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Abstract

Large multi-modal models inevitably decay over
time as facts update and previously learned infor-
mation becomes outdated. Traditional approaches
such as fine-tuning are often impractical for up-
dating these models due to their size and com-
plexity. Instead, direct knowledge editing within
the models presents a more viable solution. Cur-
rent model editing techniques, however, typically
overlook the unique influence ranges of differ-
ent facts, leading to compromised model perfor-
mance in terms of both generality and locality. To
address this issue, we introduce the concept of
the generality-locality trade-off in multi-modal
model editing. We develop a new model editing
dataset named OKEDIT, specifically designed to
effectively evaluate this trade-off. Building on
this foundation, we propose BalancEdit, a novel
method for balanced model editing that dynam-
ically achieves an optimal balance between gen-
erality and locality. BalancEdit utilizes a unique
mechanism that generates both positive and nega-
tive samples for each fact to accurately determine
its influence scope and incorporates these insights
into the model’s latent space using a discrete, lo-
calized codebook of edits, without modifying the
underlying model weights. To our knowledge,
this is the first approach explicitly addressing the
generality-locality trade-off in multi-modal model
editing. Our comprehensive results confirm the
effectiveness of BalancEdit, demonstrating min-
imal trade-offs while maintaining robust edit-
ing capabilities. Our code and dataset are avail-
able at https://github.com/donglgcn/
BalancEdit/tree/MMOKVQA.
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1. Introduction
Large multi-modal models (Zhu et al., 2023; Radford et al.,
2021; Li et al., 2023; Liu et al., 2023a; Rombach et al.,
2022) have recently brought about significant advancements
in artificial intelligence, demonstrating impressive results
in tasks such as Visual Question Answering (VQA) (An-
tol et al., 2015). However, these models are susceptible to
issues like hallucination (Rawte et al., 2023) and fact alter-
ation (De Cao et al., 2021; Guo et al., 2024; Zhu et al., 2024).
After deployment, these models may generate numerous er-
rors, leading to potential problems like the propagation of
hate speech (Guan et al., 2025b;a; Hu et al., 2025; 2024) or
the dissemination of outdated factual information. Given
these challenges, it is critical to continually update and main-
tain these large multi-modal models to ensure their accuracy
and relevance.

While retraining or fine-tuning can update a model’s knowl-
edge, it is often infeasible to frequently edit individual facts
due to the high computational costs involved. Fortunately,
model editing techniques (Hartvigsen et al., 2024; Mitchell
et al., 2021; Zheng et al., 2023) provide a promising ap-
proach to implementing cost-effective, targeted updates to
large pretrained models. These techniques typically involve
injecting new layers or modifying weights to alter the knowl-
edge embedded in language models. A successful edit gen-
erally exhibits three characteristics (Mitchell et al., 2021;
Huang et al., 2023): reliability, which ensures the output
changes to the target answer for the same question; locality,
which leaves unrelated knowledge and outputs unchanged;
and generality, which produces the correct answer for all
questions within the influence scope. As illustrated in Fig. 1,
each fact has its own influence scope. For instance, if we
wish to edit the name of a specific cat, the influence scope
would be confined to that particular cat. If we aim to edit
the name of a cat breed, the influence scope would extend to
all cats within that breed. However, if we intend to edit the
name of a species, the influence scope would encompass all
cats. Consequently, we should consider each fact individu-
ally and dynamically to determine the appropriate influence
scope.

However, current model editing techniques often overlook
the dynamic nature of the influence scope. Some meth-
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Q: What is the name of the species in the image?
A: Cat            Kitty 

Persian cat

Cat

Q: What is the name of the breeds in the image?
A: Persian cat            Kitty 

Influence scope

Figure 1. Illustration of various influence scope

ods treat all influence scopes as if they are large and uni-
form, while others focus solely on a specific edit. For in-
stance, IKE (Zheng et al., 2023) employs in-context learn-
ing to edit knowledge, using the closest piece of knowl-
edge as a prompt to guide the language model. This ap-
proach causes the language model to rephrase the nearest
fact, resulting in an oversized influence scope. Conversely,
GRACE (Hartvigsen et al., 2024), a lifelong model editing
method, assumes that each edit has a small and similar in-
fluence range, leading to limited generality. Consider an
example where we aim to edit a “fact” that HP computers
have been renamed Lenovo, as shown in Table 1. Ideally,
model editing should update the answer from HP to Lenovo
whenever it encounters an image of a HP computer, while
leaving the answer unchanged for other brands. However,
existing model editing techniques, such as IKE (Zheng et al.,
2023) and MEND (Mitchell et al., 2021), may achieve the
target edit but neglect the influence scope, inadvertently
editing other brands as well. Even when presented with
a black image, these models may still output the new an-
swer, leading to hallucination. On the other hand, while
GRACE (Hartvigsen et al., 2024) maintains the backbone
model’s answer for unrelated images, it fails to edit the
knowledge to the desired scope. These observations suggest
that existing multi-modal model editing methods struggle
to dynamically adjust the influence scope of a knowledge
edit, and to balance generality and locality effectively.

To address this issue, we first create a dataset designed
to evaluate the trade-off between generality and locality
in model editing techniques. We then introduce an effi-
cient multi-modal model editing method named BalancEdit,
which dynamically balances this trade-off with minimal
computational costs. Specifically, we incorporate an adapter
into a chosen layer of a vision language model without
altering its weights. This adaptor modifies layer-to-layer
transformations for select inputs. By caching embeddings
for input edits and the updated knowledge transformation
layer, BalancEdit functions as a codebook where edits are
stored. To strike a balance between generality and locality,
we generate the corresponding positive and negative sam-
ples for each edit. The model’s semantic similarity in its
latent space can be visualized as dynamic spheres around
cached edits, with the radius determined by the distance
between positive and negative samples. By adjusting the
radius over time, BalancEdit allows for immediate edits,
retains previous edits, and preserves correct model behav-

Original Image Related Image Unrelated Image Black Image

Question What brand is this computer?
Target hp → lenovo
Base hp hp dell black
IKE lenovo lenovo lenovo lenovo

MEND lenovo lenovo lenovo lenovo
GRACE lenovo hp dell black

Ours lenovo lenovo dell black

Table 1. An example of generality-locality trade-off. Red color
means the false prediction and Green color indicates the correct
prediction

iors. Furthermore, since BalancEdit’s codebooks do not
alter model weights and are fully model-agnostic, they also
pave the way for plug-and-play, cost-effective model edit-
ing. This is particularly useful for making critical spot-fixes
between larger retraining efforts.

Our contributions are as follows: 1) We first formulate the
generality-locality trade-off in multi-modal model editing
and build a dataset named OKEDIT to empirically demon-
strate it. 2) We introduce BalancEdit, an efficient method for
multi-modal model editing that dynamically and effectively
balances generality and locality without requiring training
data beyond individual edits. 3) Our experiments reveal that
BalancEdit outperforms baseline models and consistently
achieves SOTA performance across a range of metrics.

2. Related Work
Model Editing. Model Editing, which has recently drawn a
lot of attention, aims to make precise, targeted adjustments
to the behavior of foundation models. This is crucial given
that large foundation models may decay over time due to
domain shifts and updates in knowledge, potentially leading
to the dissemination of outdated factual information. Many
approaches in this area suggest regularized-finetuning using
auxiliary data, such as instances from the original train-
ing set or semantically-similar edits (Sinitsin et al., 2020),
while obtaining this data is increasingly challenging. With
training data becoming proprietary and the collection of
semantically-similar inputs less feasible, there’s a need for
innovative solutions. Some recent strategies utilize meta-
learning to forecast edits (Mitchell et al., 2022b;a; De Cao
et al., 2021) or decompose weight updates into simpler
components (Meng et al., 2022a;b). To make edits more
targeted, techniques like MEND (Mitchell et al., 2022a)
and ROME (Meng et al., 2022a) and GRACE (Hartvigsen
et al., 2024) take cues from efficient finetuning strategies (Yu
et al., 2023b; Huang et al., 2023; Yu et al., 2023a; Li et al.,
2024; Tian et al., 2024). However, these methods some-
times demand additional finetuning and may overfit more
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than traditional methods (Zhong et al., 2022) and few of
them consider the locality property. MEND (Mitchell et al.,
2021) notices the locality issue and designed a contrastive
loss to keep the locality. Despite these advancements, there
remains a substantial gap in model editing methods tailored
for multi-modal models. Only limited research (Cheng et al.,
2023) has explored the potential of multi-modal models in
this context. In our work, we stick to this problem, in-
vestigating the trade-off between generality and locality in
multi-modal model editing and offering an efficient method
to address it.

Large Vision Language Models. Vision language mod-
els (Radford et al., 2021; Zhu et al., 2023; Li et al., 2023;
2022; Wang et al., 2024a; Zhou et al., 2024; Lin et al., 2024;
Dai et al., 2024) are one of the key part in multi-modal learn-
ing, which aim to learn multi-modal foundation models with
improved performance on vision language tasks (Antol et al.,
2015; Guo et al.; Wang et al., 2024b). These models (Li
et al., 2022; Liu et al., 2023a), by mapping image embed-
dings to text embedding space, are capable of interpreting
image information and handling a wide array of tasks. They
demonstrate impressive abilities in image understanding,
generation, and reasoning. These capabilities, however, rely
heavily on millions of high-quality training data (Schuh-
mann et al., 2022; 2021). Given that factual knowledge,
especially visual information, changes over time, it is cru-
cial to keep the model up-to-date. However, updating the
model’s behavior through retraining or fine-tuning is im-
practical due to exorbitant training costs. In this context,
multi-modal model editing techniques, which allow for tar-
geted edits, provide a feasible solution to this challenge.

3. Methods
3.1. Problem Formulation

The multi-modal model editing is to edit a multi-modal LLM
fbase that maps the image input (i) and text prompt (t) from
the out-dated answer (yo) to the new target prediction (yn)
with the updated model fnew. For the related inputs Ri,t, the
updated model should give the target prediction, while for
the unrelated inputs Ui,t, the prediction should be retained.
In addition, when given a batch of inputs (i, t, yn) ∈ Dedit,
the updated model could remember all edits without for-
getting previous edits. Specifically, the multi-modal model
editing should follow the following properties: (1) Reliabil-
ity. The updated model should output the target answers:
fnew(i, t) = yn, (i, t, yn) ∈ Dedit; (2) Generality. The
updated model should answer the target output given re-
lated inputs: fnew(i′, t′) = yn, (i′, t′) ∈ Ri,t; (3) Locality.
The updated model should keep the output retained on the
unrelated inputs. fnew(i′, t′) = fbase(i

′, t′), (i′, t′) ∈ Ui,t.
Thus, to achieve both generality and locality properties, it
is necessary to distinguish the generality samples and local-

ity samples. Additionally, there are two bonus properties.
(4) Multiple Edits. The model could edit multiple times
without forgetting previous edits. (5) Efficiency. The model
editing method should take minimal costs to edit a model,
such as less training time and data costs.

3.2. BalancEdit

As illustrated in Fig. 2, to satisfy the aforementioned prop-
erties, we propose BalancEdit, an efficient model editing
method for multi-modal models that dynamically deter-
mines the equilibrium between generality and locality with-
out compromising the original model. BalancEdit operates
by wrapping a selected layer of the pre-trained model with
a BalancEdit module. This module consists of a codebook
and a mechanism that dynamically determines the radius of
the influence scope.

BalancEdit Codebook. To store the updated knowledge
of the pre-trained multi-modal model, we design a discrete
codebook at layer l which contains three components.

• Keys (K): Each k in the codebook is a represen-
tative embedding for a specific edit. Each k stores
the averaged embedding produced by the layer l − 1
for a specific question answer pair. Mathematically,
it can be expressed as K = {k = h̄l−1

i,t |h̄l−1
i,t =

1
n

∑
f l−1(i, t),∀(i, t) ∈ Dedit}.

• Transformations (V ): The transformation refers to a
specific layer in the LLM. During an edit, we fine-tune
this transformation layer to encode the new knowledge.
Each transformation v(·) associated with a specific key
k stores the new weights with the updated knowledge.
Typically, the transformation is fine-tuned with the
model’s finetuning loss with updated knowledge.

• Influence radius (E): The radius ϵ corresponding to a
key k indicates the influence scope of a (i, t, yn) pair.
It serves as a threshold for similarity matching. The
edited transformation is activated only if the embed-
ding falls within the influence radius. The radius varies
for each key, and is determined by the positive and neg-
ative samples of a specific knowledge pair (i, t, yn).

Codebook Constructions. To make an edit, the BalancEdit
module needs to create a new codebook entry (h̄l−1

i,t , v(·), ϵ).
The key is the averaged embedding generated by the layer
l − 1, which is an anchor point for lookup. Thus, when a
new question is passed into f , the codebook is activated
to compare whether the embedding relates to any key in
the codebook. If the embedding falls within the influence
scope of a key, the edited transformation is activated to
generate a new embedding for layer l + 1; otherwise, the
original transformation is retained to process the question.
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Figure 2. Overview of our BalancEdit framework. BalancEdit makes edits by learning, saving, and retrieving transformational edits
between layers. The BalancEdit module consists of discrete keys, transformations, and a dynamic influence radius. Additionally, the
BalancEdit module can handle multiple edits over time by adding new entries to the module.

The formulation is as follows:

hl
i,t =

{
vk(h

l−1
i,t ), if min(d(hl−1

i,t ,K)) ≤ ϵk

f l(hl−1
i,t ), otherwise

(1)

Editing Transformations. When a new fact requires an
update, the transformation is revised to incorporate this new
fact and knowledge. To ensure that the transformation ac-
curately learns the new fact, we finetune the transformation
layer directly using backpropagation through the language
learning loss. The target transformation v∗ can be formu-
lated as:

v∗ = argmin
v

L(fnew(i, t), y
n), (2)

where L is the language model loss, specifically the next-
token prediction loss used by the base LLM. This loss en-
sures that the updated model fnew, when processing input
(i, t), generates the desired new answer yn. Specifically,
if the key is empty or the new fact falls outside the influ-
ence scope of existing keys, the transformation is directly
finetuned from the original transformation layer. However,
there may be instances where the new fact overlaps with
the existing keys. In such cases, we finetune the transfor-
mation layer from the previously edited transformation to
prevent catastrophic forgetting. Additionally, if the new key
directly conflicts with previous edits, we will discard the
previous entry and add a new one to update the knowledge.
To ensure the universality, we primarily utilize the basic full
fine-tuning approach as the transformation method. This
involves adjusting the weights of the neural network to bet-
ter align with the newly introduced or modified knowledge

radius locality
sample

negative
sample

center generality
sample

positive
sample

What brand is 
this computer�

What brand is 
this computer�

What brand is 
this computer�

What brand is 
this computer�

What is the brand 
of this computer�

Figure 3. Illustration of influence radius determination

without altering the overall architecture of the model. The
parameters that are tuned include all the weights within the
specific layer of the network.

Influence Radius Determination. As shown in Fig. 1,
each fact has its unique influence scope. However, exist-
ing methods do not consider the dynamic influence scope
during the editing process, which results in an imbalanced
generality-locality trade-off, as illustrated in Table 1. To
address this issue, BalancEdit incorporates a dynamic influ-
ence radius determination mechanism. As depicted in Fig. 3,
the knowledge of the fact is at the center of the influence
scope. Ideally, the radius should encompass the majority
of generality samples, while excluding locality samples.
Since similar semantic sentences will result in close embed-
dings (Liu et al., 2023b; Menon & Vondrick, 2023), we can
use it to find an efficient way to approximate this process.
Specifically, we construct positive and negative samples to
dynamically estimate the influence scope without model
training or external knowledge.

To construct a positive sample, we need to design a general
rephrasing method that is highly similar to the fact itself. We
find that rephrasing the text will not affect the semantic in-
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formation of the edited knowledge. Therefore, we rephrase
the text prompt t while keeping the image input i unchanged.
The positive sample can be formulated as (i, R(t)), where
R(t) denotes the rephrased text prompts. The generation of
a rephrased prompt is efficient, requires no additional data
or training process, and can be generated directly by the
backbone model.

On the other hand, the negative sample should be close to
the border of locality samples to accurately estimate the
radius. Additionally, the generation process should be ef-
ficient and fact-agnostic. In this case, we use a pure black
image as the image input, which contains no semantic in-
formation on the image side. The choice of black images
as a proxy for out-of-scope knowledge is based on their
characteristic as minimal or null visual signals. This makes
them universally applicable negative samples across various
visual recognition tasks. Furthermore, the generation of a
negative sample is highly efficient, and can be applied to
almost all knowledge editing tasks.

After obtaining the positive and negative samples, we can
estimate the influence radius by aggregating the distances
between the center and the constructed samples. Specifi-
cally, the radius could be formulated as:

ϵ = (1− α) · d(Pos, k) + α · d(Neg, k), (3)

where α is the hyperparameter to adjust the distance, d(·)
denotes the distance function, and k is the key in the code-
book entry which also represents the center of the influence
scope.

4. Experiments
To evaluate the properties discussed in Sec. 3.1, we conduct
experiments from three perspectives: 1) The primary mo-
tivation of BalancEdit is to balance generality and locality.
Therefore, we create a dataset named OKEDIT to address
the quality issues of existing datasets and conduct experi-
ments on it. 2) We assess the performance of multiple edits,
and 3) we compare the training time and the data costs of
an editing method to evaluate its efficiency.

4.1. Datasets and Backbone Models

Datasets. Since there are few published vision language
model editing datasets, we perform extensive experiments
on two such datasets in the vision question answering
task (Antol et al., 2015): 1) MMEDIT(Cheng et al., 2023),
the first multi-modal model editing dataset based on the
VQA-v2(Goyal et al., 2017) dataset, which includes 2093
testing samples; However, this dataset has its limitations as
shown in table 2. The content of images generated from
image caption prompts can deviate from the original images,
leading to inconsistencies and potentially less accurate eval-

# Train # Test Generality Locality Goal

MMEDIT 6036 2093 1 per question
random sample,

easier eval visual understanding

OKEDIT 9009 5046 10 per question
semantic sample,

harder eval
visual reasoning with

open question

Table 2. Statistics comparison between MMEDIT and our
OKEDIT.

uations. 2) We introduce a new dataset, OKEDIT, based on
the OKVQA dataset (Marino et al., 2019), which includes
5046 testing samples, encompassing over 20 unique cate-
gories such as vehicles, people, plants, animals, geography,
history, language, brands, science and technology. Unlike
MMEDIT, OKEDIT enhances the quality of the rephrased
images and adjusts the difficulty of the locality samples
to evaluate the trade-off between generality and locality.
Detailed information about the datasets is provided in Ap-
pendix A.

Backbone Models. Following previous work (Zheng et al.,
2023), we adopt two vision language models as the base
models. MiniGPT-4 (Zhu et al., 2023) is a powerful vision
language model, leveraging Vicunna (Chiang et al., 2023)
as the language model and a Vit-G/14 from EVA-CLIP (Sun
et al., 2023) and a Q-former as the image encoder. BLIP-2
OPT (Li et al., 2023) utilizes a lightweight Q-former to
bridge the gap between vision modality and text modality,
where the ViT-L is adopted in the vision block, and the
unsupervised-trained OPT model (Zhang et al., 2022) is
used for decoder-based LLM.

Metrics. Following previous work (Zheng et al., 2023), we
adopt the Editing Success Accuracy (Acc); Text Generality
(T-Gen); Image Generality (I-Gen); and Locality (Loc) as
the main metrics. To quantify the trade-off between general-
ity and locality, we introduce the harmonic mean (HM) of
the T-Gen, I-Gen and Loc. The detailed informations are in
Appendix C.

4.2. Baselines

We compare four model editing methods with different
mechanisms. First, finetuning (FT) is a basic model editing
method. To ensure a fair comparison, we only fine-tune the
specific layer of the pre-trained model, maintaining the same
parameter sizes. Second, In-context Knowledge Editing
(IKE) is an in-context learning model editing method origi-
nally designed for pure language models. We have revised
the method to adapt it to vision-language models. It utilizes
an unsupervised retriever to prompt relevant facts from the
training set. Additionally, MEND(Mitchell et al., 2021), a
metalearning-based model editing method, requires exten-
sive in-distribution training data to learn a meta-network that
predicts the edited weights of the pre-trained model. Finally,
we adapt GRACE(Hartvigsen et al., 2024) to vision lan-
guage models. GRACE, a memory-augmented model edit-
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Dataset Method Pretrain
Backbone

miniGPT4 BLIP-2 OPT

Acc↑ T-Gen↑ I-Gen↑ Loc↑ HM↑ Acc↑ T-Gen↑ I-Gen↑ Loc↑ HM↑

MMEDIT

Base ✗ 15.04 14.21 13.56 NA NA 8.50 8.52 6.89 NA NA
FT ✗ 96.53 95.88 96.20 3.20 9.00 99.96 99.41 97.05 0.27 0.80
IKE ✓ 100.00 95.57 100.00 15.47 20.07 99.83 94.47 99.58 11.96 28.77

MEND ✓ 98.39 96.58 97.77 68.82 85.43 97.23 95.86 96.81 69.40 85.29
GRACE ✗ 79.82 74.49 70.11 91.66 77.72 74.27 62.90 35.24 90.26 54.19

BalancEdit (Ours) ✗ 100.00 99.90 98.91 71.74 88.08 100.00 99.16 90.30 80.04 89.14

OKEDIT

Base ✗ 30.42 45.40 72.21 NA NA 14.35 13.96 15.22 NA NA
FT ✗ 99.69 99.45 99.38 5.52 14.90 99.97 99.54 96.77 0.43 1.27
IKE ✓ 99.71 97.78 99.76 17.45 38.68 99.35 94.20 99.66 13.29 31.28

MEND ✓ 94.44 90.80 95.39 36.20 61.07 90.82 82.82 88.25 28.89 51.70
GRACE ✗ 87.84 28.31 29.46 99.99 37.84 54.13 50.67 28.30 94.48 45.69

BalancEdit (Ours) ✗ 100.00 99.87 76.46 53.14 71.58 100.00 98.89 65.38 61.18 71.85

Table 3. Comparison results of BalancEdit with the model editing baselines on two backbone models. Base refers to the backbone model
without any knowledge editing. The pretrain column indicates whether a model editing method requires pre-training model or the training
data. The best results are shown in Bold.

ing method, also supports lifelong model editing. It caches
the target value of the updated fact, achieving lightweight
model editing.

4.3. Implementation Detail

In our comparisons of Finetuning, MEND and GRACE,
we explore learning rates of 1.0, 1e−1, 1e−2, 1e−3, 1e−4,
and 1e−5. We observe that Finetuning, Memory, and
MEND perform best with 1e−2. The choice of layer to
edit is another hyperparameter for all editors. In all our
editor comparisons, each editor modifies the same layer.
For miniGPT-4, this is the dense layer of the llama block
(llama model.model.layers[31].mlp.up proj),
for BLIP-2 OPT moder, it is the OPT decoder layer
(opt model.model.decoder.layers[31].fc2).
Recent work supporting the importance of selecting the
correct layers to fine-tune corroborates this (Cheng et al.,
2023). However, it’s important to note that the choice
of layer is a practical hyperparameter: for comparison
purposes, we ensure editors are compared when editing
the same layers. For the distance function, we use the
Euclidean distance if it is not explicitly mentioned. We
select α using a small held-out set of only 5 unrelated
samples. Since different models may have different latent
feature distributions, α is treated as model-dependent. Once
chosen, the same α is fixed per model (e.g., α=0.2 for
MiniGPT-4) for all evaluations.

4.4. Comparisons to Existing Methods

Table 3 presents the main results of our BalancEdit and other
baseline methods on the VQA task. We observe that our
BalancEdit significantly outperforms the existing editing
methods without requiring additional training data. Specif-

ically, we examine both the accuracy and the trade-off be-
tween generality and locality. First, in terms of editing
success accuracy, BalancEdit achieves the highest perfor-
mance, resulting in 100% editing success across all datasets
and backbones. In contrast, baseline models do not consis-
tently reach this level of performance. This demonstrates
that our BalancEdit satisfies the Reliability Property.

For the Generality metric, BalancEdit achieves the best text
generality performance compared to other methods. For
instance, BalancEdit shows a 70% improvement in text gen-
erality accuracy over the GRACE method. Additionally, it
reaches comparable performance in image generality. Since
the MMEDIT dataset is relatively simple, the performance
is very similar across all model editing methods, converging
around 99%. However, in the challenging OKEDIT dataset,
where we focus on balancing trade-off performance, we
must compromise on the more difficult aspects of image
generality. The high generality performance underscores
the Generality Property of our method.

For locality performance, BalancEdit consistently achieves
the best results, with the exception of the GRACE method,
which primarily focuses on specific local edits. Specifically,
BalancEdit shows an improvement in locality 20% to 80%
compared to other baseline methods. For example, on the
OKEDIT dataset using the BLIP-2 OPT backbone, Bal-
ancEdit outperforms the MEND method by 30%, despite
the fact that MEND requires extensive training data and
time. This further validates the Locality Property of our
BalancEdit method.

To compare the overall performance in balancing the trade-
off between locality and generality, we calculate the har-
monic mean of T-Gen, I-Gen, and Loc. Our BalancEdit
method achieves the highest scores compared to other base-
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Sequential Acc↑ T-Gen↑ I-Gen↑ Loc↑ HM↑
FT ✗ 99.25 99.21 98.64 0.74 2.18
IKE ✗ 100.00 96.86 100.00 16.91 37.75

MEND ✗ 93.74 89.98 95.38 37.49 62.14
GRACE ✗ 87.78 25.96 24.21 99.99 33.39

BalancEdit (Ours) ✗ 100.00 100.00 72.31 54.40 71.07
BalancEdit (Ours) ✓ 100.00 99.70 72.29 46.25 65.95

Table 4. Comparison results of BalancEdit with the model editing
baselines about multiple sequential editing. The sequential column
indicates whether the method uses sequential editing or not.

lines across all experimental combinations, demonstrating
the minimal trade-off between generality and locality perfor-
mance. Specifically, in the simpler MMEDIT dataset, Bal-
ancEdit outperforms the strongest baseline, MEND, by 3%
and surpasses other baselines by up to 89%. Furthermore,
in the more challenging OKEDIT dataset, our results are
even more impressive, outperforming the MEND baseline
by between 10% and 20%. As expected, these performances
highlight the effectiveness of our dynamic influence scope
mechanism and validate the Reliability, Generality, and
Locality Properties of our method.

4.5. Sequential Editing Evaluation

To further investigate performance across multiple sequen-
tial edits, we evaluated our BalancEdit system on 50 se-
quential edits using the OKVQA dataset with a miniGPT-4
backbone. The results, as shown in Table 4, indicate a slight
drop in performance for sequential edits compared to non-
sequential ones. Specifically, metrics such as edit success
accuracy and generality remain comparable with those ob-
served in non-sequential editing scenarios, suggesting that
the system’s reliability and generality are maintained. Al-
though there is a slight decrease in locality performance,
it still exceeds that of other baselines. This decrease is
expected, as an increase in the number of keys can lead
to unwanted collisions, potentially degrading performance.
Notably, despite the slight performance reduction in sequen-
tial editing, our BalancEdit system continues to outperform
baseline models that do not incorporate sequential edits.
This performance across multiple edits substantiates the
Multiple Edits Property of our system.

4.6. Efficiency Evaluation

We compare the efficiency of our editing approach with
recent advanced baselines, focusing on both time and data
efficiency. Time efficiency encompasses both training and
editing time, while data efficiency refers to the amount of
additional data required for editing.

Time Efficiency. Training time is divided into two compo-
nents, as detailed in Table 5. The first component is pre-
training time, which involves either pre-training the model
editing method or preparing the augmented index, such as

Training time (h) Editing time (s)
FT 0 3.91
IKE 12 0.38

MEND 22 1.48
GRACE 0 32.67

BalancEdit 0 8.04

Table 5. Time efficiency evaluation results on BLIP-2 OPT.

What denomination is the church?

baptist catholic

editing knowledge

What religious affiliation does this church have?
A:   catholic
GT: methodist

failure case

A:   catholic
GT: catholic

successful case

Figure 4. An example of the interpretable output

training a meta-net. For instance, MEND, a meta-learning
method, requires 22 hours to pre-train on 6,346 training
samples. IKE, a retrieval-augmented in-context learning
method, needs 12 hours to index 6,346 knowledge facts in
advance.

On the other hand, editing time refers to the duration re-
quired to edit a single new fact. We compare with GRACE
as both methods are types of memory-augmented model
editing. A successful edit with our method takes approxi-
mately 8.04 seconds, whereas GRACE takes 32.67 seconds,
making our editing speed three times faster than GRACE.
IKE requires less editing time because it bypasses training
and instead retrieves the most similar fact.

Data Efficiency. Similar to training time costs, the require-
ment for additional training data significantly influences the
feasibility of model editing methods. Our BalancEdit does
not require any extra data, as it can generate both positive
and negative samples internally. Specifically, a rephrased
question for a positive sample can be obtained by query-
ing the backbone model, and a black image for a negative
sample can be directly generated. This efficiency supports
the Efficiency Property. In contrast, methods like MEND
and IKE require extensive additional in-distribution data,
leading to less feasibility for real-world scenarios.

4.7. Interpretability

Interpretable Codebook. The codebook is interpretable
because the editing knowledge is explicitly stored, with
each entry corresponding to an update in knowledge and its
specific influence scope. Additionally, the codebook is de-
tachable and can be thoroughly inspected, allowing edits to
be easily located and detected. Each piece of updated knowl-
edge has an entry in the codebook, enabling it to be reversed
without impacting the model, particularly in sequential edit-
ing scenarios. This interpretable codebook minimizes harm
to the model while maintaining controllability.

Interpretable Inference. Existing model editing methods
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Figure 5. Results of the effect of the hyperparameter α.

typically update the knowledge within the model but do not
provide a means to trace how these updates influence the
model’s output. Specifically, while the model’s outputs may
change, it is unclear how these changes are influenced by
the updates and whether they are relevant to the posed ques-
tion. In contrast, BalancEdit offers a human-understandable
explanation for adjusting model behavior. As illustrated in
Figure 4, we edit the counterfactual scenario where ‘baptist
church’ is changed to ‘catholic church’. In a successful
case, we correctly answer the question because the image
displays a symbol of the baptist church, even though it is
not explicitly shown. According to the closest BalancEdit
key, we can infer that the output is influenced by the edited
knowledge. In contrast, in a failure case, we can determine
that the incorrect prediction arises because the image closely
resembles the edited fact.

4.8. Ablation Study

In this ablation study, we analyze the key design choices of
BalancEdit. We first examine the effect of the hyperparame-
ter α, which controls the trade-off between generality and
locality. We then evaluate the impact of alternative nega-
tive anchors and different distance functions to validate the
generalizability. Additionally, we compare different nega-
tive sampling approaches and editing layers to assess the
robustness of our method across different configurations.
Finally, we conduct an extreme case analysis to demonstrate
the behavior of BalancEdit in challenging scenarios.

Effect of the Hyperparameter. In this study, we conducte
a series of experiments on a subset of the OKVQA dataset
to investigate how the parameter α affects the trade-off be-
tween generality and locality in model editing. As illustrated
in Figure 5, we vary α from 0.1 and 0.3. The results, de-
picted in the figure, show that the editing success accuracy
and text generality metrics consistently maintain a 100%
accuracy rate. This stability is attributed to these metrics be-
ing closely tied to the key, with changes in the radius having
no significant impact on them. However, the image gener-
ality metric, which is more challenging, shows a decline
as α increases. This trend is anticipated because questions

Dataset Function Acc↑ T-Gen↑ I-Gen↑ Loc↑ HM↑

MMEDIT Euc 100 99.9 98.91 71.74 88.08
Cos 100 99.9 97.96 76.28 90.01

OKEDIT Euc 100 99.87 76.46 53.14 71.58
Cos 100 99.87 84.26 42.37 65.95

Table 6. Results of the effect of different distance function.

Negative Anchor Acc↑ T-Gen↑ I-Gen↑ Loc↑ HM↑
Black 100.00 99.00 69.16 59.99 72.76
White 100.00 99.00 65.79 63.85 73.23

Table 7. Comparative results using alternative negative anchors

related to image generality tend to deviate from the key,
despite sharing similar semantic content. Consequently, as
the radius decreases, the edited model tends to overlook
these questions. Conversely, the model’s performance on
locality improves with an increase in α. A smaller radius
helps preserve the integrity of unrelated questions, ensuring
that their answers remain unchanged. In this scenario, we
observe that the harmonic mean of generality and locality
initially increases and then decreases, further validating the
existence of this trade-off. However, our method continues
to achieve relatively high performance.

Effect of Alternative Negative Anchors. To further vali-
date the effectiveness of our approach, we conducte experi-
ments using various negative anchors, including white nega-
tive images, on a subset of the OKEDIT dataset. As shown
in Table 7, both black and white negative samples achieve
100% editing accuracy and exhibited a high harmonic mean
in the locality-generality trade-off. The performance metrics
for both white and black negative anchors, such as accuracy,
generalization metrics, and locality, are remarkably consis-
tent. The slight variations in the locality and I-Gen metrics
suggest that white images can function as effective negative
anchors, which also lack significant discriminative infor-
mation. This consistency across different negative anchors
highlights the robustness and adaptability of our pipeline in
various settings and confirms our assumptions.

Effect of the Distance Function. The distance function
serves as a method for calculating the similarity between
two embeddings. In particular, we employ the Euclidean
distance (Euc) and cosine similarity (Cos) as the distance
metrics. To assess the versatility of our BalancEdit in terms
of the distance function, we compare these two popular
distance functions, as illustrated in Table 6. We find that the
results between them are remarkably similar. Specifically,
both achieve around 100% editing success accuracy and
text generality. While there are some differences in image
generality and locality, both functions yield comparable
results. This is expected as the distance function alters the
similarity between embeddings, but the semantic meanings
for the positive and negative samples are still preserved.
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Method Edit Acc T-Generality I-Generality Locality HM Model
BalancEdit 100.00 98.89 65.38 61.18 71.85 BLIP-2 OPT
Random Negative Sample 100.00 100.00 49.12 65.08 65.61 BLIP-2 OPT
BalancEdit 100.00 99.87 76.46 53.14 71.58 MiniGPT-4
Random Negative Sample 100.00 99.00 66.93 45.92 64.08 MiniGPT-4

Table 8. Ablation study on negative sampling approaches

Layer Acc T-Gen I-Gen Loc HM Model
30 100.00 100.00 64.03 66.39 73.75 MiniGPT4
31 100.00 99.87 76.46 53.14 71.58 MiniGPT4
30 100.00 100.00 78.43 44.99 66.70 BLIP-2 OPT
31 100.00 98.89 65.38 61.18 71.85 BLIP-2 OPT

Table 9. Ablation study on different editing layers.

α Acc T-Gen I-Gen Loc HM
0 100.00 100.00 95.19 16.30 36.65
1 100.00 45.94 24.22 100.00 41.06

Table 10. Results of extreme cases of α

This success highlights the effectiveness of our codebook
strategy, as it can dynamically adapt to different distance
functions while maintaining a similar influence scope.

Effect of Negative Sampling Approaches. To verify our
negative samples constuction approach, we compare our
method with random negative sampling approach by ran-
domly choosing irrelevant text-pair samples. As shown in
Table. 8, BalancEdit consistently outperforms the random
baseline in harmonic mean, demonstrating a better balance
between generality and locality. This supports the effec-
tiveness of our black image-based negative anchor, which
offers a fact-agnostic, consistent, and efficient way to define
a lower bound in the representation space. In contrast, ran-
dom negative samples rely on external, unrelated examples
and are often unstable in both quality and relevance, requir-
ing assumptions that may not hold across diverse domains.
Our method avoids these issues, making it more robust and
scalable for real-world editing scenarios.

Effect of different editing layers. To evaluate the robust-
ness of our method across different editing layers, we apply
our method to two separate layers, as shown in Table 9.
The results show that our method maintains strong per-
formance even when a different layer is chosen. Specif-
ically, we observe higher harmonic mean performance on
the MiniGPT-4 model, further demonstrating the robustness
of our approach.

Extreme case analysation. In order to study the extreme
case of hyperparameter, we conduct ablation experiments
using extreme values of α on MiniGPT4 with OKEDIT
dataset in Table 10. When α = 0, the influence radius is
entirely determined by the negative sample, which leads
to over-generalization and reduced locality, e.g., 16.30 lo-

cality score, as the edit is applied too broadly across the
representation space. In contrast, when α = 1, the radius
is determined solely by the positive sample, resulting in
over-localization and poor generalization, e.g., 24.22 image
generality score, since the edit is confined to a region that
is too narrow. These results highlight the importance of
balancing positive and negative influences to achieve both
generality and locality.

5. Limitations
Multi-modal model editing is a novel and challenging field,
with the balance between generality and locality remaining
largely underexplored. It is evident that employing similar-
ity search across a model’s layers inevitably slows down
inference times (Hartvigsen et al., 2024), despite reducing
the need for extensive training. Thus, accelerating inference
time represents a crucial area for future improvements.

Another limitation is the memory-augmented approach’s
handling of multi-hop model editing. The key-based sim-
ilarity search struggles to capture multi-hop queries that
depend on newly introduced knowledge, often due to the
ambiguity of real-world facts. For example, if the CEO of
X (formerly Twitter) were to change to Elon Musk, it would
be difficult to update the response to the question, ‘Which
social app is headed by the leader of SpaceX?’ A potential
solution to this problem could involve dynamically defining
the fine-grained influence scope, which would allow for
more precise adjustments to changes in real-world facts and
their implications for multi-hop questions.

6. Conclusion
In conclusion, we identified the limitation of existing imban-
lanced generality and locality in model editing. Specifically,
we formulated the generality-locality trade-off, and devel-
oped a specialized dataset, OKEDIT, to empirically explore
this phenomenon. In addition, we introduced BalancEdit,
an innovative approach for multi-modal model editing that
efficiently balances the generality and locality of edits. Our
method reduces the need for extensive retraining or fine-
tuning, relying solely on the data provided by individual
edits. The experimental results demonstrate that BalancEdit
significantly outperforms existing baseline models, consis-
tently achieving state-of-the-art performance.
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A. Dataset
Although numerous studies have been conducted on knowl-
edge editing in Large Language Models (LLMs), re-
search in the context of Large Vision-Language Models
(LVLMs) remains relatively sparse. Only one benchmark,
MMEDIT (Cheng et al., 2023), has delved into this do-
main within LVLMs. This benchmark extend the concepts
of Reliability, Generality, and Locality from LLM editing,
incorporating diffusion-model-generated images in its Gen-
erality evaluation.

However, this dataset has its limitations as shown in ta-
ble 2. The content of images generated from image caption
prompts can deviate from the original images, leading to
inconsistencies and potentially less accurate evaluations.
Furthermore, the scarcity of data in the only existing bench-
mark presents a significant harm the progress in LVLM
knowledge editing. Therefore, the availability of more data
would greatly aid in the development and refinement of
techniques in this field.

In our research, we utilize the multimodal VQA dataset
OKVQA (Marino et al., 2019), which provides hard image
questions with difficult visual reasoning and open knowl-
edge. Furthermore, the OKVQA dataset provide detailed
question categories which could be used to evaluate the
editing method on different question types.

A.1. Dataset Construction Details

OKEDIT dataset are constructed to provide pairs of edit
input (i, t) and a counterfact answer yn. The edit labelis not
necessarily the ‘correct’ label; the goal is to provide realistic
instances of the types of data we would expect to see during
test. For example, given the i as a HP brand computer,
and t = What is the brand of it, and ye is the lenovo, even
though it never happens currently. However, this fictitious
example is still a useful assessment of our model’s ability
to perform the general type of edit of ‘change a name of an
item’.

To evaluate the text generality, we generate some sam-
ples using the rephrasing methods. Specifically, we use the
GPT-4 API to generate the rephrased questions, with the
following command.

“Please rephrase the following question in {num versions}
different ways: {question}.” where we generate 10
rephrased questions.

For the image generality, we need to generate semantic
similar images. To get the semantic meaning of a specific
image in the question context, we first question the GPT-4
which objects and scene should be in the image.

“Given (question: {question}, answer: {answer}), what ob-
ject should be in the image? Short answer. The objects in

Q: Where is that kind of sign found?

A: Road intersection

Q: What locations typically feature 
that sort of sign?

A: Train tracks Road intersection

Q: Where is that kind of sign found?

A: Construction site

Q: What kind of plant is this wreath 
made from?

A: Holly

Q: Can you identify the plant 
material composing this wreath?

A: Pine tree Holly

Q: What kind of plant is this wreath 
made from?

A: Mistletoe

Q: At which holiday would you 
traditionally eat this food?

A: Thanksgiving

Q: What festive occasion typically 
includes this meal?

A: Easter Thanksgiving

Q: At which holiday would you 
traditionally eat this food?

A: Christmas

Q: Can you guess the breed to 
which the dog belongs to?

A: French bulldog

Q: Can you speculate on the breed 
or family of this dog?

A: Boston terrier French bulldog

Q: Can you guess the breed to 
which the dog belongs to?

A: Bulldog

Editing Sample Generality Sample Locality Sample

CF: Train track is road intersection

CF: Pine tree is Holly

CF: Easter renames to Thanksgiving

CF: Boston terrier is French bulldog

Figure 6. Examples of our OKEDIT dataset. ‘CF’ represents the
edited counterfactual knowledge. The red color indicates the out-
dated answer and the green color indicates the updated correct
answer.

the image should be ”

After we obtain the image object, we can ask the diffusion
model to generate it with the image object. For each image,
we also generate 10 images for evaluation.

For the locality evaluation, we try to generate an image that
is similar enough the original image but it still unrelated to
it. To achieve that, we have three steps generation. Fisrt, we
will determine the locality answer with high similarity with
the target answer, with the help of GPT-4.

“Given (question: {question}, A: [{answer}], B:
[{counterfact answer}]), what could be another op-
tion? Short answer. C: []”

Then, we can follow the same steps as in the image rephras-
ing process to generate locality images, including obtaining
image objects and generating images with diffusion model.

B. Dataset Samples
We present several examples from our OKEDIT dataset
in Figure 6. Our dataset offers high-quality images and
samples of counterfactual knowledge editing. Additionally,
some samples incorporate common sense knowledge, which
adds complexity to the editing tasks. These characteristics
enhance the overall quality of our dataset in comparison to
the existing MMEDIT dataset.

C. Metrics
(1) Reliability. The updated model should output the target
answers: fnew(i, t) = yn, (i, t, yn) ∈ Dedit; (2) Generality.
The updated model should answer the target output given re-
lated inputs: fnew(i′, t′) = yn, (i′, t′) ∈ Ri,t; (3) Locality.
The updated model should keep the output retained on the
unrelated inputs. fnew(i′, t′) = fbase(i

′, t′), (i′, t′) ∈ Ui,t.
Additionally, there are two bonus properties. (4) Multiple
Edits. The model could edit multiple times without for-
getting previous edits. (5) Efficiency. The model editing
method should take minimal costs to edit a model, such as
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less training time and data costs.

Reliability The updated model should output the target
answers correctly.

Mreliability = E
(i,x,yn)∈Dedit

1{fnew(i, t) = yn} (4)

Text Generality The updated model should answer the
correct answer given the related rephrased question.

MT-Gen = E
(i,t,yn)∈Dedit

1{fnew(i, R(t)) = yn} (5)

Image Generality Similarily, the updated model should
answer the correct answer given the similar images.

MI-Gen = E
(i,t,yn)∈Dedit

1{fnew(R(i), t) = yn} (6)

Locality The updated model should not change the irrele-
vant knowledge that is stored in the original model.

MLoc = E
(i′,t′,yn)∈Ui,t

1{fnew(i′, t′) = fbase(i
′, t′)} (7)

D. Theoratical Analyse
Here is a brief theoretical proof about the effectiveness of
our radius.

Lemma: Embeddings of semantically similar concepts are
close in the embedding space.

Proof. 1. Definition of Embeddings: Embeddings are vector
representations of concepts in a high-dimensional space.
Formally, let f : C → Rd be an embedding function that
maps a concept c ∈ C to a vector f(c) ∈ Rd.

2. Semantic Similarity: Semantic similarity between two
concepts c1 and c2 can be quantified using a similarity mea-
sure S(c1, c2). Common choices include cosine similarity,
Euclidean distance, or dot product.

3. Objective of Embedding Training: During the training
of embeddings, the objective is typically to maximize the
similarity of embeddings for semantically similar concepts
and minimize it for dissimilar ones.

S(f(c1), f(c)) < S(f(c2), f(c)), if S(c1, c) < S(c2, c)
(8)

Assumption: The generality sample (G) is semantically
more similar to the editing knowledge (E) than the local-
ity sample (L). That is, S(G,E) < S(L,E). Accord-
ing to Lemma 1, we can state that S(f(G), f(E)) <
S(f(L), f(E)).

Conclusion: In this case, we can find a radius ϵ such that

S(f(G), f(E)) < ϵ < S(f(L), f(E)), (9)

where

ϵ = α · S(f(G), f(E)) + (1− α) · S(f(L), f(E)). (10)

E. Baselines
Finetune In this method, we carry out a fine-tuning pro-
cess on a selected layer of the pretrained model using Adam
optimization for a fair comparison, while keeping all other
layers fixed. For the training loss, the Cross Entropy loss is
used for fine-tuning.

IKE (Zheng et al., 2023) IKE (In-Context Knowledge
Editing introduces a system that utilises an unsupervised
retriever. This retriever uses cosine similarity to pinpoint
pertinent demonstrations from the training set. This method
is grounded in the principles set forth by (Liu et al., 2022)
and aims to insert new factual knowledge into language
models in a non-disruptive fashion, eliminating the need for
direct parameter updates. IKE’s approach ranks demonstra-
tions according to their resemblance to the editing target and
organizes them in sequence to form a supplementary knowl-
edge base that steers the model’s generation process. This
technique not only conserves the model’s existing knowl-
edge base but also presents a scalable and efficient method to
refresh factual information. It shows considerable promise
in mitigating unintended side effects, such as over-editing
and knowledge forgetting, typically linked with gradient-
based editing methods. However, it is also designed for pure
text models for retrievel, to make it adapt to vision language
models, we used composed embedding as the augmented
database, such that it can retrieve the image information as
well.

MEND (Mitchell et al., 2022a) MEND employs a hy-
pernetwork to predict new weights for a selected layer of a
pre-trained model by estimating the low-rank decomposi-
tion of the weight matrix of the layer. The hypernetwork is
trained on a set of training edits, which comprises a new edit,
a set of inputs that are semantically equivalent to the edit,
and samples from the model’s pre-training data. However,
MEND is designed for the language model, to fit it to the
vision language model, we keep the vision encoder fixed
and only choose the language model layer for finetuning. In
addition, in our situation, we only have single edits that are
streaming in, we train the hypernetwork to predict updated
weights as edits stream in using continuous fine-tuning.

GRACE (Meng et al., 2022a) GRACE is a lifelong model
editing method for large language models. It handles se-
quential edits with a discrete key-value codebook. GRACE
replace one layer to a GRACE adaptor which stores the
key-value pair of the target edits, where the key is the last
embedding of the key for the text prompt and value is trained
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Figure 7. T-sne figure of key distribution in sequential editing.

by backpropagation with the target results. Keep handling
the key conflicts could make it successfully deal with the
multiple sequential editing in language models. However, to
adapt it to the vision language model, we select the language
part as the edited layer and prepend the image embedding
before the text prompt so that it can be regarded as long text
questions.

F. Training Specifications
We use the Adam optimizer (Diederik, 2014) for all methods.
Given that edits in our setup are single and sequential, the
batch size is consistently 1. We trained all methods using
a variety of GPUs, including 24GB NVIDIA RTX A5000s,
40GB NVIDIA A100s, and 80GB NVIDIA A100s. Timing
experiments are reported from experiments performed on an
NVIDIA RTX A100 GPU. The scale of BalancEdit is not
dependent on the model’s scale, but the model’s scale is de-
pendent on the available computational resources. To avoid
sharding, we utilize models that can be accommodated on a
single GPU, although the principles of BalancEdit are appli-
cable beyond this setup. For Adaptor-based editors, such as
GRACE, we employ 100 iterations of gradient descent per
input.

G. Key Distribution
To verify the key distribution in sequential editing, we
present the distributions of keys in the codebook. From
the Figure 7, we observe that the keys are scattered, indicat-
ing that the codebook is capable of handling multiple edits
well.
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