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Abstract

The growing availability of unlabeled data of-
fers both opportunities and challenges for train-
ing AI systems. Self-supervised learning (SSL)
has emerged as a powerful method for extract-
ing representations from such data, but existing
techniques struggle to adapt to non-stationary,
non-IID real-world data without forgetting prior
knowledge. While recent works use a cosine an-
nealing schedule for continual pre-training, this
approach causes forgetting during re-warming and
hasn’t been compared to other SSL methods. In
this work, we compare the cosine schedule with
the recently proposed infinite learning rate sched-
ule and find the latter to be more effective. Our
extensive evaluation across image and language
datasets shows that the infinite learning rate sched-
ule is a flexible and robust alternative, performing
well without needing a fixed iteration budget. It
demonstrates stable and effective performance in
both small and large-scale pre-training setups, re-
taining knowledge and adapting across tasks.

1. Introduction
Self-supervised pre-training (Balestriero et al., 2023) has
driven the development of foundational models in vi-
sion (Radford et al., 2021; Oquab et al., 2023; Kirillov et al.,
2023; Shang et al., 2024) and language (Bommasani et al.,
2021; Achiam et al., 2023; Touvron et al., 2023; Zhao et al.,
2023), widely applied across various domains. These mod-
els, known for their large parameter counts and extensive
training, exhibit impressive general-purpose capabilities.
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Figure 1. Comparing Infinite Learning Rate Schedule with Re-
peated Cosine Annealing for Two-Task CL. This comparison
highlights the differences between the infinite learning rate sched-
ule and the cosine schedule. The infinite schedule includes four
phases: warmup, cooldown, constant, and annealing (see legend).
The vertical line marks Task 1 completion. The infinite schedule
offers two checkpointing options: the pre-annealed checkpoint at
ηconst and the annealed checkpoint at ηmin, enabling flexibility
for continual training. In contrast, the cosine schedule lacks the
constant phase, limiting its adaptability for CL.

However, adapting foundation models to evolving data, such
as new text (Soldaini et al., 2024; Li et al., 2024; Abadji
et al., 2022; Kocetkov et al., 2022) and novel visual con-
cepts (Prabhu et al., 2023; Seo et al., 2024), remains chal-
lenging due to high retraining costs and the risk of catas-
trophic forgetting (McCloskey & Cohen, 1989) caused by
distributional shifts. While recent studies (Ke et al., 2023;
Qiao & Mahdavi, 2024; Yıldız et al., 2024; Parmar et al.,
2024) offer guidelines for continual pre-training in language
modeling, seamless integration into existing pipelines is still
lacking. In computer vision, traditional continual learning
methods like regularization (Kirkpatrick et al., 2017; Li &
Hoiem, 2017; Aljundi et al., 2018) and architectural modi-
fications (Douillard et al., 2022; Yan et al., 2021) struggle
to scale with modern foundation models due to limitations
in generalizing to self-supervised learning objectives and
large-scale datasets.
Most approaches for continually pre-training founda-
tion models use a repeated cosine annealing sched-
ule (Loshchilov & Hutter, 2017) with fixed duration (Gupta
et al., 2023; Defazio et al., 2023; Ibrahim et al., 2024; Par-
mar et al., 2024; Guo et al., 2024). This schedule involves a
warmup phase, followed by a cosine decay to the minimum
value at the end of training (purple in Figure 1), assuming
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a terminal point. This limits future pre-training on new
datasets and causes significant forgetting. Re-warming from
the minimum value can also cause instability and exacer-
bate forgetting (Ibrahim et al., 2024). Recent works have
explored more flexible infinite learning rate schedules (Zhai
et al., 2022; Defazio et al., 2024; Hu et al., 2024; Shen
et al., 2024; Hägele et al., 2024), which consist of four
phases: warmup, decay (e.g., cosine, inverse square root),
plateau, and rapid annealing (black line in Figure 1). These
schedules, originally from data-scaling research, have been
extended to continual learning (Garg et al., 2024; Ibrahim
et al., 2024).

However, these works fail to address a key question: How
do these scheduling approaches perform under distribution
shifts, i.e., non-IID data distributions?1 This is particularly
relevant in practical applications where models must con-
tinuously adapt to data from diverse domains. For example,
adapting an English model to incorporate German often
leads to catastrophic forgetting, which severely impacts per-
formance.

This work makes several key contributions:

• We present the first systematic study on learning rate
schedules in non-IID self-supervised Continual Learn-
ing for both vision and language modalities.

• We show that infinite learning rate schedules, combined
with experience replay, outperform several continual
learning baselines in self-supervised settings (Sec C.1).

• We demonstrate that infinite learning rate schedules
match or outperform repeated cosine annealing across
large-scale sequential vision and language pre-training
tasks, offering greater flexibility by not requiring a
predefined dataset size (Sec 4.1, 4.2).

• We show that the Infinite Cosine Schedule is a ro-
bust alternative to repeated cosine decay, improving
knowledge retention and adaptability in non-IID self-
supervised learning scenarios across both vision and
language tasks.

2. The Need for Infinite Learning Rate
Scheduling: Why It Matters?

In this work, we investigate the effectiveness of the infinite
cosine schedule (Ibrahim et al., 2024) compared to repeated
cosine for the CPT of models under strong distribution shifts.
We perform a comprehensive comparison across diverse self-
supervised learning tasks in vision and language domains.
Our extensive experiments show that infinite learning rate

1Some previous works on infinite LR schedules (Ibrahim et al.,
2024; Garg et al., 2024) used datasets split from a single original
dataset, leading to weaker shifts than those in this work.

scheduling improves robustness to distribution shifts and
outperforms cosine scheduling by removing the need to pre-
define training duration. We define Infinite Cosine Schedule
as given in Ibrahim et al. (2024):

Inf Cosine(n) =



n
Nw

· ηmax, if n < Nw

ηconst +
ηmax−ηconst

2 ·
(
1 + cos

(
π n−Nw

Nc−Nw

))
, if Nw < n ≤ Nc

ηconst, if Nc < n ≤ Nd

ηconst ·
(
ηmin
ηconst

) n−Nd
ta+Nd if n > Nd

(1)
where n is the current training step, ηmax and ηmin de-
note the maximum and minimum learning rates respectively,
and Nw, Nc Nd denote number of warmup steps, cooldown
steps, and decay steps respectively, each specifying the tran-
sition points between the phases. ta denotes the amount of
annealing steps required to achieve a converged checkpoint.

3. Experimental setup
Our experiments span vision and language domains fo-
cusing on significant distribution shifts across datasets
D0,D1, . . . ,DN−1. We scale up to large-scale vision
datasets with significant distribution shifts and demonstrate
generalizability by continually pre-training LLMs across
diverse distributions.
Continual pre-training of MAEs: We use Masked Au-
toencoders (MAE) (He et al., 2022) for vision pre-training,
which masks image patches and reconstructs them using a
Vision Transformer (ViT) (Dosovitskiy et al., 2020) encoder-
decoder architecture. After pre-training, the encoder serves
as a feature extractor for downstream tasks. Our vision
pipeline uses three large-scale datasets (N = 3). ImageNet
(Russakovsky et al., 2015) (D0) provides 1.28M object-
centric images across 1,000 categories. Places2 (Zhou et al.,
2017) (D1) introduces a distribution shift with 1M scene-
understanding images. FireRisk (Shen et al., 2023) (D2)
presents a substantial shift to remote sensing with 91K satel-
lite images.
Evaluation: We measure task-specific performance and
cross-task knowledge transfer using linear probing. After
pre-training on each dataset Di, we freeze the encoder and
train linear classifiers hψi : Rd → Rci optimized with
cross-entropy loss.
Implementation: We use ViT-B/16 backbone with constant
learning rate ηconst = 3.75e− 5 for infinite schedules. Ex-
periments include replay buffers of size B = 0.05 × |Di|
per task. All models train for 300 epochs per task using
AdamW with batch size 4096. Details in Appendix E.4.
Continually pre-training LLMs: We use three datasets:
DCLM-Baseline (Li et al., 2024) (D0) for natural language
text, Stack (Kocetkov et al., 2022) (D1) for programming
code, and German (Abadji et al., 2022) (D2) from OSCAR
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Task Completed
Acc. ↑ With ER Acc. ↑ Without ER

ImageNet Places FireRisk ImageNet Places FireRisk
Cos Inf Cos Inf Cos Inf Cos Inf Cos Inf Cos Inf

ImageNet (D0) 60.34 59.73 30.56 30.61 60.05 60.37 60.34 59.73 30.56 30.61 60.05 60.37
Places (D1) 58.89 61.09 32.35 32.03 60.28 59.68 49.97 50.77 32.26 31.95 60.13 60.58
FireRisk (D2) 54.35 57.50 31.12 31.53 61.13 61.50 33.39 36.38 23.40 25.19 62.30 62.11

Metric Avg. Acc. ↑ FWT ↑ BWT ↑ Avg. Acc ↑ FWT ↑ BWT ↑
Values 48.87 50.18 15.51 15.23 -3.61 -1.37 39.69 41.22 15.43 15.68 -17.91 -15.06

Table 1. Performance comparison between cosine (Cos) and infi-
nite cosine (Inf) for MAE pre-training across different tasks, with
and without a replay buffer. Grey values indicate performance on
datasets that were unseen during training at that stage. Each row
shows model performance after the model has completed train-
ing on the task specified in the row label. The infinite schedule
generally preserves knowledge better, particularly in the presence
of multiple distribution shifts. Note that this is shown by the su-
perior knowledge retention (bolded) on the previous tasks after
learning new tasks. The bottom section presents key averaged
metrics across all three tasks: Average Accuracy (Avg. Acc.),
Forward Transfer (FWT), and Backward Transfer (BWT), (where
↑ indicates that higher is better). Infinite cosine achieves better
overall results, especially in reducing forgetting (as shown by less
negative BWT values).

corpus for multilingual content. Each contains 100B tokens,
creating realistic distribution shifts representative of current
CPT applications.
Implementation: We utilize 570M parameter LLaMA-3
architecture with ηmax = 3e− 4, ηmin = 3e− 5, varying
ηconst ∈ [1e− 4, 2e− 4] and cooldown proportions. Batch
size is 1024 with sequence length 2048. Complete details in
Appendix G

4. Results
4.1. Results for pre-training mae on multiple datasets

We present the results of our experiments on large scale
MAE pre-training in Table 1 (left). The infinite schedule
achieves accuracy comparable to a cosine schedule after Im-
ageNet (D0) pre-training. The effectiveness becomes more
pronounced after continual training on Places2 (D1) with a
replay buffer (ER), where the infinite schedule outperforms
the cosine schedule on the previous task while achieving
better performance on the current dataset. Even under the
strong distribution shift introduced by Firerisk (D2), the in-
finite cosine schedule proves remarkably robust, achieving
57.50% accuracy on ImageNet. After completing all three
tasks, the infinite schedule achieves an average accuracy of
50.18% across all datasets, ≈ 1.3% higher than the cosine
schedule. The Forward Transfer (FWT) metrics are compa-
rable between the two schedules, while the infinite schedule
shows better resistance to catastrophic forgetting with a
higher Backward Transfer (BWT). We perform extended
forgetting analysis in Appendix L.

Similarly, when evaluating infinite schedule without experi-
ence replay in Table 1 (right), we observe that it maintains

its competitive performance even though there is a signif-
icant forgetting. After initial pre-training on ImageNet, it
shows comparable performance to the cosine schedule. Af-
ter pre-training on Places2, infinite schedule demonstrates
higher accuracy on the previous task i.e ImageNet. Similar
to replay experiment, this is more visible after the third distri-
bution shift where the infinite schedule maintains ImageNet
accuracy at 36.38%, outperforming the cosine schedule’s
33.39%. This improvement is particularly significant given
the challenging nature of continual learning without a replay
buffer. In the overall metrics, the infinite schedule achieves
a higher average accuracy and Forward Transfer (FWT).
Importantly, even without replay, infinite schedule demon-
strates better resistance to catastrophic forgetting, with a
high Backward Transfer (BWT).

4.2. Results for Continual Pre-training LLMs

We begin pre-training on the DCLM dataset and observe that
even in this pre-training phase, rapid annealing in the case of
infinite schedule yields a lower validation loss compared to
the cosine schedule, offering a competitive advantage. This
trend is evident in Figure 7, with further details provided
in Appendix H and performance on LLM benchmarks on
Appendix M. After pre-training on DCLM, we continue
training on the Stack dataset. Figure 3 shows the validation
loss on the DCLM (D0) and Stack (D1) dataset for cosine
and infinite schedule with varying ηconst and P . We ob-
serve that all the configurations of infinite schedule helps
in mitigating catastrophic forgetting with a lower validation
loss on DCLM data, as compared to cosine, with a minimum
validation loss for ηconst = 1e− 4 and longer cooldown of
P = 0.6. This is in concurrence with the observations for
MAE large scale pre-training.

However, we observe that the infinite schedule exhibits
slightly lower adaptability to the current task (Stack) com-
pared to the cosine schedule. Specifically, the infinite sched-
ule (ηconst = 1e−4, P = 0.6), which minimizes forgetting,
shows a marginally higher validation loss on Stack. How-
ever, with a higher ηconst = 2e − 4, the infinite schedule
achieves performance comparable to cosine on the current
task while maintaining a lower validation loss on the up-
stream task.

To alleviate forgetting, we further introduce a replay mech-
anism where we sample 50% of the data from the previ-
ous task (DCLM) and 50% from the current task (Stack).
Figure Figure 4 shows the validation loss on the DCLM
(D0) and Stack (D1) dataset for cosine and infinite sched-
ule with varying ηconst and P with replay. We observe
that the infinite schedule with ηconst = 2e− 4 and longer
cooldown of P = 0.6 helps in mitigating catastrophic for-
getting with minimum validation loss, as compared to cosine
and other configurations of infinite scheduling. We further
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Figure 2. Validation Loss (↓ is better) for different schedules. CPT is on German data (D2), validating on all German (D2) DCLM (D0)
and Stack (D1) datasets. Infinite schedules (both ηconst ∈ {1e− 4, 2e− 4}) gives a lower validation loss on previous tasks as compared
to cosine. The downstream performance of infinite schedule on the current task (German) is comparable to cosine.

0 20 40 60 80 100
Training Tokens (B)

2.8

3.0

3.2

3.4

3.6

Va
lid

at
io

n 
Lo

ss

Cos
Inf Cos ( const=1e-4, P=0.6)
Inf Cos ( const=1e-4, P=0.3)
Inf Cos ( const=2e-4, P=0.6)
Inf Cos ( const=2e-4, P=0.3)

(a) Valid. Loss on DCLM

0 20 40 60 80 100
Training Tokens (B)

1.4

1.5

1.6

1.7

1.8

1.9

Va
lid

at
io

n 
Lo

ss

Cos
Inf Cos ( const=1e-4, P=0.6)
Inf Cos ( const=1e-4, P=0.3)
Inf Cos ( const=2e-4, P=0.6)
Inf Cos ( const=2e-4, P=0.3)

(b) Valid. Loss on Stack

Figure 3. Validation Loss (↓ is better) for different schedules. CPT
is on Stack data (D1), validating on both DCLM (D0) and Stack
(D1) datasets. All the configurations of infinite schedules mitigate
catastrophic forgetting with a lower validation loss on DCLM data,
as compared to cosine. However, the downstream performance of
infinite schedule on the current task(Stack) is slightly lower than
cosine.
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Figure 4. Validation Loss (↓ is better) for different schedules ac-
companied with replay. CPT is on Stack data (D1), validating on
both DCLM (D0) and Stack (D1) datasets. Infinite schedule with
ηconst = 2e − 4 and longer cooldown of P = 0.6 helps in mit-
igating catastrophic forgetting with minimum validation loss, as
compared to cosine and other configurations of infinite scheduling.
Even on the current task (Stack), ηconst = 2e − 4 and P = 0.6
yield a validation loss closely matching that of the cosine schedule.

observe that infinite schedule, irrespective of the P and
ηconst gives a lower validation loss as compared to cosine.
A higher ηconst likely enhances adaptability to the current
task, while a lower ηconst minimizes forgetting on previous
tasks. Since replay mitigates forgetting, a higher ηconst ul-
timately achieves the best overall performance, balancing
adaptability and retention. Furthermore, we present exper-
iments in Appendix J that demonstrate the flexibility and

agility of the infinite cosine schedule in preserving knowl-
edge from previous tasks.

To further strengthen our evaluation, we introduce a lan-
guage shift by continually pre-training on the German
dataset (German language). This transition imposes a more
pronounced distributional shift, as the model moves from
programming language data (Stack) to natural language.
As in previous sections, we measure validation loss across
all datasets while continually pre-training on German as
shown in Figure 2 Given our earlier findings that short
cooldown proportions are detrimental, we train models only
with P = 0.6 under an infinite schedule. Consistent with
our previous observations (Figure 3), we find that the infi-
nite schedule with ηconst = 1e− 4 and P = 0.6 yields the
best performance in mitigating forgetting. Consequently,
we say that optimal constant learning rate should be selected
through careful hyperparameter tuning.

5. Conclusion
Our results suggest that infinite cosine schedules offer a flex-
ible and robust framework for continual pre-training (CPT)
of foundation models across vision and language domains.
They enable seamless training continuation from intermedi-
ate checkpoints, support dynamic adaptation strategies such
as adjustable replay, and maintain strong performance under
distribution shifts without requiring a predefined training
budget. On large-scale experiments across multiple vision
and language datasets, infinite schedules consistently out-
perform repeated cosine decay, both alone and with replay
mechanisms. While we do not claim universal superiority,
our experiments demonstrate that infinite schedules provide
competitive retention of prior knowledge and improved sta-
bility in non-IID continual learning scenarios, making them
a practical alternative to repeated cosine decay in real-world
CPT pipelines. Our exploration opens promising avenues
for future research, including theoretical analysis of infinite
schedules, comparing different cooldown functions across
modalities, and extending studies to wider architectures and
self-supervised learning frameworks.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Related Work
Continual Pre-training (CPT) of Vision Foundation Models Continually pre-training Vision Transformers (ViTs)
(Dosovitskiy et al., 2020; Bao et al., 2021) adapts them to sequential data while mitigating catastrophic forgetting. Wang
et al. (2022a) introduced the Lifelong Vision Transformer (LVT), using inter-task attention to preserve critical weights. Ye
& Bors (2024) proposed a task-free dynamic sparse ViT. The rise of large-scale foundation models, particularly Vision-
Language Models (VLMs) (Radford et al., 2021; Garg et al., 2024; Zhang et al., 2024; Singh et al., 2024), has reshaped CL,
where CPT provides an efficient alternative to full retraining. Unlike parameter-efficient methods (Wang et al., 2022c;b;
Smith et al., 2023), our work adapts the entire model.

Continual Pre-training (CPT) of Large Language Models (LLMs) Recent studies (Scialom et al., 2022; Winata et al.,
2023; Mehta et al., 2023; Gupta et al., 2023) show that CPT enables LLMs to learn general representations for various tasks.
Cossu et al. (2022) demonstrated that CPT mitigates catastrophic forgetting, with self-supervised approaches outperforming
supervised ones. Larger pretrained models exhibit less forgetting due to increasingly orthogonal class representations
(Ramasesh et al., 2022; Mirzadeh et al., 2022). Additionally, Scialom et al. (2022) found that self-supervised pre-training
naturally enables CL.

Alternatives to Cosine Schedule The cosine decay schedule (Loshchilov & Hutter, 2017) is common in vision tasks, where
cyclic learning rates help avoid suboptimal minima (Smith et al., 2018). For language models, single-cycle cosine annealing
is standard (Gupta et al., 2023; Parmar et al., 2024), but its fixed step count limits continuous training. To address this, the
Warmup-Stable-Decay (WSD) scheduler (Hu et al., 2024) enables continuous training. Shen et al. (2024) refined this with
the power scheduler, using exponential decay based on token count, while Hägele et al. (2024) proposed constant learning
rates with cooldowns, addressing data scaling but not distribution shifts.

B. Discussion
In our large-scale experiments, we have explored different hyperparameters of the infinite cosine schedule across both vision
and language tasks. In the case without replay, the choice of ηconst follows a similar pattern across both modalities, where a
lower ηconst yields optimal performance. However, with replay, an apparent discrepancy emerges: vision tasks still favor a
lower ηconst, while language tasks seem to benefit from a higher ηconst. In vision tasks, the variation between high and
low ηconst spans an order of magnitude (i.e., a factor of 10x), whereas in language tasks, the difference is narrower. This
suggests that the relative comparison of ηconst across modalities is not directly meaningful, as the scales of sensitivity differ
between vision and language models.

C. MAE pretraining on CIFAR10
To validate our hypothesis on infinite learning rate schedules, we conduct an experiment with a small-scale MAE CPT on
CIFAR-10 (Krizhevsky et al., 2009), using a controlled setting for rigorous baseline evaluation. The dataset is divided
into five sequential tasks, each with two classes introduced in label order (0-9). We employ a ViT-tiny (Dosovitskiy et al.,
2020) to match the scale of CIFAR-10, with our implementation based on Zhang (2021). We use a lightweight decoder
with learned positional embeddings to reconstruct the masked patches. We train for 400 epochs with a batch size of 512.
Hyperparameters for this small scale experiment are provided in Appendix E.2.

Baselines and Adaptations: We compare our approach with the following CL baselines, adapting them for self-supervised
pre-training: Sequential Fine-tuning: trains sequentially without mitigating forgetting, serving as the primary baseline.
Experience Replay (ER) (Rolnick et al., 2019): maintains a memory buffer with {40%, 50%} samples of prior tasks,
sampled uniformly. Each batch contains equal proportion of current task data and randomly sampled data from replay
buffer. Memory Aware Synapses (MAS) (Aljundi et al., 2018): estimates parameter importance by measuring how
changes affect the model output, then penalizes updates to important weights. We adapted it for self-supervised learning by
computing importance of weights from the L2 norm of the encoder’s output, with a regularization λ = 0.75. Learning
without Forgetting (LwF) (Li & Hoiem, 2017): preserves knowledge by distilling responses from the previous model
version. We modified it for self-supervised learning with feature distillation on the encoder’s output, weighted by α = 0.75.
GDumb (Prabhu et al., 2020): Uses stratified sampling to maintain a balanced buffer. The model resets to random
initialization for each new task and trains from scratch on buffer data. For evaluation, we use standard CL metrics from
Lopez-Paz & Ranzato (2017): Average Accuracy (Acc), Forward Transfer (FWT), and Backward Transfer (BWT), defined
in Appendix E.3.
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C.1. Results for pre-training MAE on CIFAR10

Replay
FT-seq MAS LwF ER GDumb Ours (Inf Cos)

Acc ↑ BWT ↑ Acc ↑ BWT ↑ Acc ↑ BWT ↑ Acc ↑ BWT ↑ Acc ↑ BWT ↑ Acc ↑ BWT ↑

0% 58.16 -17.65 50.44 -19.11 50.52 -19.78 - - - - 60.03 -12.61
40% - - 50.36 -18.90 - - 53.98 -21.55 48.76 -19.51 61.45 -12.76
50% - - 50.91 -18.37 - - 57.94 -18.53 48.46 -18.76 62.16 -12.61

Table 2. Average linear probe accuracy (Acc) and Backward Transfer (BWT) (where ↑ indicates that higher is better) for comparing
CL baselines utilizing cosine schedule with Infinite Schedule on CIFAR10 with varying replay (ER) strategies. It can be observed that
the infinite schedule (Inf Cos) consistently achieves superior performance compared to the cosine schedule across all experimental
configurations.

Table 2 demonstrates that the infinite cosine schedule outperforms the standard cosine, achieving higher average linear probe
accuracy and BWT across all tasks in small-scale CPT on CIFAR-10. Specifically, in CPT without experience replay (ER),
it improves average accuracy by 1.87% and BWT by approximately 4% over Finetuning (FT-seq) with a repeated cosine
schedule.

Interestingly, in this setup, the combination of the repeated cosine schedule and experience replay (ER) degrades model
performance, as seen in the comparison between FT-seq and ER with 40% replay. This decline likely stems from limited
data diversity in small datasets, leading the more aggressive re-warming of the repeated cosine schedule to overfitting to the
replay buffer. In contrast, the infinite learning rate schedule eliminates rewarming, effectively circumventing these issues.
We would like to emphasize that the unexpectedly poor performance of these methods relative to FT-seq stems from a
fundamental difference in the continual learning setting. While these baselines were originally designed for incremental
supervised classification, our work centers on incremental masked image modeling (MIM) — a self-supervised task with
distinct objectives and evaluation protocols. To the best of our knowledge, this is the first systematic evaluation of continual
learning baselines in a self-supervised MIM setting, leaving us without alternatives specifically designed for this novel
paradigm. Therefore, the results should be interpreted with this context in mind.

While replay behavior in small data scenarios is not our primary focus, it is worth noting that we used a relatively large
replay buffer despite the dataset’s limited size. The key finding is that the infinite cosine schedule, despite its simplicity,
consistently outperforms baselines in both average accuracy and backward transfer (BWT). Notably, the strong performance
gains with larger replay buffers suggest that our method scales effectively to large-scale pre-training, where the vast size of
modern datasets provides sufficient replay samples to mitigate catastrophic forgetting, even at low buffer sampling rates.

D. Extended Experimental setup
Our experiments span both vision and language domains focusing on significant distribution shifts across a sequence
of datasets D0,D1, . . . ,DN−1. We first evaluate infinite schedule on a small-scale MAE pre-training (He et al., 2022),
comparing it to CL baselines (Sec ??). Next, we scale up to large-scale vision datasets with significant distribution shifts
(Sec D). Finally, we demonstrate its generalizability by continually pre-training LLMs across diverse distributions (Sec D.1).
Continual pre-training of MAEs: We use Masked Autoencoders (MAE) (He et al., 2022) for vision pre-training,
leveraging their alignment with language models and strong performance in masked image modeling (Fang et al., 2023;
Singh et al., 2023). As described by He et al. (2022), MAE pre-training masks a subset of image patches and reconstructs the
original image using a Vision Transformer (ViT) (Dosovitskiy et al., 2020) encoder-decoder architecture. After pre-training,
the decoder is discarded, and the encoder serves as a feature extractor for downstream vision tasks. Additional details
regarding MAE pre-training are provided in Appendix E.1.
Datasets: Our pre-training pipeline utilizes three carefully selected large-scale datasets (N = 3). The CPT sequence begins
with ImageNet (Russakovsky et al., 2015) (D0), having 1.28M object-centric images across 1,000 categories, providing
a foundation in object recognition. Next, Places2 subset (Zhou et al., 2017) (D1) introduces a distribution shift with 1M
scene-understanding images spanning 365 categories. Finally, FireRisk (Shen et al., 2023) (D3) presents a substantial shift
to remote sensing with 91K satellite images for environmental monitoring. This progression increases distribution shifts,
transitioning from object recognition to scene understanding followed by aerial imagery.

11



Submission and Formatting Instructions for ICML 2025

Evaluation: Our evaluation strategy measures both task-specific performance and cross-task knowledge transfer using
linear probing. After pre-training on each dataset Di, we freeze the encoder fθ as a fixed feature extractor and train a linear
classifier hψi : Rd → Rci for each task, where ci is the number of classes. The classifier is optimized with cross-entropy
loss, and evaluated on task-specific validation sets using classification accuracy.

Implementation: We build on the PyTorch (Paszke et al., 2019) MAE framework with a ViT-B/16 backbone. For the
infinite schedule, we keep a constant learning rate ηconst = 3.75e− 5, while the baseline follows a standard cosine decay
schedule with SOTA hyperparameters (He et al., 2022). Experiments are conducted with and without a replay buffer of size
B = 0.05× |Di| per task. All models are trained for 300 epochs per task using AdamW (Loshchilov & Hutter, 2019) with a
batch size of 4096. Further implementation and hyperparameter details are given in Appendix E.4.

D.1. Continually pre-training LLMs

Language Datasets: We consider three datasets for continually pre-training LLMs: DCLM-Baseline (Li et al., 2024) (D0),
Stack (Kocetkov et al., 2022) (D1) and German (Abadji et al., 2022) (D2). DCLM is a large-scale dataset of natural language
text, Stack is a specialized dataset of programming code snippets, and German is a subset of the multilingual OSCAR corpus
(Abadji et al., 2022). The Stack and German datasets were chosen to represent strong, but realistic distribution shifts that are
both representative of current CPT applications (DeepSeek-AI et al., 2024) and allow us to evaluate the model’s ability to
adapt to new tasks under challenging distribution shifts. We use the standard training splits for both datasets, treating each
dataset as locally IID.

All the three datasets are tokenized through LLaMA-3 tokenizer (Grattafiori et al., 2024) owing to its large vocabulary size
of 128K tokens (100K from titktoken2 and 28K additional tokens for non-English languages). We sample a small subset
of 100B tokens from each of the DCLM-Baseline (total = 3T), Stack (total = 744B), and OSCAR (total = 168B) datasets
for our CPT experiments. We would like to emphasize that as the domain shifts farther away from the tokenizer’s training
corpus, the tokenizer might become the key bottleneck to performance. Such scenarios would be unrealistic without a way
to adapt the tokenizer. With this in mind, we were careful to select challenging new domains that are still well represented in
the tokenizer’s vocabulary. Though we did not perform a formal tokenizer coverage analysis, our use of German alongside
English datasets aligns with LLaMA-3’s multilingual capabilities (Grattafiori et al., 2024). Stable validation loss across
domains indicates no significant tokenizer-data mismatch in practice. We leave the treatment, continual tokenizer adaptation
to future work.

Implementation details: We compare Infinite Cosine Schedule with the de-facto Cosine + Warmup Schedule. We fix
ηmax = 3e− 4 and ηmin = 3e− 5 as described in (Ibrahim et al., 2024) for both schedules while varying the cooldown
proportion (Nwarmup < n ≤ Nconst) and the ηconst for the infinite schedule. We utilize LLaMA-3 architecture (Grattafiori
et al., 2024) with 570M parameters, training it as an autoregressive decoder-only transformer with a causal language
modeling objective. We use a batch size of 1024 and sequence length 2048. Further details on hyperparameters are provided
in the Appendix G.

E. Implementation details and hyperparameters for Vision pre-training
E.1. Formal Definition of MAE Pre-training

Formally the MAE pre-training procedure is described as follows: For each image x ∈ D, where D = {xi}Ni=1 and
xi ∼ IID, we first partition it into a sequence of non-overlapping patches {pi}Ni=1. We use the same masking ratio from the
original MAE (He et al., 2022) that randomly masks 75% of these patches, creating two complementary sets: visible patches
V and masked patches M. An encoder fθ(·), implemented as a Vision Transformer (Dosovitskiy et al., 2020), processes
only the visible patches to obtain latent representations hv = fθ({pi}i∈V). These encoded features, along with mask tokens
{mj}j∈M, are then fed to a decoder gϕ(·) to reconstruct the original image: x̂ = gϕ({hv} ∪ {mj}). The entire framework
is trained end-to-end by minimizing the mean squared error loss Lmse = ∥x− x̂∥22 between the original and reconstructed
images. After pre-training, the decoder is discarded, and the encoder serves as a feature extractor for downstream vision
tasks.

2https://github.com/openai/tiktoken/tree/main
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E.2. Hyperparameters and Implementation details for CIFAR10 MAE

For our architecture, we employ a ViT-tiny encoder (12 layers, 192 hidden dimension, 3 attention heads) to match the
scale of CIFAR-10, with our implementation based on the Zhang (2021)’s work. Our model uses a masking ratio of 0.75,
consistent with the original MAE, and incorporates a lightweight decoder (4 layers) with learned position embeddings to
reconstruct the masked patches. Regarding the learning rate configuration, we selected a maximum learning rate of 7.5e-5
through hyperparameter tuning over the values [7e-5, 1.5e-4, 3e-4] on the first two tasks, with a minimum learning rate of
7.5e-6. For most experiments, we employ a constant learning rate of 1.875e-5 and a cooldown proportion of 0.4, except for
experiments without replay where we increase the constant learning rate to 5.625e-5. These optimal values were determined
through experiments similar to our large-scale setup, testing cooldown proportions [0.3, 0.4, 0.5] and constant learning rates
[1.875e-5, 5.625e-5]. While these findings align with our large-scale experiments, the small dataset size necessitated a
slightly larger cooldown proportion to maintain a higher learning rate for a longer duration. For linear probing experiments
in our small-scale setup, we utilized the AdamW(Loshchilov & Hutter, 2019) optimizer with a weight decay coefficient of
5e− 3 and momentum parameters β1 and β2 set to 0.9 and 0.95 respectively. The linear probing experiments implemented
a cosine decay learning rate schedule with a maximum learning rate ηmax = 1e− 3, running for 100 epochs total, including
10 warmup epochs, with a batch size of 128. Complete hyperparameter details for pre-training and linear probing can be
found in the corresponding tables Table 3 and Table 4. For the baseline methods MAS (Aljundi et al., 2018) and LwF (Li &
Hoiem, 2017), we conducted hyperparameter tuning using grid search over the first two tasks. For MAS, we explored values
of α and λ in [0.25, 0.5, 0.75]. Similarly for LwF, we searched for optimal α values within the same range.

Description Value

optimizer AdamW
weight decay 5.00e-03

β1 0.9
β2 0.95

batch size 512
warmup epochs 20

Total epochs 400
Max learning rate ηmax 7.50e-05
Min learning rate ηmin 1.50e-06

Constant learning rate ηconst 1.875e-5

ViT-tiny
Parameters 7M

Num Attention Heads 3
Num Layers 12
Hidden Size 192

Hidden Activation GeLU
Positional Embedding Learnable

Patch Size 2× 2
Image Size 32× 32

Dropout Rate 0.1

Table 3. Hyperparameters for pre-training on the small scale setup

Description Value

optimizer AdamW
weight decay 5.00e-03

β1 0.9
β2 0.95

learning rate schedule cosine decay
batch size 128

warmup epochs 10
Total epochs 100

ηmax 1.00e-03

Table 4. Hyperparameters for linear probing on the small scale
setup.

E.3. Evaluation Metrics for MAE CPT

For evaluation, we employ three key metrics following (Lopez-Paz & Ranzato, 2017). Average Accuracy (Acc =
1
T

∑T
i=1RT,i) provides an overall measure of model performance across all tasks, where T is the total number of tasks and

RT,i represents the performance on task i after training on all T tasks. Forward Transfer (FWT = 1
T−1

∑T
i=2(Ri−1,i−bi))

measures the model’s ability to leverage knowledge from previous tasks, where bi represents the accuracy of a randomly
initialized feature extractor. Backward Transfer(BWT = 1

T−1

∑T−1
i=1 (RT,i −Ri,i)) quantifies the impact of subsequent

task learning on previous task performance.
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E.4. Implementation details MAE on Imagenet, Places , Firerisk

Our implementation builds upon the PyTorch (Paszke et al., 2019) implementation of MAE (He et al., 2022) with ViT-
B/16 (He et al., 2022) backbone architecture with 12 layers, 768 hidden dimension, and 12 attention heads. For the
infinite learning rate schedule, we maintain a constant learning rate ηconst =3.75e-5 during constant phase, while our
baseline employs the standard cosine decay schedule.To ensure fair comparison, both schedules share identical maximum
ηmax = 1.5e− 04 and minimum learning rate, ηmin = 1.5e− 06, with hyperparameters for the cosine schedule directly
adopted from He et al. (2022). We also employ learning rate scaling similar to Goyal et al. (2018). We list all the
hyperparameters on Table 5. To mitigate catastrophic forgetting, we implement a replay buffer with a buffer size of
B = 0.05 × |Di| per task, utilizing uniform random sampling for buffer updates. All experiments utilize the AdamW
optimizer, (Loshchilov & Hutter, 2019) with training conducted over 300 epochs per task. Following, Ibrahim et al. (2024)
we reset the optimizer states before each task. For linear probing as shown in Table 6, we utilized the LARS optimizer with
no weight decay (λ = 0). The optimizer’s momentum parameter β1 was set to 0.9. The learning rate followed a cosine
decay schedule with a maximum learning rate (ηmax) of 1.00× 10−1. Training was conducted over 90 epochs with a large
batch size of 4096 and included RandomResizedCrop augmentation. This configuration leverages the LARS optimizer’s
efficiency for large-batch training while maintaining training stability across the diverse image datasets.

Description Value

optimizer AdamW
weight decay 0.05

β1 0.9
β2 0.95

batch size 4096
warmup epochs 40
augmentation RandomResizedCrop
Total epochs 300

Max learning rate ηmax 1.50e-04
Min learning rate ηmin 1.50e-06

Constant learning rate ηconst 3.75e-05

ViT-B/16
Parameters 86M

Num Attention Heads 12
Num Layers 12
Hidden Size 768

Hidden Activation GeLU
Weight Decay 0.3

Positional Embedding Learnable
Patch Size 16× 16
Image Size 224× 224

Dropout Rate 0.1

Table 5. Hyperparameters for pre-training MAE on Imagenet,
Places and Firerisk

Description Value

optimizer LARS
weight decay 0

β1 0.9
learning rate schedule cosine decay

batch size 4096
warmup epochs 10
augmentation RandomResizedCrop
Total epochs 90

ηmax 1.00e-01

Table 6. Hyperparameters for linear probing on ImageNet, Places
and Firerisk

F. Effect of cooldown proportion and constant learning rate
In Figure 5, we analyze how the cooldown proportion and constant learning rate in the infinite schedule affect model
performance on past and current tasks in ImageNet and Places2. The graphs compare linear probe validation loss across
epochs for the standard cosine schedule and infinite schedules with varying configurations. Our analysis shows that lower
constant learning rate (ηconst = 3.75e− 5) consistently reduces forgetting as compared to higher rate (ηconst = 1.12e− 4),
Further, it can be observed that for ηconst = 3.75e− 5 cooldown proportion has negligble effect, but for ηconst = 1.12e− 4
shorter cooldown period (P = 0.3) outperform longer period (P = 0.5). This is likely because shorter cooldown phase
represents quick decay to a stable ηconst whereas a longer cooldown would mean a high learning rate for longer durations,
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(b) Linear probe loss on Places2

Figure 5. Linear probe loss (↓ is better) for cosine schedule and infinite schedule with different constant learning rate and cooldown
proportion with replay buffer. We observe that the infinite schedule with a lower ηconst = 3.75e− 5 has the lowest forgetting compared
to other schedules.
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Figure 6. Linear probe loss (↓ is better) for cosine scheduler and infinite scheduler with different configurations without replay buffer.
Infinite learning schedule with lower constant learning rate has lower forgetting compared to cosine schedule

which could cause instability in training, thus increasing forgetting.

Our analysis in Figure 6 (a) and (b) investigates learning dynamics in scenarios without a replay buffer, comparing the
standard cosine schedule against infinite schedules through linear probe validation loss across epochs. The results mirror
patterns observed with replay mechanisms, albeit with substantially higher catastrophic forgetting. Lower constant learning
rates (ηconst=3.75e-5) exhibit markedly reduced forgetting compared to higher rates (ηconst=1.12e-4). For the lower constant
learning rate, we observe that cooldown proportion has minimal impact on performance. In contrast, with higher constant
learning rates, shorter cooldown periods yield better performance than longer ones. The dramatic increase in forgetting
without replay underscores the critical importance of replay mechanisms in preserving cross-task performance.

G. Implementation details and hyperparameters for language pre-training
All models are trained with AdamW (Loshchilov & Hutter, 2019) on 100B tokens for each dataset, using a batch size of
1024 and a sequence length of 2048 approximately corresponding to 47, 684 total training steps. Optimizer states get reset
between datasets, as this is common when we have to begin from an open weight model (e.g. from Huggingface (Wolf et al.,
2020)). We train with data parallelism across 32 nodes, each equipped with 8 GPUs, maintaining a micro-batch size of 4.
The training setup includes activation checkpointing (Chen et al., 2016) and ZeRO-1 optimizer sharding (Rajbhandari et al.,
2020) to reduce memory overhead.

15



Submission and Formatting Instructions for ICML 2025

Table 7. Hyperparameters of LR schedules. All models used
the same LR schedule hyperparameters. We refer the readers
to (Ibrahim et al., 2024) section 7.2 for a more thorough explana-
tion of these schedules.

Description Value

Pre-training
Total Iterations 47684
Max learning rate (ηmax) 3 · 10−4

Min learning rate (ηmin) 3 · 10−5

Constant learning rate (ηconst) 1 · 10−4

Warmup percent (Nw) 1
Cooldown iters percent (Nc) 60
Constant iters percent (Nd) 25

Continual Pre-training
Total Iterations 47684
Max learning rate (ηmax) 3 · 10−4

Min learning rate (ηmin) 3 · 10−5

Constant learning rate (ηconst) 1 · 10−4

Warmup percent (Nw) 1
Cooldown iters percent (Nc) 0
Constant iters percent (Nd) 85

Table 8. Hyperparameters of the ViT and LM transformers in
our study.

Description Value

Dense Transformer LM
Parameters 571, 148, 288
Non-Embedding Parameters 439, 814, 144
Num attention heads 16

Num layers 24
Hidden size 1024
FFN Hidden size 2816
FFN Type GeGLU
Optimizer AdamW
β1,β2 0.9, 0.95
Batch size 1024
Sequence length 2048
Hidden activation GeLU
Weight decay 0.1
Gradient clipping 1.0
Decay Cosine
Positional embedding Rotary
GPT-J-Residual True
Weight tying False
Vocab Size 128000
Rotary PCT 0.25
ViT-B/16
Parameters 86, 567, 656
Num Attention Heads 12

Num Layers 12
Hidden Size 768
FFN Hidden Size 3072
FFN Type MLP
Optimizer Adam
β1, β2 0.9, 0.999
Batch Size 4096
Sequence Length 197
Hidden Activation GeLU
Weight Decay 0.3
Gradient Clipping 1.0
Positional Embedding Learnable
Patch Size 16× 16
Image Size 224× 224
Dropout Rate 0.1
Common

H. Pretraining with DCLM data
Figure 7 shows the validation loss on the DCLM dataset for cosine and infinite schedule with varying ηconst and cooldown
proportion P . We observe that the infinite schedule with a higher constant learning rate (ηconst = 2e− 4) and cooldown
proportion (P = 0.6) performs better than the cosine schedule and the other configurations of the infinite schedule. The
final checkpoint, in the case of infinite schedule, is obtained via annealing which we perform for 15% of the total iterations
after the constant phase, as shown in Figure 1. It can be inferred that the infinite schedule with ηconst = 2e− 5 and P = 0.6
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Figure 7. Validation Loss(↓ is better) for Different schedules, Training and Validating on DCLM Dataset

Figure 8. Validation Loss(↓ is better) for Cosine while training on combined DCLM and Code

performs the best, with validation loss rapidly decaying in the annealing phase. We also observe that a shorter cooldown
phase (P = 0.3) results in suboptimal performance with higher validation loss, thus indicating that a longer cooldown phase
is beneficial. We note that this corresponds to 28K steps. As for the ηconst, we observe that both 1e− 4 and 2e− 4 perform
similarly, with the latter having a slightly lower validation loss, indicating that a higher constant learning rate gives a better
exploration possibility during training.

I. Pre-training with combined DCLM and Stack Data
We show the validation loss on the combined DCLM and Stack dataset with cosine scheduling in Figure 8. It can be inferred
that both the validation loss on DCLM and Stack is worse as compared to continual pre-training with infinite learning
schedule. This indicates that the infinite schedule is able to preserve the knowledge of the previous task as well as improve
transferability better as compared to cosine schedule, even with combined training on both tasks.

J. Dynamic Adjustment of Replay Buffer with equal proportion of pre-training data during
Annealing Phase

We perform an ablation by annealing on equal proportion of data, i.e. 33.33% each of DCLM (D0), Stack (D1) and German
(D2). As shown in Figure 9, it can be inferred that the performance on previous tasks improve as compared to the config
where we use 50% of buffer, since now the proportion of previous tasks data has increased (25% for each of DCLM and
Stack → 33.33%). But this does not deteriorate the downstream performance on German data. Hence in cases, where
upstream performance is critical, we can anneal on an equal proportion of data.
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(c) Valid. Loss on German

Figure 9. Validation Loss (↓ is better) for different schedules accompanied with replay. The total fraction of replay is 50%, with 25%
of DCLM and other 25% from Stack Data. CPT is on German data (D2), validating on all German (D2) DCLM (D0) and Stack (D1)
datasets. We further perform an experiment with equal proportion of data during annealing, referred to as Eq. in the above graphs. It can
be observed that equal proportions improve the upstream performance (lower validation loss on DCLM and Stack). The downstream
performance is quite similar to other Infinite schedules (both ηconst ∈ {1e− 4, 2e− 4}) config. The downstream performance of the
infinite schedule on the current task (German) is comparable to cosine.

K. Effect of Checkpoint selection in Past task performance
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Figure 10. Comparison of linear probe loss on Imagenet (D0) with checkpoints obtained while training Places 2 (D1). All experiments
were conducted with replay. We compare different checkpoint selection strategies against the infinite scheduler. Infinite Cosine learning
rate schedule (green) achieves consistently lower loss compared to cosine schedules restarted from either checkpoint at ηconst (yellow) or
Nd (blue).

To address the relative importance of the learning rate scheduling function versus the choice of checkpoint, we conducted an
additional ablation study. Figure 10 shows the performance comparison of three different approaches:

1. Cosine learning rate schedule with checkpoint from ηconst checkpoint (yellow line): This checkpoint is obtained at the
point where the cosine schedule reaches the learning rate corresponding to the value of ηconst used in our infinite cosine
schedule.

2. Cosine learning rate schedule with checkpoint from Nd checkpoint (blue line): This checkpoint is obtained at the time
corresponding to when the annealing of the infinite schedule begins.

3. Infinite Cosine learning rate schedule with ηconst = 3.75e-5 and P = 0.3 (green line): Our best performing scheduler
from main paper.

As shown in Figure 10, the Infinite Learning Rate schedule consistently achieves lower linear probe loss throughout training
compared to both cosine schedule variants. The results demonstrate that this approach provides more effective representation
learning compared to cosine schedule with early checkpointing.

Strategic checkpoint selection plays a critical role in preserving previously acquired knowledge. However, this flexibility
is not inherently supported by the standard cosine schedule, which is typically designed to run uninterrupted until the
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Strategy Overall Acc Overall REM Overall BWT Overall FWT CL score

Cosine + ER (5%) 44.76 97.11 -2.89 12.85 37.96
Infinite cosine + ER (5%) 50.56 99.54 -0.46 12.78 40.61
Cosine 43.61 84.61 -15.39 12.80 31.41
Infinite cosine 44.36 86.98 -13.02 13.08 32.85

Full baseline 53.40 - - - -

Table 9. Comparison of forgetting metrics (as defined in Dı́az-Rodrı́guez et al. (2018)) across various methods. Infinite cosine with replay
shows competitive results with lower forgetting, approaching the performance of the Full baseline.

end of training. In our comparison experiments, we manually extracted checkpoints at arbitrary points with high learning
rates which is an approach that deviates from standard usage of cosine schedule. In contrast, the Infinite Learning Rate
schedule naturally enables such flexibility through its constant learning rate phase, explicitly designed for this requirement.
This built-in mechanism aids in knowledge retention across tasks, contributing to the consistently lower linear probe loss
observed compared to other approaches.

L. Additional Forgetting metrics
We present a more thorough analysis of forgetting dynamics in our continual learning framework in Table 9. While our
main paper reports standard metrics which measured at the end of the training including Average Accuracy (AA), Forward
Transfer (FWT), and Backward Transfer (BWT), this section extends our evaluation with additional metrics proposed by
Dı́az-Rodrı́guez et al. (2018) to provide a more complete picture of the retention capabilities of our approach after every
task.

Dı́az-Rodrı́guez et al. (2018) provides metrics to analyze the performance of the model at every timestep to incorporate
the dynamic nature of CL. Hence we use an overall prefix for these metrics which are taken as an average after every

time step. Overall Accuracy (A =
∑T

i≥j Ri,j

T (T+1)
2

) gives the average of accuracy on all tasks after every timestep. Overall

Backward transfer (BWT =
∑T

i=2

∑i−1
j=1(Ri,j−Rj,i)
T (T−1)

2

) measures the backward transfer after every timestep, while Overall

Forward transfer (FWT =
∑T

i<j Ri,j

T (T−1)
2

) measures the forward transfer after every time step. Overall remembering

(REM = 100 − |min(BWT, 0)|) quantifies the amount of knowledge remembered by the model across all time steps.
Finally, we calculate the CL score to get a weighted average of all the metrics CLscore =

∑#c
i=1 wici, where #c denotes the

total number of metrics used. We use an equal weighting and report the equal weighted average. We additionally show
the performance of a model which is pre-trained on the combination of all datasets, then linear probed on each dataset and
obtained accuracy. We report the overall accuracy of it across all tasks as a reference in the table.

M. Evaluation on LLM benchmarks
While the validation loss provides a good measure of performance on the pre-training objective, LLMs abilities are typically
judged by their performance on evaluation tasks. With the caveat that we use base models, i.e our models have not
been instruction-tuned, fine-tuned, or adapted to human preferences in any way, we present their evaluation on popular
benchmarks in this section. Table 10 shows the evaluation results on various benchmarks for different schedules. We observe
that with replay, the infinite schedule with ηconst = 2e− 4 gives the best performance across all the benchmarks with an
average accuracy of 46.81%. For the model after pre-training on German, infinite schedule with ηconst = 1e− 4 gives the
best performance across the German evaluation benchmarks with an average accuracy of 28.10% as shown in Table 11.
These results highlight that infinite schedules not only circumvent catastrophic forgetting but also provide a competitive
advantage in downstream evaluations.
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Scheduler Training Tokens LOAI HS OBQA WG ARC-e PIQA LQA Avg.

Cosine
100B DCLM → 100B Stack 33.17 31.79 25.2 49.17 42.72 62.51 25.49 38.58
100B DCLM → 100B Stack (50% Replay) 47.56 43.96 32.2 52.33 50.50 69.53 28.57 46.37

Inf Cos (ηconst = 1e-4)
100B DCLM → 100B Stack 35.73 33.47 26.0 51.78 43.39 62.19 28.11 40.09
100B DCLM → 100B Stack (50% Replay) 49.16 43.72 32.6 52.09 50.59 68.93 27.65 46.39

Inf Cos (ηconst = 2e-4)
100B DCLM → 100B Stack 33.99 32.44 26.2 51.93 43.10 60.99 26.57 39.31
100B DCLM → 100B Stack (50% Replay) 48.73 44.42 31.6 54.85 51.73 69.31 27.04 46.81

LOAI: LambdaOpenAI, HS: HellaSwag, OBQA: OpenBookQA, WG: WinoGrande,LQA: LogicQA

Table 10. Zero-shot results on popular LM benchmarks. Normalized accuracy is reported. We observe on average, as expected, that the
infinite schedule with ηconst = 2e− 4 with a 50% replay gives the best performance across all the benchmarks. Even without Replay,
both the infinite schedules give better performance as compared to cosine. This demonstrates the effectiveness of infinite schedule in
mitigating forgetting.

Scheduler Training Tokens ARC-de HS-de Avg.

Cosine 100B DCLM → 100B Stack → 100B German 23.29 32.89 28.09

Inf Cos (ηconst = 1e-4) 100B DCLM → 100B Stack → 100B German 23.64 32.56 28.10

Inf Cos (ηconst = 2e-4) 100B DCLM → 100B Stack → 100B German 23.21 32.90 28.06

Table 11. Zero-shot results showing adaptability of the model after completing training on the German data (D2) on popular LM
benchmarks. We observe that the infinite schedule with ηconst = 1e−4 achieves the best performance on German evaluation benchmarks,
demonstrating that the infinite schedule adapts more effectively than the cosine schedule on the most recent task.

N. Practical Guide for Hyperparameter Selection in Infinite Cosine Scheduling
Selecting learning rate hyperparameters for continual pre-training can be computationally expensive due to the scale of
training. This challenge applies to both repeated cosine and infinite cosine schedules and is not unique to the latter. However,
when control over the initial pre-training phase is available, recent advances in hyperparameter-transfer techniques (Yang
et al., 2021) can help reduce tuning costs substantially.

While hyperparameter stability is not the primary focus of this work, we provide practical guidance based on consistent
trends observed in our experiments. The following empirically grounded rule-of-thumb can serve as a starting point for
configuring the infinite cosine schedule effectively:

• Step 1: Selecting ηmax - Choose a maximum learning rate (ηmax) that yields stable validation loss on the initial
domain. This follows standard large-scale pre-training practice. If a tuned cosine schedule is already available from
prior work, its ηmax serves as a strong candidate.

• Step 2: Setting ηconst - Define the constant learning rate for Inf-Cos as the midpoint between ηmax and ηmin. For
example, with ηmax = 3e− 4 and ηmin = 3e− 5, a suitable baseline is ηconst ≈ 1.65× 10−4.

We further find the following trends to be consistent along with takeaways from (Hägele et al., 2024)

• Without replay: When no replay buffer is available, a relatively lower ηconst is preferred to better preserve previously
acquired knowledge as shown in Figure 3 and Figure 2.

• With replay: When replay is available, a relatively higher ηconst can be utilized to improve adaptability without
severely impacting retention — as shown in Figure 4.

These insights allow practitioners to configure Infinite Schedules without exhaustive search, and makes it a more flexible
and robust scheduler as compared to repeated cosine.
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