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ABSTRACT

We establish the global convergence of the policy gradient method for robust
Markov Decision Processes (MDPs) under the assumption that the robust return
is smooth with respect to a policy. Despite restrictive, such smoothness assump-
tion is satisfied in many interesting settings such as reward-robust MDPs. We also
obtain iteration complexity comparable to non-robust MDPs that is significantly
faster than existing rates for robust MDPs.

1 INTRODUCTION

Robust MDPs model decision making problems in which the environment is uncertain or partially
known (Nilim & Ghaoui, 2005; Iyengar, 2005a). The robust optimal policies are not only resilient
to the changes in the environmental parameters, but also better generalizable (Mannor et al., 2007;
Xu & Mannor, 2010). Most of the work on the topic are value-based methods (Lutter et al., 2021;
Pinto et al., 2017; Ho et al., 2020; Badrinath & Kalathil, 2021; Behzadian et al., 2021; Goyal &
Grand-Clément, 2018; Mannor et al., 2016; Wang et al., 2022c;a; Wang & Zou, 2021; Kumar et al.,
2022), and only few are policy-based methods (Wang & Zou, 2022b; Kumar et al., 2023; Wang et al.,
2022b). Moreover, up to our knowledge, there are only two works that establish global convergence
of policy gradient methods: with iteration complexity of O(SAϵ−3) for R-contamination uncertainty
sets (Wang & Zou, 2022a) and O(S4A2ϵ−4) for general kernel uncertainty sets Wang et al. (2022b),
where S and A are the number of states and the number of actions respectively, and ϵ is the target
difference between optimal robust return and our achieved robust return.

The state-of-the-art iteration complexity for global convergence of policy gradient for non-robust
MDPs is O(SAϵ−1), however the proofs are quite technical and complicated (Agarwal et al., 2020;
Mei et al., 2020; Xiao, 2022). Robustness requirement adds another layer of complexity to the
problem, leading to a significant degradation in the iteration complexity (Wang & Zou, 2022a; Wang
et al., 2022b).

We simplify and extend the machinery for non-robust MDPs (Xiao, 2022) to the robust MDPs, and
achieve the same iteration complexity as for non-robust MDPs, i.e., O(SAϵ−1). This complexity
is achieved under the assumption that the robust return is L-smooth which holds in many useful
scenarios (Gadot et al., 2023) (see Appendix B.2 for more examples).

Table 1: Iteration Complexity for Global Convergence of Policy Gradient Methods
Robust MDPs Complexity Remark

Non-Robust O(SAϵ−1) Xiao (2022)
(s, a) rectangular R-Contamination robust MDPs O(SAϵ−3) Wang & Zou (2022a)
General L-smooth robust MDPs O(SLϵ−1) Ours
General kernel robust MDPs O(S4A2ϵ−4) Wang et al. (2022b)

2 MAIN

A robust Markov decision process (MDP) is a tuple (S,A, γ, µ,U) such that S and A are finite
state and action spaces respectively, γ ∈ [0, 1) is a discount factor and µ ∈ ∆S the initial state
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distribution. Denoting X := S ×A, the couple (P,R) ∈ U corresponds to the MDP model with
P : X → ∆S being a transition kernel and R : X → R a reward function. A policy π : S →
∆A maps each state to a probability distribution over A, and we denote by Π the set of possible
policies. For any policy π ∈ Π, Rπ ∈ RS is the expected immediate reward defined by Rπ(s) :=
⟨πs, R(s, ·)⟩A, ∀s ∈ S , where πs is a shorthand for π(·|s). We similarly define the stochastic
matrix induced by π as Pπ(s′|s) := ⟨πs, P (s′|s, ·)⟩A, ∀s, s′ ∈ S. Our goal is to maximize the
robust discounted return minπ∈Π ρπU over the set of policies Π, with

ρπU := min
(P,R)∈U

ρπ(P,R), where return ρπ(P,R) := µT (I − γPπ)−1Rπ. (1)

However, the above optimization is proven to be Strongly NP-Hard for general convex uncertainty
set (Wolfram Wiesemann, 2012). Hereafter, we assume the uncertainty set U to be convex, that
allows robust return ρπU to be differentiable and L-smooth w.r.t. policy π with L > 0, that is,∣∣∣ ρπ

′

U − ρπ
′

U − ⟨∇πρ
π
U , π

′ − π⟩
∣∣∣≤ L

2 ∥π
′ − π∥2, ∀π′, π ∈ Π. In particular, the Lp-ball reward

uncertainty set guarantees smoothness of the robust return (Gadot et al., 2023), more cases are
discussed in Appendix B.2. To optimize the robust return, we rely on the projected gradient ascent:
πk+1 := projΠ(πk + 1

L∇πρ
πk

U ), where 1
L is the learning rate and projΠ denotes the orthogonal

projection onto set Π. For this policy gradient procedure, we get the following convergence result:
Theorem 1 (Global optimality). For all iterations k ≥ 1, it holds that:

ρ∗U − ρπk

U ≤
8LC2

PLdiam(Π)2(ρ∗U − ρπ0

U )

k
,

where CPL ≤ 1
mins µ(s) is a problem dependent constant, that we define properly in Appendix C.3.

Proof. For the full proof see Appendix C. Below, we briefly describe the proof sketch. The main
challenge of the proof is to extend the Gradient Domination property to the robust problem (some-
times called PL condition). This condition was proven to hold for non-robust MDPs (Xiao, 2022).
Despite it might not hold for general robust problems, we prove it for smooth robust problems:

Lemma 1 (Gradient Domination lemma). For any policy π ∈ Π, its sub-optimality is bounded by
its policy gradient as ρ∗U − ρπU ≤ CPL maxπ′∈Π⟨π′ − π,∇ρπU ⟩.

For the proof see Appendix C.3. The rest of the proof mainly follows Xiao (2022), but all results are
carefully extended for the robust case. In particular, from combining Lemma 1 with the cohesive
bond lemma (Appendix C.4), we get directly that ρ∗U − ρ

πk+1

U ≤ CPL maxπ′∈Π⟨∇ρ
πk+1

U , π′ −
πk+1⟩ ≤ 2CPLL∥πk+1 − πk∥diam(Π), that provides us the lower bound on ∥πk+1 − πk∥. In
contrast, sufficient increase lemma (Appendix C.2) provides and upper bound on ∥πk+1 − πk∥:
ρ
πk+1

U −ρπk

U ≥ L
2 ∥πk+1 − πk∥2,∀k. Combining these upper and lower bounds, we get the following

sub-optimality recursion: a2k+1 + ak+1 ≤ ak, for ak :=
ρ∗
U−ρ

πk
U

8LC2
PLdiam(Π)2

(Appendix C.5), which in

turn implies the convergence. Indeed, note that, the sub-optimality recursion ak+1 − ak ≤ −a2k+1

corresponds to an ordinary differential equation da
dk ≤ −a2, whose solution is a(k) ≤ 1

k+ 1
a(0)

≤ 1
k .

This relation intuitively indicates an O( 1ϵ ) iteration complexity for achieving an ϵ-optimal solution.

3 DISCUSSION

We establish global convergence for robust MDPs with L-smooth robust return with respect to a
policy, and proved its iteration complexity O(SAϵ−1), which is much faster than existing state-of-
the-art complexity O(S4A2ϵ−4) for robust MDPs (Wang et al., 2022b). Moreover, our proof trivially
yields a simpler and more intuitive proof for non-robust MDPs by taking a single environment
uncertainty set.

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.
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Berç Rustem Wolfram Wiesemann, Daniel Kuhn. Robust markov decision processes. Mathematics
of Operations Research 38(1):153-183, 2012.

Lin Xiao. On the convergence rates of policy gradient methods, 2022. URL https://arxiv.
org/abs/2201.07443.

Huan Xu and Shie Mannor. Robustness and generalization, 2010. URL https://arxiv.org/
abs/1005.2243.

A APPENDIX

RELATED WORK
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& Barto, 2018). Recently, there have been global convergences guarantees results Agarwal et al.
(2020); Bhandari & Russo (2019) with an iteration complexity O(1/ϵ) for finding ϵ-optimal policy
Xiao (2022).
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(s, a)-rectangular R-Contamination Robust MDPs. The paper Wang & Zou (2022a) derives pol-
icy gradient for R-rectangular robust MDPs complexity O(S2A log( 1ϵ )) similar to non-robust MDPs.
Further, it establishes global convergence policy gradient with an iteration complexity O(1/ϵ3) for
finding ϵ-optimal policy assuming oracle policy gradient.

General (s, a)-rectangular Robust MDPs The paper Li et al. (2022) establishes global conver-
gence for robust mirror policy decent for (s, a)-rectangular robust MDPs in general with an itera-
tion complexity O(1/ϵ) and O(log(1/ϵ)) for finding ϵ-optimal policy, with two increasing-stepsize
schemes. However, it assumes the oracle access to policy gradient.

General Robust MDPs The paper Wang et al. (2022b) establishes global convergence for Double-
Loop Robust Policy Gradient for general robust MDPs with an iteration complexity O(1/ϵ4) for
finding ϵ-optimal policy, assuming the oracle access to policy gradient. Solving the policy gradient
upto ϵ tolerance via value methods that takes (s, a)-rectangular and s-rectangular case with com-
plexity of O(S4A log(1/ϵ)) and O(S4A3 log(1/ϵ)) respectively using convex optimizations tools.
Our techniques are completely different than this work.

B SMOOTHNESS

B.1 BACKGROUND

We go over the some definitions and background results helpful for our discussion. Let value func-
tion and Q-value function be defined as follows:

vπ(P,R) := (I − γPπ)−1, Qπ
(P,R)(s, a) := R(s, a) + γ

∑
s′

P (s′|s, a)vπ(P,R)(s
′).

Following Kumar et al. (2023), let the occupation measure for policy π with initial vector u ∈ RS

be defined by
dπP,u := uT (I − γPπ)−1.

Let Pπ
U , R

π
U be the worst kernel and reward function under policy π, that is:

(Pπ
U , R

π
U ) ∈ argmin

(P,R)∈U
ρπ(P,R).

Similarly to Kumar et al. (2023), we define the robust values as follows

dπU := dπPπ
U
, vπU = vπ(Pπ

U ,Rπ
U ), Qπ

U = Qπ
(Pπ

U ,Rπ
U ).

Let Rs
p,Ps

p denote s-rectangular Lp-bounded reward noise uncertainty set and s-rectangular Lp-
bounded kernel noise uncertainty set respectively, as they are decomposable over states, that is,

Rs
p = ⊗s∈SRs, and Ps

p = ⊗s∈SPs,

where ∥Rs∥p ≤ αs, ∥Ps∥p ≤ βs and
∑

s′ Ps(s
′|a) = 0∀s, a (see Wolfram Wiesemann (2012)).

Similarly, Rsa,Psa denotes sa-rectangular reward uncertainty set and kernel respectively, as they
are decomposable over states-actions, that is,

Rsa
p = ⊗s∈S,a∈ARsa, and Psa

p = ⊗s∈S,a∈APsa,

where ∥Rsa∥p ≤ αsa, ∥Psa∥p ≤ βsa and
∑

s′ Psa(s
′) = 0∀s, a (see Iyengar (2005b); Nilim &

Ghaoui (2005)).

Let q be the Holder’s conjugate of p ∈ [1,∞), that satisfying,

1

p
+

1

q
= 1.

Proposition 1. The non-robust return ρπP,R is A
(1−γ)2 -smooth for ∥R∥∞ ≤ 1.

Proof. See Agarwal et al. (2020).
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B.2 SMOOTHNESS RESULTS

Now we are ready to state our first smoothness result of this section.

Proposition 2. For the non-rectangular reward uncertainty set U = {P0}⊗ {R0 +Rp}, the robust

return ρπU is 2(q − 1) (SA)
q+1
q A2

(1−γ)4 + 2γ (SA)
1
q A

(1−γ)3 -smooth, where Rp := {R ∈ RS ×A | ∥R∥p ≤ α}.

Proof. Proved in Gadot et al. (2023).

Lemma 2. ρπU is ∥R∥∞+∥α∥∞
(1−γ)3 -smooth for the uncertainty set U = {P0} × {R0 + Rsa

p }, where
∥α∥∞ = maxs,a αsa.

Proof. From Kumar et al. (2022), we have

ρπU = ρπ(P0,R0)
−

∑
s,a

dπP0
(s)π(a|s)αsa. (2)

Now we know ⟨dπP , Rπ⟩ is ∥R∥∞
(1−γ)3 -smooth Agarwal et al. (2020). Hence the robust return ρπU is

∥R∥∞+∥α∥∞
(1−γ)3 - smooth.

Lemma 3. ρπU is smooth for the uncertainty set U = {P0} × {R0 +Rs
p} for p ∈ (1,∞) .

Proof. From Kumar et al. (2022), we have

ρπU = ρπ(P0,R0)
−

∑
s

dπP0
(s)∥πs∥qαs. (3)

It is clear that ∥πs∥q is smooth in π for all p ∈ (1,∞). Furthermore, we know dπP0
(s) is also smooth,

as dπP0
(s) = ρπP0,R

where R(s′, a′) = 1((s′, a′) = (s, a)), and we know ρπP,R is smooth for all P
and all R Agarwal et al. (2020). This establishes the smoothness of the robust return in our case, as
it is algebraic function of smooth functions.

We conclude that there are various setting under which the robust return is smooth, the our global
convergence analysis for policy gradient methods applies.

C GLOBAL CONVERGENCE

C.1 ASSUMPTIONS

Assumption 1. We assume the uncertainty set U is convex and compact.

The above assumption is very mild that is satisfied in most of the settings.

Assumption 2. [Smoothness] The function ρπU is L-smooth function, that is∣∣∣ ρπ′

U − ρπU − ⟨∇ρπU , π
′ − π⟩

∣∣∣≤ L

2
∥π′ − π∥2, ∀π′, π ∈ Π. (4)

The assumption doesn’t hold for general uncertainty set, however it may hold for many useful un-
certainty sets.

Policy udate is done via projected gradient ascent as:

πk+1 :=projΠ(πk +
1

L
∇πρ

πk

U ), (5)

where 1
L is the learning rate and projΠ denotes the orthogonal projection onto set Π.

Lemma 4. (Convex Projection Lemma) For any convex set X ⊆ Rd, any point a ∈ X, and any
update direction u ∈ Rd, let b = projX

(
a+ u

)
be the projection of a+ u onto X, then we have
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1. ⟨u, b− a⟩ ≥ ∥b− a∥22.

2. ⟨c− b, u− (b− a)⟩ ≤ 0, ∀c ∈ X .

Proof. Follows trivially from the geometry (see figure 1), and the fact that the hyperplane separates
a convex set from a point not in the set.

Figure 1: Convex Projection

Remark 1. For simplicity of the notation, we use ρk for ρπk

U .

C.2 MONOTONE IMPROVEMENT OF THE ROBUST RETURN

Now present ’Sufficient Increase Lemma’ ensures monotone improvement of the robust return, that
uses only convexity of the projection set Π, smoothness of the robust return.

Lemma 5. [Sufficient Increase Lemma] Gradient ascent ensures the monotone improvement in the
robust return. Precisely,

ρk+1 − ρk ≥ L

2
∥πk+1 − πk∥2, ∀k.

Proof. From smoothness of the robust return, we have

ρk+1 ≥ ρk + ⟨∇ρk, πk+1 − πk⟩ −
L

2
∥πk+1 − πk∥2, (6)

= ρk + L⟨ 1
L
∇ρk, πk+1 − πk⟩ −

L

2
∥πk+1 − πk∥2, (7)

≥ ρk + L∥πk+1 − πk∥2 −
L

2
∥πk+1 − πk∥2, (from Lemma 4). (8)

This ends the proof.

Note that the above sufficient increase lemma does not require the robust return to be concave.
Further, the above lemma is enough to ensure iterates {ρπk

U } converge to some some value ρ̂, as the
iterates forms monotonically increasing sequence. However, it doesn’t imply the ρ̂ is global maxima
or local maxima for that matter. This just implies, the iterates ρπk

U keeps on increasing until the
gradient G(πk) doesn’t diminish to zero.
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C.3 GRADIENT DOMINATION

Hence, for the global optimality, we need second part, to ensure that the norm of the gradient van-
ishes only when the sub-optimality does.

Lemma 6 (Gradient Domination lemma). For any policy π ∈ Π, its sub-optimality is bounded by
its policy gradient as

ρ∗U − ρπU ≤ CPL max
π′∈Π

⟨π′ − π,∇ρπU ⟩,

where CPL := max(π,s)∈Π×S
d
π∗
Pπ
U

Pπ
U

(s)

dπ
Pπ
U
(s) .

Proof. Recall, (Pπ
U , R

π
U ) ∈ argmin(P,R)∈U ρπ(P,R) is the worst parameters w.r.t. policy π. And

π∗
(P,R) ∈ argmaxπ ρ

π
(P,R) be the best policy for dynamics (P,R). Then we have

ρ∗U − ρπU = max
π′

min
(P,R)∈U

ρπ
′

(P,R) − ρπ(Pπ
U ,Rπ

U ), (by definition), (9)

≤ max
π′

ρπ
′

(Pπ
U ,Rπ

U ) − ρπ(Pπ
U ,Rπ

U ), (by definition of min-operator), (10)

(Using non-robust Performance Difference Lemma Agarwal et al. (2020), we get) (11)

=
∑
s

d
π∗
Pπ
U

Pπ
U

(s)
∑
a

(
π∗
(Pπ

U ,Rπ
U )(a|s)− π(a|s)

)
Qπ

(Pπ
U ,Rπ

U )(s, a), (12)

≤
∑
s

d
π∗
Pπ
U

Pπ
U

(s)max
π′
s

∑
a

(
π′
s(a)− π(a|s)

)
Qπ

U (s, a)︸ ︷︷ ︸
≥0

(13)

=
∑
s

d
π∗
Pπ
U

Pπ
U

(s)

dπU (s)
dπU (s)max

π′
s

∑
a

(
π′
s(a)− π(a|s)

)
Qπ

U (s, a)︸ ︷︷ ︸
≥0

(14)

≤
(
max

s

d
π∗
Pπ
U

Pπ
U

(s)

dπU (s)

)
max
π′

∑
s

dπU (s)
∑
a

(
π′(a|s)− π(a|s)

)
Qπ

U (s, a) (15)

=
(
max

s

d
π∗
Pπ
U

Pπ
U

(s)

dπU (s)

)
max
π′

〈
π′ − π,∇ρπU

〉
. (16)

The last equlality comes from the Envelope theorem Milgrom & Segal (2002) and policy gradient
theorem Sutton et al. (1999),

∂ρπU
∂π(a|s)

=
∑
s

dπPπ
U
(s)Qπ

(Pπ
U ,Rπ

U )(s, a).

C.4 COHESIVE BOND

Now, we have both the parts: One that lower bounds the gradient and the other that upper bounds it.
However, they are not exactly in very compatible forms, hence we require the result below that acts
a cohesive bond between the two.

Lemma 7. For all πk, we have

⟨∇ρk+1, π
′ − πk+1⟩ ≤ 2L∥πk+1 − πk∥diam(Π),

where diam(C) := maxx,y∈C∥x− y∥ is the diameter of C.
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Proof. For all x, y ∈ C, we have:

⟨∇ρk+1, π
′ − πk+1⟩

= ⟨∇ρk+1 −∇ρk +∇ρk, π
′ − πk+1⟩, [Subtract & add ∇ρk]

= ⟨∇ρk+1 −∇ρk, π
′ − πk+1⟩+ ⟨∇ρk, π

′ − πk+1⟩, [Linearity of scalar product]

≤ ∥∇ρk+1 −∇ρk∥∥π′ − πk+1∥+ ⟨∇ρk, π
′ − πk+1⟩,Cauchy-Schwartz inequality]

≤ L∥πk+1 − πk∥∥π′ − πk+1∥+ ⟨∇ρk, π
′ − πk+1⟩, [Smoothness of robust return]

= L∥πk+1 − πk∥∥π′ − πk+1∥+ L⟨ 1
L
∇ρk − (πk+1 − πk) + (πk+1 − πk), π

′ − πk+1⟩

≤ 2L∥πk+1 − πk∥∥π′ − πk+1∥, L⟨
1

L
∇ρk − (πk+1 − πk), π

′ − πk+1⟩ [Cauchy-Schwartz inequality]

≤ 2L∥πk+1 − πk∥∥π′ − πk+1∥, [From Lemma 4]
≤ 2L∥πk+1 − πk∥diam(Π).

C.5 PROOF OF GLOBAL CONVERGENCE

Now we are ready to prove our core result that is, the sub-optimality recursion.

Lemma. Take η = 1
L as a learning rate. Then, the scaled sub-optimality ak =

ρ∗
U−ρ

πk
U

8LC2
PLdiam(Π)2

follows the recursion
a2k+1 + ak+1 − ak ≤ 0.

Proof. From the PL condition proved in Lemma 1, we have

ρ∗U − ρ
πk+1

U ≤ CPL max
π′

⟨π′ − πk+1,∇ρ
πk+1

U ⟩ (17)

≤ 2L∥πk+1 − πk∥diam(Π), (from Lemma 7) (18)

≤ CPL · 2
√
2L(ρ

πk+1
π − ρπk

U ) · diam(Π), (from Lemma 5) (19)

Squaring both sides and adding subtracting ρ∗ in RHS, we get(
ρ∗U − ρ

πk+1

U

)2

≤ 8C2
PLLdiam(Π)2

(
(ρ∗U − ρπk

U ) + (ρ∗U − ρπk+1
π )

)
Setting ak :=

ρ∗
U−ρ

πk
U

8LC2
PLdiam(Π)2

, the sequence (ak)k∈N satisfies the recursion a2k+1 ≤ ak − ak+1.

The sub-optimality recursion derived in the theorem above, illustrates how the sub-optimality at
time k + 1 depends at the sub-optimality at time k. Moreover, the sub-optimality recursion has the
quadratic form and ak ≥ 0, hence its solution is given as

ak+1 ≤
√

1

4
+ ak − 1

2
.

As a sanity check, we observe that
√

1
4 + a − 1

2 ≤ a for all a ≥ 0, implying that (ak)k∈N is

monotonically decreasing. Further, 0 is the only non-negative fixed point of the
√

1
4 + a − 1

2 = a

implying that (ak)k∈N monotonically decreases to 0.

Now, we investigate the convergence rate for ak. Observe that if a0, ak ≫ 1, then ak+1 ≈ √
ak

and ak ≈ (a0)
1

2k . That is, the convergence rate is super-exponential! Yet, in most cases,
8LC2

PLdiam(Π)2 ≫ 1 and ρ∗U − ρπ0

U = 8LC2
PLdiam(Π)2a0 = O(1) is bounded so we are more

interested in the case where a0 ≪ 1. In fact, in an MDP with a reward smaller than 1, we do have
ρπU = O(1).

In this regime, the sub-optimality recursion ak+1 − ak ≤ −a2k+1 suggests the ordinary differential
equation da

dk ≤ −a2 whose solution is a(k) ≤ 1
k+ 1

a(0)

≤ 1
k . This intuitively indicates an O( 1ϵ )

iteration complexity for achieving an ϵ-optimal solution, which we state below formally.

9
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Corollary (Global optimality). For all iterations k ≥ 1, it holds that:

ρ∗U − ρπk

U ≤ max

(
8LC2

PLdiam(Π)2

k
, 2−

k
2

)
(ρ∗U − ρπ0

U ).

Proof. The sub-optimality recursion yields the desired result which follows directly from Xiao
(2022).

It can be seen that he exponential part is always lower than the other term. Hence, we can ignore the
exponential term. Further, the diameter of the policy class Π, can be upper bounded as

diam(Π)2 = max
π,π

∑
s

∥π′
s − πs∥22 ≤ max

π′,π

∑
s

∥π′
s − πs∥21 ≤ 4S.

This yields the desired result.

In addition, it can be noted that our result reduces to non-robust case, when we take uncertainty set
U to be a singleton set. In this case, our proof is simplified and more-readable version of Agarwal
et al. (2020); Xiao (2022).

10


	Introduction
	Main
	Discussion
	Appendix
	Smoothness
	Background 
	Smoothness Results

	Global Convergence
	Assumptions
	Monotone improvement of the robust return
	Gradient Domination
	Cohesive bond
	Proof of global convergence


