual learning, 2022. URL https://arxiv.org/
abs/2110.06976!

Sandeep Madireddy, Angel Yanguas-Gil, and Prasanna Balaprakash. Improving performance in
continual learning tasks using bio-inspired architectures. In Conference on Lifelong Learning
Agents, pp. 992-1008. PMLR, 2023.

Davide Maltoni and Vincenzo Lomonaco. Continuous learning in single-incremental-task sce-
narios. Neural Networks, 116:56-73, 2019. ISSN 0893-6080. doi: https://doi.org/10.1016/j.
neunet.2019.03.010. URL https://www.sciencedirect.com/science/article/
pii/S0893608019300838!|

Michael McCloskey and Neal J. Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. Psychology of Learning and Motivation - Advances in Research and
Theory, 24(C):109-165, January 1989. ISSN 0079-7421. doi: 10.1016/S0079-7421(08)60536-8.

Alex Ororbia, Ankur Mali, C Lee Giles, and Daniel Kifer. Lifelong neural predictive coding: Learn-
ing cumulatively online without forgetting. Advances in Neural Information Processing Systems,
35:5867-5881, 2022.

Alexander G Ororbia. Continual competitive memory: A neural system for online task-free lifelong
learning. arXiv preprint arXiv:2106.13300, 2021.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Con-
tinual lifelong learning with neural networks: A review. Neural Networks, 113:54-71, 2019.
ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2019.01.012. URL https://www.
sciencedirect.com/science/article/pi11/S0893608019300231,

Kosmas Pinitas, Spyridon Chavlis, and Panayiota Poirazi. Dendritic self-organizing maps for con-
tinual learning, 2021. URL https://arxiv.org/abs/2110.13611,



Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020

Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fahad Khan, Ling Shao, and Ming-Hsuan
Yang. An adaptive random path selection approach for incremental learning. 01 2020.

Wojciech Samek, Gregoire Montavon, Sebastian Lapuschkin, Christopher J. Anders, and Klaus-
Robert Muller. Explaining deep neural networks and beyond: A review of methods and applica-
tions. Proceedings of the IEEE, 109(3):247-278, March 2021. ISSN 1558-2256. doi: 10.1109/
jproc.2021.3060483. URL http://dx.doi.org/10.1109/JPROC.2021.3060483,

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition, 2015. URL https://arxiv.org/abs/1409.1556.

Wenju Sun, Qingyong Li, Jing Zhang, Danyu Wang, Wen Wang, and Yangli-ao Geng. Exemplar-
free class incremental learning via discriminative and comparable one-class classifiers. CoRR,
abs/2201.01488, 2022. URL https://arxiv.org/abs/2201.01488!

Vishal Thengane, Salman Khan, Munawar Hayat, and Fahad Khan. Clip model is an efficient con-
tinual learner, 2022. URL https://arxiv.org/abs/2210.03114.

Sebastian Thrun. Lifelong learning algorithms. In Learning to learn, pp. 181-209. Springer, 1998.

Hitesh Vaidya, Travis Desell, and Alexander Ororbia. Reducing catastrophic forgetting in self or-
ganizing maps with internally-induced generative replay. CoRR, abs/2112.04728, 2021. URL
https://arxiv.org/abs/2112.04728]

Gido M. van de Ven, Tinne Tuytelaars, and Andreas S. Tolias. Three types of incremental learn-
ing. Nature Machine Intelligence, 4(12):1185-1197, 2022. ISSN 2522-5839. doi: 10.1038/
$42256-022-00568-3. URL https://doi.org/10.1038/s42256-022-00568-3

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application, 2024. URL lhttps://arxiv.org/abs/2302.
00487

Buddhi Wickramasinghe, Gobinda Saha, and Kaushik Roy. Continual learning: A review of tech-
niques, challenges, and future directions. IEEE Transactions on Artificial Intelligence, 5(6):2526—
2546, 2024. doi: 10.1109/TAI.2023.3339091.

Yutao Yang, Jie Zhou, Xuanwen Ding, Tianyu Huai, Shunyu Liu, Qin Chen, Yuan Xie, and Liang
He. Recent advances of foundation language models-based continual learning: A survey. ACM
Comput. Surv., 57(5), January 2025. ISSN 0360-0300. doi: 10.1145/3705725. URL https:
//doi-org.ezproxy.rit.edu/10.1145/3705725!

Hejie Ying, Mengmeng Song, Yaohong Tang, Shungen Xiao, and Zimin Xiao. Enhancing deep
neural network training efficiency and performance through linear prediction, 2024. URL
https://arxiv.org/abs/2310.10958

Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Continuous learning of context-dependent
processing in neural networks. CoRR, abs/1810.01256, 2018. URL http://arxiv.org/
abs/1810.01256!

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence,
2017. URL https://arxiv.org/abs/1703.04200.

Da-Wei Zhou, Hai-Long Sun, Jingyi Ning, Han-Jia Ye, and De-Chuan Zhan. Continual learning
with pre-trained models: A survey, 2024a. URL|https://arxiv.org/abs/2401.16386,

Da-Wei Zhou, Qi-Wei Wang, Zhi-Hong Qi, Han-Jia Ye, De-Chuan Zhan, and Ziwei Liu. Class-
incremental learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
46(12):9851-9873, 2024b. doi: 10.1109/TPAMI.2024.3429383.



