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ABSTRACT

Neural Collapse (NC) is a geometric structure recently observed in the final layer
of neural network classifiers. In this paper, we investigate the interrelationships
between batch normalization (BN), weight decay, and proximity to the NC struc-
ture. Our work investigates the geometrically intuitive intra-class and inter-class
cosine similarity measure, which encapsulates multiple core aspects of NC. Lever-
aging this measure, we establish theoretical guarantees for the emergence of NC
under the influence of last-layer BN and weight decay, specifically in scenarios
where the regularized cross-entropy loss is near-optimal. Experimental evidence
substantiates our theoretical findings, revealing a pronounced occurrence of NC in
models incorporating BN and appropriate weight-decay values. This combination
of theoretical and empirical insights suggests a greatly influential role of BN and
weight decay in the emergence of NC.

1 INTRODUCTION

Over the past decade, deep learning and neural networks have revolutionized the field of machine
learning and artificial intelligence, enabling machines to perform complex tasks previously thought to
be beyond their capabilities. However, despite tremendous empirical advances, a comprehensive the-
oretical and mathematical understanding of the success behind neural networks, even for the simplest
types, is still unsatisfactory. Analyzing Neural Networks using traditional statistical learning theory
has encountered significant difficulties due to the high level of non-convexity, over-parameterization,
and optimization-dependent properties.

Papyan et al. (2020) recently empirically observed an elegant mathematical structure in multi-
ple successful neural network-based visual classifiers and named the phenomenon “Neural Col-
lapse" (abbreviated NC in this work). Specifically, NC is a geometric structure of the learned
last-layer/penultimate-layer feature and weights at the terminal phase of deep neural network train-
ing. Neural Collapse states that after sufficient training of successful neural networks: NC1) The
intra-class variability of the last-layer feature vectors tends to zero (Variability Collapse); NC2) The
mean class feature vectors become equal-norm and forms a Simplex Equiangular Tight Frame (ETF)
around the center up to re-scaling.; (Convergence to Simplex ETF) NC3) The last layer weight vectors
converge to match the feature class means up to re-scaling (Self-Duality); NC4) The last layer of the
network behaves the same as a “Nearest Class Center" decision rule (Convergence to NCC)

Notably, an Equiangular Tight Frame (ETF) is a set of vectors in a high-dimensional space that are
evenly spaced from each other, such that they form equal angles with one another and are optimally
arranged for maximal separability. In our context of NC, a simplex Equiangular Tight Frame in
Euclidean space is defined as follows:

Definition 1.1 (Simplex ETF, Papyan et al. (2020)). A simplex ETF is a collection of C points in Rd

specified by the columns of

M⋆ = αU

(
IC − 1

C
1C1

⊤
C

)
.

where α ∈ R+ and U ∈ Rd×C is a partially orthogonal matrix (U⊤U = I).
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Figure 1: Visualization of NC (Papyan et al. (2020)). We use an example of three classes and denote
the last-layer features hc,i, mean class features h̃c, and last-layer class weight vectors wc,i. Circles
denote individual last-layer features, while compound and filled arrows denote class weight and mean
feature vectors, respectively. As training progresses, the last-layer features of each class collapse to
their corresponding class means (NC1), different class means converge to the vertices of the simplex
ETF (NC2), and the class weight vector of the last-layer linear classifier approaches the corresponding
class means (NC3).

These observations of Neural Collapse reveal compelling insights into the symmetry and mathematical
preferences of over-parameterized neural network classifiers. Intuitively, the last-layer features acquire
the most suitable geometric feature representation for their specific classification task that maximizes
inter-class separation while simultaneously discarding information about variations within individual
classes. Subsequently, further work has demonstrated that Neural Collapse may play a significant
role in the generalization, transfer learning (Galanti et al. (2022b)), depth minimization (Galanti
et al. (2022a)), and implicit bias of neural networks (Poggio & Liao (2020)). Additionally, insights
provided by Neural Collapse have been a powerful tool in exploring the intermediate layers of neural
network classifiers and representations learned by self-supervised learning models.( Ben-Shaul et al.
(2023); Ben-Shaul & Dekel (2022))

1.1 OUR CONTRIBUTIONS

In this paper, we theoretically and empirically investigate the question:

What is a minimal set of conditions that would guarantee the emergence of NC?

Our results show that batch normalization, large weight decay, and near-optimal cross-entropy loss
are sufficient conditions for several core properties of NC and NC is most significant when all these
conditions are satisfied. Specifically, we provide the following contributions:

• We quantitatively investigate the intra-class and inter-class cosine similarity measure, a
simple and geometrically intuitive quantity that measures the proximity of a set of feature
vectors to several core structural properties of NC. (Section 2.2)

• Under the cosine similarity measure, we show a theoretical guarantee of the proximity
to NC for any neural network classifier without bias terms with near-optimal regularized
cross-entropy loss, batch-normalized last-layer feature vectors, and last-layer weight decay.
(Theorem 2.2)

• Our empirical evidence shows that NC is most significant with both batch normalization
and high weight decay values under the cosine similarity measure. (Section 3)

Combining our theoretical and empirical results, we conclude that batch normalization along with
weight decay may be greatly influential conditions for the emergence of NC.

1.2 RELATED THEORETICAL WORKS ON THE EMERGENCE OF NEURAL COLLAPSE

The empirical NC phenomenon has inspired a recent line of work to theoretically investigate its
emergence under different settings. Several studies have focused on the unconstrained features model
or layer-peeled model, first introduced by Mixon et al. (2020), where the last layer features are
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treated as free optimization variables. Such simplification is based on the observation that most
modern neural networks are highly over-parameterized and are capable of learning any feature
representations. Following this model, several works have demonstrated that solutions satisfying
Neural Collapse are the only global optimizers under both CE (Ji et al. (2022); Zhu et al. (2021);
Lu & Steinerberger (2022)) and MSE loss (Han et al. (2022); Zhou et al. (2022)) under different
settings such as regularization and normalization. Recent works have also focused on analyzing the
unconstrained features model’s gradient dynamics and optimization landscape (Mixon et al. (2020);
Zhu et al. (2021); Ji et al. (2022); Han et al. (2022); Yaras et al. (2022)). Collectively, these works
establish that, under both CE and MSE loss, the unconstrained features model has a benign global
optimization landscape where every local minima solution satisfies the Neural Collapse structure
and other critical points are strict saddle points with negative curvature. Furthermore, following
the gradient flow or first-order optimization method would lead to solutions satisfying the Neural
Collapse structure. Although works have been done in an idealized setting where gradient-based
optimization is performed directly on the last layer features, it should be noted that this assumption
is unrealistic. Optimizing the weights in earlier layers can have a significantly different effect from
directly optimizing the last-layer features, even in over-parameterized networks. Besides the layer-
peeled model, Poggio & Liao (2020) have demonstrated the Neural Collapse structure for binary
classification when each individual sample achieves zero gradients with MSE loss, while Tirer &
Bruna (2022) and Súkeník et al. (2023) extends the analysis under MSE loss to deeper models.

For a table comparing the model and contributions of prior work theoretically investigating the
emergence of NC, see Appendix section C.

Our Work: NC Proximity Under Near-optimal Loss Building on the layer-peeled model from
prior research, our theoretical approach offers a unique perspective, focusing on the near-optimal
regime and avoiding less realistic assumptions of achieving exact optimal loss and directly optimizing
the last-layer feature vectors. Our approach provides further insights into NC in realistic neural
network training as 1) the near-optimal regime is often more reflective of the realities of neural
network training, with the theoretical optimal loss often being unattainable in practice; 2) in contrast
to landscape or gradient flow analyses on the layer-peeled model, our findings are optimization-
agnostic and applicable in practical scenarios where direct optimization of the last-layer features
is unfeasible; 3) our emphasis on measuring the proximity to NC, rather than achieving exact NC,
unveils additional insights, especially in instances where exact NC is unattainable.

2 THEORETICAL RESULTS

2.1 PROBLEM SETUP AND NOTATIONS

Neural Network with Cross-Entropy Loss. In this work, we consider neural network classifiers
without bias terms trained using cross-entropy loss functions on a balanced dataset. A vanilla deep
neural network classifier is composed of a feature representation function ϕθ(x) and a linear classifier
parameterized by W. Specifically, a L-layer vanilla deep neural network can be mathematically
formulated as:

f(x;θ) = W (L)︸ ︷︷ ︸
Last layer weight W = W(L)

BN
(
σ
(
W (L−1) · · ·σ

(
W (1)x+ b(1)

)
+ · · ·+ b(L−1)

))
︸ ︷︷ ︸

last-layer feature h=ϕθ(x)

.

Each layer is composed of an affine transformation parameterized by weight matrix W (l) and bias
v(l) followed by a non-linear activation σ which may contain element-wise transformation such as
ReLU(x) = max{x, 0} as well as normalization techniques such as batch normalization.

The network is trained by minimizing the empirical risk over all samples {(xc,i,yc)} , c ∈ [C], i ∈
[N ] where each class contains N samples and yc is the one-hot encoded label vector for class c. We
also denote hc,i = ϕθ(xc,i) as the last-layer feature corresponding to xc,i. The training process
minimizes the average cross-entropy loss

L =
1

CN

C∑
c=1

N∑
i=1

LCE (f(xc,i;θ),yc) =
1

CN

C∑
c=1

N∑
i=1

LCE (Whc,i,yc) ,
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where the cross entropy loss function for a one-hot encoding yc is:

LCE(z,yc) = − log

(
exp(zc)∑C

c′=1 exp(z
′
c)

)
.

Batch Normalization and Weight Decay. For a given batch of vectors v1,v2, · · ·vb ⊂ Rd, let
v(k) denote the k’th element of v. Batch Normalization (BN) developed by Ioffe & Szegedy (2015)
performs the following operation along each dimension k ∈ [d]:

BN(vi)
(k) =

v
(k)
i − µ(k)

σ(k)
× γ(k) + b(k).

Where µ(k) and (σ(k))2 are the mean and variance along the k’th dimension of all the vectors in the
batch. The vectors γ and b are trainable parameters that represent the desired variance and mean
after BN. BN has been empirically demonstrated to facilitate convergence and generalization and is
adopted in many popular network architectures. In our work, we consider BN layers without bias (i.e.
b = 0)

Weight decay is a technique in deep learning training that facilitates generalization by penalizing large
weight vectors. Specifically, the Frobenius norm of each weight matrix W (l) and batch normalization
weight vector γ(l) is added as a penalty term to the final cross-entropy loss. Thus, the final loss
function with weight decay parameter λ is

Lreg = L+
λ

2

L∑
l=1

(∥γ(l)∥2 + ∥W(l)∥2F ),

where γ(l) = 0 for layers without batch normalization. In our theoretical analysis, we consider the
simplified layer-peeled model that only applies weight decay on the network’s final linear and batch
normalization layer. Under this setting, the final regularized loss is:

Lreg = L+
λ

2
(∥γ∥2 + ∥W∥2F ),

where W is the last layer weight matrix and γ = γ(L−1) is the weight of the batch normalization
layer before the final linear transformation.

2.2 COSINE SIMILARITY MEASURE OF NEURAL COLLAPSE

Numerous measures of NC have been used in past literature, including within-class covariance
(Papyan et al. (2020)), signal-to-noise (SNR) ratio (Han et al. (2022)), as well as class distance
normalized variance (CDNV, Galanti et al. (2022b)). While these measures all indicate the emergence
of NC when the measured value approaches zero and provides convergence guarantees to Neural
Collapse, they do not provide a geometrically straightforward and intuitive measure of how close a
given structure is to NC when the values are non-zero.

In this work, we investigate the cosine similarity measure as a measure (Kornblith et al. (2020))
of NC, which focuses on simplicity and geometric interpretability at the cost of discarding norm
information. We note that cosine similarity is also widely used as a measure of similarity between
features of different samples in both practical feature learning and machine learning theory, which
makes our results more relevant in these fields.

For a given class c, the average intra-class cosine similarity for class c is defined as the average cosine
similarity of picking two feature vectors in the class after centering with respect to the global mean
feature vector h̃G:

intrac =
1

N2

N∑
i=1

N∑
j=1

cos∠(hc,i − h̃G,hc,j − h̃G),

where
cos∠(x,y) =

x⊺y

∥x∥ · ∥y∥
.

4



is the vector cosine similarity measure. Similarity, the inter-class cosine similarity between two
classes c, c′ is defined as the average cosine similarity of picking one feature vector of class c and
another from class c′:

interc,c′ =
1

N2

N∑
i=1

N∑
j=1

cos∠(hc,i − h̃G,hc′,j − h̃G)

We note that since the final layer is a batch normalization layer without the bias term, the global mean
is guaranteed to be zero, and thus the global mean can be discarded. In the remainder of this work we
ignore the h̃G) unless otherwise stated.

Relationship with NC While cosine-similarity does not measure the degree of norm equality, it
can describe necessary conditions for the core observations of NC as follows:

(NC1) (Variability Collapse) NC1 implies that all features in the same class collapse to the class
mean and have the same vector value. Therefore, all features in the same class must be in
the same direction and achieve an intra-class cosine similarity intrac = 1.

(NC2) (Convergence to Simplex ETF) NC2 implies that class means converge to the vertices of
a simplex ETF. Combined with NC1, this implies that the angle between every pair of
features from different classes must be − 1

C−1 (a property of the simplex ETF over C
points). Therefore, the inter-class cosine similarity between each pair of classes must be
interc,c′ = − 1

C−1

With the above problem formulation, we now present our main theorems for NC in neural network
classifiers with near-optimal training cross-entropy loss. Before presenting our core theoretical result
on batch normalization and weight decay, we first present a more general preliminary theorem that
provides theoretical bounds for the intra-class and inter-class cosine similarity for any classifier with
near-optimal (unregularized) average cross-entropy loss.

2.3 MAIN RESULTS

Our first theorem states that if the average last-layer feature norm and the last-layer weight matrix
norm are both bounded, then achieving near-optimal loss implies that most classes have intra-class
cosine similarity near one and most pairs of classes have inter-class cosine similarity near − 1

C−1 .
The non-asymptotic version of the theorems and similar results for NC3 under the cosine similarity
measure is in the appendix.

Theorem 2.1 (NC proximity guarantee with bounded norms). For any neural network classifier
without bias terms trained on a dataset with the number of classes C ≥ 3 and samples per class
N ≥ 1, and the last layer feature dimension d ≥ C, under the following assumptions:

1. The quadratic average of the last-layer feature norms
√

1
CN

∑C
c=1

∑N
i=1 ∥hc,i∥2 ≤ α

2. The Frobenius norm of the last-layer weight ∥W∥F ≤
√
Cβ

3. The average cross-entropy loss over all samples L ≤ m+ ϵ for small ϵ > 0

where m = log(1 + (C − 1) exp(− C
C−1αβ)) is the minimum achievable loss for any set of weight

and feature vectors satisfying the norm constraints, then for at least 1 − δ fraction of all classes ,
with ϵ

δ ≪ 1, there is

intrac ≥ 1−O

(
eO(Cαβ)

αβ

√
ϵ

δ

)
,

and for at least 1− δ fraction of all pairs of classes c, c′, with ϵ
δ ≪ 1, there is

interc,c′ ≤ − 1

C − 1
+O

(
eO(Cαβ)

αβ
(
ϵ

δ
)1/6

)
.
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Remarks.

• We only consider the near-optimal regime where ϵ ≪ 1. However, a near-optimal cross-
entropy training loss is demonstrated in most successful neural network classifiers exhibiting
NC, including all the original experiments by Papyan et al. (2020), at the terminal phase of
training.

• Since eO(Cαβ)

αβ is a mostly increasing function of αβ, lower last-layer feature and weight
norms can provide stronger guarantees on Neural Collapse measured using cosine similarity.

Proof Sketch of Theorem 2.1. Our proof is inspired by the optimal-case proof of Lu & Steinerberger
(2022), which shows the global optimality conditions using Jensen’s inequality. Our core lemma
shows that if a set of variables achieves roughly equal value on the LHS and RHS of Jensen’s
inequality for a strongly convex function (such as exp(x)), then the mean of every subset cannot
deviate too far from the global mean:

Lemma 2.1 (Subset mean close to global mean by Jensen’s inequality on strongly convex functions).
Let {xi}Ni=1 ⊂ I be a set of N real numbers, let x̃ = 1

N

∑N
i=1 xi be the mean over all xi and f be a

function that is m-strongly-convex on I. If

1

N

N∑
i=1

f(xi) ≤ f(x̃) + ϵ,

i.e., Jensen’s inequality is satisfied with gap ϵ, then for any subset of samples S ⊆ [N ], let δ = |S|
N ,

there is

x̃+

√
2ϵ(1− δ)

mδ
≥ 1

|S|
∑
i∈S

xi ≥ x̃−
√

2ϵ(1− δ)

mδ
.

This lemma can serve as a general tool to convert optimal-case conditions derived using Jensen’s
inequality into high-probability proximity bounds under near-optimal conditions.

Using the strong convexity of exp(x) and log(1 + (C − 1) exp(x)) along with Lemma 2.1 and the
optimal case proof of Lu & Steinerberger (2022), we show that most classes c much have high
same-class weight-feature vector cosine similarity, and most pairs of classes c, c′ have inter-class
weight-feature vector cosine similarity. This upper and lower bound is then used to lower bound
∥˜̄hc∥ and upper bound ⟨˜̄hc,

˜̄hc′⟩ where

˜̄hc =
1

N

N∑
i=1

hc,i

∥hc,i∥

is the mean normalized feature vector of class c. The intra-class and inter-class cosine similarity
follows immediately from these results.

Our preliminary theorem above shows that lower values of the average feature norm and weight
Frobenius norm of the final layer provide stronger guarantees of the proximity to NC. Note that
weight decay is used to regularize the norms of weight matrices and weight vectors. Therefore, higher
weight decay values should result in smaller weight matrix and weight vector norms. Our following
proposition shows that regularizing the weight vector of a batch normalization layer without the bias
term is equivalent to regularizing the quadratic average of the feature norms of its output vectors:

Proposition 2.1 (BN normalizes quadratic average of feature norms). Let {hi}Bi=1 be a set of Batch
Normalized feature vectors with variance vector γ and bias term β = 0 (i.e. hi = BN(xi) for some
{xi}Bi=1). Then √√√√ 1

N

N∑
i=1

∥hi∥22 = ∥γ∥2.
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Therefore, regularizing the batch normalization variance vector is effectively equivalent to regularizing
the quadratic average of the feature norms. Intuitively, under the same other conditions, a higher
regularization coefficient in the training loss function should result in lower values of the regularized
parameters. Therefore, a higher weight decay value (i.e., regularization coefficient of the weight
matrices and variance vectors) should result in a lower weight norm and last-layer feature norm and a
tighter bound in Theorem 2.1. This intuition is formalized in the following main theorem:
Theorem 2.2 (NC proximity guarantee with layer-peeled BN and WD). For a neural network
classifier without bias terms trained on a dataset with the number of classes C ≥ 3 and samples per
class N ≥ 1, and the last layer feature dimension d ≥ C, under the following assumptions:

1. The network contains a batch normalization layer without bias term before the final layer
with trainable weight vector γ;

2. The layer-peeled regularized cross-entropy loss with weight decay λ

Lreg =
1

CN

C∑
c=1

N∑
i=1

LCE (Whc,i,yc) +
λ

2
(∥γ∥2 + ∥W∥2F )

satisfies Lreg ≤ mreg + ϵ for small ϵ; where mreg is the minimum achievable regularized
loss

then for at least 1− δ fraction of all classes , with ϵ
δ ≪ 1, there is

intrac ≥ 1−O

(
(C/λ)O(C)

√
ϵ

δ

)
,

and for at least 1− δ fraction of all pairs of classes c, c′, with ϵ
δ ≪ 1, there is

interc,c′ ≤ − 1

C − 1
+O

(
(C/λ)O(C)(

ϵ

δ
)1/6

)
.

Since eO(C/λ) is an decreasing function of λ, higher values of λ would result in smaller values of
both O(eO(C/λ)( ϵδ )

1/6) and O(eO(C/λ)
√

ϵ
δ ). As such, under the presence of batch normalization

and weight decay of the final layer, larger values of weight decay provide stronger NC guarantees in
the sense that the intra-class cosine similarity of most classes is nearer to 1 and the inter-class cosine
similarity of most pairs of classes is nearer to − 1

C−1

2.4 CONCLUSION

Our theoretical result shows that last-layer BN, last-layer weight decay, and near-optimal average
cross-entropy loss are sufficient conditions to guarantee proximity to the NC structure as measured
using cosine similarity, regardless of the training method and earlier layer structure. Moreover, such
a guarantee is optimization-independent

3 EMPIRICAL RESULTS

In this chapter, we present empirical evidence on the importance of batch normalization and weight
decay on the emergence of Neural Collapse. Specifically, we compare the emergence of Neural
Collapse in terms of the minimum intra-class cosine similarity over all classes and maximum inter-
class cosine similarity over all pairs of classes. Our experiments show that models with batch
normalization and appropriate weight decay achieve the highest levels of NC measured using
cosine similarity, which supports the predictions of Theorem 2.2.

3.1 EXPERIMENTS WITH SYNTHETIC DATASETS

Our first set of experiments considers the simple setting of using a vanilla neural network (i.e., Multi-
Layer Perceptron) to classify a well-defined synthetic dataset of different separation complexities.
We aim to use straightforward model architectures and well-defined datasets of different complexities
to explore the effect of different hyperparameters in NC under a controlled setting.
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For datasets, we consider two different datasets of increasing classification difficulty: 1) The 4-class
conic hull dataset, where two intersecting hyperplanes separate the input space into four classes;
2) the MLP3 dataset, where class labels are generated by the predicted labels of a 3-layer Neural
Network with randomly generated weights. In the appendix, we also provide results for MLP6 and
MLP9 datasets, created in a similar manner but for 6 and 9-layer neural networks.

The models used in the experiments are 4-layer and 6-layer multi-layer perception (MLP) models
with ReLU activation. We compare models with and without batch normalization, where the batch-
normalized models have batch-normalization layers between every adjacent linear layer. We train
each model on the same synthetic dataset with 8000 training samples over 15 weight decay values
ranging from 0.0001 to 0.1. For each experiment, we record the average and minimum intra-class
cosine similarity among all classes and the average and maximum inter-class cosine similarity among
all pairs of classes as defined in section 2.2. Each model is trained for 300 epochs using the Adam
optimizer.

Figure 2: Minimum intra-class and maximum inter-class Cosine Similarity for 4-layer and 6-layer
MLP under Different WD and BN. Higher values of intra-class and lower values of inter-class cosine
similarity imply a higher degree of Neural Collapse. Both the average and worst measures over
classes are presented. Error bars refer to the standard deviation over five different experiments.

3.2 EXPERIMENT WITH REAL-WORLD DATASETS

Our next set of experiments explores the effect of Batch Normalization and Weight Decay using
standard computer vision datasets MNIST (LeCun et al. (2010)) and CIFAR-10 (Krizhevsky (2009)).
Specifically, we explore the difference in the degree of Neural Collapse between convolutional neural
network architectures with and without Batch Normalization across different weight decay parameters.
Notably, we compare the results of 2 different implementations of the VGG11 and VGG19 (Simonyan
& Zisserman (2015)) convolutional neural network, one of which applies batch normalization after
each convolution layer. Results are presented in Figure 3

3.3 CONCLUSION

Our experiments show that, in both synthetic and realistic scenarios, the highest level of NC is
achieved by models with BN and appropriate weight decay. Moreover, BN allows the degree of NC
to increase smoothly along with the increase of weight decay within the range of perfect interpolation,
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Figure 3: Intra-class and Inter-class Cosine Similarity for VGG11 and VGG19 under Different
WD and BN. Higher intra-class and lower inter-class cosine similarity indicate a higher degree of
NC. Both the average measures over all classes and the worst class are presented. We note that
the relationship between inter-class cosine similarity and weight decay is less pronounced in VGG
models and does not increase or decrease significantly.

while the degree of NC is unstable or decreases with the increase of weight decay in non-BN models.
Such a phenomenon is also more pronounced in simpler neural networks and easier classification
tasks than in realistic classification tasks.

4 LIMITATIONS AND FUTURE WORK

Our theoretical exploration into deep neural network phenomena, specifically NC, has its limitations
and offers various avenues for further work. Based on our work, we have identified several directions
for future efforts:

• Our work, like previous studies employing the layer-peeled model, primarily focuses on the
last-layer features and posits that BN and weight decay are only applied to the penultimate
layer. However, NC has been empirically observed in deeper network layers (Ben-Shaul &
Dekel (2022); Galanti et al. (2022a)) and shown to be optimal for regularized MSE loss in
deeper unconstrained features models (Tirer & Bruna (2022); Súkeník et al. (2023)). An
insightful future direction would involve investigating how the proximity bounds to NC can
be generalized to deeper layers of neural networks and understanding how these theoretical
guarantees evolve with network depth.

• The theoretical model we have developed is idealized, omitting several intricate details
inherent to practical neural networks. These include bias in linear layers and BN layers,
and the sequence of BN and activation layers. Consequently, a worthwhile avenue for
future research would be to refine the NC proximity bounds to accommodate more realistic
network settings.

Reproducibility Statement The proofs for all the theorems, lemmas, and propositions are included
in the appendix. The assumptions for the theorems are clearly stated and can be fully interpreted with
notations in Sections 2.1 and 2.2. For experimental results, all codes for experiments, raw data, and
data visualization are included in the supplemental materials.
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A PROOFS

A.1 PROOF OF PROPOSITION 2.1

Proposition 2.1. Let {hi}Ni=1 be a set of feature vectors immediately after Batch Normalization with
variance vector γ and bias term β = 0 (i.e. hi = BN(xi) for some {xi}Ni=1). Then√√√√ 1

N

N∑
i=1

∥hi∥22 = ∥γ∥2

Proof. Let γ be the variance vector for the Batch Normalization layer, and consider a single batch
{xi}Bi=1 be a batch of B vectors, and

h
(k)
i =

x
(k)
i − x̃(k)

σ(k)
× γ(k)

for all B. By the linearity of mean and standard deviation, x̂(k)
i =

x
(k)
i −x̃(k)

σ
(k)
x

must have mean 0 and

standard deviation 1. As a result,
∑B

i=1 x̂
(k)
i = 0 and 1

B

∑B
i=1(x̂

(k)
i )2 = 1. Therefore,

B∑
i=1

(h
(k)
i )2 =

B∑
i=1

γ(k)(x̂
(k)
i )2 = B(γ(k))2

, and
B∑
i=1

∥hi∥2 =

d∑
k=1

B∑
i=1

(h
(k)
i )2 =

d∑
k=1

B∑
i=1

γ(k)(x̂
(k)
i )2 =

d∑
k=1

B(γ(k))2 = B∥γ∥2

.

Now, Consider a set of N vectors divided into m batches of size {Bj}mj=1. (This accounts for the
fact that during training, the last mini-batch may have a different size than the other mini-batches if
the number of training data is not a multiple of B). Then,

N∑
i=1

∥hi∥2 =

m∑
j=1

Bj∑
i=1

∥hj,i∥2 =

m∑
j=1

Bj∥γ∥2 = N∥γ∥2

Therefore,
√

1
N

∑N
i=1 ∥hi∥2 = ∥γ∥

A.2 PROOF OF LEMMA 2.1

Lemma 2.1. Let {xi}Ni=1 ⊂ I be a set of N real numbers, let x̃ = 1
N

∑N
i=1 xi be the mean over all

xi and f be a function that is m-strongly-convex on I. If

1

N

N∑
i=1

f(xi) ≤ f(x̃) + ϵ

Then for any subset of samples S ⊆ [N ], let δ = |S|
N , there is

x̃+

√
2ϵ(1− δ)

mδ
≥ 1

|S|
∑
i∈S

xi ≥ x̃−
√

2ϵ(1− δ)

mδ

Proof. For the proof, we use a result from Merentes & Nikodem (2010) which bounds the Jensen
inequality gap using the variance of the variables for strongly convex functions:
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Lemma A.1 (Theorem 4 from Merentes & Nikodem (2010)). If f : I → R is strongly convex with
modulus c, then

f

(
n∑

i=1

tixi

)
≤

n∑
i=1

tif(xi)− c

n∑
i=1

ti(xi − x̄)2

for all x1, . . . , xn ∈ I , t1, . . . , tn > 0 with t1 + · · ·+ tn = 1 and x̄ = t1x1 + · · ·+ tnxn

In the original definition of the authors, a strongly convex function with modulus c is equivalent to a
2c-strongly-convex function. We can apply ti =

1
N for all i and substitute the definition for strong

convexity measure to obtain the following corollary:

Corollary A.1. If f : I → R is m-strongly-convex on I, and

1

N

N∑
i=1

f(xi) = f

(
1

N

N∑
i=1

xi

)
+ ϵ

for x1, . . . , xN ∈ I, then 1
N

∑
i(xi − x̄)2 ≤ 2ϵ

m

From A.1, we know that 1
N

∑n
i=1(xi − x̃)2 ≤ 2ϵ

m . Let D =
∑

i∈S(xi − x̃), by the convexity of x2,
there is

n∑
i=1

(xi − x̃)2 =
∑
i∈S

(xi − x̃)2 +
∑
i/∈S

(xi − x̃)2

≥ |S|( 1

|S|
∑
i∈S

(xi − x̃))2 + (N − |S|)( 1

N − |S|
∑
i/∈S

(xi − x̃))2

=
1

S
(
∑
i∈S

(xi − x̃))2 +
1

N − |S|
(
∑
i/∈S

(xi − x̃))2

=
1

S
D2 +

1

N − |S|
(−D)2

=
D2

N
(
1

δ
+

1

1− δ
)

=
D2

N
(

1

δ(1− δ)
)

Therefore D2

N ( 1
δ(1−δ) ) ≤

2ϵN
m , and |D| ≤

√
2ϵδ(1−δ)N2

λ . Using 1
|S|
∑

i∈S xi =
1
|S| (|S|x̃+D) and

|S| = δN completes the proof.

A.3 PROOF OF THEOREM 2.1

Note that compared to the theorem in the main text, this theorem includes the non-asymptotic
representation and the corresponding result for NC3.
Theorem 2.1. For any neural network classifier without bias terms trained on dataset with the
number of classes C ≥ 3 and samples per class N ≥ 1, under the following assumptions:

1. The quadratic average of the feature norms
√

1
CN

∑C
c=1

∑N
i=1 ∥hc,i∥2 ≤ α

2. The Frobenius norm of the last-layer weight ∥W∥F ≤
√
Cβ

3. The average cross-entropy loss over all samples L ≤ m+ ϵ for small ϵ

where m = log(1 + (C − 1) exp(− C
C−1αβ)) is the minimum achievable loss for any set of weight

and feature vectors satisfying the norm constraints, then for at least 1 − δ fraction of all classes ,
with ϵ

δ ≪ 1, for small constant κ > 0 there is

intrac ≥ 1− C − 1

Cαβ

√
128ϵ(1− δ) exp(κCαβ)

δ
= 1−O(

eO(Cαβ)

αβ

√
ϵ

δ
),
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and also for a cosine similarity representation of NC3 in Papyan et al. (2020):

cos∠(ẇc, h̃c) ≥ 1− 2

√
2ϵ(1− δ)eκCαβ

δ
= 1−O(eO(Cαβ)

√
ϵ

δ
),

and for at least 1− δ fraction of all pairs of classes c, c′, with ϵ
δ ≪ 1, there is

interc,c′ ≤ − 1

C − 1
+

C

C − 1

exp(κCαβ)

αβ

√
2ϵ

δ
+ 4(

2 exp(κCαβ)

αβ

√
2ϵ

δ
)1/3 +

√
exp(κCαβ)

αβ

√
2ϵ

δ

= − 1

C − 1
+O(

eO(Cαβ)

αβ
(
ϵ

δ
)1/6)

We first present several lemmas that facilitate the proof technique used in the main proof. The first
two lemmas demonstrate that if a set of variables achieves roughly equal value on the LHS and RHS
of Jensen’s inequality for a strongly convex function, then the mean of every subset cannot deviate
too far from the global mean.

Our first lemma states that, For λ-strongly-convex-function f and a set of numbers {xi}Ni=1, if
Jensen’s inequality has its gap bounded by ϵ, then the mean of any subset that includes δ fraction of

all samples can not deviate from global mean of all samples by more than
√

2ϵ(1−δ)
λδ :

Our second lemma states a similar result specific to the function ex and only provides the upper
bound. Note that, within any predefined range [a, b], exp(x) can only be guaranteed to be ea strongly
convex, which may be bad if the lower bound a is small or does not exist. Our further result in
the following lemma shows that we can provide a better upper bound of the subset mean for the
exponential function that is dependent on exp(x̃) and does not require other prior knowledge of the
range of xi:

Lemma A.2. Let {xi}Ni=1 ⊂ R be any set of N real numbers, let x̃ = 1
N

∑N
i=1 xi be the mean over

all xi. If

1

N

N∑
i=1

exp(xi) ≤ exp(x̃) + ϵ

then for any subset S ⊆ [N ], let δ = |S|
N , the there is

1

|S|
∑
i∈S

xi ≤ x̃+

√
2ϵ

δ exp(x̃)
.

Proof. Let D =
∑

i∈S(xi − x̃). Note that if D < 0 then the upper bound is obviously satisfied since
the subset mean will be smaller than the global mean. Therefore, we only consider the case when
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D > 0

N∑
i=1

exp(xi) =
∑
i∈S

exp(xi) +
∑
i/∈S

exp(xi)

≥ |S| exp( 1

|S|
∑
i∈S

xi) + (N − |S|) exp( 1

N − |S|
∑
i/∈S

xi)

≥ |S| exp(x̃+
D

|S|
) + (N − |S|) exp(x̃− D

N − |S|
)

≥ |S| exp(x̃)(1 + D

|S|
+

D2

2|S|2
) + (N − |S|) exp(x̃)(1− D

N − |S|
)

= (N +
D2

2|S|
) exp(x̃)

N exp(x̃) +Nϵ ≥ (N +
D2

2|S|
) exp(x̃)

D2 ≤ 2|S|Nϵ

exp(x̃)

D ≤ N

√
2δϵ

exp(x̃)

Using 1
|S|
∑

i∈S xi =
1
|S| (|S|x̃+D) and |S| = δN completes the proof.

Directly approaching the average intra-class and inter-class cosine similarity of vector set(s) is
a relatively difficult task. Our following lemma shows that the inter-class and inter-class cosine
similarities can be computed as the norm and dot product of the vectors ˜̄hc, respectively, where ˜̄hc is
the mean normalized vector among all vectors in a class.

Lemma A.3. Let c, c′ be 2 classes, each containing N feature vectors hc,i ∈ Rd. Define the average
intra-class cosine similarity of picking two vectors from the same class c as

intrac =
1

N2

N∑
i=1

N∑
j=1

cos∠(hc,i,hc,j)

and the intra-class cosine similarity between two classes c, c′ is defined as the average cosine
similarity of picking one feature vector of class c and another from class c′ as

inter c =
1

N2

N∑
i=1

N∑
j=1

cos∠(hc,i,hc′,j)

Let ˜̄hc =
1
N

∑N
i=1

hc,i

∥hc,i∥ . Then intrac = ∥˜̄hc∥2 and inter c,c′ =
˜̄hc · ˜̄hc′
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Proof. For the intra-class cosine similarity,

intrac =
1

N2

N∑
i=1

N∑
j=1

h̄c,i · h̄c,j

=
1

N2

N∑
i=1

N∑
j=1

hc,i

∥hc,i∥
· hc,j

∥hc,j∥

=
1

N2

N∑
i=1

N∑
j=1

hc,i · hc,j

∥hc,i∥∥hc,j∥

=

(
1

N

N∑
i=1

hc,i

∥hc,i∥

)
·

 1

N

N∑
j=1

hc,j

∥hc,j∥


= ∥˜̄hc∥2

and for the inter-class cosine similarity,

inter c,c′ =
1

N2

N∑
i=1

N∑
j=1

h̄c,i · h̄c′,j

=
1

N2

N∑
i=1

N∑
j=1

hc,i

∥hc,i∥
· hc′,j

∥hc′,j∥

=
1

N2

N∑
i=1

N∑
j=1

hc,i · hc′,j

∥hc,i∥∥hc′,j∥

=

(
1

N

N∑
i=1

hc,i

∥hc,i∥

)
·

 1

N

N∑
j=1

hc′,j

∥hc′,j∥


= ˜̄hc · ˜̄hc′

We prove the intra-class cosine similarity by first showing that the norm of the mean (un-
normalized) class-feature vector for a class is near the quadratic average of feature means (i.e.,

∥h̃c∥ = ∥ 1
N

∑N
i=1 hc,i∥ ≈

√
1
N

∑N
i=1 ∥hc,i∥2). However, to show intra-class cosine similarity,

we need instead a bound on ∥˜̄hc∥ = ∥ 1
N

∑N
i=1 h̄c,i∥. The following lemma provides a conversion

between these requirements:
Lemma A.4. Suppose u ∈ Rd and ∥u∥ ≤ β. Let {vi}Ni=1 ⊂ Rd such that 1

N ∥vi∥2 ≤ α2. If

1

N

N∑
i=1

⟨u,vi⟩ ≥ c,

for αβ√
2
≤ c ≤ αβ and let v̄ = v

∥v∥ then

˜̄v = ∥ 1

N

N∑
i=1

v̄∥ ≥ 2(
c

αβ
)2 − 1.

Proof. Divide into 2 cases: the set of indices

pos = {i ∈ [N ]|⟨u,vi⟩ > 0}

and
neg = {i ∈ [N ]|⟨u,vi⟩ < 0}
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Let M = |pos|, then note that∑
i∈pos

⟨u,vi⟩ ≥ Nc

∑
i∈pos

⟨u,vi⟩ ≤ ∥u∥
∑
i∈pos

∥vi∥

≤ β

√
M
∑
i∈pos

∥vi∥2 E[X2] ≥ E[X]2

≤ β
√
MNα2

= αβ
√
MN

Therefore
N ≥ M ≥ N(

c

αβ
)2

First, consider
∑

i∈pos⟨u, v̄i⟩. Note that
∑

i∈pos ∥vi∥2 ≤ Nα2 and
∑

i∈pos⟨u,vi⟩ ≥ Nc. We
will use the following proposition that can be easily shown through Lagrange multipliers: Given
{ai}Ni=1 and {bi}Ni=1 such that ai ≥ 0 and bi > 0 for all i, if

∑n
i=1 ai = A and

∑n
i=1 b

2
i ≤ B, then∑N

i=1
ai

bi
≥ A

√
N√
B

Therefore ∑
i∈pos

⟨u, v̄i⟩ =
∑
i∈pos

⟨u,vi⟩
∥vi∥

≥ c

α
·
√
MN Proposition

≥ c

α
· (N c

αβ
)

= Nβ(
c

αβ
)2

On the other hand, for neg, since ⟨u, v̄i⟩ ≥ −∥u∥ ≥ −β, we get∑
i∈pos

⟨u, v̄i⟩ ≥
∑
i∈neg

−β

= −β(N −M)

≥ −βN(1− (
c

αβ
)2) = Nβ((

c

αβ
)2 − 1)

Therefore

∥u∥∥ 1

N

N∑
i=1

v̄i∥ ≥ 1

N

N∑
i=1

⟨u, v̄i⟩ ≥
1

N
(
∑
i∈pos

⟨u, v̄i⟩+
∑
i∈neg

⟨u, v̄i⟩)

≥ 1

N
(Nβ((

c

αβ
)2 − 1) +Nβ(

c

αβ
)2)

= β(2(
c

αβ
)2 − 1)

∥ 1

N

N∑
i=1

v̄∥2 ≥ 2(
c

αβ
)2 − 1

To make this lemma generalize to other proofs in future work, we provide the generalized corollary
of the above lemma by setting u to be the normalized mean vector of v:
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Corollary A.2. Let {vi}Ni=1 ⊂ Rd such that 1
N ∥vi∥2 ≤ α2. If

∥ 1

N

N∑
i=1

vi∥ ≥ c,

for α√
2
≤ c ≤ α and let v̄ = v

∥v∥ then

˜̄v = ∥ 1

N

N∑
i=1

v̄∥ ≥ 2(
c

α
)2 − 1.

Similarly, for inter-class cosine similarity, we have the following lemma:

Lemma A.5. Let w ∈ Rd, {hi}Ni=1 ⊂ Rd. Let h̃ = 1
N

∑N
i=1 hi and ˜̄h = 1

N

∑N
i=1

hi

∥hi∥ . If the
following condition is satisfied:

1

N
w ·

N∑
i=1

hi ≤ c for c < 0

∥w∥ ≤ β

1

N

n∑
i=1

∥hi∥2 ≤ α2

∃w′ ∈ Rd, ∥w′∥ ≤ β,
1

N
w′

N∑
i=1

hi ≥ αβ − ϵ′

ϵ′ ≪ αβ

Then cos∠(w, ˜̄h) ≤ − c
αβ + 4( ϵ′

αβ )
1/3

Proof. For w ∈ Rd, {hi}Ni=1 ⊂ Rd

Let ai = 1
Nwhi, bi = ∥hi∥, ϵ = ϵ′

β , then the constraints of the above problem relaxed as follows:

max

N∑
i=1

ai
bi

s.t.

N∑
i=1

ai ≤ c

1

N

N∑
i=1

b2i = α2

1

N

N∑
i=1

bi ≥ α− ϵ

β

∀i, |ai
bi
| ≤ β.

First, consider the case when 1
N

∑N
i=1 bi ≥ α− ϵ Consider a random variable B that uniformly picks

a value from {bi}Ni=1. Then E[B] ≥ α− ϵ
β , E[B2] = α2, and therefore σB =

√
E[B2]− E[B]2 ≤√

2αϵ. According to Chebyshev’s inequality

P (|B − (α− ϵ)| ≥ k
√
2αϵ) ≤ 1

k2
.

Note that for positive ai, smaller bi means larger ai

bi
and for negative ai, higher bi means larger ai

bi
.

Suppose that ϵ is sufficiently small such that ϵ ≪
√
ϵ.Therefore, an upper bound for ai

bi
when ai > 0

is
ai
bi

≤

{
ai

α−k
√
2αϵ

bi ≥ α− k
√
2αϵ

β bi < α− k
√
2αϵ

,
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and an upper bound for ai < 0 would is

ai
bi

≤

{
ai

α+k
√
2αϵ

bi ≤ α+ k
√
2αϵ

0 bi > α+ k
√
2αϵ

.

Suppose that k
√

2ϵ
α is less than 1

2 , then

ai

α− k
√
2αϵ

=
ai
α

· 1

1− k
√

2ϵ
α

<
ai
α

· (1 + 2k

√
2ϵ

α
) =

ai
α

+ |ai
α
| · 2k

√
2ϵ

α

when ai > 0, and similarly

ai

α+ k
√
2αϵ

=
ai
α

· 1

1 + k
√

2ϵ
α

<
ai
α

· (1− 2k

√
2ϵ

α
) =

ai
α

+ |ai
α
| · 2k

√
2ϵ

α

when ai < 0. Note that
N∑
i=1

|ai
α
| · 2k

√
2ϵ

α
≤

N∑
i=1

β

N
· 2k
√

2ϵ

α
= 2kβ

√
2ϵ

α

Therefore, an upper bound on the total sum would be:

c

α
+ 2kβ

√
2ϵ

α
+

β

k2

Set k = (
√

8ϵ
α )−

1
3 to get:

c

α
+ 2β(

√
8ϵ

α
)

2
3 =

c

α
+ 4β(

ϵ

α
)

1
3

Now, we substitute ϵ = ϵ′

β we get: w · ˜̄h ≤ c
α + 4β( ϵ′

αβ )
1/3 Since |w| ≤ β and |˜̄h| ≤ 1, we get that

cos∠(w, ˜̄h) ≤ c

αβ
+ 4(

ϵ′

αβ
)1/3

Now we proceed to the main proof: First, consider the minimum achievable average loss for a single
class c:

1

N

N∑
i=1

Lc,i =
1

N

N∑
i=1

softmax(Whc,i)c (1)

≥ softmax(
1

N

N∑
i=1

Whc,i)c (2)

= log

1 +
∑
c′ ̸=c

exp(
1

N

N∑
i=1

(wc′ −wc)hc,i)

 (3)

= log

1 +
∑
c′ ̸=c

exp((wc′ −wc)h̃c)

 (4)

≥ log

(
1 + (C − 1) exp(

1

(C − 1)
(

C∑
c′=1

wc′ h̃c − Cwch̃c))

)
(5)

= log

(
1 + (C − 1) exp(

1

(C − 1)
(

C∑
c′=1

wc′ − Cwc)h̃c)

)
(6)

= log

(
1 + (C − 1) exp(

C

C − 1
(w̃ −wc)h̃c)

)
(7)

= log

(
1 + (C − 1) exp(− C

C − 1
ẇch̃c)

)
(8)
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Let −→w = [w1− w̃,w2− w̃, . . . ,wC − w̃] = [ẇ1, ẇ2, . . . , ẇC ], and
−→
h = [h̃1, h̃2, . . . , h̃c] ∈ RCd.

Note that

∥−→w∥2 =

C∑
c=1

∥wc − w̃∥2 =

C∑
c=1

(
∥wc∥2 − 2wcw̃ + ∥w̃∥2

)
=

C∑
c=1

∥wc∥2 − C∥w̃∥2 ≤
C∑

c=1

∥wc∥2 = ∥W∥2F ≤ Cβ2

and also

∥
−→
h ∥2 =

C∑
c=1

∥h̃c∥2 =

C∑
c=1

∥ 1

N

N∑
i=1

hc,i∥2 ≤
C∑

c=1

(
1

N

N∑
i=1

∥hc,i∥

)2

≤ 1

N

C∑
c=1

N∑
i=1

∥hc,i∥2 = Cα2

The first inequality uses the triangle inequality and the second uses E[X2] ≥ E[X]2 Now consider
the total average loss over all classes:

L =
1

CN

C∑
c=1

N∑
i=1

Lc,i

≥ 1

C

C∑
c=1

log

(
1 + (C − 1) exp(

C

C − 1
(w̃ −wc)h̃c)

)

≥ log

(
1 + (C − 1) exp(

C

C − 1
· 1

C

C∑
c=1

(w̃ −wc)h̃c)

)
Jensen’s

≥ log

(
1 + (C − 1) exp(− 1

C − 1
−→w ·

−→
h )

)
≥ log

(
1 + (C − 1) exp(− C

C − 1
αβ

)
= m,

showing that m is indeed the minimum achievable average loss among all samples.
Now we instead consider when the final average loss is near-optimal of value m+ ϵ with ϵ ≪ 1. We
use a new ϵ to represent the gap introduced by each inequality in the above proof. Additionally, since
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the average loss is near-optimal, there must be ẇch̃c ≥ 0 for any sufficiently small ϵ:

1

N

N∑
i=1

Lc,i =
1

N

N∑
i=1

softmax(Whc,i)c (9)

≥ softmax(
1

N

N∑
i=1

Whc,i)c (10)

= log

1 +
∑
c′ ̸=c

exp(
1

N

N∑
i=1

wc′hc,i −
1

N

N∑
i=1

wchc,i)

 (11)

= log

1 +
∑
c′ ̸=c

exp(
1

N

N∑
i=1

(wc′ −wc)hc,i)

 (12)

= log

1 +
∑
c′ ̸=c

exp((wc′ −wc)h̃c)

 (13)

= log

(
1 + (C − 1) exp(

1

(C − 1)
(

C∑
c′=1

wc′ h̃c − Cwch̃c)) + ϵ′1

)
(14)

= log

(
1 + (C − 1) exp(

1

(C − 1)
(

C∑
c′=1

wc′ − Cwc)h̃c) + ϵ′1

)
(15)

= log

(
1 + (C − 1) exp(

C

C − 1
(w̃ −wc)h̃c) + ϵ′1

)
(16)

≥ log

(
1 + (C − 1) exp(− C

C − 1
ẇch̃c)

)
+

ϵ′1

1 + (C − 1) exp(− C
C−1ẇch̃c)

(17)

≥ log

(
1 + (C − 1) exp(− C

C − 1
ẇch̃c)

)
+

ϵ′1
C

(18)

and also

L =
1

CN

C∑
c=1

N∑
i=1

Lc,i

≥ 1

C

C∑
c=1

(
log

(
1 + (C − 1) exp(− C

C − 1
ẇch̃c)

)
+

ϵ′1,c
C

)

= log

(
1 + (C − 1) exp(− C

C − 1
· 1

C

C∑
c=1

ẇch̃c)

)
+

1

C

C∑
c=1

ϵ′1,c
C

+ ϵ′2 Jensen’s

= log

(
1 + (C − 1) exp(− 1

C − 1
−→w ·

−→
h )

)
+

1

C

C∑
c=1

ϵ′1,c
C

+ ϵ′2

= log

(
1 + (C − 1) exp(− C

C − 1
αβ + ϵ′3)

)
+

1

C

C∑
c=1

ϵ′1,c
C

+ ϵ′2

21



Consider log(1 + (C − 1) exp(−Cαβ
C−1 + ϵ′3)): Let γ′ = (C − 1) exp(−Cαβ

C−1 )

log(1 + (C − 1) exp(− Cαβ

C − 1
+ ϵ′3)) = log(1 + (C − 1) exp(− Cαβ

C − 1
) exp(ϵ′3))

= log(1 + (C − 1) exp(− Cαβ

C − 1
) exp(ϵ′3))

= log(1 + γ′ exp(ϵ′3))

≥ log(1 + γ′(1 + ϵ′3))

= log(1 + γ′ + γ′ϵ′3)

≈ log(1 + γ′) +
γ′

1 + γ′ ϵ
′
3

Thus using the fact that 1 + (C − 1) exp(−Cαβ
C−1 ) ≤ C

L ≥ log(1 + (C − 1) exp(− Cαβ

C − 1
)) +

1

C

C∑
c=1

ϵ′1,c
C

+ ϵ′2 +
γ′

1 + γ′ ϵ
′
3

ϵ ≥ 1

C

C∑
c=1

ϵ′1,c
C

+ ϵ′2 +
γ′

1 + γ′ ϵ
′
3

Note that while we do not know how ϵ is distributed among the different gaps, all the bounds involving
ϵ′1,c, ϵ

′
2, ϵ

′
3 always hold in the worst case scenario subject to the constraint ϵ ≥ 1

C

∑C
c=1

ϵ′1,c
C +

ϵ′2 + γ′

1+γ′ ϵ
′
3. Note that ∥h̃c∥ ≤

∑C
c′=1 ∥h̃c′∥ ≤

√
Cα, and ∥ẇc∥ ≤ ∥W ∥F =

√
Cβ therefore

ẇch̃c ≥ −Cαβ. We also know that

1

C

C∑
c=1

ẇch̃c ≤
1

C
−→w ·

−→
h =

1

C
(Cαβ − (C − 1)ϵ′3) = αβ − C − 1

C
ϵ′3

The second-order derivative of log(1 + (C − 1) exp(x)) is

(C − 1) exp(x)

(1 + (C − 1) exp(x))2
= 1/((C − 1) exp(x) + 2 +

1

(C − 1) exp(x)
),

which is e−κCαβ for any x ∈ [− C2

C−1αβ,
C2

C−1αβ] for small constant κ, we denote as O(Cαβ)

further. Therefore, the function log(1 + (C − 1) exp(x)) is λ-strongly-convex for λ = e−O(Cαβ)

Thus, for any subset S ⊆ [C], let δ = |S|
C , by 2.1:

− C

C − 1

∑
c∈S

ẇch̃c ≤ δC(− 1

C − 1
−→w ·

−→
h ) + C

√
2ϵ′2δ(1− δ)

λ∑
c∈S

ẇch̃c ≥ δ−→w ·
−→
h − (C − 1)

√
2ϵ′2δ(1− δ)

λ∑
c∈S

αcβc =
∑
c∈[C]

αcβc −
∑
c/∈S

αcβc

≤
∑
c∈[C]

αcβc −
∑
c/∈S

ẇch̃c

≤ Cαβ −
∑

c/∈[C]−S

ẇch̃c

≤ Cαβ − (1− δ)−→w ·
−→
h + (C − 1)

√
2ϵ′2δ(1− δ)

λ
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Let αc =
√

1
N

∑N
i=1 ∥hc,i∥2 and βc = ∥ẇc∥. Note that since − 1

C−1
−→w ·

−→
h = − C

C−1αβ + ϵ′3, there

is −→w ·
−→
h = Cαβ − (C − 1)ϵ′3. Therefore,∑

c∈S

ẇch̃c ≥ δCαβ − δ(C − 1)ϵ′3 − (C − 1)

√
2ϵ′2δ(1− δ)

λ∑
c∈S

αcβc ≤ δCαβ + (1− δ)(C − 1)ϵ′3 + (C − 1)

√
2ϵ′2δ(1− δ)

λ

Therefore, there are at most δC classes for which

ẇch̃c ≤ αβ − (C − 1)

C
ϵ′3 −

C − 1

C

√
2ϵ′2(1− δ)

δλ
(19)

and also there are at most δC classes for which

αcβc ≥ αβ +
(1− δ)(C − 1)

δC
ϵ′3 +

C − 1

C

√
2ϵ′2(1− δ)

δλ
(20)

Thus, for at least (1− 2δ)C classes, there is

ẇch̃c

αcβc
≥ 1− (

C − 1

Cαβ
)(
ϵ′3
δ

− 2

√
2ϵ′2(1− δ)

δλ
) (21)

By setting ϵ′2 = ϵ and ϵ′3 = 0, we get the following upper bound on

cos∠(ẇc, h̃c) ≥ 1− 2

√
2ϵ(1− δ)

δλ

Using λ = e−O(Cαβ) gives the NC3 bound in the theorem:

cos∠(ẇc, h̃c) ≥ 1− 2

√
2ϵ(1− δ)eO(Cαβ)

δ

Therefore, applying lemma A.4 these classes, there is

intrac ≥ 1− 4(
C − 1

Cαβ
)(
ϵ′3
δ

− 2

√
2ϵ′2(1− δ)

δλ
)

Assuming that ϵ ≪ 1, then ϵ ≪
√
ϵ. Therefore, then worst case bound when ϵ ≥ ϵ′2 +

γ′

1+γ′ ϵ
′
3 is

achieved when ϵ′2 = ϵ:

intrac ≥ 1− 8(
C − 1

Cαβ
)

√
2ϵ(1− δ)

δλ

Plug in λ = exp(−O(Cαβ)) and with simplification we get:

intrac ≥ 1− (C − 1)

Cαβ

√
exp(O(Cαβ))

128ϵ(1− δ)

δ
= 1−O(

eO(Cαβ)

αβ

√
ϵ

δ
)

Now consider the inter-class cosine similarity. Let mc = − C
C−1ẇch̃c, by Lemma A.2 we know that

for any set S of δ(C − 1) classes in [C]− {c}, using the definition that ẇc = wc − w̃ there is∑
c′∈S

(ẇc′ − ẇc)h̃c =
∑
c′∈S

(wc′ −wc)h̃c ≤ δ(C − 1)mc + (C − 1)

√
2δϵ′1,c

exp(mc)

Therefore, for at least (1− δ)(C − 1) classes, there is

(ẇc′ − ẇc)h̃c ≤ mc +

√
2ϵ′1,c

exp(mc)δ
= − C

C − 1
ẇch̃c +

√
2ϵ′1,c

exp(mc)δ
(22)

ẇc′ h̃c ≤ − 1

C − 1
ẇch̃c +

√
2ϵ′1,c

exp(mc)δ
(23)
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Combining with equation 19 equation 20, we get that there are at least (1− 2δ)C × (1− 3δ)C ≥
(1− 5δ)C2 pairs of classes c, c′ that satisfies the following: for both c and c′, equations equation 19
equation 20 are not satisfied (i.e. satisfied in reverse direction), and equation 22 is satisfied for the
pair c′, c. Note that this implies

mc = − C

C − 1
ẇch̃c ≤ − C

C − 1
αβ + ϵ′3 +

√
2ϵ′2(1− δ)

δλ

and

ẇc′ h̃c ≤ − αβ

C − 1
+

1

C
(ϵ′3 +

√
2ϵ′2(1− δ)

δλ
) +

√
2ϵ′1,c

exp(mc)δ

We now seek to simplify the above bounds using the constraint that ϵ ≥ 1
C

∑C
c=1

ϵ′1,c
C + ϵ′2 +

γ′

1+γ′ ϵ
′
3.

Note that ϵ ≪
√
ϵ, and both λ and exp(mc) are exp(−O(Cαβ)), therefore, we can achieve the

maximum bound by setting ϵ′1,c = ϵ,

ẇc′ h̃c ≤ − αβ

C − 1
+ exp(O(Cαβ))

√
2ϵ

δ

Similarly, we can achieve the smallest bound on αcβc (the reverse of equation 20)by setting ϵ′2 = ϵ
and using λ = exp(−O(αβ)) we get for both c and c′

αcβc ≤ αβ + exp(O(αβ))

√
2ϵ

δ

and achieve the largest bound on ẇch̃c (the reverse of equation 19) by setting ϵ′2 = ϵ we get for both
c and c′:

ẇch̃c ≤ αβ − exp(O(Cαβ))

√
2ϵ

δ

Therefore, we can apply Lemma A.5 with α = αc, β = βc, ϵ′ = αcβc − ẇch̃c ≤
2 exp(O(Cαβ))

√
2ϵ
δ bound to get:

cos∠(ẇc′ ,
˜̄hc) ≤ − 1

C − 1
+

C

C − 1

exp(O(Cαβ))

αβ

√
2ϵ

δ
+ 4(

2 exp(O(Cαβ))

αβ

√
2ϵ

δ
)1/3

≤ − 1

C − 1
+O(

eO(Cαβ)

αβ
(
ϵ

δ
)1/6)

Where the last inequality is because eO(Cαβ)

αβ > 1, ϵ
δ < 1. Finally, we derive an upper bound on

cos∠(
˜̄hc′ ,

˜̄hc) and thus intra-class cosine similarity by combining the above bounds. Note that for
π
2 < a < π and 0 < b < pi

2 we have:

cos(a− b) = cos(a) cos(b) + sin(a) sin(b)

≤ cos(a) + sin(b)

≤ cos(a) +
√

1− cos2(b)

≤ cos(a) +
√
2(1− cos(b))

by equation 21 we get that

cos∠(ẇc′ ,
˜̄hc′) ≥ 1− (

C − 1

Cαβ
)(
ϵ′3
δ

− 2

√
2ϵ′2(1− δ)

δλ
) ≥ 1− exp(O(Cαβ))

αβ

√
2ϵ

δ

Therefore,

cos∠(
˜̄hc′ ,

˜̄hc) ≤ cos∠(ẇc′ ,
˜̄hc) +

√
2(1− cos∠(ẇc′ ,

˜̄hc′))

≤ − 1

C − 1
+

C

C − 1

exp(O(Cαβ))

αβ

√
2ϵ

δ
+ 4(

2 exp(O(Cαβ))

αβ

√
2ϵ

δ
)1/3 +

√
exp(O(Cαβ))

αβ

√
2ϵ

δ

= − 1

C − 1
+O(

eO(Cαβ)

αβ
(
ϵ

δ
)1/6)
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Since ∥˜̄hc∥ ≤ 1, there is

˜̄hc′ · ˜̄hc = ∥˜̄hc′∥∥˜̄hc∥ cos∠(˜̄hc′ ,
˜̄hc) ≤ − 1

C − 1
+O(

eO(Cαβ)

αβ
(
ϵ

δ
)1/6)

Applying A.3 shows the bound on inter-class cosine similarity. Note that although this bound holds
only for 1−5δ fraction of pairs of classes, changing the fraction to 1− δ only changes δ by a constant
factor and does not affect the asymptotic bound.

A.4 PROOF OF THEOREM 2.2

Theorem 2.2. For an neural network classifier without bias terms trained on a dataset with the
number of classes C ≥ 3 and samples per class N ≥ 1, under the following assumptions:

1. The network contains an batch normalization layer without bias term before the final layer
with trainable weight vector γ;

2. The layer-peeled regularized cross-entropy loss with weight decay λ < 1√
C

Lreg =
1

CN

C∑
c=1

N∑
i=1

LCE (f(xc,i;θ),yc) +
λ

2
(∥γ∥2 + ∥W∥2F )

satisfies Lreg ≤ mreg + ϵ for small ϵ; where mreg is the minimum achievable regularized
loss

then for at least 1− δ fraction of all classes , with ϵ
δ ≪ 1, ϵ < λ and for small constant κ > 0 there

is

intrac ≥ 1− C − 1

Cαβ

(
Ce

λ

)κC
2

√
128ϵ(1− δ)

δ
= 1−O

((
C

λ

)O(C)√
ϵ

δ

)
,

and also for a cosine similarity representation of NC3 in Papyan et al. (2020):

cos∠(ẇc, h̃c) ≥ 1− 2

(
Ce

λ

)κC
2

√
2ϵ(1− δ)

δ
= 1−O

((
C

λ

)O(C)√
ϵ

δ

)
,

and for at least 1− δ fraction of all pairs of classes c, c′, with ϵ
δ ≪ 1, there is

interc,c′ = − 1

C − 1
+O(

(
C

λ

)O(C)

(
ϵ

δ
)1/6)

Proof. Let γ∗ and W ∗ be the weight vector and weight matrix that achieves the minimum achievable
regularized loss. Let α = ∥γ∥ and β = ∥W ∥F√

C
, and α∗ and β∗ represent the values at minimum

loss accordingly. According to Proposition 2.1, we know that
√

1
N

∑N
i=1 ∥hi∥22 = ∥γ∥2 = α.

From Theorem 2.1 we know that, under fixed αβ, the minimum achievable unregularized loss is
log(1 + (C − 1) exp(− C

C−1αβ)). Since only the product γ = αβ is of interest to Theorem 2.1, we
make the following observation:

Lreg =
1

CN

C∑
c=1

N∑
i=1

LCE (f(xc,i;θ),yc) +
λ

2
(∥γ∥2 + ∥W∥2F )

≥ log(1 + (C − 1) exp(− C

C − 1
αβ)) +

λ

2
(α2 + Cβ2)

≥ log(1 + (C − 1) exp(− C

C − 1
γ)) +

√
Cλγ

≥ min
γ

log(1 + (C − 1) exp(− C

C − 1
γ)) +

√
Cλγ

Now we analyze the properties of this function. For simplicity, we combine
√
Cλ into λ in the

following proposition:

25



Proposition A.1. The function fλ(γ) = log
(
1 + (C − 1) exp(− C

C−1γ)
)
+λγ have minimum value

fλ(γ
∗) = log(1− C − 1

C
λ) +

C − 1

C
λ log

(
C − (C − 1)λ

λ

)
achieved at γ∗ = O(log( 1λ )) for λ < 1. Furthermore, for any γ such that fλ(γ)− fλ(γ

∗) ≤ ϵ ≪ λ,
there is |γ − γ∗| ≤

√
O(1/λ)ϵ

Proof. Consider the optimum of the function by setting the derivative to 0:

g′λ(γ
∗) = − C

C − 1

(C − 1) exp(− C
C−1γ

∗)(
1 + (C − 1) exp(− C

C−1γ
∗)
) + λ = 0

C − 1

C
λ = 1− 1

1 + (C − 1) exp(− C
C−1γ

∗)

1 + (C − 1) exp(− C

C − 1
γ∗) =

1

1− C−1
C λ

γ∗ =
C − 1

C
log

(
C − (C − 1)λ

λ

)
< log(

C

λ
)

Plugging in γ∗ = C−1
C log

(
C−(C−1)λ

λ

)
to the original formula we get:

fλ(γ
∗) = log(1− C − 1

C
λ) +

C − 1

C
λ log

(
C − (C − 1)λ

λ

)
Note that since γ ≥ 0, the optimum point is only positive when λ ≤ 1.

Now consider the case where the loss is near-optimal and γ = γ∗ + ϵ′ for ϵ′ ≪ 1:

log

(
1 + (C − 1) exp(− C

C − 1
(γ∗ + ϵ′))

)
+ λ(γ∗ + ϵ′)

≥ log

(
1 + (C − 1) exp(− C

C − 1
γ∗)(1− C

C − 1
ϵ′ +

ϵ′2

2
)

)
+ λ(γ∗ + ϵ′)

≥ log

(
1 + (C − 1) exp(− C

C − 1
γ∗)

)
+

(C − 1) exp(− C
C−1γ

∗)(
1 + (C − 1) exp(− C

C−1γ
∗)
) (− C

C − 1
ϵ′ +

ϵ2

2
) + λ(γ∗ + ϵ′)

By definition of γ∗ as the optimal γ, the first-order term w.r.t. ϵ′ must cancel out. Also, by plugging
in γ∗, the coefficient of ϵ′2

2 is C−1
C γ. Therefore,

log

(
1 + (C − 1) exp(− C

C − 1
(γ∗ + ϵ′))

)
+ λ(γ∗ + ϵ′)

≤ log

(
1 + (C − 1) exp(− C

C − 1
γ∗)

)
+ λγ∗ +

C − 1

C
λϵ′2

Conversely, for any ϵ ≪ 1 for which g(γ) ≤ g(γ∗) + ϵ, there must be |γ − γ∗| ≤
√

Cϵ
(C−1)λϵ

Thus, the minimum achievable value of the regularized loss is

mreg = log(1− C − 1√
C

λ) +
C − 1√

C
λ log

(√
C

λ
− (C − 1)

)
Now, consider any W and γ that achieves near-optimal regularized loss Lreg = mreg + ϵ for very
small ϵ. Recall that α = ∥γ∥, β = ∥W∥F√

C
, γ = αβ. According to Proposition A.1 we know that

|γ − γ∗| ≤
√

Cϵ
(C−1)λ . Therefore, γ ≤ γ∗ +

√
Cϵ

(C−1)λ = log(C/λ) +
√

Cϵ
(C−1)λ . Also, note that

Lreg − f√Cλ(γ) ≤ Lreg − f√Cλ(γ
∗) = ϵ, where f√Cλ(γ) is the minimum unregularized loss

according to Theorem 2.1. Therefore, we can apply Theorem 2.1 with αβ = γ < log(C/λ) +√
Cϵ

(C−1)λ and the same ϵ to get the results in the theorem.
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B ADDITIONAL EXPERIMENTS

This section presents more comprehensive experimental results that support our conclusion.

B.1 EXPERIMENTS ON SYNTHETIC DATASETS

B.1.1 EXPERIMENTAL SETUP

Our results in the main paper show the intra-class and inter-class cosine similarity results for 3-layer
and 6-layer multi-layer perceptrons on the conic hull datasets. To further investigate the effect of
Batch Normalization and Weight Decay on more complex synthetic datasets, we randomly initialize
the weight of a 3-layer and 6-layer MLP network with the same architecture as the model used in
training. We then sample random vectors from a standard Gaussian distribution and use the index of
the maximum element of the output of the randomly initialized MLP as the label. The corresponding
datasets generated using 3-layer and 6-layer randomly initialized models are called MLP3 and
MLP6 datasets, respectively. Our intuition is that by generating data using a randomly initialized
network, we can control the complexity of the underlying distribution, unlike vision datasets such as
MNISTLeCun et al. (2010) and CIFAR10Krizhevsky (2009) where the distribution cannot be strictly
defined. We run our experiments on models of 3 different depths (3, 6, 9). For each model depth, we
create a version with batch normalization between each adjacent hidden layer and a version without
any batch normalization. We used 8000 training samples sampled from each distribution (conic hull
dataset, MLP3 dataset, and MLP6 dataset). Other hyperparameters are the same as described in the
main paper. All experiments in this subsection are performed on Google Colab.

B.1.2 EXPERIMENTAL RESULTS
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B.2 EXPERIMENTS WITH REAL-WORLD DATASETS

B.2.1 EXPERIMENTAL SETUP

Our next set of experiments trains popular computer vision neural network models VGG-11, VGG-
11+BN, VGG-19, VGG-19+BN, and ResNet-18 to investigate the effect of batch normalization and
weight decay on the emergence of Neural Collapse. Note that the VGG-11+BN, VGG-19+BN, and
ResNet18 models contain batch normalization layers, while VGG11 and VGG19 networks do not
contain any batch normalization. We perform the experiments on the vision datasets MNIST (LeCun
et al. (2010)), CIFAR10, and CIFAR100 (Krizhevsky (2009)). For all VGG models, we train for
200 epochs on each dataset, while we only train for 100 epochs for the ResNet18 model (due to
resource constraints). For ResNet, we also used a subset of 8000 training samples for the CIFAR10
and MNIST datasets. All other hyperparameters are the same as in the main paper.

B.2.2 EXPERIMENTAL RESULTS

See Figure B.2.2. We note that in certain experiments using models with Batch Normalization, the
inter-class cosine similarity may begin to rise at high weight-decay levels once the intra-class cosine
similarity of all classes reaches close to one. This can be explained by under-fitting at high weight
decay values. More specifically, because of the regularization effect of high weight decay, the model
cannot properly interpolate the training data and attain near-optimal training loss, which is a necessary
condition for Neural Collapse and our theoretical analysis.

C COMPARISON WITH OTHER THEORETICAL WORKS ON THE EMERGENCE OF
NC

MSE CE Reg. Norm. Opt. Landscape Near-Opt.

Ji et al. (2022) ✓ ✓∗ ✓∗

Zhu et al. (2021) ✓ ✓ ✓ ✓
Lu & Steinerberger (2022) ✓ ✓ ✓
Poggio & Liao (2020) ✓ ✓ ✓ ✓
Tirer & Bruna (2022) ✓ ✓ ✓
Súkeník et al. (2023) ✓ ✓ ✓
Han et al. (2022) ✓ ✓ ✓ ✓
Yaras et al. (2022) ✓ ✓ ✓ ✓
E & Wojtowytsch (2022) ✓ ✓ ✓
This Work ✓ ✓ ✓ ✓ ✓

Table 1: Comparison with existing theoretical works on the emergence of NC. "Reg." denotes
weight or feature norm regularization assumption, "Norm." denotes weight or feature norm con-
straint/normalization, "Opt." denotes optimality conditions, and "Landscape" denotes landscape or
gradient flow analysis. ∗ Shows the direction of gradient flow as it tends towards infinity without
normalization/regularization.
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