Under review as a conference paper at ICLR 2026

IMPROVING EXPRESSIVITY IN LINK PREDICTION WITH
GNNS VIA THE SHORTEST PATH

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) often fail to capture the link-specific structural
patterns essential for accurate link prediction, since their node-centric message
passing might overlook the subgraph structures connecting two nodes. Prior at-
tempts to inject such structural context either suffer from high computational cost
or rely on oversimplified heuristics (e.g., common neighbor counts) that cannot
capture multi-hop dependencies. We propose SP4LP (Shortest Path for Link Pre-
diction), a new framework that integrates GNN-based node encodings with se-
quence modeling over shortest paths. Specifically, SPALP first computes node
representations with a GNN, then extracts the shortest path between each candi-
date node pair and processes the sequence of node embeddings with a sequence
model. This design allows SP4LP to efficiently capture expressive multi-hop re-
lational patterns. Theoretically, we show that SP4LP is strictly more expressive
than both standard message-passing GNNs and several leading structural feature
methods, positioning it as a general and principled framework for link prediction
in graphs. Empirically, SP4LP sets a new state of the art on many standard link
prediction benchmarks.

1 INTRODUCTION

Graph Neural Networks (GNNs) are widely adopted for link-level tasks such as link predic-
tion (Zhang & Chenl 2018}, Lt & Zhou, 2011} [Zhoul, [2021)), link classification (Rossi et al., 2021}
Wang et al., 2021} (Cheng et al., 2025) and link regression (Liang et al.| 2025} |Dong et al., [2019)
with applications spanning recommender systems (Ying et al., 2018)), knowledge graph comple-
tion (Nickel et al.,|2015), and biological interaction prediction (Jha et al.,|[2022).

Despite their popularity, standard GNNs struggle to accurately represent links, as they typically
construct link embeddings by aggregating the representations of the two endpoint nodes. This node-
centric strategy leads to a key limitation: structurally distinct links may be mapped to the same
representation when their endpoints are automorphic (Srinivasan & Ribeiro, 2019; |(Chamberlain
et al 2023} [Zhang et al.| 2021). For example, in the graph of Figure[l] links (v,) and (v, u’) yield
identical representations under any standard GNN, even if one pair shares a common neighbor and
the other does not. This issue, known as the automorphic node problem (Chamberlain et al., |2023)),
highlights a fundamental expressivity bottleneck in message-passing schemes for link representa-
tion.

To address this, several methods enhance GNNs with structural features (SFs), which can be broadly
classified into three paradigms (Wang et al., 2024): SF-then-GNN, which injects structural context
into the graph before message passing (e.g., SEAL (Zhang et al.,2021), NBFNet (Zhu et al.,|2021));
SF-and-GNN, which computes SFs and node embeddings in parallel (e.g., Neo-GNN (Yun et al.,
2021), BUDDY (Chamberlain et al., 2023)); and GNN-then-SF, which applies message passing
once to compute node representations and then combines them using task-specific structural context
(e.g., NCN and NCNC (Wang et al.| [2024)).

While SF-then-GNN methods are expressive, they are computationally inefficient, often requiring
subgraph extraction or retraining per link. SF-and-GNN models are efficient but rely on predefined
heuristics, limiting their ability to capture rich relational patterns. GNN-then-SF approaches offer
a compelling trade-off between expressivity and scalability, but current methods in this class, i.e.,
NCN and NCNGC, still rely on overlap between the neighborhoods of the endpoints: NCN uses

Under review as a conference paper at ICLR 2026

common neighbors, while NCNC also leverages predicted second-order common neighbors. In the
absence of such overlapping neighbors, they revert to standard GNN behavior and lose expressive
power.

In this paper we propose SP4LP, a novel method in the GNN-
then-SF paradigm that combines high expressiveness with compu-
tational efficiency. SP4LP constructs a path-aware representation
by incorporating the embeddings of all nodes along the shortest path
connecting the two endpoints. These node embeddings, obtained
via a base GNN, are then processed as a sequence using a dedi-
cated sequence model, such as a Transformer (Vaswani et al., 2017)),
LSTM (Hochreiter & Schmidhuber, |1997), or an injective summa-
tion function (Xu et al., 2019).

The first key advantage of SP4LP is its expressiveness. Unlike
structural features such as common neighbors, which may not ex-
ist for many node pairs and can lead to degenerate cases in sparse
graphs, the shortest path is always defined between any two nodes if
the graph is connected. Shortest paths are more broadly defined, as
common neighbors imply a path, but not vice versa. Moreover, since
the embeddings of the nodes along the path are generated through
message passing, they implicitly encode the broader local structure
surrounding the link. This richer structural context enables SP4LP to distinguish non-automorphic
links even when their endpoints are automorphic, thereby overcoming the automorphic node prob-
lem. We formally prove that SP4LP is strictly more expressive than some existing approaches.

Figure 1: Links (v,u) and
(v,u’) have different struc-
tural roles within the graph,
yet a GNN assigns them
identical representations.

SP4LP is efficient and scalable. The message-passing step is performed only once on the entire
graph, and the shortest path computation is a preprocessing step. Unlike SF-then-GNN methods
such as SEAL or NBFNet, SPALP avoids costly per-link subgraph extraction or online traversal
during inference, allowing it to scale to large graphs and high-throughput settings.

Moreover, SPALP is a general and flexible framework. It can be instantiated with any GNN
architecture to compute node embeddings (e.g., GCN (Kipf & Welling| [2016a), GAT (Velickovic
et al., 2017)), GraphSAGE (Hamilton et al.| 2017b)), and supports a range of sequence models for
encoding the path structure, from lightweight aggregators to fully expressive recurrent or attention-
based models.

Finally, SP4LP achieves state-of-the-art performance across several benchmark datasets. Under
the challenging HeaRT evaluation protocol (Li et al.,2023)), it consistently outperforms existing link
prediction methods while maintaining competitive inference speed and low memory usage.

These properties make SP4LP a principled and practical solution for learning expressive link rep-
resentations in real-world graph learning scenarios.

2 PRELIMINARIES

Definition 2.1 (graph). A graph is a tuple G = (V, E,X°) where V. = {1,...,n} is a set of
nodes, E C V x V is a set of edges and X° € R"*f is the node features matrix. To each graph
is associated an adjacency matrix A € {0,1}"*™ with A; ; = 1 if and only if (i,j) € E. In this
work, we consider simple, finite and undirected graphs.

Definition 2.2 (message passing). Let G = (V, E,X°) be a graph. In message passing scheme,
representation of nodes v € V is iteratively updated as follows:

= X?’L},:] (1)

0
x!, = UPDATE (x} !, AGGREGATE ({x!,! | u € N(v)})) @

T

where N (v) is the first-order neighborhood of node v.

Graph Neural Networks (GNNs) are a class of neural architectures that operate on graphs by it-
eratively updating node representations through the message passing scheme. It has been proven

Under review as a conference paper at ICLR 2026

that GNNs are at most as effective as the Weisfeiler—Lehman (WL) test in distinguishing between
graphs (Morris et al.,2019; Xu et al., [2019)).

Definition 2.3 (GNN link representation model). A GNN link representation model M is a class
of functions

F:((u,0),G) = X(y,p) € R? 3)

which maps node pairs in (u,v) € V x V to vector representations using the message passing

scheme defined in Definition [2.2]

Note that the pair (u, v) belongs to V' x V, meaning that we compute a representation for any node
pair, what we refer to as a link, regardless of whether an edge between them exists in . This
general definition reflects the nature of the downstream tasks we aim to address once the link repre-
sentation is available, most notably, link prediction, where the objective is to estimate the likelihood
of a connection between arbitrary node pairs. To this end, the model learns representations for all
possible pairs, not just those connected by an edge. A widely adopted approach for learning such
representations is what we refer to as a pure GNN, defined as follows:

Definition 2.4 (pure GNN). A pure GNN model calculates representation X, ., € R? for each
pair of nodes (u,v) with u,v € V as follows:

X(u,w) = g(Xﬁ, Xﬁ) 4

where g is an aggregation function and x1,x% are the node representation of u and v learned by L

layers of message passing as defined in Definition

Pure GNNs are inherently limited in terms of expressiveness. In particular even when the base GNN
is the most powerful, they may assign the same representation to structurally different links. Con-
sider, for example, the graph in Figure[I} the colors of the nodes indicate the colors produced by
the WL algorithm; thus, using a most powerful GNN nodes u, v’ will be assigned to the same rep-
resentation. As a result, no matter how expressive the aggregation function g is, the representations
of the pairs (v, u) and (v, u’) will be identical. However, the links (v,) and (v, ') have different
roles within the graph structure. We provide a formal definition of what it means for two links to be
different.

Definition 2.5 (node permutation). A node permutation 7 : {1,... ,n} — {1,...,n} is a bijective
Sfunction that assigns a new index to each node of the graph. All the n! possible node permutations
constitute the permutation group I1,,. Given a subset of nodes S C V, we define the permutation
won S as w(S) = {w(i)|i € S}. Additionally, we define w(A) as the matrix A with rows and
columns permutated based on T, i.e., T(A) (i) () = Adj-

Definition 2.6 (automorphism). An automorphism on the graph G = (V, E,X") is a permutation
o € I, such that o(A) = A. All the possible automorphisms on a graph constitute the automor-
phism group ¥.C.

Definition 2.7 (automorphic nodes). Let G = (V, E,X°) be a graph and XS its automorphism
group. Two nodes u,v € V are said to be automorphic nodes (v ~ v) if:

Joexl st o({u}) = {v}. ®)

Definition 2.8 (automorphic links). Let G = (V,E,X") be a graph and XS its automorphism
group. Two pairs of nodes (u,v), (u',v") € V x V are said to be automorphic links ((u,v) ~
(u/’ ,U/)) l'f:.

JoexY st o({u,v}) = {u,v'}. (6)

Proposition 2.9. Pure GNN methods suffer from the automorphic node problem, i.e., for any graph
G = (V,E,X%), for pairs of links (u,v), (v ,v") € V x V such that there exist o1 € XS and

oy € B¢ with o1(u) = v’ and 52(v) = V', X(y,0) = X(w v'), independently whether (u,v) and
(u',v") are isomorphic, i.e, whether exist o € % with o({u,v}) = {u’,v'}.

This limitation is well-known in the literature (Chamberlain et al.,|2023;[Zhang et al.,[2021). Impor-
tantly, it does not arise from the expressiveness bounds of GNNs, which are constrained by the WL
test. Even considering higher-order GNNS, i.e., k-GNN (Morris et al., [2019), automorphic nodes
will be assigned to the same representation as the k-WL algorithm preserves graph automorphisms

Under review as a conference paper at ICLR 2026

Input graph (G) MPGNN Extract Pg(u,v) Compute representation of (u,v)
Palu,v) :
| Seq. model ¢ | -
L.
L.
2 @ =P
Flowchart: i
Gxb Message passing |y L L|nkt "
Input graph o Sequence representation
rode e edtynos o Shortest Path model ¢ L
Graph G, G Extraction hp () = P@U 0, hp)
features X! For link u, v) Encode (}) along
extract the shortest path the shortest path

Figure 2: Overview of the SP4LP framework. First, a GNN is used to compute contextualized
embeddings for all nodes in the graph. Then, for each target link, the shortest path connecting the
two endpoints is extracted. The embeddings of the nodes along this path are passed to a sequence
model (e.g., Transformer or LSTM) to compute a path-aware link representation. Below, we also
include a flowchart summarizing the full SP4LP pipeline, highlighting each computational step and
its inputs/outputs.

for every k (Lichter et al.},[2025} [Dawar & Vagnozzi, [2020} [Cai et al.}[1992). Thus, no standard GNN
can distinguish non automorphic links composed by automorphic nodes.

To tackle this, several models have been proposed that enhance message passing by incorporating

structural features (Wang et al.,[2024}; [Zhu et al, 2021} [Chamberlain et al.} 2023} [Wang et al., 2022
Zhang et al.}[2021), thereby increasing the expressive power of the resulting link representations. We

provide a formal definition of what it means for one link representation model to be more expressive
and strictly more expressive than another.

Definition 2.10 (more expressive). Let My and M, be two link representation models (Def. [2.3).
M is more expressive than M, (M, = M) if, for any graph G = (V,E,X°) and any pair
(u,v), (W, v") € V x V with (u,v) 2 (u,v'):

dF, € My : Fi((u,0),G) # Fi((u/',v"),G) = 3F; € My : Fo((u,v), G) # Fa((u',v"),G). (7)

Definition 2.11 (strictly more expressive). Let My and My be two link representation models
(Def.[2.3). We say that M, is strictly more expressive than My (M, < M) if:

* My is more expressive than M (Def.[2.10), and

s there exists a graph G = (V, E,X") and a pair of links (u,v), (u',v") € V x V with
(u,v) % (v, v") such that:

VFy € My : Fi((u,v),G) = Fi((v,v),G)
and FFy € My : Fy((u,v), Q) # Fa((u',0"), G).

In the following section, we introduce our model SP4LP and demonstrate its improved expressive
power in distinguishing structurally different links.

3 RELATED WORK

GNNs have been extensively used for link representation tasks. In standard approaches like Graph
Autoencoders (GAE) (Kipf & Welling), 2016b)), node embeddings are computed via message pass-
ing, and a simple decoder (e.g., inner product followed by a sigmoid) predicts link existence. While
efficient, these models exhibit limited expressiveness (Zhang et al,[2021; [Chamberlain et al.}[2023),
primarily due to their inability to capture rich structural patterns beyond immediate neighborhoods.
This limitation has motivated the integration of explicit structural information into GNN-based mod-
els.

Under review as a conference paper at ICLR 2026

Incorporating Structural Information into GNNs. To overcome expressiveness bottlenecks, sev-
eral methods augment GNNs with structural features. Neo-GNN (Yun et al.l 2021) injects hand-
crafted features into the message-passing process, while ELPH (Chamberlain et al.l [2023) and its
scalable variant BUDDY employ MinHash and HyperLoglog sketches to capture multi-hop pat-
terns, with BUDDY precomputing sketches offline. NCN (Wang et al., [2024) aggregates embed-
dings from endpoint nodes and their common neighbors, and NCNC extends this by predicting
missing neighbors before reapplying NCN. NBFNet (Zhu et al., 2021)) instead aggregates informa-
tion over all paths between node pairs via Bellman-Ford-inspired recursive functions. Differently
from these approaches, our method focuses explicitly on the shortest path between node pairs, using
a sequence model to capture dependencies along this path. This results in more focused and inter-
pretable representations while avoiding the inefficiencies of modeling broader multi-hop neighbor-
hoods or exhaustive path sets. Beyond GNN-based approaches, PROXI (Tola et al., 2025)) proposes
a hybrid proximity-based framework built on handcrafted structural indices combined with a non-
GNN predictor (XGBoost). While conceptually related through the use of structural signals, PROXI
fundamentally differs from GNN-based link representation models.

Enhancing GNN Expressiveness through Positional and Structural Encoding. Positional en-
codings further enrich GNN expressiveness. PEG (Wang et al., [2022) integrates Laplacian-based
encodings into message passing, weighting neighbors by positional distances. SEAL (Zhang et al.,
2021) extracts h-hop enclosing subgraphs and labels nodes via the DRNL scheme before applying
a GNN. While expressive, these methods struggle to scale due to subgraph extraction overhead. In
contrast, our model achieves expressiveness by operating directly on compact, informative shortest-
path sequences, enabling better scalability without sacrificing representational power.

Shortest-Path Structures in Graph Learning. Shortest-path information has also proven effective
in tasks beyond link prediction, such as graph classification (Ying et al., 2021} |Airale et al., [2025)
and node classification on heterophilous graphs (L1 et al.,|2020). These works highlight the power of
shortest-path structures across graph learning domains. Building on this insight, our model directly
leverages shortest-path sequences for link representation, showing that this structure is particularly
effective when combined with modern sequence models.

Comparison with GDGNN Geodesic GNN (GDGN) Kong et al.| (2022)) is the closest method to
ours in that it also extracts shortest-path information after a single GNN run. However, our approach
differs in three key aspects. (i) Path modeling: GDGNN applies permutation-invariant pooling over
the path nodes, losing the order and direction of the geodesic. SP4LP instead treats the shortest
path as an ordered sequence and processes it with a sequence model, enabling the capture of struc-
tural patterns that pooling cannot represent. (ii) Objective: GDGNN is a broad framework aimed at
improving WL-level expressiveness; SP4LP is a simple, task-specific model for structural link repre-
sentation. (iii) Scalability: GDGNN includes additional geodesic modules and subgraph reasoning,
whereas SPALP keeps inference lightweight by decoupling the global GNN run from per-query path
processing.

4 SP4LP: AN EXPRESSIVE GNN-THEN-SF MODEL FOR LINK
REPRESENTATION

Existing GNN link representation models that leverage Structural Features (SF) fall into three cate-
gories (Wang et al.,2024): SF-and-GNN, which compute SF and GNN embeddings separately and
then combine them (e.g., Neo-GNN (Yun et al., 2021), BUDDY (Chamberlain et al., |2023)); SF-
then-GNN, which augment the graph with SF before applying GNN (e.g., SEAL (Zhang & Chen,
2018)), NBFNet (Zhu et al.,|2021))); and GNN-then-SF, which compute GNN embeddings first and
then aggregate them using SF (e.g., NCN, NCNC (Wang et al., [2024)).

In this work, we adopt the GNN-then-SF paradigm, which combines the scalability advantages
of applying message passing only once, as in the SF-and-GNN setting, with the expressiveness
typical of SF-then-GNN approaches, due to the ability to aggregate over task-specific sets of node
representations. To date, the only existing models that follow this paradigm are NCN and NCNC.
For a more in-depth discussion on the differences between our method, SP4LP and NCN, refer to
Section @ In the following, we introduce the necessary definitions, formally describe the model,
and present theoretical results characterizing its expressive power.

Under review as a conference paper at ICLR 2026

Definition 4.1 (path). Let G = (V, E,X") be a graph and u,v € V to nodes. A path in G from
w to v is a sequence of nodes P = (ug,uy,...,ug) with (i) u; € V foralli = 0,...,k — 1, (ii)
ug = wand ug, = v, (iii) (u;, u;11) € Eforalli =0,...,k—1, and (iv) all nodes in the sequence
are distinct (i.e., u; # uj for all i # j). The length of a path P, len(P) is the number of edges it
contains.

Definition 4.2 (shortest path length). Let Pg(u,v) denote the set of all paths from u to v in
G. The shortest path length dg(u,v) is the minimum length among all paths i.e., dg(u,v) =
minpep(y,v) len(P).

Definition 4.3 (shortest path). A shortest path between u to v in G is any path P* € Pg(u,v) such
that len(P*) = dg(u,v). The set of all the shortest path from w to v in G is denoted as Pk (u, v).

Let G = (V,E,X°) be a graph, u,v € V. SP4LP is a GNN link representation model (see
Definition[2.3) that computes link representation as follows:

SP4LP((u,v),G) = p (GNN(u, @), GNN(v, G), AGG ({qs (GNN(us, G)*_, | (ua)k, € Pg{u,v}}))

®)
where k = dg(u,v), GNN(u,G) € R? is the representation of node u € V obtained at the final
layer of message passing as in Definition ¢ : RF¥4 5 R9 is a sequence model on the GNN
representations of nodes in the shortest path from u to v, AGG is an aggregation function over
multiset of shortest paths representations and p : R? x R% x R? — R combine the endpoint nodes
representations with the shortest paths representation to get a final link representation. Since we
consider undirected graphs, we consider Pj{u, v} := P& (u, v) U PE(v, u).

Although shortest paths provide a focused and efficient structural summary, they may lose infor-
mation carried by alternative routes or larger subgraphs, reducing robustness and emphasizing local
rather than global structure. We quantify this trade-off experimentally in Section [5.2} showing that
replacing full path embeddings with simple distance information leads to significant performance
degradation.

For a graph with n nodes and m edges, single-source BFS (Cormen et al.,[2009)) runs in O(n + m)
time on an adjacency-list representation. Although computing all-pairs shortest paths (APSP) would
require O(n(n+m)) time, SPALP does not perform APSP. In our experiments, we compute shortest
paths only for the supervised train/validation/test links, which requires at most a small number of
BFS traversals. Let S be the number of distinct source nodes among these links; the preprocessing

cost is therefore O(S(n + m)), typically several orders of magnitude smaller than O(n(n + m)).
The resulting paths are cached and reused throughout training and inference, so no graph traversal
is performed during model training or batched evaluation. In fully-inductive settings where new
nodes may appear, one can compute shortest-path trees by running a single BFS per new node,
providing distances and parent pointers to all existing nodes at once. This preserves the same per-
link inference efficiency and avoids BFS operations per queried link. A more detailed analysis of
the overall complexity, including a comparison with prior approaches, is provided in Appendix [E} In
practice, all shortest paths are precomputed before training, and SP4LP simply retrieves the stored
sequences during training and inference. No BFS operations are performed online.

SP4LP is a general and flexible framework: both the underlying GNN used to compute node rep-
resentations and the sequence model used to process the embeddings along the shortest path can be
chosen modularly. For instance, the GNN component can be instantiated with architectures such
as GCN (Kipf & Welling, 2016a), GAT (Velickovic et al.l |2017) or GraphSAGE (Hamilton et al.,
2017b), while the sequence model can range from simple aggregation functions like injective sum-
mation as the one proposed in [Xu et al.| (2019), to more complex architectures such as LSTMs
(Hochreiter & Schmidhuber, 1997), GRU (Chung et al., 2014) or Transformers (Vaswani et al.,
2017). An overview of SP4LP is illustrated in Figure @

The additional structural context given by the sequence of embeddings of nodes within the shortest
path enables the model to distinguish links that are otherwise indistinguishable to standard message-
passing methods, such as those involving automorphic nodes.

Proposition 4.4. SPALP does not suffer from the automorphic node problem.

The proof can be found in Appendix [A] As an example of non-automorphic links composed of
automorphic nodes that SP4LP can successfully distinguish, consider the links (v,u) and (v, u')

Under review as a conference paper at ICLR 2026

shown in Figure [I} While ' ~ «’ via the identity, and v ~ w via an automorphism induced by a
vertical axis of symmetry (i.e., a mirror reflection), the links (v, u) and (v, u”) are not automorphic.
This asymmetry is captured by the distinct shortest paths between the endpoints: the shortest path
from v to u’ consists of v, and orange node, and ', whereas the shortest path from v to u includes v,
and orange node, a yellow node, another orange node, and finally «. In addition to overcoming this
limitation, SP4LP is strictly more expressive than several state-of-the-art message passing methods
for link representation learning.

Theorem 4.5. SPALP is strictly more expressive than Pure GNNs, NCN, BUDDY, NBFnet and
Neo-GNN.

The proof can be found in Appendix |A] In the following sections, we complement the theoretical
analysis with an extensive experimental evaluation, showing that SP4LP also achieves state-of-the-
art performance on standard link prediction benchmarks.

4.1 FURTHER COMPARISON WITH NCN

NCN computes the representation of a link by aggregating the GNN em- .
beddings of its endpoints and their common neighbors. However, its re- Table 1: Fraction of
liance on the common neighbor structure makes it particularly vulnera- POSitive test links with-
ble to graph incompleteness. Moreover, the use of common neighbors Ut common neighbors.
as the sole source of structural features results in a critical failure mode:
when two nodes share no neighbors, NCN reduces to a pure GNN and Dataset w/o CN
can no longer leverage structural information. This situation is far from

rare in practice (see Table E]), where a substantial fraction of positive links g9ra gg?
involve endpoints without common neighbors. In contrast, we propose eseer 7
SP4LP, which incorporates additional pairwise information by encoding Pubmed 67%
the sequence of node embeddings along the shortest path connecting the Ogbl—colnlab 52%
endpoints. Unlike common neighbors, the shortest path is always defined ogbl-ddi 0.04%
in connected graphs and captures richer structural patterns, even in sparse ogbl-ppa 10%

or incomplete settings. ogbl-citation2 37%

Moreover, while NCN pools neighbors as unordered sets, SP4LP encodes paths as ordered se-
quences via LSTMs or Transformers, yielding strictly higher expressiveness (Theorem [4.5)).

5 EXPERIMENTS

Models that compute link representations can be applied to a wide range of downstream tasks, with
link prediction being particularly impactful due to its broad applicability in domains such as recom-
mender systems (Ying et al., 2018)), knowledge graph completion (Nickel et al., 2015), and biolog-
ical interaction prediction (Jha et al., 2022)). The link representations produced by GNN methods
are used to estimate the probability of existence for each candidate link. To train models for link
prediction, existing edges in the graph are treated as positive examples, while negative examples
are generated through negative sampling, selecting node pairs that are not connected in the original
graph.

In this section, we extensively evaluate the performance of SP4LP on real-world link prediction
benchmarks against several baselines. In particular, we use three Planetoid citation networks: Cora,
Citeseer, and Pubmed (Yang et al.| 2016) as well as two datasets from Open Graph Benchmark |[Hu
et al.| (2020), i.e., ogbl-collab and ogbl-ddi. For Cora, Citeseer, and Pubmed, we use a single fixed
data split in all experiments. Table[7]in appendix [C] provides a summary of dataset statistics.

As baseline methods we consider three class of models: 1) heuristic methods: Common Neigh-
bors (CN) (Newman, 2001), Adamic-Adar (AA) (Adamic & Adar, 2003), Resource Allocation
(RA) (Zhou et al.l 2009), Shortest Path (SP) (Liben-Nowell & Kleinberg, 2003), and Katz (Katz,
1953); 2) Embedding-based methods: Node2Vec (Grover & Leskovec, [2016), Matrix Factoriza-
tion (MF) (Menon & Elkan, [2011)), and a Multilayer Perceptron (MLP) applied to node features; 3)
Pure GNN methods: Graph Convolutional Network (GCN) (Kipf & Welling||2016a)), Graph Atten-
tion Network (GAT) (Velickovic et al.,2018), GraphSAGE (Hamilton et al., 2017a), and Graph Au-
toencoder (GAE) (Kipf & Welling) 2016b); 4) Structural Features GNN methods: SEAL (Zhang

Under review as a conference paper at ICLR 2026

Table 2: MRR and Hits@K (%) results across all datasets, following the HeaRT evaluation setting|Li
et al.| (2023)). The top three results for each metric are highlighted using first, , and third.
OOM indicates that the model ran out of memory, while >24h denotes that the method did not
complete within 24 hours. Standard deviations over 5 runs are reported in the appendix @

Models Cora Citeseer Pubmed Ogbl-ddi Ogbl-collab Ogbl-ppa Ogbl-Citation2
MRR Hits@10 MRR Hits@10 MRR Hits@10 MRR Hits@20 MRR Hits@20 MRR Hits@20 MRR Hits@20
GCN 16.61 3626 21.09 4723 7.3 1522 64.76 6.09 26.94 6838 1998 51.72
% GAT 13.84 32.89 1958 4530 495 999 1292 418 1830 OOM OOM OOM OOM
O SAGE 1474 3465 21.09 4875 9.40 20.54 12,60 67.19 553 2126 2727 6949 2205 53.13
GAE 18.32 2525 49.65 527 1050 349 1781 OOM OOM OOM OOM OOM OOM
SEAL 10.67 2427 13.16 2737 588 1247 999 4974 643 21.57 29.71 76.77 20.60 48.62

BUDDY 1371 3040 22.84 4835 756 1678 1243 5871 5.67 2335 2770 7150 19.17 4781
Neo-GNN 1395 3127 1734 41.74 7.74 17.88 1086 51.94 523 21.03 21.68 64.81 16.12 43.17

% NCN 14.66 35.14 5341 584 1322 1286 6582 5.09 20.84 3506 81.89 2335 53.76

O NCNC 1498 36.70 24.10 858 18.81 >24h >24h 473 2049 3352 19.61 51.69

% NBFNet 13.56 31.12 1429 3139 >24h >24h >24h >24h OOM OOM OOM OOM OOM OOM
PEG 1573 36.03 21.01 4556 4.40 870 12.05 50.12 483 1829 OOM OOM OOM OOM
LPFORMER 16.80 34.03 26.34 51.72 13.20 62.66 21.04 4025 84.1 57.30
SP4LP (our) 38.52 41.08 6628 10.87 23.01 15.00 4796 946 20.00 7690 2491

& Chenl 2018), BUDDY (Chamberlain et al., 2023), Neo-GNN (Yun et al., |2021)), NBFNet (Zhu
et al.,[2021), NCN (Wang et al.| 2024), NCNC (Wang et al., 2024) and PEG (Wang et al., 2022).

Importantly, as described in Section] SPALP is a general framework that allows for different
choices of both the underlying GNN architecture and the sequence model (¢ Equation|[g). In our ex-
perimental setting, we treat the choice of GNN and the choice of ¢ as hyperparameters, and perform
hyperparameter tuning based on validation set performance. Specifically, we explore GCN, GAT,
and GraphSAGE as GNN backbones, and LSTM, Transformer, and an injective sum Xu et al.|(2019)
aggregator as sequence models. Moreover, we choose an MLP for p and as AGG we choose to select
the first shortest path retrieved by the BFS procedure for computational efficiency. Appendix [D]pro-
vides implementation details, including how shortest paths between node pairs are computed, as well
as the hyperparameter configurations used in our experiments. Code to reproduce all experiments is
available af']

Evaluation Setting We evaluate model performance under the more challenging and realistic
HeaRT evaluation setting |Li1 et al| (2023)). In this setting, each positive target link (i.e., an exist-
ing link) is ranked against a carefully selected set of hard negative samples (i.e., non-existing links),
providing a more realistic assessment of link prediction performance in practical scenarios. We
adopt two standard ranking metrics: Hits@K and Mean Reciprocal Rank (MRR). Following the
HeaRT protocol, we report Hits@ 10 and MRR for Cora, Citeseer, and Pubmed, and Hits@20 along
with MRR for ogbl-collab and ogbl-ddi. The same set of negative samples is used across all positive
links, as specified in the HeaRT benchmark. The HeaRT evaluation introduces significantly harder
negative samples compared to traditional evaluation settings, resulting in a more challenging and
realistic benchmark. [Li et al.|(2023) show that this leads to a substantial performance drop across
most models, with GNNs specifically designed for link prediction often being outperformed by sim-
ple heuristics or general-purpose GNNs. By adopting this challenging evaluation setting, we ensure
arigorous and meaningful comparison of model performance under conditions that closely resemble
real-world applications.

5.1 RESULTS ON REAL-WORLD BENCHMARKS

Table 2] presents the performance of SP4LP and the baseline models in terms of MRR and Hits@ 10
on Cora, Citeseer, and Pubmed, and MRR and Hits @20 on the OGB datasets. SP4LP ranks first in
terms of MRR on four out of five datasets and second on the remaining one. The improvements in
MRR are often substantial: on Citeseer, for instance, SP4LP achieves a 43% gain over the second-
best method, NCN. SP4LP also achieves the best Hits@K score on three out of five datasets. On
the Ogbl-Collab dataset, SP4LP is comparable on Hits@20 to the third-best model (SEAL), when
accounting for standard deviations (Appendix [B). On Ogbl-ddi, where SP4LP performs worse, the

'https://anonymous. 4open.science/r/sp4lp-3875/README.md

https://anonymous.4open.science/r/sp4lp-3875/README.md

Under review as a conference paper at ICLR 2026

lower score can be explained by the lack of node features. Our model benefits from the availability
of node features, as it leverages nodes representations obtained via message passing. In settings
where such features are absent, like in Ogbl-ddi, the discriminative power of the learned represen-
tations is reduced. In addition to achieving the best performance in several datasets, SP4LP is also
the most consistent model across all benchmarks. Unlike previous state-of-the-art models such as
BUDDY and Neo-GNN, which tend to struggle on datasets like Cora, Citeseer and Pubmed, SP4LP
maintains strong performance regardless of dataset characteristics. Overall, these results clearly
demonstrate the superiority of SP4LP under the more challenging and realistic HeaRT evaluation
setting, confirming its effectiveness for real-world link prediction tasks.

5.2 ABLATION STUDY

We perform an ablation study to

evaluate the contribution of the Taple 3: Ablation study results (%). MRR and Hits@K are re-
main components of our model. ported for two model variants: (1) Sequence Model Only, using a
In particular, we investigate tWo sequential model on raw node features, and (2) GNN + Shortest
simplified variants to understand push Length, using GNN representations with path length. The
the importance of node repre- fyll model SP4LP consistently outperforms both variants. Stan-
sentation learning and sequen- dard deviations over 5 runs are reported in Appendix

tial modeling along the shortest

path between target node§. (1,) Models Cora Citeseer Pubmed
Sequence Model Only: in this MRR Hits@10 MRR Hits@10 MRR Hits@10

variant, the sequential model op-
GNN + SPlen. 1421 3343 2090 47.82 7.12 5.63

erates directly on the raw in- g Model 1686 36.03 2745 5420 858 1287
put features of the nodes along _>¢4%erce Mode : : : : : :

the shortest path, without incor- SP4LP 17.27 38.52 41.08 66.28 10.87 23.01
porating node representations
learned by the GNN. This setup
isolates the contribution of the sequential model in capturing relational patterns based solely on
node features and structural path information. (2) GNN + Shortest Path Length: in this variant,
the sequential model is completely removed. Link prediction is performed using only the learned
node representations from the GNN, combined with the length of the shortest path between the tar-
get nodes. This evaluates the effectiveness of combining node embeddings with simple distance
information, without explicitly modeling the intermediate nodes along the path.

Tablereports the results of these ablations, conducted on the Cora, Citeseer, and Pubmed datasets.
Both variants show a clear performance drop compared to the full model, demonstrating the impor-
tance of jointly leveraging node representations and sequential model. The Sequence Model Only
variant achieves reasonable results on simpler datasets such as Cora and Citeseer, but its performance
degrades significantly on more complex datasets like Pubmed, highlighting the limitations of rely-
ing solely on raw node features without learned representations. The GNN + Shortest Path Length
variant consistently underperforms across all datasets, indicating that simple distance information
is insufficient. Indeed, replacing the embedding of the path with its length discards the information
encoded in the node representations along the path. In contrast, when node embeddings are com-
puted via message passing, they incorporate information from each node’s local neighborhood, thus
implicitly encoding a broader subgraph around the path, not just the path itself. Overall, the full
model SP4LP achieves the best results across all datasets, confirming the importance of combining
learned node representations with sequential modeling over the shortest paths to capture both local
and global structural patterns in the graph.

5.3 SCALABILITY ANALYSIS

We assess the scalability of SP4LP by examining how its GPU memory consumption and
inference time evolve as the batch size increases, in comparison to several baseline meth-
ods. The results are presented in Figure In terms of GPU memory usage, SP4LP ex-
hibits remarkable efficiency: memory consumption remains nearly constant across small to
medium batch sizes, and increases moderately only for the largest batches, starting with 0.77
GB and reaching at most 6.84 GB while consistently avoiding out-of-memory (OOM) failures.

9

Under review as a conference paper at ICLR 2026

GPU Memory Usage Time per Batch

PEG also maintains low mem-
ory usage; however, this advan-
tage is undermined by its im-
practically slow inference, lim-
iting its applicability in large-
scale scenarios. SEAL, while
competitive with SP4LP in
terms of inference speed, suffers e LT R e e
from excessive memory con- Batch Size Batch Size
sumption, rapidly exceeding 18
GB and encountering OOM is-
sues beyond a batch size of
32,768. NCNC is even more
constrained, experiencing OOM failures already at relatively small batch sizes. Considering in-
ference time, SP4LP matches the efficiency of SEAL, requiring only 2.1 seconds for o batch size
of 16,384 and scaling smoothly to 4.29 seconds at 65,536. PEG, by contrast, is significantly slower,
already taking 5 seconds at a batch size of 8,192 and exceeding 23 seconds at the maximum batch
size tested. Although NCN and Buddy consistently achieve low inference times, this comes at the
cost of substantially lower predictive performance, as they rely on simple heuristics with limited
modeling capacity. This trade-off is clearly reflected in the results of Table[2] In summary, SP4ALP
achieves an excellent balance between low memory consumption, fast inference, high predictive
accuracy, and strong model expressiveness.

-
‘2.

=
o
>

._.
<

GPU Memory (GB)
Time per Batch (s)

)
-
1Sy

°

Figure 3: Inference time and GPU memory usage on ogbl-collab,
measured during the prediction of a single batch of test links.

6 CONCLUSION

We introduced SP4LP, a novel message-passing based framework for link representation that en-
hances the expressiveness of standard GNNs by incorporating sequential modeling over the shortest
path between target nodes. SP4LP follows the GNN-then-SF paradigm, thus effectively combining
the benefits of computing node embeddings only once with high expressive power. SP4LP explic-
itly models multi-hop relational patterns through the use of a sequence encoder applied to the node
embeddings along the shortest path. We formally proved that SP4LP is strictly more expressive than
several state-of-the-art link representation models. Extensive experiments under the HeaRT evalua-
tion protocol confirm that SP4LP achieves state-of-the-art performance across diverse datasets.

As future work, we plan to extend SP4LP in several directions. First, we aim to incorporate mul-
tiple (or all) shortest paths between node pairs to improve robustness and capture richer structural
signals. Second, we intend to explore the application of SP4LP to heterogeneous graphs: since
shortest paths are well-defined in multi-relational settings and the path encoder can incorporate node
and edge type embeddings, SP4LP can be adapted to heterogeneous link prediction with minimal
architectural changes. Third, for very large graphs, we plan to investigate approximate shortest-path
extraction techniques (e.g., truncated BFS, landmark-based methods) to further reduce preprocess-
ing cost while retaining the structural benefits of path-based modeling.

10

Under review as a conference paper at ICLR 2026

USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models were employed to enhance the readability of the manuscript, refine the
phrasing of selected passages, and provide assistance in code debugging. All original content was
produced by the authors; LLMs were used exclusively to improve clarity and presentation.

ETHICS STATEMENT

Our study does not involve human subjects or personally identifiable data. The datasets used are
publicly available benchmarks or synthetically generated. We follow the ICLR Code of Ethics and
note that our work raises no foreseeable ethical concerns beyond those inherent to the general study
of machine learning with missing data.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure reproducibility. Details of the experimental setup are pro-
vided in Section [5] with dataset descriptions in Appendix [C] and complete training configurations
in Appendix D] All proofs are included in Appendix [A] Anonymous source code to reproduce our
experiments is provided in the supplementary material.

REFERENCES

Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social Networks,
25(3):211-230, 2003. ISSN 0378-8733. doi: https://doi.org/10.1016/S0378-8733(03)
00009-1. URL https://www.sciencedirect.com/science/article/pii/
S0378873303000091.

Louis Airale, Antonio Longa, Mattia Rigon, Andrea Passerini, and Roberto Passerone. Simple path
structural encoding for graph transformers. arXiv preprint arXiv:2502.09365, 2025.

Jin-Yi Cai, Martin Fiirer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389-410, 1992.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Yannick Hammerla, Michael M. Bronstein, and Max Hansmire. Graph neu-
ral networks for link prediction with subgraph sketching. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
mlogEOA0ZQU.

Xueqi Cheng, Yu Wang, Yunchao Liu, Yuying Zhao, Charu C Aggarwal, and Tyler Derr. Edge clas-
sification on graphs: New directions in topological imbalance. In Proceedings of the Eighteenth
ACM International Conference on Web Search and Data Mining, pp. 392-400, 2025.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms. MIT Press, Cambridge, MA, 3rd edition, 2009.

Anuj Dawar and Danny Vagnozzi. Generalizations of k-dimensional weisfeiler—leman stabilization.
Moscow Journal of Combinatorics and Number Theory, 9(3):229-252, 2020.

Bowen Dong, Charu C Aggarwal, and S Yu Philip. The link regression problem in graph streams.
In 2019 IEEE International Conference on Big Data (Big Data), pp. 1088-1095. IEEE, 2019.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings

of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855-864, 2016.

11

https://www.sciencedirect.com/science/article/pii/S0378873303000091
https://www.sciencedirect.com/science/article/pii/S0378873303000091
https://openreview.net/forum?id=m1oqEOAozQU
https://openreview.net/forum?id=m1oqEOAozQU

Under review as a conference paper at ICLR 2026

Aric Hagberg, Pieter J Swart, and Daniel A Schult. Exploring network structure, dynamics, and
function using networkx. Technical report, Los Alamos National Laboratory (LANL), Los
Alamos, NM (United States), 2008.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017a. URL |https://proceedings.neurips.cc/paper_files/paper/2017/
file/5dd9db5e033da9co6fb5ba83c7a7ebea9-Paper.pdfl

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017b.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735-1780, 1997.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances
in neural information processing systems, 33:22118-22133, 2020.

Kanchan Jha, Sriparna Saha, and Hiteshi Singh. Prediction of protein—protein interaction using
graph neural networks. Scientific Reports, 12(1):8360, 2022.

Leo Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39-43,
1953.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016a.

Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016b.

Lecheng Kong, Yixin Chen, and Muhan Zhang. Geodesic graph neural network for efficient graph
representation learning. Advances in neural information processing systems, 35:5896-5909,
2022.

Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and
Dawei Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new bench-
marking. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023. URL |https://openreview.net/forum?id=Yd jWXrdOTh.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465-4478, 2020.

Jinbi Liang, Cunlai Pu, Xiangbo Shu, Yongxiang Xia, and Chengyi Xia. Line graph neural networks
for link weight prediction. Physica A: Statistical Mechanics and its Applications, pp. 130406,
2025.

David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. In Pro-
ceedings of the Twelfth International Conference on Information and Knowledge Management,
CIKM °03, pp. 556-559, New York, NY, USA, 2003. Association for Computing Machinery.
ISBN 1581137230. doi: 10.1145/956863.956972. URL https://doi.org/10.1145/
956863.956972.

Moritz Lichter, Simon RaBmann, and Pascal Schweitzer. Computational complexity of the
weisfeiler-leman dimension. In 33rd EACSL Annual Conference on Computer Science Logic
(CSL 2025), pp. 13—1. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik, 2025.

Linyuan Lii and Tao Zhou. Link prediction in complex networks: A survey. Physica A: statistical
mechanics and its applications, 390(6):1150-1170, 2011.

12

https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://openreview.net/forum?id=YdjWXrdOTh
https://doi.org/10.1145/956863.956972
https://doi.org/10.1145/956863.956972

Under review as a conference paper at ICLR 2026

Aditya Krishna Menon and Charles Elkan. Link prediction via matrix factorization. In Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2011,
Athens, Greece, September 5-9, 2011, Proceedings, Part Il 22, pp. 437-452. Springer, 2011.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602-4609, 2019.

M. E. J. Newman. Clustering and preferential attachment in growing networks. Phys. Rev. E,
64:025102, Jul 2001. doi: 10.1103/PhysRevE.64.025102. URL https://link.aps.org/
doi/10.1103/PhysRevE.64.025102.

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A review of relational
machine learning for knowledge graphs. Proceedings of the IEEE, 104(1):11-33, 2015.

Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo Merialdo.
Knowledge graph embedding for link prediction: A comparative analysis. ACM Transactions
on Knowledge Discovery from Data (TKDD), 15(2):1-49, 2021.

Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys (CSUR), 46
(4):1-31, 2014.

Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between positional node em-
beddings and structural graph representations. arXiv preprint arXiv:1910.00452, 2019.

Astrit Tola, Jack Myrick, and Baris Coskunuzer. PROXI: Challenging the GNNs for link predic-
tion. Transactions on Machine Learning Research, 2025. ISSN 2835-8856. URL https:
//openreview.net/forum?id=u9EHndbiVw.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Ben-
gio, et al. Graph attention networks. stat, 1050(20):10-48550, 2017.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. In International Conference on Learning Representa-
tions, 2022. URL https://openreview.net/forum?id=e95i1IHcW].

Xiyuan Wang, Haotong Yang, and Muhan Zhang. Neural common neighbor with completion for
link prediction. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=sNFLN3itAd.

Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xinguang Wang, Ping
Cui, Yupu Yang, Bowen Sun, et al. Apan: Asynchronous propagation attention network for
real-time temporal graph embedding. In Proceedings of the 2021 international conference on
management of data, pp. 2628-2638, 2021.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks?, 2019.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with
graph embeddings. In International conference on machine learning, pp. 40—48. PMLR, 2016.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877-28888, 2021.

13

https://link.aps.org/doi/10.1103/PhysRevE.64.025102
https://link.aps.org/doi/10.1103/PhysRevE.64.025102
https://openreview.net/forum?id=u9EHndbiVw
https://openreview.net/forum?id=u9EHndbiVw
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=e95i1IHcWj
https://openreview.net/forum?id=sNFLN3itAd

Under review as a conference paper at ICLR 2026

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 974—
983, 2018.

Seongjun Yun, Seoyoon Kim, Junhyun Lee, Jaewoo Kang, and Hyunwoo J Kim. Neo-gnns: Neigh-
borhood overlap-aware graph neural networks for link prediction. Advances in Neural Information
Processing Systems, 34:13683—-13694, 2021.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. Advances in neural
information processing systems, 31, 2018.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. Advances in Neural Information
Processing Systems, 34:9061-9073, 2021.

Tao Zhou. Progresses and challenges in link prediction. Iscience, 24(11), 2021.

Tao Zhou, Linyuan Lii, and Yi-Cheng Zhang. Predicting missing links via local information. The
European Physical Journal B, 71(4):623-630, October 2009. ISSN 1434-6036. doi: 10.1140/
epjb/e2009-00335-8. URL http://dx.doi.org/10.1140/EPJB/E2009-00335-8,

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction. Advances in neural infor-
mation processing systems, 34:29476-29490, 2021.

14

http://dx.doi.org/10.1140/EPJB/E2009-00335-8

Under review as a conference paper at ICLR 2026

A PROOFS

Proposition[d.4 SPALP does not suffer from the automorphic node problem.

Proof. According to Proposition[2.9] a model M suffers from the automorphic node problem if, for
any graph G = (V, E, X"), for any pairs of links (u,v), (u/,v") € V x V, for any F' € M it holds
that:

(u,v) 2 (W), w=~v, v=v, and F((u,v),G)# F((u',v),G).

In order to prove that SPALP does not suffer from the automorphic node problem, it suffices to
provide an example of a graph G = (V, E, X°) and node pairs (u, v), (u/,v") € V x V such that:

(u,v) Z (W', v"), w~u, wv=~v', and SP4LP((u,v),G) # SP4LP((u',v"),G).

Such an example is provided in Figure |1} the shortest path from v to u’ consists of v, an orange
node, and u’, whereas the shortest path from v to u includes v, an orange node, a yellow node,
another orange node, and finally w. Thus, simply using a summation as function ¢, leads to distinct
representations for links (v,) and (v, u'). O

Theorem SP4LP is strictly more expressive than Pure GNN, NCN, BUDDY, NBFnet and Neo-
GNN.

Proof. We proceed by prove each comparison separately.

* SP4LP is strictly more expressive than Pure GNN.

We prove this by noting that SPALP architecture (Equation [8)) generalizes that of pure
GNNs, meaning that SP4LP can simulate any pure GNN by simply ignoring the shortest
path information. Thus, for any pair of non-automorphic links that a specific pure GNN can
distinguish, there exists a configuration of SP4LP that distinguishes them as well. We can
conclude that SP4LP is strictly more expressive than pure GNNs considering as example
of pair of links indistinguishable by GNNs but distinguishable by SP4LP the one provided
in the proof of Proposition 4.4]

* SP4LP is strictly more expressive than NCN.

We prove this in two steps: (1) When two links share no common neighbors, NCN on
them reduces to a pure GNN. As we have already proved that SP4LP is strictly more
expressive than pure GNNs, it follows that SP4LP is also strictly more expressive than
NCN in this case. (2) When the links have common neighbors, setting AGG as summation,
p as the Hadamard product between the endpoint representations and the concatenation
with the result of the aggregation, and ¢ as the identity function, SP4LP reduces exactly to
NCN. Therefore, if NCN can distinguish two links under some configuration, SP4LP can
as well. By definition [2.10), this implies that SPALP is more expressive than NCN. We
can conclude that SP4LP is strictly more expressive than NCN considering the example in
Figure[] The graph is regular and thus all nodes receive the same embedding from a GNN.
Consider nodes v and v: N(u) NN (v) = N(u) NN (v') = . In this case, NCN reduces to
a pure GNN and is thus unable to distinguish the links (u,v) and (u/,v’). Now, let x € RY
be the representation assigned to every node by a GNN. Then, the representation of the
shortest path P (u,v) is simply (x,x,x), while P& (v, v") = (x,x,x,x). Even using
a simple sum as aggregation function, SP4LP successfully distinguishes between the two
links.

* SP4LP is strictly more expressive than Neo-GNN and BUDDY.

We have already shown that SP4LP is strictly more expressive than NCN. In Theorem 2
of the NCN paper Wang et al.| (2024), it has been proved that NCN is more expressive
than both Neo-GNN and BUDDY. It follows that SP4LP is strictly more expressive than
Neo-GNN and BUDDY as well.

15

Under review as a conference paper at ICLR 2026

* SP4LP is strictly more expressive than NBFNet.

We prove that NBFNet is as expressive as a pure GNN. Therefore, since we have already
proven that SP4LP is strictly more expressive than pure GNNss, it immediately follows that
SP4LP is also strictly more expressive than NBFNet.

To complete the argument, we prove that NBFNet is as expressive as a pure GNN. First
of all we report the formulation of NBFNet for simple undirected graph. Given a graph
G = (V,E,X°), NBFNet assigns a representation x(u, v) to each edge (u,v) € E. The
iterative update rule follows a message-passing scheme:

), = INDICATOR (x5, x5),
9)

O
X(u,
XEJ ») = AGGREGATE ({MESSAGE(hEi)1)) | (4,5) € N(u, ”)} U {h(u v)})

where INDICATOR assigns an initial representation based on the nodes u,v € V and
N (u,v) is the set of edges incident to (u, v).

We prove that, at any layer [, the representations of the two links produced by a pure GNN
are equal if and only if also the ones produced by NBFNet are equal, i.e.,
GNN' _ _GNN' NBF' _ | NBF'
X(uw) = X(ig) & Kuw) = Xij) Y (10)
where xl("fl; l) and xl(\;BjF)l are calculated via Equation@ while x(cflj)l and ngf)’ " are calculated
following the standard message passing scheme reported below:

xEN = xt,

xS = coMB (GNN'"! AGG ({x(jNNl’1 |u e N(v)})) (11)
GNN! GNN' _ GNN!

X(u,v) = (Xu » Xy)

Let the functions INDICATOR, AGGREGATE and MESSAGE of Equation [9} as well as the
functions COMB, AGG and g be injective. We prove Equation [I0] by induction on the
number of layer [.

Base Case: [=0

inj inj
g(X ?) — (XZ,XS) = (XQ,XO') =

GNN® __ _GNN° ()
j

X(uw) = X(i) < g(x

@ ~er NBF’
PRI INDICATOR(X},, x;) = INDICATOR (%7, X}) <= X{,/0) = X[;})

Inductive Step We assume Equation @holds for [— 1 and prove it holds for {.

In particular, we want to prove
GNN' _ __GNN NBF' __ _ NBF'
x(hy = X(g) == Xk =X a2)
using the inductive hypothesis

GNN!~1 GNNZ L NBE! ! NBFl L
Xuw) = X(ig) 7 Xuw) = X(i) (13)

Applying Equation [I]to the left-hand side of Equation . we get

GNN! GNN!

Xuw) = X(i)

(11)

g(COMB(x™"" AGG({xS™"" | & € N(w)})), cCoMB(xI™ ", AGG({xJ™ " | y € N(u)})))

g(COMB(xIN" AGG({xIMN" | m € N(i)})), CoMB(xI™ " AGG({x™ " | n € N(j)})).

16

Under review as a conference paper at ICLR 2026

Given the injectivity of g, COMB and AGG, this is equivalent to

xNT = XN A N e N} = (N [me N(i))A

u

1—1 1—1 1—1 -1 .
Axg T =xPN ANy e N(o)} = {0 [ne N(j)}

<

(ST SO e N(u)) = {3 XENTY e N(i)}
A

(ST O g e N()} = ([N xS e N(j)Y
<

U

1—1 -1 -1 -1
{Ga™ ™) e e N U{™ L xg™) [y € N(v)}

(3 m

1—1 -1 . -1 -1 .
{PN XN) fmee N(@)} U{GFN g™) [ne N(j)-

By Definition of N (u,v) (Equation EI), this is equivalent to

{(XENNTH QONNTY L 1) € N(u,v)} = {(xON T xOWTY (0,b) € N(4,)}

{gSNT O | (1) € N(u,0)} = {g(x3™N T x§NT) | (a,0) € N(i,5)}
D,
{(xON | (w,t) € N(u,0)} = (xEN " | (a,b) € N(i,)}

(w t
IND. HYP.!

1—1 l— ..
G | (w,t) € N(u,0)} = (=025 | (a,b) € NG, 5)}

Using the hypotheses of injective AGG and MESSAGE, this is equivalent to:

AGG({MESSAGE(x??jﬂ))| (w,t) € N(u,v)}) = AGG({MESSAGE(XI(?E))| (a,b) € N(i,5)})
(@)

<
NBF NBF
X(uv) = X(i.g) (14)

which complete the proof.

B ADDITIONAL RESULTS

We complement the main results of Section [5] with additional tables reporting the standard deviation
computed over five different random seeds, to better assess the stability of each method.

Real-world Datasets: Results with Standard Deviations Table] and Table [5] expand the main
results in Table 2] by including both the mean and standard deviation of MRR and Hits@ K across

runs.

Ablation Study: Results with Standard Deviations Similarly, Table [6]complements the ablation
results in Table 3| by reporting mean and standard deviation for Cora, Citeseer, and Pubmed.

17

Under review as a conference paper at ICLR 2026

Figure 4: Links (u, v), (u, v") are not distinguished by NCN while are distinguished by SP4LP.

Models Cora Citeseer Pubmed Ogbl-ddi Ogbl-collab Ogbl-ppa Ogbl-Citation2
MRR MRR MRR MRR MRR MRR MRR
Node2Vec 1447 (0600 21.17 (+=101) 394 (+024 11.14 (2095 4.68 (+008) 18.33 (+0.10 14.67 (+0.18)
MF 6.20 (+ 1.42) 7.80 (079 4.46 (+032) 4.89 (+025) 2247 (+1.53) 8.72 (+2.60)
MLP 13.52 (065 22.62 (+055 6.41 (+0.25) N/A 5.37 (+0.14) 0.98 (+ 0.00) 16.32 (4 0.07)
GCN 16.61 (0300 21.09 (+088) 7.13 (£027) 13.46 (+ 034 6.09 (038 26.94 (+0.48) 19.98 (+0.35)
GAT 13.84 (+068) 19.58 (084 4.95 =014 1292 (+039 4.18 (+033) OOM OOM
SAGE 14.74 (069 21.09 (+1.15 9.40 (+ 0.70) 12.60 (+072) 5.53 (+050) 27.27 (+0230) 22.05 (+0.12)
GAE 18.32 (+041) 2525 (+082) 527 (+025 3.49 (+1.73) OOM OOM OOM
SEAL 10.67 (+346) 13.16 (+1.66) 5.88 (+0.53) 9.99 (090) 6.43 (+032) 29.71 (+071) 20.60 (4 1.28)
BUDDY 13.71 (+059) 22.84 (+036) 7.56 (018 1243 (+050 5.67 (+036) 27.70 (£033) 19.17 (+0.10)
Neo-GNN 13.95 (+039 17.34 (+084) 7.74 (+0.30) 10.86 (+2.16) 523 (+090) 21.68 (& 1.14) 16.12 (+0.25)
NCN 14.66 (+0.95) 5.84 (0220 1286 (x078) 5.09 (+038) 35.06 (+0.26) 23.35 (+0.28)
NCNC 14.98 (+ 1000 24.10 (+065 8.58 (4059 >24h 4.73 (+086) 33.52 (+£0.26) 19.61 (+0.54)
NBFNet 13.56 (+058) 14.29 (+0.80) >24h >24h OOM OOM OOM
PEG 1573 (039 21.01 (077 440 o041 12.05 =114 4.83 (021 OOM OOM
LPFORMER 16.80 (+052) 26.34 (+0.67) 13.20 (£ 0.54) 40.25 (+0.29)
SP4LP 41.08 (+1.84) 10.87 (+031) 15.00 (+057) 9.46 (+0.55) 24.91 (+ 0.41)

Table 4: MRR results across all datasets, following the HeaRT evaluation setting |Li et al.| (2023).
The top three results for each metric are highlighted using first, , and third. OOM indicates
that the model ran out of memory, while >24h denotes that the method did not complete within 24
hours.

C DATASETS STATISTICS

Table |Z| summarizes the main datasets used in our link prediction experiments. Cora, Citeseer, and
Pubmed are well-known citation networks frequently used as benchmarks for graph-based learning
methods. These datasets are relatively small, both in the number of nodes and edges. In contrast,
the datasets from the Open Graph Benchmark (OGB), namely ogbl-collab and ogb-ddi, are substan-
tially larger and more complex, offering challenging scenarios for evaluating model scalability and
performance on large-scale graphs.

For all datasets, we adopt the splits provided by the |Li et al.| (2023)) setting.

D EXPERIMENTAL SETTINGS

This section outlines the experimental setup used to evaluate all models. We describe the compu-
tational resources and the hyperparameter search space. Moreover for SPALP we include details
regarding how the calculation of the shortest path is performed. Details are reported below.

Computational Resources All experiments were conducted on a workstation running Ubuntu
22.04 with an AMD Ryzen 9 7950X CPU (32 threads), 124GB of RAM, and two NVIDIA GeForce
RTX 4090 GPUs (24GB each).

Hyperparameters All models are tuned using a grid search over learning rate € [1 x 1072, 1 x
10~3], dropout € [0, 0.7], weight decay € [0, 10~%,10~7], number of GNN layers € {1,2,3}, hid-

18

Under review as a conference paper at ICLR 2026

Models Cora Citeseer Pubmed Ogbl-ddi Ogbl-collab Ogbl-ppa Ogbl-Citation2

Hits@10 Hits@10 Hits@10 Hits @20 Hits @20 Hits@20 Hits @20
Node2Vec 3277 (£129) 45.82 (+201) 8.51 (077 63.63 (205 16.84 (+0.17) 53.42 (+o.11) 42.68 (+0.20)
MF 15.26 (£339) 1672 (+199 9.42 (+080) 59.50 (£ 1.68) 18.86 (£ 040) 70.71 (+4.82) 29.64 (+7.30)
MLP 31.01 (x171) 48.02 (179 15.04 (067 N/A 16.15 (027 1.47 (+0.00) 43.15 (4 0.10)
GCN 36.26 (£ 1.14) 4723 (+188) 1522 (+057) 64.76 (145 2248 (+ 081 68.38 (+0.73) 51.72 (+ 0.46)
GAT 32.89 (+127) 4530 1300 9.99 (+0.64) 18.30 (£ 142 OOM OOM
SAGE 34.65 (147 48.75 (185 67.19 (+118) 21.26 (+132) 69.49 (+043) 53.13 (015
GAE 49.65 (+148) 10.50 (+046) 17.81 (£9.80) OOM OOM OOM
SEAL 2427 (+674) 27.37 (+3200 1247 (+123) 49.74 (+239) 21.57 (+038) 76.77 (+094) 48.62 (+ 1.93)
BUDDY 30.40 (+1.18) 4835118 16.78 (053 5871 (+1.63) 23.35+073) 71.50 (+0.68) 47.81 (+037)
Neo-GNN 31.27 (072 41.74 (118 17.88 071 51.94 (+1033) 21.03 (3390 64.81 (+2.26) 43.17 (4 053)
NCN 35.14 (£ 104y 53.41 (+146) 1322 (+056) 65.82 (+2.66) 20.84 (+131) 81.89 (+ 031 53.76 (+ 0.20)
NCNC 36.70 (+1.57) 18.81 (+ 1.16) >24h 20.49 (+3.97) 51.69 (+ 1.48)
NBFNet 31.12 (£075) 31.39 (+134) >24h >24h OOM (00)%¢ OOM
PEG 36.03 (075 4556 (=138 8.70 (x126) 50.12 (+655 18.29 (& 1.06) OOM OOM
LPFORMER 33.27 (+133) 51.58 (+1.83) 22.71 (+130) 35.23 (+037) 84.01 (+ 0.10) 57.30 (+ 0.50)
SP4LP 38.52 (+1.19) 66.28 (+0.63) 23.01 (+039) 47.96 (+382 20.00 (+1200 76.9 (+ 1.11)

Table 5: Hits@K (%) results across all datasets, following the HeaRT evaluation setting |Li et al.
(2023). The top three results for each metric are highlighted using first, , and third. OOM
indicates that the model ran out of memory, while >24h denotes that the method did not complete
within 24 hours.

Models Cora Citeseer Pubmed
MRR Hits@10 MRR Hits@10 MRR Hits@10

GNN + SP len. 14.21 (144 3343 (269 2090 079 47.82F 111y 7.12 o041 5.63 (+0.52)
Sequence Model 16.86 (+126) 36.03 (1750 27.45 155 54.20 235 858 075 12.87 (085

SP4LP 17.27 (+ 057 3852 (+ 119 41.08 (+184) 66.28 (+0.63) 10.87 (=031 23.01 (+0.39)

Table 6: Ablation study results (%). MRR and Hits@K with mean and std. deviations over 5 runs
with different seeds.

den dimensions € {32, 64, 128,256} and prediction layers € {1, 2, 3}. For large-scale datasets, we
follow the reduced search space adopted in|Li et al.|(2023) to avoid excessive compute. For SP4LP,
we additionally explore the choice of GNN component € { GCN, GraphSAGE, GAT} and sequence
model € {LSTM, Transformer}, the best models are shown in Table [8] The best hyperparameters
are selected based on validation performance. All reported metrics are averaged over 5 different
seeds.

Shortest path calculation for SP4LP To compute shortest paths for SPALP, we use the
networkx.shortest_path BFS implementation (Hagberg et al.,[2008). Importantly, we com-
pute and cache shortest paths only for the train/validation/test links provided by the HeaRT bench-
mark splits. If multiple links share an endpoint, only one BFS is required for that source node. This
keeps preprocessing time low: in all datasets, the total number of BFS sources is small, and the full
preprocessing step completes in seconds to a few minutes. The cached paths are reused across all
training epochs and inference batches. No all-pairs shortest path computation is performed.

In our implementation of SP4LP, the sequential encoder can be instantiated as a Transformer
with learnable positional encodings. We use PyTorch’s TransformerEncoder, composed of Trans-
formerEncoderLayer blocks with 4-head self-attention, feedforward sublayers, ReLLU activation,
and dropout. We tune the number of layers € {1,2} , attention heads € {2, 3,4}, and feedforward
dimensionality € {32,64,128}. A trainable positional embedding matrix is added to node embed-
dings to preserve path order. Variable-length paths are handled via a source key padding mask, and
the output is aggregated using masked mean pooling followed by layer normalization. The resulting
path representation is then combined with the GNN-derived embeddings of the source and target
nodes to compute the final link score.

For the LSTM-based encoder, we implement both unidirectional and bidirectional variants using Py-
Torch’s nn.LSTM. Input sequences are packed with pack_padded_sequence to handle variable-length

19

Under review as a conference paper at ICLR 2026

Dataset Cora Citeseer Pubmed ogbl-collab ogbl-ddi ogbl-ppa ogbl-citation2

#Nodes 2708 3327 18717 235868 4267 576289 2927963
#Edges 5278 4676 44327 1285465 1334889 30326273 30561187

Table 7: Dataset statistics.

Dataset GNN model Sequence model

Cora GCN Transformer
Citeseer GCN LSTM

Pubmed SAGE Transformer
ogbl-collab SAGE Transformer
ogbl-ddi GCN Transformer

Table 8: Best GNN and sequence models selected via hyperparameter tuning.

paths. We tune the number of layers € {1,2} and hidden size € {32,64,128}. The final hidden
state (or the concatenation of forward and backward states in the bidirectional case) is used as the
path representation and combined with the GNN-based node embeddings for link prediction. Node
embeddings are obtained via a GNN encoder selected from GCN, GAT, or GraphSAGE, depending
on the experimental setting.

E COMPUTATIONAL COMPLEXITY

In this section, we analyze the computational complexity of our proposed SPALP model for link
prediction, following the formalism and notation introduced in Wang et al.|(2024). This framework
allows a direct comparison with prior approaches such as GAE, Neo-GNN, BUDDY, PEG, SEAL,
NCN, and NCNC.

Let n be the number of nodes, m the number of edges, A the maximum degree, d the dimensionality
of node features or embeddings, ¢ the number of target links to predict, and k the length of the
shortest path between node pairs (typically k < n). We express total time complexity as O(B + C -
t), where B is the precomputation cost (independent of ¢), and C is the per-link cost.

Our SP4LP method follows the GNN-then-Structural-Feature (SF) paradigm Wang et al.| (2024),
applying a Message Passing Neural Network once across the entire graph to compute node embed-
dings, then leveraging shortest path extraction combined with sequence modeling for each candidate
link.

Following the paradigm, the precomputation cost of SPALP is:
B = O(nAd + nd* + T,)

where: nAd accounts for neighborhood aggregation in the GNN, nd? represents linear transforma-
tions in GNN layers, T, is the cost of computing shortest paths (e.g., via BFS).

For sparse graphs, single-source BFS runs in O(m) time. Although all-pairs shortest paths (APSP)
would cost O(nm), SPALP never computes APSP. In all benchmark settings, we compute shortest
paths only for the supervised train/validation/test links. Let .S be the number of distinct endpoint
nodes among these links. The total preprocessing cost is therefore

Ty, = O(S - m),
typically several orders of magnitude smaller than O(nm). Once these paths are cached, no BFS
is performed during training or batched inference. In fully inductive scenarios, shortest-path trees
for new nodes can be obtained via a single BES per new node, which provides distances and parent
pointers to all existing nodes at once. The per-link inference cost of SPALP is thus
C= O(kd + Ts‘eq)a
where k is the path length and d the embedding dimension, making it independent of the graph

size n. Tiq denotes the cost of a sequence model (e.g., LSTM, Transformer) applied to the node
embeddings along that path.

20

Under review as a conference paper at ICLR 2026

Importantly, since both the GNN embeddings and shortest paths can be precomputed, B is incurred
only once. Given that k is typically small in practice, C' remains low even at scale. Unlike subgraph-
based methods such as SEAL, which require per-link GNN inference over extracted neighborhoods,
SPALP performs lightweight sequence modeling on compact paths, supporting efficient batched
inference. Additionally, the framework is flexible: Ti, can be cached or approximated Sommer
(2014), and Ti.q depends on the chosen architecture and path length.

We summarize the complexities in the following table:

Method B C

GAE nAd + nd? d?
Neo-GNN nAd + nd? + nA! Al 4 ¢?
BUDDY nAd + nh h + d?
SEAL 0 AUFD G 4 Alg?
NCN nAd + nd? Ad + d?
NCNC nAd + nd? A2%2d + Ad?
PEG nAd + nd? + nD? d?
SPALP nAd+nd?+ T, kd + Tieq

Table 9: Comparison of precomputation (B) and per-link (C') complexities across methods.

All methods conform to the form O(B + C - t), with a one-time graph-level computation and a per-
target-link cost. In the table, h is the cost of the hash function used in BUDDY, [denotes the radius of
local neighborhoods in Neo-GNN and SEAL, and D denotes the number of Laplacian eigenvectors
used for spectral positional encoding in PEG. GAE, NCN, and BUDDY are efficient but limited in
expressiveness. NCNC enhances NCN via soft neighbor completion at a slightly higher cost. PEG
incorporates spectral encoding (O(nD?)), while SEAL is the most computationally intensive due
to subgraph extraction and per-link GNN processing. SP4ALP, in contrast, strikes a balance between
efficiency and expressiveness by combining GNN-based embeddings with sequence modeling over
shortest paths, whose cost can be mitigated via approximation techniques|[Sommer| (2014), ensuring
scalability for large graphs.

21

	Introduction
	Preliminaries
	Related Work
	SP4LP: An Expressive GNN-then-SF Model for link Representation
	Further comparison with NCN

	Experiments
	Results on Real-World Benchmarks
	Ablation Study
	Scalability Analysis

	Conclusion
	Proofs
	Additional results
	Datasets statistics
	Experimental Settings
	Computational Complexity

