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Abstract

The radio astronomy community is rapidly adopt-
ing deep learning techniques to deal with the huge
data volumes expected from the next generation
of radio observatories. Bayesian neural networks
(BNNs) provide a principled way to model un-
certainty in the predictions made by such deep
learning models and will play an important role
in extracting well-calibrated uncertainty estimates
on their outputs. In this work, we evaluate the per-
formance of different BNNs against the following
criteria: predictive performance, uncertainty cali-
bration and distribution-shift detection for the radio
galaxy classification problem.

1 INTRODUCTION

Bayesian neural networks (BNNs) have tremendous poten-
tial in scientific applications of machine learning. However,
most large scale evaluations of BNNs focus on well-curated
terrestrial datasets with lots of labelled examples [Wilson
et al., 2022} |Vadera et al.,[2022]. In contrast, in radio astron-
omy, the largest labelled datasets are of the order 102 [Porter
and Scaifel 2023]]. In this work we present an evaluation of
Bayesian deep learning for radio astronomy, using the mor-
phological classification of radio galaxies as a benchmark.
Supervised CNNs have been the most widely used solu-
tion to this problem since their introduction to the field by
Antyan and Thorat| [[2017]]. That work adopted the canonical
morphological division of radio galaxies into Fanaroff-Riley
Type I (FRI) and Type II (FRII), which has persisted as the
most common classification scheme for radio galaxies in the
literature for more than 40 years [Fanaroff and Riley} [ 1974].
More recently the FR classification scheme has been used to
demonstrate improvements in efficiency and accuracy for a
variety of deep-learning models within both the supervised
[Lukic et al.l 2019, Becker et al.,|1995| Bowles et al., 2021

Scaife and Porter,2021]] and unsupervised [Slijepcevic et al.,
2022] learning regimes.

With recent improvements in the sensitivity and resolution
of modern radio astronomy observatories, the morphologi-
cal detail recovered in images of radio galaxies has indicated
that more complex relationships exist beyond the original
FR dichotomy [Mingo et al., 2019]. Whilst a more nuanced
analysis will certainly be enabled by the development of in-
creasingly fine-grained automated classification, the under-
lying continuum of physical processes that are represented
by this diversity of morphology is perhaps better captured
by understanding the confidence with which certain galaxies
are assigned to different labels by these models. However,
the confidence of individual predictions is not necessarily
reflected in standard metrics for deep learning, but instead
requires models to focus on uncertainty quantification of
model predictions rather than raw performance [Mohan
et al., [2022].

BNNs provide a principled way to model uncertainty
[MacKay, [1992alb]] by specifying priors, P(6), over the
neural network parameters, €, and learning the posterior
distribution, P (6| D), over those parameters, where D is the
data. Recovering this posterior distribution directly is in-
tractable for neural networks. Several techniques have been
developed to approximate Bayesian inference for neural net-
works. We consider Hamiltonian Monte Carlo [HMC; |Neal
and Hinton, |1998|, [Neal et al.,|2011]], Variational Inference
[VI;Blei et al.l 2016, [Blundell et al., 2015, |Graves, 2011]],
last-layer Laplace approximation[LLA; |[Daxberger et al.|
2021]], MC Dropout [Gal and Ghahramani, |2015]] and Deep
Ensembles [Lakshminarayanan et al., 2017] for our appli-
cation. We focus our evaluation on the following criteria:
predictive accuracy, uncertainty calibration and ability to
detect different types of distribution shifts.

In Section 2] we give a brief overview of the BNNs consid-
ered in this work; in Section [3| we describe the datasets used
to train and evaluate our BNNs; in Section [d] we describe
our experimental setup and finally in Section [5| we present
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our evaluation, followed by a discussion in Section @

2 APPROXIMATE BAYESIAN
INFERENCE FOR DEEP LEARNING

The Bayesian neural networks considered in this work were
chosen to encompass a broad range of posterior approxima-
tions. While HMC provides asymptotically exact samples
from the posterior, VI makes local approximations to the
posterior for all the weights of the network and LLA makes
local approximations only for the last layer weights. We also
consider other cheaper approximations which are commonly
implemented such as MC Dropout and Deep Ensembles.

2.1 HAMILTONIAN MONTE CARLO

The first application of MCMC to neural networks was pro-
posed by |Neal and Hinton|[[1998]], who introduced Hamilto-
nian Monte Carlo (HMC) from quantum chromodynamics
to the general statistics literature. However, it wasn’t un-
til [Welling and Teh|[201 1] introduced Stochastic Gradient
Langevin Dynamics (SGLD), that MCMC for neural net-
works became feasible for large datasets. More recently,
Cobb and Jalaian| [2021] have revisited HMC and proposed
novel data splitting techniques to make it work with large
datasets. We use the HMC algorithm in our work.

HMC simulates the path of a particle traversing the negative
posterior density space using Hamiltonian dynamics [Neal
et al.} 2011} |Betancourt, 2017, |Hogg and Foreman-Mackey,
2018]]. To apply HMC to deep learning, the neural network
parameter space is augmented by specifying an additional
momentum variable, m, for each parameter, 6. Therefore,
for a d-dimensional parameter space, the augmented param-
eter space contains 2d dimensions. We can then define a log
joint density as follows:

log{p(6,m)] = log[p(6] D)p(m)] ()

Hamiltonian dynamics allows us to travel on the contours
defined by the joint density of the position and momentum
variables. The Hamiltonian function is given by:

H(9,m) =U(0) + K(m) = constant, (2)

where U(6) is the potential energy and K (m) is the ki-
netic energy. The potential energy is defined to be the nega-
tive log posterior probability and the kinetic energy is usu-
ally assumed to be quadratic in nature and of the form
K(m) = (1/2) m* M ~'m, where M is a positive-definite
mass matrix. This corresponds to the negative probability
density of a zero-mean Gaussian, p(m) = N(m|0, M),
with covariance matrix, M, which is usually assumed to be
the identity matrix.

The partial derivatives of the Hamiltonian describe how
the system evolves with time. In order to solve the partial

differential equations using computers, we need to discretise
the time, ¢, of the dynamical simulation using a step-size,
€. The state of the system can then be computed iteratively
at times €, 2¢, 3e... and so on, starting at time zero upto
a specified number of steps, L. The leapfrog integrator is
used to solve the system of partial differential equations.
Two hyperparameters, the step-size, €, and the number of
leapfrog steps, L, together determine the trajectory length of
the simulation. The partial derivative of the potential energy
with respect to the position, OU /96, can be calculated using
the automatic differentiation capabilities of most standard
neural network libraries.

In each iteration of the HMC algorithm, new momentum
values are sampled from Gaussian distributions, followed
by simulating the trajectory of the particles according to
Hamiltonian dynamics for L steps using the leapfrog inte-
grator with step-size e. At the end of the trajectory, the final
position and momentum variables, (§*, m*), are accepted
based on a Metropolis-Hastings accept/reject criterion that
evaluates the Hamiltonian for the proposed parameters and
the previous parameters.

2.2 VARIATIONAL INFERENCE

Variational inference (VI) assumes an approximate posterior
from a family of tractable distributions, and converts the
inference problem into an optimisation problem [Graves,
2011}, Blundell et al., [2015| [Blei et al., 2016]]. The model
learns the parameters of the distributions by minimising an
Evidence Lower Bound objective (ELBO) function, which
is composed of a data likelihood cost and a complexity
cost that quantifies the difference between the prior and the
variational approximation using KL divergence.

2.3 LAST-LAYER LAPLACE APPROXIMATION

Last-layer Laplace approximation (LLA) constructs Gaus-
sian approximations around the maximum a posteriori
(MAP) values learned by standard NN training using the
second order partial derivatives of the loss function, £
[Daxberger et al.,[2021]]. This method allows one to learn
posteriors for the last layer weights of the network, (%),
while keeping the rest of the values fixed at their MAP esti-
mates. The covariance matrix for the last layer is calculated
using the empirical Fisher approximation to the Hessian,
which contains information about the local curvature of the
loss function for each parameter. The method assumes a
zero mean Gaussian prior, p(6) = N(6;0,~2I). The prior
variance, 72, is estimated using marginal likelihood max-
imisation [Immer et al., 2021} [Daxberger et al., [2021]].



Figure 1: Images from the datasets used in this work: top
two rows contain images of Fanaroff Riley Type I (FRI)
and Type II (FRII) radio galaxies from the MiraBest Confi-
dent dataset on which our BNNSs are trained on. The third
row contains FRI/FRII galaxies from the MIGHTEE dataset.
The fourth row contains optical galaxies from the GalaxyM-
NIST dataset. We use the MIGHTEE and GalaxyMNIST
datasets to evaluate our models’ ability to detect different
types of distribution shifts. See Section [3|for details about
the datasets.

24 MONTE CARLO DROPOUT

Another easily implemented Bayesian approximation is MC
Dropout, which learns a distribution over the network out-
puts by setting randomly selected weights of the network to
zero with probability, p [Gal and Ghahramani, 2015]]. MC
dropout can be considered an approximation to VI, where
the variational approximation is a Bernoulli distribution.
Although a convenient technique, this method lacks flexi-
bility and does not fully capture the uncertainty in model
predictions, especially under covariate shift where the data
distributions at training and test time are not identically
distributed [[Chan et al., 2020].

2.5 DEEP ENSEMBLES

One can use the output of multiple randomly initialised
models to form a uniformly-weighted mixture model whose
predictions can be combined to form an ensemble [Laksh{
minarayanan et al., 2017

3 DATA

Radio galaxies are characterised by large scale jets and
lobes which can extend up to mega-parsec distances from
the central black hole and are observed in the radio spec-
trum. The original binary classification scheme proposed
to classify such extended radio sources was based on the
ratio of the extent of the highest surface brightness regions
to the total extent of the galaxy, [Fanaroff and Riley|[1974].
FRI galaxies are edge-darkened whereas FRII galaxies are
edge-brightened. Over the years, several other morpholo-
gies such as bent-tail [Rudnick and Owen, 1976, |0’Dea and
Owen), [1985]], hybrid [Gopal-Krishna and Wiital 2000]], and
double-double [Schoenmakers et al., [2000] sources have
also been observed and there is still a continuing debate
about the exact interplay between extrinsic effects, such as
the interaction between the jet and the environment, and
intrinsic effects, such as differences in central engines and
accretion modes, that give rise to the different morphologies.

We train our BNNs on the MiraBest Confident dataset [Sec-
tion[3.1]] and use the MIGHTEE [Section[3.2]] and GalaxyM-
NIST [Section [3.3]] datasets to test the ability of our BNNs
to detect different types of distribution shifts.

3.1 MIRABEST

The MiraBest dataset used in this work consists of 1256
images of radio galaxies of 150 x 150 pixels pre-processed
to be used specifically for deep learning tasks [Porter and
Scaife| 2023]. The galaxies are labelled using the FRI and
FRII morphological types based on the definition of [Faj
naroff and Rileyl, [1974] and further divided into their sub-
types. In addition to labelling the sources as FRI, FRII and
their subtypes, each source is also flagged as ‘Confident’
or ‘Uncertain’ to indicate the human classifiers’ confidence
while labelling the dataset. In this work we use the MiraBest
Confident subset and consider only the binary FRI/FRII
classification during training, see Figure 1| (top two rows)
for some examples. The training and validation sets are cre-
ated by splitting the predefined training data into a ratio of
80:20. The final split consists of 584 training samples, 145
validation samples, and 104 withheld test samples.

The MiraBest dataset was constructed using the sample
selection and classification described in Miraghaei and Best
[2017]], who made use of the parent galaxy sample from
Best and Heckman|[2012]. Optical data from data release 7
of Sloan Digital Sky Survey [SDSS DR7;/Abazajian et al.|
2009] was cross-matched with NRAO VLA Sky Survey
[NVSS;|Condon et al.,|1998] and Faint Images of the Radio
Sky at Twenty-Centimeters [FIRST; Becker et al.l [1995]]
radio surveys.



3.2 MIGHTEE

The MIGHTEE dataset is constructed using the Early Sci-
ence data products from the MeerKAT International GHz
Tiered Extragalactic Exploration survey [MIGHTEE; Hey+
wood et al., [2022]]. MIGHTEE is an ongoing radio contin-
uum survey being conducted using the MeerKAT telescope,
which is one of the precursors to the Square Kilometer
Array (SKA). The survey provides radio continuum, spec-
tral line and polarisation data, of which we use the radio
continuum data and extract images for the COSMOS and
XMMLSS fields. While there are thousands of objects in
these fields, expert labels are only available for 117 ob-
jects. We use the data pre-processing and expert labels made
available by [Slijepcevic et al.|[2024]]. The dataset contains
classifications based on the consensus of five expert radio
astronomers. The final sample contains 45 FRI and 72 FRII
galaxies, see Figure[T] (third row). We note that the MIGH-
TEE dataset contains significant observational differences
from the MiraBest dataset.

3.3 GALAXY MNIST

In addition to considering different datasets of radio galaxies
which have been curated using data from radio telescopes,
we also evaluate our models on data collected from optical
telescopes. Optical images of galaxies contain different fea-
tures and in a sense represent completely out-of-distribution
galaxies which well-calibrated models should classify with
a very high degree of uncertainty so that they can be flagged
for inspection by an expert.

We use the GalaxyMNIS dataset which contain images
of 10, 000 optical galaxies classified into four morphologi-
cal types using labels collected by the Galaxy Zoo citizen
science project, see Figure|l| (last row) for examples. The
galaxies are drawn from the Galaxy Zoo Decals catalogue
[Walmsley et al.,|[2022]]. We resize the high resolution im-
ages from 224x224 to 150x150 to match the input dimen-
sions of our model. We construct a small test set of 104
galaxies from the dataset to evaluate the out-of-distribution
detection ability of our BNNs.

4 EXPERIMENTS

Code for the experiments conducted in this work
is available at: https://github.com/devinamhn/
RadioGalaxies—BNNs.

1https://github.com/mwalmsley/qalaxy_
mnist

4.1 MODEL ARCHITECTURE

We use an expanded LeNet-5 architecture with two addi-
tional convolutional layers with 26 and 32 channels, respec-
tively, to be consistent with the literature on using BNNs for
classifying the MiraBest dataset [Mohan et al.| 2022f]. The
model has 232, 444 parameters in total.

4.2 HMC INFERENCE

We use the HAMILTORCH packag developed by |Cobb and
Jalaian|[2021]] for scaling HMC to large datasets. Using their
HMC sampler, we set up two HMC chains of 200, 000 steps
using different random seeds and run it on the MiraBest
Confident dataset. We use a step size of ¢ = 10~* and
set the number of leapfrog steps to L = 50. We specify a
Gaussian prior over the network parameters and evaluate
different prior widths, o = {1,1071,1072, 1073}, using
the validation data set. We find that ¢ = 10! results in
the best predictive performance and consequently use it
to define the prior width for all weights and biases of the
neural network in our experiments. To compute the final
posteriors we thin the chains by a factor of 1000 to reduce
the autocorrelation in the samples and obtain 200 samples.
A compute time of 170 hrs is required to run the inference
on two Nvidia A100 GPUs. The acceptance rate of the
proposed samples is 97.62%. We repeat the inference with
data augmentation in the form of random rotations.

Assessing Convergence: The Gelman-Rubin diagnostic,
]:Z, is used to assess the convergence of our HMC chains
[[Gelman and Rubin, |1992]. If R ~ 1 we consider the HMC
chains for that particular parameter to have converged. We
examine the convergence of the last layer weights and find
that using data augmentation leads to a higher proportion
of weights with R > 1. We also monitor the negative log-
likelihood and accuracy, which converge by the 100, 000™"
inference step.

4.3 OTHER INFERENCE METHODS

We conduct 10 experimental runs for each inference method
presented in this section using different random seeds and
random shuffling of data points between the training and
validation datasets.

4.3.1 Deep Ensembles

We train 10 non-Bayesian CNN models with different ran-
dom seeds and randomly shuffled training:validation splits
to construct the posterior predictive distribution by com-
bining the softmax values obtained for each galaxy in our
test set. The models are trained for 600 epochs using the

“https://github.com/AdamCobb/hamiltorch
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Adam optimiser with a learning rate of 10~* and weight
decay 10~5. We use a learning rate scheduler which reduces
the learning rate by 10% if the validation loss does not im-
prove for two consecutive epochs and use an early stopping
criterion based on the validation loss.

4.3.2 MC Dropout

A dropout rate of 50% is implemented before the last two
fully-connected layers of our neural network. This dropout
configuration performed better compared to implementing
dropout only before the last layer of the network. The net-
work is trained for 600 epochs using the Adam optimser
with a learning rate of 10~3 and a weight decay of 1074,
We use a learning rate scheduler which reduces the learning
rate by 10% if the validation loss does not improve for two
consecutive epochs and use an early stopping criterion based
on the validation loss.

433 LLA

We use the MAP values learned by our non-Bayesian CNNs
to construct our last-layer Laplace approximation using the
LAPLACE packageﬂ developed by |Daxberger et al.|[2021].
We use a diagonal factorisation of the Hessian. The opti-
mised prior standard deviation found using marginal likeli-
hood maximisation for 10 experimental runs lies between
o €[0.03,0.04].

434 VI

We make a Gaussian variational approximation to the pos-
terior and find that our model is optimised with a Gaussian
prior width o = 0.01. We also test a Laplace prior following
[Mohan et al.|[2022], but find that it does not lead to a signif-
icant performance improvement. Results are reported for a
tempered VI posterior, with 7" = 0.01 (see note below). The
network is trained for 1500 epochs using the Adam optimser
with a learning rate of 5.10~°. A compute time of 40 mins
is required to train the VI model on a single Nvidia A100
GPU.

Note: Data augmentation and the cold posterior effect
Several published works have reported that their BNNs ex-
perience a "cold posterior effect (CPE)", according to which
the posterior needs to be down-weighted or tempered with
a temperature term, 7' < 1, in order to get good predictive
performance [Wenzel et al.,|[2020]:

P(0|D) o (P(D|6)P(9))"/". 3)

Previous work on using VI for radio galaxy classification
has shown that the "cold posterior effect" (CPE) persists

*https://github.com/AlexImmer/Laplace

even when the learning strategy is modified to compensate
for model misspecification with a second order PAC-Bayes
bound to improve the generalisation performance of the
network [Mohan et al., 2022} Masegosa, |2019]]. We do not
observe a CPE when we use samples from our HMC infer-
ence to construct the posterior predictive distribution for
classifying the MiraBest dataset. However, the effect still
persists in our VI models. In the general Bayesian DL litera-
ture, some authors argue that CPE is mainly an artifact of
data augmentation [[zmailov et al.|[2021]], while others have
shown that data augmentation is a sufficient but not nec-
essary condition for CPE to be present [Noci et al., 2021]].
We find that data augmentation does not have a significant
effect on the cold posterior effect observed in our VI mod-
els. However, it does lead to a different degree of trade-off
between test error and uncertainty calibration error for our
HMC model. The effect of augmentation on performance is
further discussed in Section 3

S EVALUATION

To construct the posterior predictive distributions for a single
experimental run of VI, LLA and MC Dropout, we obtain
N = 200 samples from their posterior distributions and
calculate IV Softmax probabilities for each class, for each
galaxy in our test set. For Deep Ensembles we use N = 10
samples. In case of HMC we use the 200 samples obtained
after thinning the chains for evaluation.

5.1 PREDICTIVE PERFORMANCE

We use the expected value of the posterior predictive dis-
tribution to obtain the classification of each galaxy in the
MiraBest Confident test set and calculate the test error for a
single experimental run by taking an average of the classifi-
cation error over the entire test set. We report the mean and
standard deviation of the test error for 10 experimental runs,
see Table[l

VI has the best predictive performance, irrespective of
whether data augmentation is used or not. The low stan-
dard deviation values for VI indicate that the mean of the
posterior predictive distribution found by VI optimisation
is robust to random seeds and shuffling. The same does not
hold true for LLA and Dropout, which are the two worst per-
forming models. Deep ensembles lie somewhere in between.
The MAP value reported in Table|l|is chosen on the basis
of the lowest validation loss from the ensemble of CNNs
that we trained.

5.2 UNCERTAINTY CALIBRATION

We report the expected uncertainty calibration error [UCE;
Gal and Ghahramani, 2015, [Laves et al.| 2019, Mohan et al.|
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Table 1: Test error and uncertainty calibration error (UCE) of the predictive entropy for all the Bayesian neural networks
considered in this work. We also provide a baseline MAP error percentage. Inference methods with a (*) indicate that no
data augmentation was used during inference for those experiments. See Sections S.T]and[5.2}

Inference Error (%), UCE |
HMC 4.16+£0.45 14.76 £0.95
HMC* 6.244+0.45 12.6540.01
VI 394+0.01 12.77+6.11
VI*  3.844+0.01 12.32 £ 6.36
LLA 8.854+2.09 23.84+3.54
Dropout 7.88 +2.81 25.75+4.44
Ensembles 7.69 +0.27 24.41
MAP 5.76

2022] of the predictive entropy for our posterior distribu-
tions in Table[I] For HMC, VI, LLA and MC Dropout, we
use the 64% credible intervals of the posterior predictive
distributions to calculate UCE. For Deep Ensembles, we use
the entire posterior predictive distribution constructed using
the 10 ensemble members.

We find that HMC without data augmentation is the most
well-calibrated BNN for the radio galaxy classification prob-
lem. HMC with data augmentation has a higher UCE. VI
models with and without data augmentation are similarly
calibrated. The high standard deviation values show how
sensitive VI is to initialisation, and this is a well documented
issue in the literature [Altosaar et al., 2018 |Rossi et al.,
2019]. LLA, MC Dropout and Deep Ensembles are very
poorly calibrated compared to HMC and VI.

We refrain from reporting the mutual information and con-
ditional entropy as measures of epistemic and aleatoric un-
certainty since they are known to be dependent on model
specification and class separability [Hiillermeier and Waege+
man, 2021]], making them difficult to interpret given our
small statistical sample of radio galaxies. More recently,
[Wimmer et al., 2023]] have also shown that the additive
decomposition of total predictive uncertainty into mutual in-
formation and conditional entropy breaks down in machine
learning settings where we have access to a limited number
of data samples. They suggest that the difference between
predictive entropy and mutual information can at most be
interpreted as a lower bound on the aleatoric uncertainty,
which converges to the true value when the model learns the
true data generating distribution.

5.3 DETECTING DISTRIBUTION SHIFT

When neural networks are deployed in real-world appli-
cations, the independent and identically distributed (i.i.d.)
assumption often breaks down and leads to different types
of distribution shifts. According to the i.i.d. assumption,
the training and test sets are drawn from the same joint
distribution defined by the input data and their labels

(z,y) ~ P(X,Y). Covariate shift occurs when there is
a change in the input data distribution, P(X), but no shift
in the distribution of labels, P(Y"), at test time. This can
be due to domain shift, for example when the model is
faced with galaxies from a new telescope facility. Another
type of shift occurs when the distribution of labels, P(Y'),
changes at test time due to the presence of new classes. This
is known as semantic shift. Some degree of semantic shift is
expected when telescopes with improved resolution reveal
new morphologies of galaxies.

In order to evaluate the sensitivity of our BNNs to differ-
ent types of distribution shifts, we need a scoring func-
tion which can distinguish between in-distribution (iD) and
distribution-shifted test galaxies without adding significant
computational overhead. |[Liu et al.|[2020] showed that en-
ergy scores provide an easy to implement post-hoc scoring
mechanism for discriminative classification models.

We calculate energy scores for different test samples, x, for
all the datasets described in Section [3]using the logit values,
fi(x), for each class, i, following |Liu et al.[[2020]. For a
non-Bayesian model, an input sample, x, is mapped to a
scalar energy value as follows:

K
E(z; f) = —T.logZefi(z)/T, )

where the temperature term, 7', is set to 1. For our Bayesian
models we calculate the average energy value per input
sample using IV posterior samples:

N K

- 1 (o

E(z; f) = Nz ~T.log » _e/i)/T. (5)
j i

In this framework, out-of-distribution (OoD) samples are
expected to have higher energy.

Histograms of energy values for the different inference meth-
ods considered in this work are shown in Figure[2] We use
the models with the lowest validation error from the exper-
iments to calculate the energy scores. We see that the iD



MiraBest Confident samples get mapped to a larger interval
of energy values by our HMC and VI models. In compari-
son, the energy scores for iD samples lie in a very narrow
interval for Deep Ensembles, MC Dropout and LLA, which
suggests that fewer iD samples have been pushed to lower
energy values.

We find that HMC and VI models are good at separating
the OoD optical galaxies from the GalaxyMNIST dataset,
see Figure [2a] and Figure 2b] For all other models, there
is a significant degree of overlap between the iD and OoD
samples, see Figure

The FRI/FRII galaxies from the MIGHTEE dataset present
a significant dataset shift due to differences in observa-
tional properties. MIGHTEE galaxies get mapped to a large
interval of energy values, in some cases extending upto
E = —90. However, HMC is the only model for which
there exists a clear distinction between iD FRI/FRII galaxies
from MiraBest Confident and distribution-shifted FRI/FRII
galaxies from MIGHTEE. We also note that LLA maps
some of the MIGHTEE galaxies to energies higher than
OoD GalaxyMNIST data, see Figure

6 DISCUSSION

A certain degree of trade-off exists between a model’s pre-
dictive performance and calibration. While VI has the best
predictive performance, HMC without data augmentation
is the most well-calibrated model and only 2.5% less accu-
rate. HMC with data augmentation has a better predictive
performance, but is less calibrated than HMC without data
augmentation. A similar trend has also been reported by
Krishnan and Tickoo| [2020]], who propose a loss function
which optimises for both accuracy and calibration.

The differences in dataset separability via energy scores
for different BNNs can be better understood if we examine
the way in which each of these models is being optimised.
LeCun et al.|[2006] show that many modern learning algo-
rithms can be interpreted as energy-based models. In the
energy-based framework, different loss objectives cause
certain inputs’ energies to be pulled up/down. LLA, Deep
ensembles and MC Dropout are all trained by minimising
the negative log likelihood (NLL) loss plus some regularisa-
tion term due to weight decay. Our evaluation suggests that
NLL training is not be able to shape the energy functional
well enough to distinguish between the datasets we have
considered. While HMC is directly sampling from an energy
surface that is proportional to the log of the posterior distri-
bution, is case of VI the ELBO provides a well optimised
surrogate energy function. Our HMC and VI models seem
to have learned good energy surfaces. |LeCun et al.| [2000]
also note that softmax probabilities can be considered good
if the energy function is estimated well enough from the
data. Perhaps this is also why HMC and VI are the better

calibrated models among all those we have considered in
this work.

Our observations on the cold posterior effect (CPE) con-
tradict the results presented in [[zmailov et al.| [2021]]. They
suggest that the CPE is largely due to data augmentation.
While our HMC model does not require any tempering, the
VI models require temperatures below 7" = 0.01 to produce
good predictive performance. We also found that data aug-
mentation does not have a significant impact on the CPE ob-
served in our models. Finding the cause of the cold posterior
effect observed in VI for radio galaxy classification is still
an open research question. Thus we find that results from the
CS literature where models are trained on terrestrial datasets
often do not translate to domain-specific applications. While
Deep Ensembles are generally considered a good approxi-
mation to the Bayesian posterior, [Seligmann et al., 2023
recently showed that single-mode BDL algorithms approxi-
mate the posterior better than Deep Ensembles. We also find
that Deep Ensembles do not work as well as VI and HMC
for our application.

Through this work, we have identified VI as the most promis-
ing method for our application given the computational cost
of HMC. In future work, we plan to develop and improve
our VI implementation further by using alternate optimisa-
tion strategies based on natural gradient descent [Shen et al.,
2024| |Khan and Rue} 2021]] and proximal gradient descent
[Kim et al., [2023]]. We also plan to investigate the cold pos-
terior effect further, both experimentally and theoretically.
To do this we will examine the effect of data curation, which
requires the creation of new datasets. Additionally, to exam-
ine robustness to prior misspecification, we plan to develop
different divergence metrics for the ELBO cost function.
Future work could also develop BNNs for self-supervised
learning to exploit larger unlabelled datasets in astronomy.

7 CONCLUSIONS

In this work we have evaluated different Bayesian neural net-
works for the classification of radio galaxies. We found that
Hamiltonian Monte Carlo and variational inference perform
well at our model and dataset scales for the three criteria
we considered: predictive performance, uncertainty calibra-
tion and ability to detect distribution shift. Commonly used
Bayesian NNs such as MC Dropout and Deep Ensembles
are poorly calibrated for our application. Since HMC is
very computationally heavy, optimising VI for future radio
surveys might be the way forward.
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Figure 2: Detecting distribution shift with energy scores: Histograms of energy scores calculated for the MiraBest Confident
(MBConf; blue), GalaxyMNIST (orange) and MIGHTEE (green) test datasets for the different models considered in this
work, see Section [5.3]for details. The histograms are plotted with a bin width of 0.1. Axes are truncated so that we can

examine where samples from each dataset lie. We find that HMC is the only inference method for which all the datasets can
be easily distinguished.
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