
One-for-All Pruning: A Universal Model for Customized Compression of
Large Language Models

Anonymous ACL submission

Abstract001

Existing pruning methods for large language002
models (LLMs) focus on achieving high com-003
pression rates while maintaining model perfor-004
mance. Although these methods have demon-005
strated satisfactory performance in handling a006
single user’s compression request, their pro-007
cessing time increases linearly with the number008
of requests, making them inefficient for real-009
world scenarios with multiple simultaneous re-010
quests. To address this limitation, we propose a011
Univeral Model for Customized Compression012
(UniCuCo) for LLMs, which introduces a Strat-013
Net that learns to map arbitrary requests to014
their optimal pruning strategy. The challenge015
in training StratNet lies in the high computa-016
tional cost of evaluating pruning strategies and017
the non-differentiable nature of the pruning pro-018
cess, which hinders gradient backpropagation019
for StratNet updates. To overcome these chal-020
lenges, we leverage a Gaussian process to ap-021
proximate the evaluation process. Since the022
gradient of the Gaussian process is computable,023
we can use it to approximate the gradient of024
the non-differentiable pruning process, thereby025
enabling StratNet updates. Experimental re-026
sults show that UniCuCo is 28 times faster than027
baselines in processing 64 requests, while main-028
taining comparable accuracy to baselines.029

1 Introduction030

Large language model (LLM) compression (Ma031

et al., 2023; Zhu et al., 2024; Yu et al., 2024) aims032

to reduce the size and computational demands of033

pre-trained models while preserving their perfor-034

mance. Among commonly used techniques, prun-035

ing (Frantar and Alistarh, 2023; Yin et al., 2023)036

reduces the size and complexity of pre-trained mod-037

els by removing less critical weights or layers while038

retaining their core functionality. By employing039

these techniques, LLMs can be deployed efficiently040

in resource-constrained environments, such as edge041

devices (Tseng et al., 2024).042

Figure 1: A comparison of various approaches in terms
of effectiveness and efficiency when providing pruning
strategies for compression requests.

In practical applications, users have diverse com- 043

pression requests (defined by their goals of model 044

size reduction while preserving performance) due 045

to the varying capabilities of their devices. Nu- 046

merous LLM pruning methods have been devel- 047

oped to address specific compression requests (Yin 048

et al., 2023; Kim et al., 2024). These methods 049

can be categorized into optimization-based ap- 050

proaches (Sieberling et al., 2024) and score-based 051

approaches (Men et al., 2024; Frantar and Alis- 052

tarh, 2023). Optimization-based approaches frame 053

LLM pruning as an optimization problem, utilizing 054

heuristic algorithms (Yu and Gen, 2010) (e.g., evo- 055

lutionary algorithms) to preserve the performance 056

of the pruned LLM under a specific compression 057

request. In Fig. 1, optimization-based approaches 058

are highly effective in maintaining performance 059

through iterative refinement of pruning strategies 060

during the search process. However, their run- 061

time efficiency in handling multiple compression 062

requests is significantly limited, as each request ne- 063

cessitates an independent heuristic search, leading 064

to substantial time overhead. In contrast, score- 065

based approaches calculate importance or sensi- 066

1

tivity scores for each LLM layer, which are then067

used to determine the layers to prune to meet com-068

pression requests. By reusing the computed scores,069

the efficiency of handling multiple compression070

requests is enhanced. However, score-based ap-071

proaches exhibit limited effectiveness in preserving072

performance, since the pruning strategies generated073

from importance scores fail to satisfy the mono-074

tonicity property (Sieberling et al., 2024). Mo-075

tivated by these findings, we pose the following076

research question: How can we effectively and ef-077

ficiently handle multiple compression requests?078

To address this problem, we propose Request-079

Conditional Pruning (UniCuCo) for handling mul-080

tiple compression requests simultaneously. Specifi-081

cally, we introduce a StratNet that maps an arbitrary082

compression request to its corresponding optimal083

pruning strategy, enabling the handling of diverse084

requests. It is applicable for StratNet to a wide085

range of pruning approaches, such as depth prun-086

ing and non-uniform pruning. The challenges in087

training the StratNet are twofold: First, it is diffi-088

cult to balance the reduction in model size with the089

preservation of performance when optimizing Strat-090

Net to optimally match the user’s request. Second,091

evaluating pruning strategies is computationally ex-092

pensive. Third, applying pruning strategies (such093

as binary masks) to the LLM is a non-differentiable094

operation, which disrupts the backpropagation pro-095

cess and prevents StratNet from being updated us-096

ing gradient-based methods. To address these chal-097

lenges, we introduce the weighted Tchebycheff098

function in the optimization of StratNet, enabling099

it to effectively derive a pruning strategy that opti-100

mally aligns with the given request. Furthermore,101

we introduce a Gaussian process estimator to eval-102

uate pruning strategies, significantly reducing eval-103

uation time. Since the gradient of the Gaussian104

process is computable, we leverage it to restore the105

parts of StratNet that are disrupted in the backprop-106

agation process. Notably, we propose an alternat-107

ing update scheme where the Gaussian process and108

StratNet are updated in an interleaved manner. The109

main contributions of this paper are as follows:110

• We introduce the problem of multiple request111

pruning for LLMs, which requires algorithms112

to efficiently and effectively generate pruning113

strategies tailored to diverse requests.114

• We propose UniCuCo, a framework that maps115

arbitrary compression requests to tailored116

pruning strategies. UniCuCo includes a Gaus- 117

sian process estimator, which significantly re- 118

duces evaluation time of pruning strategies 119

and subtly solves the non-differentiable issue 120

in UniCuCo. Additionally, we introduce an 121

alternating scheme for updating the Gaussian 122

process and StratNet. 123

• Experimental results show that UniCuCo pro- 124

cesses 64 compression requests on the Mistral- 125

7B model with a speed at least 28 times faster 126

than optimization-based approaches, while 127

maintaining comparable accuracy. Mean- 128

while, UniCuCo achieves an average accuracy 129

improvement of 3% across five benchmark 130

datasets in a non-uniform pruning scenario 131

with 70% sparsity when compared with score- 132

based approaches on the Mistral-7B model. 133

2 Related Works 134

2.1 Depth Pruning 135

Depth pruning treats each transformer block as a 136

unit and removes entire blocks for pruning. The 137

most common approaches are score-based meth- 138

ods, which compute block importance scores and 139

remove those with lower scores based on a com- 140

pression request. For example, Weight Subcloning 141

(Samragh et al., 2023) is a simple yet effective 142

technique that transfers pre-trained model knowl- 143

edge to smaller variants by evaluating block im- 144

portance using the ratio of ℓ2 norms between out- 145

put embeddings with and without residual connec- 146

tions. Shortened LLaMA (Kim et al., 2024) mea- 147

sures block contribution by removing each block 148

from a pre-trained model and assessing its impact 149

on perplexity. ShortGPT (Men et al., 2024) de- 150

termines importance through cosine similarity be- 151

tween block inputs and outputs, where lower sim- 152

ilarity indicates higher importance. Gromov et al. 153

(Gromov et al., 2024) groups consecutive blocks 154

and evaluates their importance using cosine simi- 155

larity. However, according to EvoPress (Sieberling 156

et al., 2024), score-based approaches in depth prun- 157

ing are not monotonic. That is, a pruned LLM with 158

a higher cumulative importance score does not nec- 159

essarily lead to higher effectiveness in preserving 160

performance. To address this limitation, several 161

optimization-based approaches have been proposed 162

for depth pruning. For example, Sheared-LLaMA 163

(Xia et al.) introduces a mask learning phase to 164

identify prunable components across blocks. 165

2

Figure 2: Flowchart of UniCuCo.

2.2 Non-Uniform Pruning166

Non-uniform pruning is a more fine-grained prun-167

ing scenario, where each transformer block is as-168

signed a sparsity value between 0 and 1, rather169

than being simply set to 0 or 1. Score-based ap-170

proaches in non-uniform pruning include Wanda171

(Sun et al.) and SparseGPT (Frantar and Alistarh,172

2023). Wandb evaluates weight importance by173

assessing their impact on the calibration dataset.174

Specifically, it computes the dot product between175

the absolute value of the parameter matrix and the176

ℓ2 norm of the input to calculate the weight im-177

portance score. SparseGPT computes the Hessian178

matrix for the weights within each block and gen-179

erates the corresponding mask matrix based on the180

compression request. For optimization-based ap-181

proaches, He et al. (He et al., 2018) and Ashok et182

al. (Ashok et al., 2018) employed reinforcement183

learning to guide the LLM compression process.184

However, these approaches are hindered by high185

computational complexity, leading to significant186

time overhead when processing a single compres-187

sion request. To mitigate this issue, the recent188

OWL method (Yin et al., 2023) improves com-189

pression efficiency by pruning LLMs using layer-190

wise sparsity ratios proportional to their activation191

outlier ratios. EvoPress (Sieberling et al., 2024)192

formulates compression requests as constraints and193

employs heuristic search to determine the sparsity194

of each transformer block. Once the sparsity for195

each block is determined by EvoPress, SparseGPT196

(Frantar and Alistarh, 2023) is applied to perform197

the sparsification of the LLM. Despite these ad-198

vancements, such methods still incur significant199

time costs, which are proportional to the number200

of compression requests. Our work aims to effi-201

ciently handle multiple requests while preserving202

the effectiveness of the pruned LLM.203

3 Methodology204

In this section, we introduce UniCuCo for cus-205

tomized compression of LLMs. Fig. 2 illustrates206

the flowchart of UniCuCo. First, the core idea is 207

to introduce a StratNet that learns to map arbitrary 208

requests to corresponding pruning strategies (Sec- 209

tion 3.1). However, updating the StratNet requires 210

evaluating a large number of pruning strategies on 211

a calibration dataset, which is a time-consuming 212

process. Thus, we propose the use of a Gaussian 213

process to estimate the evaluation process, thereby 214

reducing the computational overhead of evaluat- 215

ing pruning strategies (Section 3.2). Finally, we 216

introduce methods for updating StratNet and the 217

Gaussian process (Section 3.3). 218

3.1 UniCuCo Framework 219

We consider a cloud server that provides pruning 220

strategies x ∈ Rd for diverse compression requests, 221

where d is the number of LLM blocks. Each ele- 222

ment xi ∈ [0, 1] represents the sparsity ratio of the 223

i-th block. If xi is binary, it corresponds to depth 224

pruning, whereas if xi takes a value in the contin- 225

uous range [0, 1], it corresponds to non-uniform 226

pruning. Subsequently, we define the compression 227

request and incorporate it into the pruning opti- 228

mization task. Then, we introduce StratNet and 229

discuss its optimization method. 230

3.1.1 Request Formulation 231

Each compression request is associated with model 232

size reduction and performance preservation. To 233

learn the pruning strategy for any given request 234

(i.e., the Pareto front corresponding to all requests), 235

we propose representing compression requests us- 236

ing λ ∈ R2
+, where λ1 + λ2 = 1. Each λi is used 237

to balance the trade-off between model size reduc- 238

tion and performance preservation. The set of all 239

requests over these objectives defines the request 240

space Λ = {λ ∈ R2
+ |

∑2
i=1 λi = 1}. 241

Given pruning strategy x, we quantify the model 242

size reduction objective as: 243

min
x

f1(x) = 1−
∑d

i=1 xi
d

, (1) 244

where
∑d

i=1 xi

d represents the average sparsity of 245

3

the pruned LLM. A smaller value of f1(x) leads to246

a smaller model size, as it reflects a higher sparsity.247

Following (Sieberling et al., 2024), we adopt the248

KL-divergence between the outputs of the pruned249

and unpruned LLM to characterize performance250

preservation:251

min
x

f2(x) = DKL(PMx ∥PM), (2)252

where PM denotes the output distribution of the253

unpruned LLM, while PMx is the output distribu-254

tion of the pruned LLM determined by the pruning255

strategy x. f2 quantifies the discrepancy in model256

outputs on the calibration dataset D, with smaller257

values indicating better performance preservation.258

3.1.2 StratNet259

We propose a StratNet ϕθ, parameterized by θ, that260

maps the request λ to the corresponding pruning261

strategy x, as follows:262

x = ϕθ(λ). (3)263

We consider optimizing StratNet with respect to264

two objectives, f1 and f2. Thus, the optimization265

of StratNet is formulated as a bi-objective optimiza-266

tion problem: minθ[f1(x), f2(x)]. A straightfor-267

ward approach to solving this problem is to com-268

pute a weighted sum of f1 and f2:269

min
θ

gws(x | λ) = min
θ

2∑
i=1

λifi(x). (4)270

As shown in Fig. 3, gws(·) is applicable only to271

convex Pareto fronts, and not to concave ones. To272

overcome this limitation, we propose the following273

weighted Tchebycheff function (Miettinen, 1999):274

min
θ

gtch(x | λ)=min
θ

max
i∈[2]
{λi(fi(x)− z∗i)} , (5)275

where z∗i is ideal value for objective fi (i.e., the276

lower bound of fi). The function gtch(·) can be277

used to identify the optimal pruned strategy in dif-278

ferent kinds of Pareto front.279

To enable the StratNet to learn pruning strategies280

for all possible requests, we optimize StratNet over281

the entire request space Λ as follows:282

min
θ

Eλ∼Λ [gtch(x = ϕθ(λ) | λ)] . (6)283

For each sampled request λ in Eq. (6), f1(x =284

ϕθ(λ)) in gtch can be directly computed by Eq.285

(1). In contrast, f2(x = ϕθ(λ)) cannot be directly286

Figure 3: The optimal pruning strategy x obtained using
(a) the weighted sum function and (b) the weighted
Tchebycheff function under a concave Pareto front.

computed solely from x. Its computation requires 287

generating the compressed model based on x and 288

performing inference on a calibration dataset to de- 289

rive its value. This introduces two key challenges. 290

(I) Significant computational overhead. For 291

each sampled compression request λ, evaluating f2 292

with gtch(·) is time-consuming, as it requires the 293

pruned LLM to perform inferences on the calibra- 294

tion dataset. 295

(II) The feasibility of updating the StratNet. The 296

computation of the gradient ∇θgtch is necessary 297

for updating the StratNet. However, computing 298

∇θgtch is challenging because ∇θf2 in ∇θgtch in- 299

volves the following chain rule: 300

∇θf2(x) = ∇θϕθ(λ) ·∇xMx ·∇Mxf2(x), (7) 301

where∇xMx cannot be computed, as the mapping 302

from pruning strategy x to a pruned model Mx 303

is a non-differentiable operation. It disrupts the 304

computational chain for Eq. (7). 305

3.2 Gaussian Process for Efficient Estimation 306

We introduce a Gaussian process denoted by G, 307

to compute f2(x) when solving problem (6). The 308

key idea is to use G as an estimator to approximate 309

f2(x) without requiring expensive inference on the 310

calibration dataset for new pruning strategies. This 311

Gaussian process can address challenges (I)–(II). 312

We begin by presenting the Gaussian process and 313

integrating it into our framework. 314

The Gaussian process G is defined by a mean 315

function µ(·) and a covariance function k(·, ·): 316

f̂2 ∼ G(µ(x), k(x,x)). (8) 317

Initially, we construct a set of C observed sam- 318

ples {x(c), f2(x
(c))}Cc=1. These samples are used 319

to train the Gaussian process, i.e., to estimate the 320

mean function and covariance function. 321

Once G is trained, it can be used for inference on 322

new pruning strategies. When a new pruning strat- 323

egy xnew = ϕθ(λ
new) is generated by StratNet 324

4

ϕθ in problem (6), G computes the posterior mean325

µ̂(xnew) and variance σ̂2(xnew) for xnew. The326

posterior mean µ̂(xnew) serves as an estimate of327

f2(x
new), while the variance σ̂2(xnew) quantifies328

the uncertainty of this estimate. To balance explo-329

ration (trying uncertain strategies) and exploitation330

(focusing on good predicted performance), we in-331

corporate uncertainty into the estimation of f2 for332

xnew by employing criteria such as the Lower Con-333

fidence Bound (LCB) or Upper Confidence Bound334

(UCB). Specifically, when applying LCB, the esti-335

mate of f2 for xnew is given by336

f̂2(x
new) = µ̂(xnew) + κσ̂(xnew), (9)337

where κ ≥ 0 is a constant used to balance posterior338

mean and uncertainty. Using Gaussian process to339

estimate f2 significantly reduces the computation340

time from tens of seconds on the calibration dataset341

to just tens of milliseconds, achieving a thousand-342

fold improvement in computational efficiency and343

addressing challenge (I).344

Meanwhile, the Gaussian process can effectively345

tackles challenge (II). The existence of Gaussian346

process ensures that∇θf2(x) can be estimated:347

∇θf̂2(x) ≈ ∇θϕθ(λ) · ∇xG, (10)348

where ∇xG estimates ∇xf2(x) = ∇xMx ·349

∇Mxf2(x). Then, when StratNet is updated, its350

gradient∇θgtch can be estimated by351

∇θ ĝtch(x | λ) =

{
λ1∇θf1(x) if λ1f1(x) ≥ λ2f̂2(x),

λ2∇θ f̂2(x) if λ1f1(x) < λ2f̂2(x).
352

In the above equation, when λ1f1(x) = λ2f̂2(x),353

a subgradient is employed, given by λ1∇θf1(x).354

3.3 Updating Gaussian Process and StratNet355

The accuracy of the Gaussian process in estimating356

f2 is crucial for optimizing StratNet. We present357

StratNet’s update method and a dynamic update358

approach for the Gaussian process. The Gaussian359

process is updated once per epoch while StratNet360

undergoes I updates per epoch. Their updates are361

divided into steps (A) and (B).362

(A) Initializing Gaussian process and optimiz-363

ing StratNet. We randomly initialize a set of N364

pruning strategies X0 = {xj}Nj=1. Next, we prune365

the LLM based on X0 and compute the correspond-366

ing f1 and f2 values for each pruned LLM. Here, f2367

is evaluated on a calibration dataset, while f1 mea-368

sures the model size reduction. Together, these val-369

ues form the set F 0 = {(f1(xj), f2(x
j))}Nj=1. Fi-370

nally, we train the Gaussian process G0 on the pairs371

{(xj , f2(x
j))}Nj=1 by maximizing the marginal 372

likelihood (Rasmussen, 2003). 373

To optimize StratNet at the first epoch, we apply 374

Monte Carlo sampling to estimate the expectation 375

of requests in Eq. (11) and then use gradient de- 376

scent with I steps for optimization: 377

θ ← θ − η
K∑
k=1

∇θĝtch(x = ϕθ(λ
k) | λk), (11) 378

where K is the number of sampled requests and η 379

is the learning rate. 380

(B) Incremental Gaussian process update and 381

continuous StratNet update. During the t-th 382

epoch, stage (B) selects new samples to expand the 383

training dataset {Xt−1,F t−1} in epoch t − 1 of 384

the Gaussian process, thereby enhancing its predic- 385

tion accuracy. Then, the Gaussian process updates 386

on the increased training dataset, while StratNet is 387

updated according to Eq. (11). 388

To increase the training dataset, we first generate 389

a strategy candidate pool Xt
p based on StratNet. To 390

do this, we sample a set of C requests {λc}Cc=1 391

from the request space Λ. The StratNet then maps 392

these vectors {λc}Cc=1 into the candidate pool, i.e., 393

Xt
p = {xc = ϕθ(λ

c)}Cc=1. Next, we compute 394

the f1 of Xt
p and use the Gaussian process to pre- 395

dict the f2 of Xt
p, resulting in the objective values 396

F̂
t
p = (f1(X

t
p), f̂2(X

t
p)). 397

To select a subset from candidate set {Xt
p, F̂

t
p} 398

that provides the maximum benefit to Gaussian pro- 399

cess training, we use hypervolume (HV) (Guerreiro 400

et al., 2021) to assess the quality of the objective set 401

F . HV is calculated by the area enclosed between 402

each point in F and a predefined reference point r: 403

Hr(F) = {a ∈ R2 | ∃f ∈ F ,f ≤ a ≤ r}, (12) 404

where a larger value of Hr(F) reflects a higher 405

quality of the set F . The key in improving the Gaus- 406

sian process lies in measuring the improvement 407

brought by adding the selected subset to the (t−1)- 408

th epoch training dataset {Xt−1,F t−1}. Thus, we 409

identify a subset {Xt
s, F̂

t
s} from {Xt

p, F̂
t
p} with 410

the largest hypervolume improvement (HI) for 411

Hr(F
t−1), as follows: 412

HI(F̂ t
s) = Hr(F

t−1 ∪ F̂
t
s)−Hr(F

t−1). (13) 413

Based on Eq. (13), Xt
s = argmaxXt

s
HI(F̂ t

s). 414

To add the selected Xt
s to the (t − 1)-th epoch 415

5

Sparsity Method
Mistral-7B Llama-3-8B

Wiki2 (↓) C4 (↓) FW (↓) Avg. (↓) Latency (↓) Wiki2 (↓) C4 (↓) FW (↓) Avg. (↓) Latency (↓)
0% Dense 4.82 7.72 6.41 6.32 – 5.54 8.80 7.62 7.32 –

12.5%

Cosine (Window) 7.19 10.18 8.39 8.59 8s 13.21 19.56 14.27 15.68 9s
EvoPress 5.74 9.07 7.43 7.41 26.7m 7.68 12.33 10.20 10.07 15.4m
ShortGPT 7.19 10.18 8.39 8.59 <1s 13.21 19.56 14.27 15.68 <1s

Weight Subcloning 7.19 10.18 8.39 8.59 <1s 13.21 19.56 14.27 15.68 <1s
UniCuCo 5.93 9.39 7.67 7.66 <1s 7.42 12.03 9.80 9.75 <1s

25%

Cosine (Window) 34.94 33.7 15.08 27.91 15s 5527.47 11588.16 2388.11 6501.25 14s
EvoPress 10.35 13.44 10.63 11.47 26.2m 14.77 21.30 16.74 17.60 19.6m
ShortGPT 43.26 40.16 29.29 37.57 <1s 5527.47 11588.16 2388.11 6501.25 <1s

Weight Subcloning 43.26 40.16 29.29 37.57 <1s 5527.47 11588.16 2388.11 6501.25 <1s
UniCuCo 13.73 17.2 13.53 14.82 <1s 15.05 20.78 16.18 17.34 <1s

37.5%

Cosine (Window) 1038.98 2362 1013.9 1471.62 15s 64402.73 13833.98 3908.76 27381.82 17s
EvoPress 31.91 30.86 22.47 28.41 25.7m 66.21 80.48 53.82 66.84 15.4m
ShortGPT 2899.74 2327.1 1023.7 2083.50 <1s 64402.73 13833.98 3908.76 27381.82 <1s

Weight Subcloning 2899.74 2327.1 1023.7 2083.50 <1s 64402.73 13833.98 3908.76 27381.82 <1s
UniCuCo 42.48 36.8 25.34 34.87 <1s 76.89 98.54 55.86 77.10 <1s

50%

Cosine (Window) 3410.85 1950.6 1695.4 2352.29 10s 2054.46 1116.51 692.89 1287.95 12s
EvoPress 4148.65 2943.6 2937.8 3343.32 26.3m 496.86 396.78 261.37 385.00 13.0m
ShortGPT 2423.38 2135.4 1104.9 1887.89 <1s 1664.06 1739.99 1622.69 1675.58 <1s

Weight Subcloning 2423.38 2135.4 1104.9 1887.89 <1s 1664.06 1739.99 1622.69 1675.58 <1s
UniCuCo 235.08 148.85 120.33 168.09 <1s 983.97 632.06 447.28 687.77 <1s

62.5%

Cosine (Window) 8663.29 7568.5 8644.3 8292.01 8s 6552.93 2756.67 2839.64 4049.75 9s
EvoPress 3629.51 3039.1 2597.9 3088.83 28.1m 4711.99 4041.00 4036.07 4263.02 15.2m
ShortGPT 12539.6 10536 4755.3 9276.92 <1s 56522.08 23863.46 12350.08 30911.87 <1s

Weight Subcloning 12539.6 10536 4755.3 9276.92 <1s 56522.08 23863.46 12350.08 30911.87 <1s
UniCuCo 1846.28 1170.4 971.79 1329.49 <1s 8405.46 2173.26 1845.45 4141.39 <1s

Table 1: Depth pruning results of various methods across five sparsity levels, evaluated by perplexity (PPL) and
averaged PPL. Latency refers to the time required to handle a single compression request. The best results are
highlighted in bold, while the second-best results are underlined.

training dataset {Xt−1,F t−1} of the Gaussian pro-416

cess, we need to evaluate Xt
s on the calibration417

dataset, as f2 of Xt
s is still estimated by the Gaus-418

sian process. To do this, we obtain the pruned419

LLMs based on Xt
s, and compute their correspond-420

ing f1 and f2 values, forming F t
s. The training421

dataset at t-epoch is represented as {Xt,F t} =422

{Xt−1 ∪Xt
s,F

t−1 ∪ F t
s}. The Gaussian process423

is then updated on {Xt,F t}.424

Afterwards, StratNet performs I steps of Eq.425

(11) in t-epoch. The pseudocode of UniCuCo is426

given in Algorithm 1 of Appendix.427

4 Experiments428

In this section, we validate the effectiveness and429

efficiency of our proposed ReCoP against state-of-430

the-art baselines in both depth pruning and non-431

uniform pruning scenarios. We further analyze the432

impact of different scalarization functions (i.e. Eqs.433

(4), (5) and others) in Appendix B.3.434

4.1 Experimental Setups435

Baselines. For the depth pruning scenario, where436

the pruning strategy for each layer is represented437

by binary values (0 and 1), we compare our ap-438

proach with several baselines. These include the439

optimization-based method EvoPress (Sieberling440

et al., 2024), as well as score-based methods such 441

as ShortGPT (Men et al., 2024), Weight Subcloning 442

(Samragh et al., 2023), and Sliding Window Cosine 443

Similarity (referred toabbreviated as Cosine (Win- 444

dow)) (Gromov et al., 2024). Evaluation. All com- 445

petitive methods use Fineweb-Edu (FW) (Penedo 446

et al., 2024) as the calibration data. We evaluate 447

perplexity on the WikiText-2 (Wiki2) (Merity et al., 448

2016) and C4 (Raffel et al., 2020) datasets to mea- 449

sure the performance of pruned LLMs. Addition- 450

ally, we assess accuracy on zero-shot tasks across 451

a range of datasets, including WinoGrande (Sak- 452

aguchi et al., 2021), PiQA (Tata and Patel, 2003), 453

HellaSwag (Zellers et al., 2019), and both ARC- 454

easy and ARC-challenge (Clark et al., 2018), using 455

the LM Eval Harness (Gao et al., 2021). 456

4.2 Depth Pruning Results 457

From the depth pruning results in Table 1, two 458

key conclusions can be drawn: (I) Our pro- 459

posed UniCuCo outperforms the three score-based 460

methods by delivering pruning strategies in less 461

than one second, similar to the speed of the 462

two fastest score-based methods. Additionally, 463

UniCuCo significantly improves average perplex- 464

ity, especially as model sparsity increases. (II) 465

UniCuCo achieves competitive results compared 466

6

Sparsity Method Wiki2 (↓) C4 (↓) ArcC (↑) ArcE (↑) HS (↑) PiQA (↑) WG (↑) Avg. (↑) Latency (↓)
0% Dense 4.82 7.72 48.90 79.60 60.9 80.30 73.90 68.72 –

50%

OWL 5.69 8.94 43.90 76.90 55.4 78.50 70.30 65.00 40m
EvoPress 5.48 8.69 44.88 76.85 56.46 79.16 71.35 65.74 122m
Uniform 5.68 8.93 43.70 76.70 55.70 78.40 71.00 65.10 <1s
UniCuCo 5.65 8.95 44.11 76.73 55.66 78.40 71.27 65.23 <1s

60%

OWL 7.50 11.34 38.50 71.90 46.90 75.10 70.20 60.52 40m
EvoPress 7.12 10.91 38.05 72.56 49.91 76.01 68.98 61.10 121m
Uniform 7.78 11.86 38.00 72.40 49.40 75.00 69.30 60.82 <1s
UniCuCo 7.44 11.46 39.33 72.90 49.91 75.79 69.93 61.57 <1s

70%

OWL 17.22 21.66 27.90 62.60 38.60 67.00 63.50 51.92 40m
EvoPress 9.73 14.63 33.45 67.13 43.91 72.63 65.27 56.48 120m
Uniform 23.08 30.03 27.10 60.90 36.10 65.90 59.40 49.88 <1s
UniCuCo 15.88 22.08 29.10 64.27 39.05 69.04 62.90 52.87 <1s

Table 2: Non-uniform pruning results on the Mistral-7B, evaluated at three sparsity levels, with perplexity for Wiki2
and C4 datasets, and the average zero-shot accuracy (Avg.) across the ArcC, ArcE, HS, PiQA, and WG datasets.

0 10 20 30 40 50 60
The number of requests

0
250
500
750

1000
1250
1500
1750
2000

To
ta

l T
im

e
(m

in
s)

Mistral-7B

0 10 20 30 40 50 60
The number of requests

0
250
500
750

1000
1250
1500
1750
2000

To
ta

l T
im

e
(m

in
s)

Llama-3-8B

UniCuCo
EvoPress

Figure 4: The comparison of total time for generating
pruning strategies between UniCuCo and EvoPress as
the number of requests increases.

to optimization-based EvoPress, while maintaining467

significantly shorter latency. Although EvoPress468

achieves the best perplexity in six out of ten cases469

across different sparsities and models, it requires470

approximately 13 to 26 minutes to compute the471

pruning strategy for each request. In contrast, our472

proposed UniCuCo takes less than one second in473

handing each request, while achieving the best re-474

sults in four out of ten cases. This demonstrates475

that UniCuCo not only offers fast inference but also476

remains highly competitive in effectiveness.477

We further compare the total time overhead (in-478

cluding both model training time and latency) of479

UniCuCo and EvoPress in Fig. 4. The results show480

that as the number of users increases, UniCuCo out-481

performs EvoPress in total time overhead. Specifi-482

cally, on Mistral-7B, UniCuCo achieves 56 times483

more efficiently than EvoPress when scaling to 64484

requests. This is because, once the StratNet in485

UniCuCo is trained, it can generate pruning strate-486

gies for any request, whereas EvoPress requires487

re-searching for each request.488

4.3 Non-Uniform Pruning Results489

In Table 2, due to the finer granularity of pruning in490

Non-Uniform Pruning, the distinction between al-491

12.5%

25%

37.5%

50%

62.5%

Mistral-7B on Wiki2

12.5%

25%

37.5%

50%

62.5%

Mistral-7B on C4

12.5%

25%

37.5%

50%

62.5%

Llama-3-8B on Wiki2

12.5%

25%

37.5%

50%

62.5%

Llama-3-8B on C4

12.5%

25%

37.5%

50%

62.5%

Llama-2-13B on Wiki2

12.5%

25%

37.5%

50%

62.5%

Llama-2-13B on C4

w. updates
w.o. updates
ShortGPT

Figure 5: The impact of Gaussian process updates
on depth pruning, evaluated using adjusted perplexity
(higher values indicate better effectiveness).

gorithms is less noticeable at low sparsity, while it 492

becomes more significant at 70% sparsity. In addi- 493

tion, Table 2 shows that our proposed UniCuCo not 494

only achieves lower latency but also outperforms 495

Uniform by 0.1%, 0.7%, and 3% in average accu- 496

racy across three sparsities. Furthermore, while 497

EvoPress achieves the best average accuracy in two 498

out of three sparsities, it comes at a prohibitively 499

high time cost for handing single request. Although 500

OWL is more time-efficient than EvoPress, its ac- 501

7

50% 60% 70%
Sparsity

10

15

20

25

Pe
rp

le
xi

ty
 (

)
Mistral-7B

50% 60% 70%
Sparsity

50

55

60

65

A
cc

ur
ac

y
(

)

Mistral-7B

50% 60% 70%
Sparsity

20

40

60

80

Pe
rp

le
xi

ty
 (

)

Llama-3-8B

50% 60% 70%
Sparsity

45

50

55

60

65
A

cc
ur

ac
y

(
)

Llama-3-8B

50% 60% 70%
Sparsity

10

20

30

40

Pe
rp

le
xi

ty
 (

)

Llama-2-13B

50% 60% 70%
Sparsity

45

50

55

60

65

A
cc

ur
ac

y
(

)

Llama-2-13B

Uniform
EvoPress
PuCC (LCB)
PuCC (UCB)
PuCC (None)

Figure 6: The impact of uncertainty on non-uniform
pruning across three large models, evaluated by aver-
aged perplexity and averaged zero-shot accuracy.

curacy is lower by 0.74%, 0.68%, and 4.56% at502

the three sparsity levels, respectively. In contrast,503

our proposed UniCuCo achieves a favorable bal-504

ance, being approximately 2400 times faster than505

OWL and 7000 times faster than EvoPress per re-506

quest in terms of efficiency, while outperforming507

OWL by an average of 0.6% in accuracy. We pro-508

vide additional results for non-uniform pruning on509

Llama-3-8B and Llama-2-13B in Appendix B.2.510

4.4 Effects of Gaussian Process Updates511

Fig. 5 presents the pruning effectiveness based512

on normalized perplexity, comparing results with513

and without Gaussian Process updates. Results514

show that when the Gaussian Process is not dy-515

namically updated, pruning effectiveness signifi-516

cantly declines compared to when updates are ap-517

plied. Notably, on Llama-2-13, the absence of518

Gaussian Process updates leads to effectiveness519

that is lower than that of the score-based method,520

ShortGPT. This outcome is intuitive, as StratNet’s521

performance relies on the Gaussian Process’s esti-522

mation of f2. Insufficient training samples hinder523

this estimation, thereby degrading the quality of524

the pruning strategies generated by the StratNet.525

50% 60% 70% 80%
Sparsity

0

500

1000

1500

2000

Pe
rp

le
xi

ty
 (

)

Mistral-7B on Wiki

50% 60% 70% 80%
Sparsity

0

500

1000

1500

2000

Mistral-7B on C4
PuCC(= 0.1)
PuCC(= 0.5)
PuCC(= 1)
PuCC(= 2)

Figure 7: Effect of κ on Mistral-7B across two datasets.

4.5 Effects of Uncertainty Estimates 526

Recall that in Eq. (9), the prediction of pruning 527

strategies is guided the uncertainty provided by the 528

Gaussian process. Fig. 6 compares UniCuCo with 529

LCB, UCB, and no uncertainty (None) against Uni- 530

form and EvoPress. An interesting observation is 531

that ignoring uncertainty generally leads to worse 532

effectiveness, but it still outperforms Uniform. In 533

contrast, UniCuCo incorporating uncertainty, such 534

as LCB and UCB, delivers superior effectiveness 535

compared to UniCuCo (None). This is intuitively 536

reasonable, as LCB and UCB balance exploiting 537

well-understood regions with exploring areas of 538

higher uncertainty, thereby improving overall ef- 539

fectiveness. Additionally, we show the results on 540

the impact of the uncertainty weight κ in Fig. 7. 541

The results indicate that variations in κ within the 542

range of 0.1 to 1 have a marginal effect. However, 543

when κ = 2, the pruning perplexity deteriorates 544

as sparsity increases. This is because a larger κ 545

causes the Gaussian process to overly emphasize 546

uncertainty, neglecting the predictive mean. 547

5 Conclusion 548

In this paper, we proposed UniCuCo, an efficient 549

method for handling multiple compression requests 550

while preserving effectiveness. UniCuCo contains 551

a StratNet that learns to map any given request to 552

an optimal compression strategy. To overcome the 553

challenges of high computational cost and gradi- 554

ent incomputability in updating the StratNet, we 555

employ a Gaussian process to approximate updat- 556

ing process, thereby enabling effective learning 557

of the StratNet. Experimental findings indicate 558

that UniCuCo is at least 28 times more efficient 559

than optimization-based methods for processing 64 560

compression requests. Additionally, it achieves 3% 561

higher averaged accuracy in a non-uniform pruning 562

scenario with 70% sparsity when compared with 563

score-based methods. 564

8

Limitations565

Our work currently applies UniCuCo to LLMs with566

54 to 80 transformer blocks, ranging from 7B to567

13B parameters. The effectiveness of UniCuCo568

relies on the training of the Gaussian process. As569

the size of LLMs increases, with hundreds of trans-570

former blocks, the fitting space for Gaussian pro-571

cess training expands, and the pruning strategy di-572

mension in the request space also increases. In573

this context, the effectiveness of UniCuCo requires574

further analysis and validation. Additionally, while575

our work addresses multiple compression requests576

for a single LLM, a more complex and realistic577

scenario involves handling multiple compression578

requests for multiple LLMs. These aspects will be579

explored in future research.580

References581

Anubhav Ashok, Nicholas Rhinehart, Fares Beainy, and582
Kris M Kitani. 2018. N2n learning: Network to net-583
work compression via policy gradient reinforcement584
learning. In International Conference on Learning585
Representations.586

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,587
Ashish Sabharwal, Carissa Schoenick, and Oyvind588
Tafjord. 2018. Think you have solved question an-589
swering? try arc, the ai2 reasoning challenge. arXiv590
preprint arXiv:1803.05457.591

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-592
sive language models can be accurately pruned in593
one-shot. In International Conference on Machine594
Learning, pages 10323–10337. PMLR.595

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,596
Anthony DiPofi, Charles Foster, Laurence Golding,597
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,598
et al. 2021. A framework for few-shot language599
model evaluation. Version v0. 0.1. Sept, 10:8–9.600

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,601
Paolo Glorioso, and Daniel A Roberts. 2024. The un-602
reasonable ineffectiveness of the deeper layers. arXiv603
preprint arXiv:2403.17887.604

Andreia P Guerreiro, Carlos M Fonseca, and Luís Pa-605
quete. 2021. The hypervolume indicator: Compu-606
tational problems and algorithms. ACM Computing607
Surveys (CSUR), 54(6):1–42.608

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li,609
and Song Han. 2018. Amc: Automl for model com-610
pression and acceleration on mobile devices. In Pro-611
ceedings of the European conference on computer612
vision (ECCV), pages 784–800.613

Bo-Kyeong Kim, Geonmin Kim, Tae-Ho Kim, Thibault614
Castells, Shinkook Choi, Junho Shin, and Hyoung-615
Kyu Song. 2024. Shortened llama: A simple depth616

pruning for large language models. arXiv preprint 617
arXiv:2402.02834, 11. 618

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. 619
Llm-pruner: On the structural pruning of large lan- 620
guage models. Advances in neural information pro- 621
cessing systems, 36:21702–21720. 622

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, 623
Hongyu Lin, Yaojie Lu, Xianpei Han, and Weipeng 624
Chen. 2024. Shortgpt: Layers in large language 625
models are more redundant than you expect. arXiv 626
preprint arXiv:2403.03853. 627

Stephen Merity, Caiming Xiong, James Bradbury, and 628
Richard Socher. 2016. Pointer sentinel mixture mod- 629
els. arXiv preprint arXiv:1609.07843. 630

Kaisa Miettinen. 1999. Nonlinear multiobjective opti- 631
mization, volume 12. Springer Science & Business 632
Media. 633

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, 634
Margaret Mitchell, Colin Raffel, Leandro Von Werra, 635
Thomas Wolf, et al. 2024. The fineweb datasets: 636
Decanting the web for the finest text data at scale. 637
arXiv preprint arXiv:2406.17557. 638

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 639
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 640
Wei Li, and Peter J Liu. 2020. Exploring the lim- 641
its of transfer learning with a unified text-to-text 642
transformer. Journal of machine learning research, 643
21(140):1–67. 644

Carl Edward Rasmussen. 2003. Gaussian processes in 645
machine learning. In Summer school on machine 646
learning, pages 63–71. Springer. 647

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 648
ula, and Yejin Choi. 2021. Winogrande: An adver- 649
sarial winograd schema challenge at scale. Commu- 650
nications of the ACM, 64(9):99–106. 651

Mohammad Samragh, Mehrdad Farajtabar, Sachin 652
Mehta, Raviteja Vemulapalli, Fartash Faghri, De- 653
vang Naik, Oncel Tuzel, and Mohammad Rastegari. 654
2023. Weight subcloning: direct initialization of 655
transformers using larger pretrained ones. arXiv 656
preprint arXiv:2312.09299. 657

Oliver Sieberling, Denis Kuznedelev, Eldar Kurtic, and 658
Dan Alistarh. 2024. Evopress: Towards optimal dy- 659
namic model compression via evolutionary search. 660
arXiv preprint arXiv:2410.14649. 661

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. 662
A simple and effective pruning approach for large 663
language models. In The Twelfth International Con- 664
ference on Learning Representations. 665

Sandeep Tata and Jignesh M Patel. 2003. Piqa: An 666
algebra for querying protein data sets. In 15th In- 667
ternational Conference on Scientific and Statistical 668
Database Management, 2003., pages 141–150. IEEE. 669

9

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr670
Kuleshov, and Christopher De Sa. 2024. Quip#:671
Even better llm quantization with hadamard in-672
coherence and lattice codebooks. arXiv preprint673
arXiv:2402.04396.674

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi675
Chen. Sheared llama: Accelerating language model676
pre-training via structured pruning. In The Twelfth677
International Conference on Learning Representa-678
tions.679

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh,680
Yaqing Wang, Yiling Jia, Gen Li, Ajay Jaiswal,681
Mykola Pechenizkiy, Yi Liang, et al. 2023. Out-682
lier weighed layerwise sparsity (owl): A missing683
secret sauce for pruning llms to high sparsity. arXiv684
preprint arXiv:2310.05175.685

Xinjie Yu and Mitsuo Gen. 2010. Introduction to evo-686
lutionary algorithms. Springer Science & Business687
Media.688

Zhongzhi Yu, Zheng Wang, Yuhan Li, Ruijie Gao, Xi-689
aoya Zhou, Sreenidhi Reddy Bommu, Yang Zhao,690
and Yingyan Lin. 2024. Edge-llm: Enabling efficient691
large language model adaptation on edge devices via692
unified compression and adaptive layer voting. In693
Proceedings of the 61st ACM/IEEE Design Automa-694
tion Conference, pages 1–6.695

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali696
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a697
machine really finish your sentence? In Proceedings698
of the 57th Annual Meeting of the Association for699
Computational Linguistics, pages 4791–4800.700

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping701
Wang. 2024. A survey on model compression for702
large language models. Transactions of the Associa-703
tion for Computational Linguistics, 12:1556–1577.704

10

A Experimental Details705

Baselines. We provide detailed descriptions of the706

four baseline methods used for comparison in depth707

pruning as follows:708

• ShortGPT (Men et al., 2024): Blocks are709

scored based on the average cosine similarity710

between their input and output embeddings,711

including the residual stream.712

• Weight Subcloning (Samragh et al., 2023):713

Blocks are scored using the ratio ||M(E)||
||M(E)+E|| ,714

where E is the input embedding and M(E)715

is the output of block, excluding the residual716

stream.717

• Sliding Window Cosine Similarity (Gromov718

et al., 2024): Sets of consecutive blocks are719

scored based on the cosine similarity between720

the embeddings before and after the blocks,721

including the residual stream.722

• EvoPress (Sieberling et al., 2024): Deter-723

mines whether to discard blocks under given724

compression constraints using an evolutionary725

algorithm.726

For non-uniform pruning, all baselines and our pro-727

posed UniCuCo adopt SparseGPT (Frantar and Al-728

istarh, 2023) as a fast and efficient one-shot layer729

pruning framework. SparseGPT generates spar-730

sified blocks with varying sparsity levels across731

layers. The following baselines focus on searching732

for the optimal sparsity level for each layer:733

• Uniform: Directly set a uniform sparsity level734

for all layers and extract the corresponding735

sparse model generated by SparseGPT.736

• OWL (Yin et al., 2023): OWL uses Layer737

Outlier Distribution (LOD) metric as a mea-738

sure of layer saliency, and computes a sparsity739

profile that is weighted by LOD.740

For OWL, we used the same hyperparameter grid741

as the original work and took the configuration742

yielding the best perplexity for each model. No-743

tably, EvoPress can also be applied to non-uniform744

pruning.745

Hyperparameters. Following the setup in (Sieber-746

ling et al., 2024), the Calibration tokens and Eval-747

uation tokens for the benchmark datasets are set748

to 524288. The maximum number of tokens that749

Mistral 7B and Llama-3-8B can process at once is750

Algorithm 1 UniCuCo algorithm

1: Input: StratNet ϕθ

2: // Initialize the parameters θ and the training
dataset {X0, F 0} for the Gaussian process G

3: for t = 0 to T do
4: Training G on {Xt, F t};
5: Sampled requests {λk}Kk=1 ∼ Λ;
6: for i = 0 to I do
7: // StratNet updating
8: Update ϕθ by Eq. (11);
9: end for

10: // Gaussian process updating
11: Generating a pruning strategy pool Xt

p =

{xc = ϕθ(λ
c)}Cc=1;

12: Select a subset {Xt
s, F

t
s} based on Eq. (13);

13: {Xt, F t} ← {Xt−1 ∪Xt
s, F

t−1 ∪ F t
s};

14: end for
15: Return: ϕθ

8192, while Llama-2-13B can process up to 4096 751

tokens. In the process of increasing the training 752

set in Gaussian model training based on hypervol- 753

ume contribution, the candidate pool size is set to 754

C = 2240. In each epoch, 10 new samples are 755

selected and incorporated into the training set. To 756

ensure a fair comparison, we set both EvoPress and 757

UniCuCo to run for 50 epochs (corresponding to 758

T = 50 in line 3 of the algorithm 1). For the Strat- 759

Net in UniCuCo, the number of iterations in each 760

epoch is set to 1000 (corresponding to I = 1000 761

in line 6 of the algorithm 1) with a learning rate of 762

1e-3. The Matérn 5/2 kernel is used in the Gaussian 763

process. 764

Hardware Details. All experiments are conducted 765

on a server running Ubuntu 22.04.5 LTS, equipped 766

with an Intel® Xeon® Platinum 8383C CPU @ 767

2.70GHz and two NVIDIA L40 GPUs (46GB 768

RAM each). All the implementations are per- 769

formed using the PyTorch framework. 770

B Additional Experiments 771

B.1 Results of UniCuCo on Depth Pruning for 772

LlaMA-2-13B 773

Table 3 shows that our proposed UniCuCo responds 774

to compression requests in less than one second 775

and outperforms both ShortGPT and Cosine (Win- 776

dow) methods in terms of perplexity, which also 777

respond within one second. Moreover, as sparsity 778

increases, UniCuCo not only achieves competitive 779

results compared to the state-of-the-art method Evo- 780

11

Sparsity Method Wiki2 (↓) C4 (↓) FW (↓) Avg. (↓) Latency (↓)
0% Dense 4.57 6.45 5.84 5.62 –

12.5%

Cosine (Window) 5.67 8.09 6.97 6.91 16s
EvoPress 5.42 7.65 6.62 6.56 29m
ShortGPT 5.88 8.36 7.19 7.14 <1s

Weight Subcloning 5.97 8.46 7.26 7.23 <1s
UniCuCo 5.94 8.07 6.94 6.98 <1s

25%

Cosine (Window) 8.99 12.57 10.34 10.63 24s
EvoPress 7.20 9.93 8.32 8.48 28.6m
ShortGPT 17.91 19.89 15.73 17.84 <1s

Weight Subcloning 17.91 19.89 15.73 17.84 <1s
UniCuCo 10.39 13.40 10.14 11.31 <1s

37.5%

Cosine (Window) 95.98 72.35 50.46 72.93 24s
EvoPress 13.26 16.69 13.00 14.32 26.8m
ShortGPT 52.28 46.61 35.24 44.71 <1s

Weight Subcloning 52.28 46.61 35.24 44.71 <1s
UniCuCo 20.49 23.66 17.74 20.63 <1s

50%

Cosine (Window) 1124.49 649.33 316.09 696.64 17s
EvoPress 52.06 35.75 28.48 38.76 28.5m
ShortGPT 187.99 165.59 132.47 162.02 <1s

Weight Subcloning 187.99 165.59 132.47 162.02 <1s
UniCuCo 170.34 97.43 76.79 114.85 <1s

62.5%

Cosine (Window) 160231.22 5219.97 4944.90 56798.70 13s
EvoPress 4437.52 3945.83 3930.84 4104.73 23.5m
ShortGPT 1204.75 864.48 622.41 897.23 <1s

Weight Subcloning 1204.75 864.48 622.41 897.23 <1s
UniCuCo 588.07 451.34 383.87 474.43 <1s

Table 3: Depth pruning results of Llama-2-13B across five sparsity levels, evaluated by validation perplexity (PPL).
Avg. represents the averaged perplexity of three datasets.

Sparsity Method Wiki2 (↓) C4 (↓) ArcC (↑) ArcE (↑) HS (↑) PiQA (↑) WG (↑) Avg. (↑) Latency (↓)
0% Dense 5.54 7.10 50.40 80.10 60.20 79.70 72.60 68.60 –

50%

OWL 8.13 13.12 43.80 75.80 54.00 75.70 72.20 64.30 30m
EvoPress 7.64 12.53 43.94 76.18 54.92 76.17 72.14 64.67 139m
Uniform 8.05 13.07 43.60 75.70 54.20 76.10 71.70 64.26 <1s
UniCuCo 7.97 12.96 43.90 75.84 54.30 76.28 71.27 64.32 <1s

60%

OWL 12.37 18.53 38.00 70.30 47.70 72.10 68.50 59.22 30m
EvoPress 12.37 18.92 36.01 67.34 46.45 72.91 69.14 58.37 138m
Uniform 13.86 21.43 35.20 69.70 45.60 72.20 68.00 58.14 <1s
UniCuCo 13.29 20.63 36.18 69.91 46.03 72.03 68.51 58.53 <1s

70%

OWL 48.07 52.32 27.00 54.90 36.60 65.10 58.60 48.44 30m
EvoPress 24.18 31.38 30.20 61.95 40.03 68.72 62.51 52.68 138m
Uniform 85.84 98.35 22.70 49.90 31.40 62.10 54.40 44.10 <1s
UniCuCo 75.12 96.82 23.46 53.66 32.36 63.11 56.20 45.76 <1s

Table 4: Non-uniform pruning results of various methods on the Llama-3-8B model, evaluated at three sparsity
levels with validation perplexity (PPL) and zero-shot accuracy. Avg. represents the averaged accuracy of five
datasets.

Press but also demonstrates a significant advantage781

in terms of the time overhead required to handle782

compression requests over EvoPress. 783

12

Sparsity Method Wiki2 (↓) C4 (↓) ArcC (↑) ArcE (↑) HS (↑) PiQA (↑) WG (↑) Avg. (↑) Latency (↓)
0% Dense 4.57 6.45 49.23 77.48 79.37 80.47 72.22 71.75 –

50%

OWL 5.61 8.02 45.22 77.23 56.20 77.26 72.85 65.75 114m
EvoPress 5.45 7.75 42.75 76.85 56.49 77.69 71.90 65.14 139m
Uniform 5.54 7.90 43.17 76.98 55.98 77.86 73.09 65.42 <1s
UniCuCo 5.53 7.89 43.26 76.94 56.02 77.91 73.40 65.51 <1s

60%

OWL 7.33 10.08 39.85 72.69 51.08 75.35 69.85 61.76 98m
EvoPress 7.15 9.98 39.25 73.11 50.43 75.52 70.74 61.81 138m
Uniform 8.14 11.29 38.14 72.05 48.83 74.59 69.85 60.69 <1s
UniCuCo 7.60 10.61 39.33 73.11 49.92 74.70 70.56 61.52 <1s

70%

OWL 14.57 17.95 31.31 65.28 41.53 70.57 67.09 55.16 121m
EvoPress 10.24 13.52 33.87 69.19 44.31 71.76 67.25 57.28 138m
Uniform 40.33 47.5 24.06 52.19 32.17 62.13 57.14 45.54 <1s
UniCuCo 15.85 21.13 31.23 65.66 39.71 69.31 64.64 54.11 <1s

Table 5: non-uniform pruning results of various methods on the Llama-2-13B model, evaluated at three sparsity
levels with validation perplexity (PPL) and zero-shot accuracy.

Figure 8: Contour lines of each scalarization function for a two-objective minimization problem. The while arrow
represents the request. The green curve and green points represent the Pareto front and the models obtained with
different scalarization functions, respectively.

B.2 Results of UniCuCo on Non-Uniform784

Pruning for Different LLMs785

Tables 4 and 5 present additional results for non-786

uniform pruning. We observe that UniCuCo787

achieves the same time efficiency in handling com-788

pression requests as Uniform, while outperforming789

Uniform in terms of average accuracy. For instance,790

UniCuCo outperforms Uniform by approximately791

1.6% on Llama-3-8 and by 9% on Llama-2-13B at792

a sparsity of 70%. Furthermore, although UniCuCo793

slightly lags behind high-demand time algorithms794

like OWL and EvoPress in terms of effectiveness,795

it offers an advantage in terms of time efficiency.796

B.3 Impact of Scalarization Function797

As mentioned in Section 3.1, our approach opti-798

mizes the StratNet using a weighted Tchebycheff799

scalarization function (Eq. (5)). In this subsec-800

tion, we compare it with other scalarization func-801

tions, such as the weight sum function (Eq. (4))802

and the Penalty-based Boundary Intersection (PBI)803

method. The PBI scalarization function is defined804

as follows:805

min
x

gpbi(x | λ) = d1 + ξd2, (14)806

where d1 = ||(z∗−f(x))Tλ||
||λ|| and d2 = ||f − (z∗ − 807

d1λ)||. ξ > 0 represents a penalty parameter. d1 808

geometrically represents the distance between f(x) 809

and λ, indicating the degree of alignment with the 810

request. d2 geometrically represents the distance 811

between f(x) and the origin when z∗ is set to the 812

origin. 813

To facilitate the analysis of the properties of the 814

above scalarization functions, we present their con- 815

tour plots for a given white request λ in Fig. 8. 816

In these plots, the bluer the color, the smaller the 817

value of the scalarization function, indicating bet- 818

ter performance, while the redder the color, the 819

larger the value, indicating poorer performance. 820

Theoretically, the weighted Tchebycheff function 821

can find an optimal solution for any given request, 822

regardless of the shape of the Pareto front. How- 823

ever, the model obtained by weighted sum and PBI 824

(ξ = 0.1) cannot accurately align request under 825

concave Pareto fronts. For PBI (ξ = 5), the empha- 826

sis on aligning requests (due to the large value of ξ) 827

leads to neglecting the scalarization function value, 828

i.e., the distance from the origin. Fig. 9 illustrates 829

the adjusted perplexity (higher values indicate bet- 830

13

12.5%

25%

37.5%

50%

62.5%

Mistral-7B on Wiki2

12.5%

25%

37.5%

50%

62.5%

Mistral-7B on C4

12.5%

25%

37.5%

50%

62.5%

Llama-3-8B on Wiki2

12.5%

25%

37.5%

50%

62.5%

Llama-3-8B on C4

12.5%

25%

37.5%

50%

62.5%

Llama-2-13B on Wiki2

12.5%

25%

37.5%

50%

62.5%

Llama-2-13B on C4

Weight Sum
PBI(= 0.1)
PBI(= 5)
Tchebycheff

Figure 9: Effects of different scalarization functions on
compression performance at five levels of sparsity.

ter performance), where the weighted Tchebycheff831

function achieves the best results, followed by the832

Weighted Sum and PBI (ξ = 0.1), with PBI (ξ = 5)833

yielding the poorest performance.834

14

	Introduction
	Related Works
	Depth Pruning
	Non-Uniform Pruning

	Methodology
	UniCuCo Framework
	Request Formulation
	StratNet

	Gaussian Process for Efficient Estimation
	Updating Gaussian Process and StratNet

	Experiments
	Experimental Setups
	Depth Pruning Results
	Non-Uniform Pruning Results
	Effects of Gaussian Process Updates
	Effects of Uncertainty Estimates

	Conclusion
	Experimental Details
	Additional Experiments
	Results of UniCuCo on Depth Pruning for LlaMA-2-13B
	Results of UniCuCo on Non-Uniform Pruning for Different LLMs
	Impact of Scalarization Function

