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Abstract

Vision-Language foundation models, including vision-language models (VLMs)
and vision-large language models (VLLMs), have been evolving rapidly and have
shown good performance on different downstream video understanding tasks, espe-
cially on web datasets. However, it is still an open question how much these VLMs
and VLLMs perform in more challenging scenarios like Activities of Daily Living
(ADL). To answer this, we provide a comprehensive study of VLMs and VLLMs
by comparing their zero-shot transfer ability to five downstream tasks including
action classification, video retrieval, video description, action forecasting, and
frame-wise action segmentation. Extensive experiments are conducted on eleven
real-world, human-centric video understanding datasets (e.g., Toyota Smarthome,
Penn Action, UAV-Human, EgoExo4D, TSU, Charades) to study these tasks with
our insights into the strengths and limitations of these models in zero-shot settings.
Moreover, we provide in-deep analysis to find the best setting to improve the model
performance in zero-shot action classification tasks. Based on our experiments,
we find that these models are still far away from satisfactory performance in all
evaluated tasks, particularly in densely labeled and long video datasets.

1 Introduction

Recent vision-language foundation models [22, 18, 36, 26, 27, 38, 1, 21, 28, 32, 8] have witnessed
significant attention due to their strong generalization abilities. These models are able to transfer to
various downstream tasks without the need for additional fine-tuning thanks to their pre-training on
large-scale, multi-modal datasets. By aligning visual and textual features through joint training of
a visual encoder and a textual encoder, they have revolutionized numerous tasks in both the vision
and language domains. Vision-language foundation models can be broadly categorized into two
families. The first category encompasses vision-language models (VLMs), which are pre-trained to
align visual and textual features and have shown strong performance in zero-shot transfer tasks such
as action classification and video retrieval. The second category consists of vision-large language
models (VLLMs). Unlike VLMs, VLLMs are pre-trained to handle more complex language-based
tasks by leveraging large-scale language models (LLMs). These models enable zero-shot transfer
to video description, action forecasting tasks without the need for task-specific retraining. Due to
their strong generalization capabilities, both VLMs and VLLMs are critical for various applications,
including healthcare monitoring and human-machine interaction.

While these models have been successful across a wide range of tasks in the image domain, their
adaptation to the video domain has primarily been evaluated on general video understanding tasks,
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Figure 1: Comparisons and statistics of the SoTA models on different datasets for zero-shot video
understanding tasks, i.e., action classification with VLMs (top left), video retrieval with VLMs (top
right), action classification with VLLMs (bottom left), video description and action forecasting with
VLLMs (bottom right).

such as captioning and classification. The zero-shot transfer capability of these VLMs to handle
more complex and fine-grained action understanding tasks remains under-explored. In real-world
applications, compositional activities can be performed at the same time and viewpoints, subject
appearances, objects may change largely with time, hence, it is crucial to understand the generalization
ability to current challenges of vision-language foundation models targeting video understanding
in more complex scenarios [6, 29, 14, 7] such as action segmentation in untrimmed videos with
multi-label annotations.

To address this gap, this paper provides a comprehensive comparison and ablation study of state-
of-the-art (SoTA) vision-language foundation models focusing on their performance in fine-grained
zero-shot tasks. Specifically, we evaluate vision-language models [4, 13, 15, 3, 41, 20] on action
classification and video retrieval tasks using the action labels. To further understand the performance
of vision-large language models, we evaluate [4, 13, 15, 3, 41, 20]on fine-grained LLM-based
tasks including video description, action forecasting, and frame-wise action segmentation. The
experimental comparisons on their performance for different tasks are summarized in Fig. 1.

In summary, the key contributions of this paper are as follows: (i) We conduct a comprehensive large-
scale evaluation of the generalization capabilities of VLMs and VLLMs, with a focus on their transfer
ability to challenging downstream video understanding tasks. (ii) Through detailed experiments,
we identify optimal video sampling strategies for these models and analyze how different forms of
action label descriptions influence zero-shot action classification. (iii) We investigate the impacts of
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fine-grained labels and diverse viewpoints on vision-language alignment. We provide insights and
comparisons of various frame-wise action prediction techniques, using video question answering
(VQA) models to investigate zero-shot action segmentation. (iv) Extensive experiments are conducted
across eleven benchmark datasets covering five core zero-shot tasks i.e., action classification, action
segmentation, action forecasting, video retrieval, video description. Our experimental analysis reveals
current model limitations and suggests future research directions.

2 SoTA Vision-Language Foundation Models for Video Understanding

Recently, many methods have used language features [22] for video understanding [18, 36, 26, 27, 21,
32], video captioning [38] and visual question answering [1, 28]. These models, like InternVideo [35],
aim to understand and generate descriptions of video content, facilitating a multi-modal understanding
of visual data. In this section we study the related work on SoTA image-language models, video-
language models and Video-Large Language Models.

Image-Language Models (ILMs) Image-language models like CLIP [22], SigLIP [40], and EVA-
CLIP [31] are multi-modal models that align visual and textual data to create common space repre-
sentations, enabling tasks such as image classification, captioning, and retrieval. CLIP, trained using
large scale image-text pairs using a dual-encoder architecture and contrastive learning to align images
with text. SigLIP [40] enhances CLIP by replace the loss function with a simple pairwise sigmoid
loss which is more memory efficient and enabling training using large batch sizes without requiring
additional resources, while EVA-CLIP [31] taken the benefit of flash attention to reduce the training
cost as well incorporates novel training strategies, such as enhanced data augmentation and more
efficient optimization techniques, to improve learning efficiency and representation quality. Despite
their strengths, these models still limited to understand the temporal consistency, struggles with video
understanding tasks.

Video-Language Models (VLMs) Video-language models such as XCLIP [19], ViCLIP [34],
ViFiCLIP [23], and LanguageBind [43] are designed to align and understand video content with
textual information, leveraging both visual and language encoders to capture the complex interplay
between temporal sequences and language semantics. These models extend image-language models
by incorporating temporal dynamics to understand video content, aligning sequences of frames with
language to capture spatial and temporal information. XCLIP [19] enhances CLIP by proposes the
Attention Over Similarity Matrix (AOSM) module to make the model focus on the contrast between
essential frames. ViCLIP [34] extend CLIP image encoder to video encoder by adding spatiotemporal
attention modules and masking video during the the pretraining. ViFiCLIP [23] fine-tune image
and text encoder of CLIP model for video domain by simple frame-level late feature aggregation
via temporal pooling. LanguageBind [43] extend video-language models by improved the text
descriptions using incorporating metadata, spatial, and temporal information then alignment language
with diffrent modalities like videos, infrared images, depth maps, and audio using contrastive learning.
These models still struggle to recognize a fine-grained action recognition task especially in long
videos as well their limitation to generalize on different scenarios like ADL.

Video-Large Language Models (VLLMs) Video-large language models (VLLMs) like VideoL-
LaMA [4], VideoLLaVA [15], VideoChatGPT [20], LongVA [41], and LLaVIDAL [3] integrate large
language models (LLMs) with video understanding and fine-tuned on instructional language-vision
data to process and generate text based on video content, enhancing tasks like video question an-
swering, summarizing, and interactive dialogue. VideoLLaMA [4] uses attention mechanisms for
temporal video comprehension, while VideoLLaVA [15] improves video-language alignment by
unify visual representation of image and videos into the language feature space. VideoChatGPT [20]
combines video encoders with ChatGPT for real-time video dialogue, LongVA [41] handles long-
form video content with hierarchical modeling, and LLaVIDAL [3] uses additional cues like 3D
pose and objects jointly with visual-text embeddings and all these modalities project to LLM to
enhance understanding ability of human actions. The transfer-ability limitations of these models
appears in densely labeled dataset as well the fine-grained temporal discrimination tasks like temporal
localization. Recently models like UniVTG [16], TimeChat [25], VtimeLLM [12] handled the
tasks that demand precise timing and action recognition, such as frame-wise action segmentation,
video question answering, action forecasting by integrating visual and textual data align with time
information within a large language model framework. UniVTG [16] proposes to Unify the diverse
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Methods Frames Smarthome Penn UAV NTU-10
CS (%) CV2 (%) Top-1 (%) CS (%) CS (%)

CLIP [22] 16 10.1 13.6 63.1 1.6 13.8
X-CLIP [19] 32 16.5 14.8 72.7 4.8 27.6
ViCLIP [34] 8 14.1 14.2 74.3 1.2 18.9
ViFi-CLIP [23] 32 19.6 15.3 87.1 5.9 33.4
LanguageBind [43] 8 16.9 15.1 90.4 3.7 24.1
Video-LLaMA2 [4] 16 21.0 18.0 85.9 7.2 24.9
LongVA [41] 256 22.7 16.8 75.2 6.5 23.2
Video-LLaVA [15] 8 7.2 2.5 60.5 1.3 15.2
LLaVA-OneVision [13] 8 8.0 6.4 57.1 1.1 15.0
LAVIDAL [3] 100 9.1 6.8 43.4 1.2 16.8
Video-Chatgpt [20] 16 6.0 2.4 13.4 0.8 9.3

Table 1: Zero-shot transfer results and comparisons without re-training on action classification
benchmarks of Smarthome (Top-1 accuracy) and Penn Action.

Actions
Smarthome

Video-LLaMA2 LongVA Video-LLaVA LLaVA-OneVision LAVIDAL Video-Chatgpt
CS (%) CV2 (%) CS (%) CV2 (%) CS (%) CV2 (%) CS (%) CV2 (%) CS (%) CV2 (%) CS (%) CV2 (%)

Eat.Attable 64.8 43.2 94.1 96.9 3.2 0 0 0 30.1 14.0 19.1 5.5
WatchTV 86.5 - 88.3 - 13.1 - 0 - 25.6 - 13.5 -
Cleandishes 36.1 - 32.3 - 1.5 - 0 7 - 0 - 0 -
Uselaptop 67.4 94.2 56.2 57.7 5.1 3.8 0 0 0 0 0 0
Readbook 0 0 38.1 14.4 9.9 0 12.1 0 0 0 10.8 0
Cook.Stir 60.3 - 41.7 - 20.6 - 0 - 4.5 - 0 -
Sitdown 63.1 80.3 16.2 0 21.2 18.7 86.6 62.2 16.2 5.7 11.2 1.6
Drink.Fromcup 0.4 0 11.5 1.6 4.6 2.2 0 2.1 2.8 0.3 0.6
Walk 10.2 3.4 6.1 1.8 9.2 0.2 0.3 0 2.3 0.5 0 0
Enter 0.8 0 32.3 0 0 0 0 0 0 0 0 0

Table 2: Analysis on different actions of Smarthome using VLLMs.

Video Temporal Grounding (VTG) labels and tasks. Thanks to the unified framework, the temporal
grounding pre-training is available from large-scale diverse labels and develops stronger grounding
abilities e.g., zero-shot grounding. TimeChat [25] is a time-sensitive multi-modal large language
model specifically designed for long video understanding. It utilizes a sliding video Q-Former, which
dynamically adjusts to different video token lengths, optimizing the extraction and compression of
video features for improved long video processing. VTimeLLM [12] is Video Large Language Model
with boundary-awareness, specifically designed to improve temporal reasoning and video comprehen-
sion. Its three-stage training approach starts with aligning features using large-scale image-text data,
then incorporates multi-event video-text data paired with temporal question answering to develop
time boundary awareness, and finally uses instruction tuning on high-quality dialogue datasets to
enhance its temporal reasoning abilities. Despite their promising results on certain datasets, these
models still far from satisfactory performance and are limited to short videos and simpler datasets.
Such datasets often lack fine-grained actions and are not densely labeled, which restricts the model’s
ability to handle more complex and detailed video content.

All mentioned approaches achieve SoTA performance on many tasks including video-text retrieval,
temporal grounding, video captioning, etc. Most tasks are based on web videos and highly relies
on video-text alignment quality, while are not focused on daily living action recognition scenarios.
It is critical to understand the performance and current challenges of SoTA foundation models for
video understanding tasks, so we provide an analysis on this topic to find out more future directions
based on the analysis. In this study, we select the most recent and representative Vision-Language
foundation models [22, 19, 34, 23, 43, 4, 41, 3, 13, 15? , 16, 12] (see Tab.2 in the supplementary).

3 Experimental Analysis and Discussion

We conduct extensive experiments to evaluate the performance of various vision-language foundation
models, including both VLMs [22, 19, 34, 23, 43] and VLLMs [4, 3, 15, 20, 13, 41], across different
tasks. Specifically, we examine their generalization abilities by measuring the improvements in zero-
shot learning within real-world scenarios. We evaluate VLMs on tasks such as action classification
(see Sec. 3.1.1) and video retrieval (see Sec. 3.2), while VLLMs are assessed on more tasks including
action classification (see Sec. 3.1.2), video description (see Sec. 3.3), action forecasting (see Sec. 3.4),
and action segmentation (see Sec. 3.5). Furthermore, we provide additional analysis to assess the
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Actions
Smarthome

CS(%) CV(%)
CLIP XCLIP ViCLIP ViFiCLIP L-Bind CLIP XCLIP ViCLIP ViFiCLIP L-Bind

Eat.Attable 96.4 91.3 100.0 80.2 99.2 100.0 97.3 100.0 83.7 100
WatchTV 100.0 55.7 98.7 70.0 86.9 - - - - -
Cleandishes 6.8 68.4 51.2 50.4 48.1 - - - - -
Uselaptop 0.0 44.4 53.9 47.2 28.7 2.0 50.0 30.8 40.4 40.4
Readbook 0.0 54.2 0.0 47.0 31.1 0.0 0.0 0.0 4.2 0.0
Cook.Stir 0.0 0.0 19.1 27.6 40.7 - - - - -
Sitdown 0.0 5.9 0.0 16.4 5.3 0.0 0.0 0.0 0.5 2.1
Drink.Fromcup 0.3 0.1 0.7 5.2 0.7 0.0 0.0 0.0 0.9 0.0
Walk 0.08 1.2 58 4.7 0.5 0.0 0.0 0.0 0.7 0.0
Enter 0.0 0.0 0.0 0.0 6.8 0.0 0.0 0.0 0.0 0.0

Table 3: Analysis on different actions of Smarthome using VLMs.

generalization capabilities of both VLMs and VLLMs in these tasks. See the supplementary for more
experiments, analysis, and datasets comparisons.

3.1 Zero-shot Action Classification

Video-language models (VLMs) [22, 19, 34, 23, 43] and video-large language models (VLLMs)
[4, 3, 15, 20, 13, 41] adopt different approaches to zero-shot action classification evaluation. In this
section, we assess the performance of each category of models across five public datasets under
various scenarios to understand their strengths and limitations in handling diverse and complex action
recognition tasks.

3.1.1 Vision-Language Models (VLMs)

For Vision-Language Models (VLMs) [22, 19, 34, 23, 43], we begin by extracting text embedding
for all action labels. For each query video, we sample select frames and extract their corresponding
visual features using a pre-trained vision encoder. Finally, we compute cosine similarity between the
video’s visual features and the text embedding to retrieve the action label with the highest similarity
score. In the first row of Tab.1, we present the performance results of these models. The original
image-based CLIP [22] model struggles with video tasks due to its lack of temporal consistency. In
contrast, models like X-CLIP [19],ViCLIP [34], and languagebind [43] demonstrate improvements
by extending CLIP with a video encoder, specifically trained on tasks such as video-text retrieval
and video classification. However, despite these enhancements, they remain limited in handling
fine-grained tasks (e.g., Smarthome and UAV-Human datasets). Fine-tuning ViFiCLIP on the Kinetics
dataset [2] improves performance in fine-grained action classification, as the dataset contains actions
similar to those in the evaluation sets, aiding generalization. Still, the performance is not fully
satisfactory, as these models are typically trained and fine-tuned on web-scale data, which differs
significantly from real-world scenarios and activities of daily living.

3.1.2 Vision-Large Language Models (VLLMs)

Zero-shot action classification in Video-Large Language Models (VLLMs),typically uses a video
question answering (VQA) approach. A natural language query is constructed asking the model to
identify the action depicted in the video. For instance, the query could be, "Which action from this
list [actions label] matches the video content?". By mapping both the video features and the query
into a shared semantic space, the model can predict the most relevant action. However, some models
may require post-processing to refine the predictions because the initial response might not provide a
precise action label. This post-processing helps to enhance the alignment between actions and video
content and improve the accuracy of zero-shot classification.

We observe from our experiments that the performances of VLMs and VLLMs are better with
laboratory datasets, and are even better with the Penn-action dataset [42] comparing to challenging
dataset like smarthome dataset [7] which contains fine-grained actions. As shown in Fig. 2 the
action features in the Smarthome dataset exhibit significant overlap, making it difficult to distinguish
between them. In contrast, the action features in the PennAction dataset are more clearly separated,
indicating better-defined and distinct feature representations for each action. This demonstrates
that Smarthome’s fine-grained actions pose more challenges for the model in terms of feature
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Figure 2: TSNE visualization of ViFiCLIP on PennAction and 10 classes in Smarthome

Methods MSR-VTT DiDeMo ActivityNet
T2V V2T T2V V2T T2V V2T

CLIP [22] 29.0 25.8 11.5 19.1 8.3 12.2
ViCLIP [34] 42.4 41.3 18.4 27.9 15.1 24.0
ViFi-CLIP [23] 44.8 43.5 41.2 39.8 38.9 37.4
LanguageBind [43] 42.8 38.3 39.7 38.4 38.4 35.7

Table 4: Zero-shot Video retrieval using VLMs.

Method TSU LEMMA
CS(%)

Video-LLaMA2 [4] 16.7 30.6
LongVA [41] 19.4 65.7
Video-LLaVA [15] 20.2 32.2
VideoChatGPT [20] 25.0 35.7
LLAVIDAL [3] 27.0 52.6

Table 5: Action Forecasting perfor-
mance using VLLMs.

discrimination, while PennAction allows for more effective differentiation between action categories,
as this is a small dataset with very few action labels. See Fig.6,7and 8 in the supplementary for
more VLMs analysis.These results indicate that Vision-Language Foundation Models perform well
on basic actions, particularly those similar to common web action classes. However, they struggle
when it comes to fine-grained actions, where distinguishing between similar actions based solely on
their labels is challenging. This suggests that while these models are adept at recognizing broad or
generic actions, they have limitations in more nuanced tasks. Further experimentation in open-world
settings, particularly with datasets like PennAction, would be valuable to assess whether these models
maintain their performance in less controlled environments.

We deeply analyze the results of VLMs in Tab. 3 and VLLMs in Tab. 2 we list the Smarthome
classes that benefit the most and the least from the evaluated models. See the full analysis for all
actions in Fig.1 and Fig.2 in the supplementary for Cross-subject and Cross-view evaluation. We
find that for the actions that have very similar motions (e.g., Uselaptop vs. Readbook, Walk vs.
Enter), compositional motions (e.g., Cook.Stir), and large viewpoints variations (e.g., for cross-view
evaluation), the SoTA models are still limited. We can deduce from the results that more modalities
(e.g., skeleton data that represents human motion) and more pre-training data are needed to further
improve action recognition performance.

3.2 Zero-shot Video-Text Retrieval

The primary goal of video retrieval is to identify and rank videos from a large dataset that best match
an input query, such as a text description, effectively bridging the semantic gap between video content
and language. In our experiments Tab. 4, we evaluate Vision-Language Models (VLMs) on both
text-to-video (T2V) and video-to-text (V2T) retrieval tasks, reporting (R@1) on three public datasets:
MSR-VTT [37], DiDeMo [11], and ActivityNet [10]. First, we extract visual and textual features
using pre-trained encoders of the VLMs, which have been aligned within a shared embedding space
through contrastive learning during training. Next, we compute a similarity score, typically using
cosine similarity, between the query and candidate videos for T2V or V2T tasks. Finally, based on
these similarity scores, the videos and texts are ranked, and the most relevant ones are retrieved, with
R@1 indicating the performance of the models in retrieving the top relevant result. The results show
that the features extracted by ViFi-CLIP [23] with Kinetics fine-tuning, have the best generalization
ability on such task for all the datasets.
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Method
TSU Charades

CS(%)
CI DO CU TU Con Average CI DO CU TU Con Average

Video-LLaMA2 [4] 45.8 52.0 59.6 42.8 58.8 51.8 44.4 50.8 50.4 40.6 41.6 45.6
LongVA [41] 32.2 41.2 49.6 33.6 52.2 41.8 37.6 47.0 49.2 35.4 51.8 44.2
Video-LLaVA [15] 37.8 33.8 40.2 40.4 39.6 38.6 38.2 44.4 44.0 37.4 40.2 40.8
Video-Chatgpt [20] 43.0 45.8 41.4 43.0 50.0 45.0 35.8 44.2 41.6 42.2 37.8 40.3
LLAVIDAL [3] 46.0 48.6 42.2 45.8 58.0 48.1 51.8 54.2 44.0 49.2 41.8 48.0

Table 6: Video Description performance using VLLMs. [CI: Correctness, DO: Detail Orientation,
CU: Contextual Understanding, TU: Temporal Understanding, Con: Consistency]

Figure 3: Comparison of VLLMs on Video Description [left] using sample video from Charades and
Action Forecasting Task [Right] using sample video from TSU.

3.3 Video Description

Tab. 6 presents a comparison of Video-Large Language Models (VLLMs) in video description gen-
eration, evaluated using the five metrics introduced in [20]. On the TSU dataset, VideoLLaMA-2
outperforms its counterparts, showcasing its strength in capturing spatio-temporal features. Con-
versely, LLAVIDAL excels on the Charades dataset, largely due to its enhanced ability to comprehend
human-object interactions, which are central to this dataset. No single VLLM consistently outper-
forms across all metrics across datasets, underscoring the necessity of selecting models tailored to the
specific characteristics of the task and data at hand.

3.4 Action Forecasting

In Tab. 5 we report the results of action forecasting on the TSU and LEMMA datasets. We find that
VideoChatGPT [20] and LLAVIDAL [3] excel on TSU due to their respective enhanced temporal
instruction tuning and daily activity instruction tuning. In contrast, on the LEMMA dataset LongVA
performs best, likely due to its ability to analyze frames at a larger scale using a grid-based approach.
This is beneficial for LEMMA where actions consist of object-verb pairs and the size of objects appear
small in the videos. These results highlight the necessity to tailor the architecture and instruction
tuning data of VLMs to the task at hand.

3.5 Zero-shot Action Segmentation

For zero-shot frame-wise action segmentation, one solution is to apply zero-shot action classification
to each individual frame, but this method adds significant complexity to the process and miss the
temporal information. Instead, we utilizing recent Video Question Answering (VQA) approaches
such as TimeChat [25], UniVTG [16],and VTimeLLM [12], which can directly from a query question
predict action boundaries by answering targeted questions about the actions occurring in the video. We
conducted a comparison between these models on the Charades dataset, using event-level Intersection
over Union (IoU) accuracy (see Tab.8), and found that UniVTG[16] outperforms TimeChat and
VTimeLLM in terms of accuracy. To provide a fair comparison with temporal models that use
CLIP-based features, such as PDAN [5] with ViFi-CLIP [23], we convert the action boundaries
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Figure 4: Comparisons of text information using raw action labels, augmented action labels (Aug.)
and full action description (Des.) on PennAction, NTU10 and Smarthome.

Methods TSU Charades
CS(%) CV(%) mAP(%)

TimeChat [25] 2.5 3.4 14.7
UniVTG [16] 2.4 3.2 17.7
VTimeLLM [12] 1.9 2.8 12.3
PDAN w/ ViFi-CLIP [23] 28.6 15.9 16.4

Table 7: Frame-level mAP on TSU and Charades
for comparison of VQA methods with zero-shot
action segmentation.

Methods Charades
R@0.3 R@0.5 R@0.7 mIoU

TimeChat [25] 42.4 23.1 9.4 28.0
VTimeLLM [12] 40.2 20.3 7.8 22.8
UniVTG [16] 55.8 29.2 10.6 31.8

Table 8: R1@IOU on Charades for compar-
ison of VQA methods with zero-shot action
segmentation.

predicted by the VQA models into frame-level predictions and evaluate using mean Average Precision
(mAP). Results in Tab. 7 demonstrate that UniVTG delivers better performance than ViFi-CLIP
on the Charades dataset, even without additional re-training. However, when dealing with more
complex scenarios like the TSU dataset, where multiple actions often overlap within the same video,
all VLLMs struggles to manage these challenges effectively. In such cases, two-stage approaches
utilizing VLMs features remain more robust, underscoring the limitations of VQA-based models in
highly dynamic environments.

3.6 Further Study

In this section, we provide further analysis based on the main results:

Can Augmenting Action Labels Improve Zero-shot Results? Raw action labels often lack the depth
necessary to fully capture video content, which affects vision-language alignment. To address this, we
enhance the labels in two ways: by creating augmented labels and by providing action descriptions,
as shown in Fig.3 in the supplementary. We then re-evaluated zero-shot action classification using the
Smarthome dataset , PennAction dataset, and a subset of NTU-RGB+D60, referred to as NTU-10[17],
which consists of the 10 evaluated actions. The results, detailed in Tab.9 and Fig.4, show that VLMs
respond well to text embedding on NTU-10 and PennAction, with action descriptions improving
text features for zero-shot classification. In contrast, for datasets like Smarthome, where the original
labels are already detailed (e.g., "person eat at the table"), augmenting the labels does not significantly
enhance performance.

Are sampling frames strategies effective on zero-shot Results? Due to the high computation
to process the videos, all the methods resort to sampling only a few frames from each video to
reduce complexity while maintaining relevant visual information. In this section, we evaluate the
impact of different frame sampling methods on the visual encoder performance of Vision-Language
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Methods
Smarthome NTU-10 PennAction

CS(%) CV(%) Top-1(%) Top-1(%)
Label Aug. Des. Label Aug. Des. Label Aug. Des. Label Aug. Des.

CLIP [22] 10.1 9.3 9.1 13.6 13.7 10.2 13.8 15.0 12.8 63.1 60.2 54.4
ViFi-CLIP [23] 19.6 19.9 18.9 15.3 14.6 12.3 33.4 38.2 42.9 87.1 84.5 80.0
LanguageBind [43] 16.9 18.0 12.8 15.1 15.2 15.3 24.1 31.4 33.1 90.4 90.8 75.1

Table 9: Study of zero-shot action classification on Smarthome and NTU-10 with different text
embeddings: original label (Label), augmented label (Aug.), and action description (Des.).

Sampling method
Smarthome PennAction

CS(%) CV(%)
ViFi-CLIP LanguageBind ViFi-CLIP LanguageBind ViFi-CLIP LanguageBind

Random 18.2 16.5 14.5 15.0 86.6 90.2
Uniform 18.9 16.6 14.7 14.9 87.2 90.4
TSN [33] 19.6 17.1 15.3 15.1 87.2 91.0

Table 10: Ablation study on different methods for sampling frames from videos

Models (VLMs). As shown in Tab. 10, we compare the results of three sampling methods: random,
uniform, and TSN (Temporal Segment Network) [33]. Our findings indicate that TSN is the most
effective approach, as it segments the video into a predefined number of equal segments and then
randomly selects a frame from each segment. This method ensures better coverage of the video
content, enhancing the model’s ability to capture temporal dynamics compared to random and uniform
sampling methods.

Is Vision-Language Alignment Impacted by Different Viewpoints and Fine-Grained Labels? In
Tab. 11, we report the results of zero-shot action classification on the EgoExo4D dataset [9], which
provides fine-grained action labels across N different viewpoints (ego, exo1, exo2, exo3, exo4,..etc)
for each video,see Fig 5 in the supplementary.Vision-Language Models (VLMs) [23, 43] struggle with
this type of fine-grained action classification due to the difficulty in distinguishing between similar
action labels, as shown in the first row Tab. 11. To address this, we grouped similar fine-grained
actions into coarse-grained categories using GPT-3.5, as detailed in Fig 4 in the supplementary. This
adjustment led to improved alignment between vision-language representations, particularly in the
ego view, which proved more informative and aligned with the labels, as shown in the second row
Tab. 11. While VLMs still face challenges with fine-grained actions, they show promise as an initial
stage for zero-shot action classification when using coarse-grained action labels.

Methods EgoExo4D
Action type Ego (%) Exo1 (%) Exo2 (%) Exo3 (%) Exo4 (%) Exos (%) Ego+Exos (%)

ViFi-CLIP [23] Fine-grained 4.0 1.8 2.1 2.1 2.0 2.3 2.7
LanguageBind [43] Fine-grained 3.2 2.4 2.2 1.9 1.8 2.0 2.6
ViFi-CLIP [23] coarse-grained 30.2 17.6 19.0 15.7 15.4 21.7 26.3
LanguageBind [43] coarse-grained 27.5 13.2 12.3 11.4 9.0 12.7 14.4

Table 11: Zero-shot action classification on EgoExo4D using Fine-grained and Coarse-grained label
from different viewpoints.

4 Conclusions and Novel Direction

In this study, we evaluat SoTA VLMs and VLLMs on their performance and generalization capabilities
in fine-grained video understanding tasks. From our study, we highlight several key insights: (i)
among the VLMs, ViFi-Clip [23] demonstrates superior performance in most of action classification
and video retrieval tasks with strong transfer ability. (ii) For VLLMs, the LLAVIDal [3], LonVA [41]
and Video-LLaMA2 [4] respectively achieve the highest accuracy on particular datasets for action
forecasting and video description. They show the power of LLMs in more complex video-based
tasks. (iii) Several limitations of the foundation models still remain, such as long-term temporal
modeling, multi-modal learning, and the ability to handle fine-grained activities in complex, real-
world scenarios, e.g., Smarthome, UAV-Human, TSU and Charades, require further improvement.
Based on our findings, we suggest that future research would focus on improving temporal modeling,
where more advanced architectures that can better capture long-term dependencies and compositional
actions in untrimmed videos. Moreover, multi-modal pre-training (e.g., with audio [24], optical
flow [30] and human motion [39]) will enhance the ability of models to generalize to a wider range
of video understanding tasks.
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