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Abstract

Meta-reinforcement learning (meta-RL) techniques have demonstrated remarkable
success in generalizing deep reinforcement learning across a range of tasks. Never-
theless, these methods often struggle to generalize beyond tasks with parametric
variations. To overcome this challenge, we propose Subtask Decomposition and
Virtual Training (SDVT), a novel meta-RL approach that decomposes each non-
parametric task into a collection of elementary subtasks and parameterizes the task
based on its decomposition. We employ a Gaussian mixture VAE to meta-learn the
decomposition process, enabling the agent to reuse policies acquired from com-
mon subtasks. Additionally, we propose a virtual training procedure, specifically
designed for non-parametric task variability, which generates hypothetical sub-
task compositions, thereby enhancing generalization to previously unseen subtask
compositions. Our method significantly improves performance on the Meta-World
ML-10 and ML-45 benchmarks, surpassing current state-of-the-art techniques.

1 Introduction

Meta-reinforcement learning (meta-RL) constitutes a dynamic field within deep reinforcement
learning, focusing on training agents to quickly adapt to novel tasks by learning from a variety of
training tasks [2]. By interacting with these tasks, meta-RL creates an inductive bias regarding the
task dynamics and subsequently develops a policy based on this knowledge. Despite its significant
contribution to the generalization capability of traditional deep RL, meta-RL is susceptible to test-time
distribution shifts, which restricts its applicability to familiar in-distribution test tasks [[17, (36139} |41].

To tackle this limitation, recent out-of-distribution (OOD) meta-RL approaches have emphasized
distinct training and test task distributions, thereby achieving enhanced performance on unseen OOD
test tasks with interpolated or slightly extrapolated training dynamics [12, 36} 41} 35, [1]. Although
the parameters of training and test tasks are drawn from disjoint distributions, these tasks remain
qualitatively similar, as they can be expressed in a shared parametric form representing the task
dynamics (e.g., the same “Pick-place” task with OOD goal positions in Figure [Ib).

In this study, we explore a more general meta-RL framework that addresses non-parametric task
variability [69} 71], a topic that has received limited attention in prior research. In this context as of
Figure|lc| variations among tasks cannot be expressed through simple parametric variations, such as
the parameterization of a goal position. Generalization is particularly challenging in this setting, as
conventional meta-RL methods often model the inductive bias as a parametric embedding applicable
to various tasks [9, 46, [74]. Within a non-parametric framework, it may not be feasible to employ
a unified and generalizable parameterization of training tasks using standard meta-RL techniques.
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(a) “Pick-place” in standard in- (b) ‘“Pick-place” in out-of- (c) Non-parametric task variation be-
distribution meta-RL setup. distribution meta-RL setup. tween “Pick-place” and “Sweep-into.”

Figure 1: Problem Setup. Visualizing different meta-RL scenarios with Meta-World tasks [[69, [71].
The circles and crosses represent the object and goal positions, respectively. Solid blue objects
indicate training tasks, while empty brown objects indicate test tasks.

Moreover, even if an agent successfully models the inductive bias parametrically, it is improbable
that the same parameterization will be reusable for qualitatively distinct test tasks.

In addressing the challenges of non-parametric task variability in meta-RL, our primary strategy
involves decomposing each non-parametric task into a set of shared elementary subtasks. We then
parameterize each task based on the types of subtasks that constitute it. Despite the non-parametric
task variability, tasks may share elementary subtasks. For instance in Figure|lc| a “Pick-place” task
can be decomposed into subtasks: “grip object” and “place object,” while a “Sweep-into” task can
be decomposed into subtasks: “grip object” and “push object.” By employing the shared subtask
parameterization, the policy can capitalize on the captured commonalities between non-parametric
tasks to enhance training efficiency and generalization capabilities.

However, our approach of task parameterization based on a set of subtasks faces two primary
challenges: the lack of prior information about (1) the set of elementary subtasks and (2) the
decomposition of each task. To address these issues, we employ meta-learning for the subtask
decomposition (SD) process using a Gaussian mixture variational autoencoder (GMVAE) [29] 18, 59].
Our GMVAE encodes the trajectory up to the current timestep into latent categorical and Gaussian
contexts, which are trained to reconstruct the task’s reward and transition dynamics [[74]]. We discover
that the meta-learned latent categorical context effectively represents the subtask compositions of tasks
under non-parametric variations. Consequently, the policy, using the learned subtask composition,
can readily generalize to new tasks comprising previously encountered subtasks. To further enhance
generalization to unseen compositions of familiar subtasks, we propose a virtual training (VT) process
[35L [1] specifically designed for non-parametric task variability. We train the policy on imaginary
tasks generated by the learned dynamics decoder, conditioned on hypothetical subtask compositions.

We evaluate our method on the Meta-World ML-10 and ML-45 benchmarks [71]], widely used
meta-RL benchmarks comprising diverse non-parametric robotic manipulation tasks. We empirically
demonstrate that our method successfully meta-learns the shareable subtask decomposition. With the
help of the subtask decomposition and virtual training, our method, without any offline demonstration
or test-time gradient updates, achieves test success rates of 33.4% on ML-10 and 31.2% on ML-45,
which improves the previous state-of-the-art by approximately 1.7 times and 1.3 times, respectively.

2 Background

2.1 Meta-Reinforcement Learning

A Markov decision process (MDP), M = (S, A, R, T,Ty,~, H), is defined by a tuple comprising
a set of states S, a set of actions A, a reward function R(r¢11|s¢, at, St+1), a transition function
T'(st+1|st,at), an initial state distribution 7y (s ), a discount factor -y, and a horizon H.

The goal of meta-RL is to learn to adapt to a distribution of MDPs with varying reward and transition
dynamics. At the start of each meta-training iteration, an MDP is sampled from the distribution
P(Mgain) over a set of MDPs Myyin. Each MDP M), = (S, A, Ry, Ty, To k., v, H ) is defined with
a unique reward function Iy, transition function T}, and initial state distribution T ;. Unlike
in a multi-task setup, the agent in the meta-RL setup does not have access to the task index k
that determines the MDP dynamics. The training objective is to optimize the policy m, with



parameters ¢ to maximize the expected return across all MDPs: maxy, Epz, wp(AMean) [Tpol (¥)]
where Jpo1(v) = Er, . 7y 7y {Zf:)l Y RE(re41] 8¢, az, st+1)} . During meta-testing, standard in-
distribution meta-RL methods are evaluated on tasks sampled from the same distribution p(Meg)
as the training tasks, i.e., Miuin = My = M (Figure @ In contrast, OOD meta-RL methods
assume strictly disjoint training and test task sets, i.e., M = M pin U Mgt and Mpain N Miegr = 0

(Figure [TD).
2.2 Bayes-adaptive Meta-Reinforcement Learning

Since the true task index & is not provided to the agent in the meta-RL problem setup, it is important
to balance exploration and exploitation while learning about the initially unknown MDP. A Bayes-
adaptive agent [38] [10, [16] achieves this balance by updating its belief b;(R,T") about the MDP
based on its experience 7.+ = {0, ag, 1,51, A1,72, - - ., St—1, t—1,Tt, S¢ . The agent’s belief over
the MDP dynamics at time ¢ can be represented as a posterior given the trajectory, i.e., b;(R,T) =
p(R,T|.t). By augmenting the state with the belief to form a hyper-state space ST = S x B,
where B is the set of belief, a Bayes-adaptive MDP (BAMDP) can be constructed. The objective
of a BAMDP is to maximize the expected return within a meta-episode while learning, where a
meta-episode consists of ny rollout episodes (i.e., HT = ny x H steps) of the same MDP:

HT-1
j;&(dj) = Ey, 7+, Z VR (regalst, a sfi0) | (1)
=0

where T (s [s], ar, 7¢) = By, [T(St41, st,a)] L(bes1 = p(R, T|7411)) is the transition dynam-
ics and BT (re41]s{, ar, sf, 1) = Eu,,, [R(ri41]51, ar, s¢41)] is the reward dynamics of the BAMDP.
The posterior belief update in the indicator function I(-) is intractable for all but simple environments.

VariBAD [74] solves the inference and posterior update of the belief by combining meta-RL and
approximate variational inference [28]]. At each timestep ¢, a recurrent encoder ¢y, encodes the expe-
rience 7.; into a hidden embedding h; = ¢4, (7). The approximate posterior belief over the dynamics
can be represented as the parameters of a multivariate Gaussian distribution: b, = (e, (he), ¢, (he)),
where 14 () and og_(-) are neural networks. The latent context z; ~ N(u@(ht),aiz(ht))
is used to estimate the MDP dynamics: pg,, (7j11|s;,a;, 8541, 2) and pg,(sj41]s;,aj,2) for
j =0,...,HY — 1, including the past and future. Then the problem of computing the poste-
rior over the dynamics p(R, T'|7.;) reduces to inferring the posterior ¢y (2;|7.;), where ¢ = {¢y, ¢ }.
A separate policy network y (a;|s;, by) is trained to optimize the BAMDP objective in Eq. (1).

2.3 Non-parametric Task Variability

The term “non-parametric” in the context of task variability is introduced in the Meta-World paper [69].
It is used to distinguish the task variability in Meta-World manipulation tasks from more simplistic
parametric variations exhibited in standard MuJoCo tasks, such as variations in target goal positions,
directions, and velocities. However, the term “non-parametric”” might lead to misunderstanding.
Because it could suggest that there are no parameters available for task parameterization, even though
we have effectively parameterized them in our approach. Our major breakthrough is in enabling this
parameterization in terms of subtask compositions, which was difficult using earlier methods that
relied on simple latent parametrization. Hence, while we retain the “non-parametric” terminology, we
guide the readers to view the scope of our work through the lens of modularity or composition-based
generalization [27]].

3 Method

In this section, we introduce our novel meta-RL method, named Subtask Decomposition and Virtual
Training (SDVT), to handle non-parametric task variability. Our approach is based on decomposing
each task into a set of elementary subtasks and parameterizing each task based on the composition
of these subtasks. To achieve this, we use a Gaussian mixture variational autoencoder (GMVAE) to
meta-learn the subtask decomposition process. In addition, we introduce a virtual training process
that improves generalization to tasks with unseen compositions of subtasks.



Pick-place, K=5, dim(z) =5

Optional dispersion for SDVTNZ _' B> — Dim. 1 2—3—4—5
(not used for SD) = Po; Nt 1
: = U
v <
t=0,... H* Ry =
Encoder -
hy— 2
/t-\.l N (Mm(hnyt)»am(ht,yt) I~ 2t = o
St | 4 2
@1-1 gy, [+ he=s Cat (ws, (o))~ v $a
Tt = 3
<-> Reconstruction Wy Ke.r 02 = s
X Stop gradient T > Gt <
= <
--» Dropout e §\ =5.0

0

100
200
300
400
500
1000
4000
5000

(a) SDVT architecture.

2000
3000

t
(b) Task inference on “Pick-place.”

Figure 2: SDVT architecture. (a) Our proposed architecture incorporates three main components:
the encoder, decoder, and policy. An online trajectory is encoded into categorical (y) and Gaussian (2)
latent contexts. These contexts, which are trained to reconstruct the forward dynamics, are utilized by
the policy network. This structure is also applied to the virtual training, as illustrated in Figure [3a]
with an optional dispersion layer integrated. (b) An example of the learned task inference process
within a meta-episode (H+ = 5000 steps) on “Pick-place” is shown. We report the values for each
dimension of contexts: wg, (ht), g, (he, y:), and log oy (he, ys).

3.1 Subtask Decomposition (SD) with a Gaussian Mixture Variational Autoencoder

Our goal is to meta-learn a set of elementary subtasks and to meta-learn the decomposition of each
task into a composition of these subtasks. The core of our method focuses on meta-learning the
approximate subtask composition i, € A% sampled from a K -class categorical distribution, where
AK denotes the K -dimensional probability simplex. For example with K = 3, we want the subtask
composition y; to be learned somewhat like (0.5, 0.5, 0.0) for “Pick-place” and (0.0,0.5,0.5) for
“Sweep-into,” where each dimension of y; represents the weight corresponding to subtasks in the
order of “place object,” “grip object,” and “push object.” To capture such subtask information, we use
a Gaussian mixture variational autoencoder (GMVAE) to represent the latent space of non-parametric
tasks as a Gaussian mixture distribution. Each task is represented as a K-dimensional mixture
proportion ¥, resulting in each class representing a unique subtask shared across different tasks.
Thus, the distribution of K subtasks is modeled using a categorical distribution with K classes, where
each class is associated with a Gaussian distribution. The learned subtask composition ¥; represents
the agent’s belief at time ¢ about the current task’s decomposition into subtasks. It is crucial to note
that we don’t necessarily want y; to be a one-hot embedding representing the subtask that the agent is
solving at time ¢. We want y; to represent a mixing proportion [56] over all possible subtasks that the
agent believes to be relevant to the current task, including past and future as in Figures[2bland[d] This
distinction is vital to the model’s effectiveness in solving a range of tasks, as it allows for flexibility
in subtask identification and generalization across different tasks.

Architecture Our full model in Figure which is based on the VAE of VariBAD [74]], consists
of three main components: the encoder, decoder, and policy networks parameterized by ¢ =

{bn, by, 0.}, 0 = {6.,0r, 07}, and 1, respectively.

(1) The encoder is defined as qg(ys, 2¢|ht) = qg, (y¢|hi)qs. (2¢|ht, yt). A recurrent network en-
codes the past trajectory 7., into a hidden embedding h; = gy, (7.¢). First, the categorical encoder
a4, (ye|he) : Cat(wy, (hy)) samples y;, where wy, (hy) € A¥. We use the Gumbel-Softmax trick
[23] with a high temperature (7 = 1) when sampling y; to form a soft label. Then the multivariate
Gaussian encoder g, (2¢|he, yt) : N (e, (e, yt), ‘7352 (ht,y+)) samples a continuous latent context
zt, which contains the parametric information of the subtasks, in addition to the categorical subtask
information of ;.

(2) The decoder is defined as po(T.5+, Y, 2t) = P(Ye)Po. (2t|Yt)Pos 00 (T.+|2¢). It reconstructs
the reward and transition dynamics for all transitions in the meta-episode T.p+, using the latent
context z; as in Eq. (). We assume a uniform prior of subtask composition p(y;) : Uniform(1/K)
and a Gaussian regularization py_ (z|y:) : N'(pe, (y¢), o5 (y¢)). This encoder-decoder architecture



allows both the approximate posterior g, (yt, 2¢|h:) and the prior p(z;) to follow Gaussian mixture
distributions.

(3) The policy network, my(as|s,b), is trained separately conditioned on the belief b, =
(g, (he,yt), 09, (he,y4)) that are parameters of the Gaussian context. In practice, we also pro-
vide the parameters of the categorical encoder wg, (h;) to the policy, which we find to improve
the performance. The parameters of the distributions (wg , f1¢,, 04, , 4o, , and og_) are modeled as
outputs of multilayer perceptrons (MLPs) as in Appendix

Objective We optimize the GMVAE to maximize the evidence lower bound (ELBO) for all time
steps t = 0, ..., H over the trajectory distribution d( My, .+ ) induced by the policy in MDP Mj:

ELBO(6,0) = Eq(at,. v, 0 ) [Eay(ye,zi|ne) JaMvaE] 5 ()
jGMVAE = OéRjR—rec + aTjT—rec + Oég‘.7reg + acu7cat' (3)

In addition to the reconstruction objectives Jr-rec and Jr.rec, We have additional regularization Jieq
and categorical J 4 objectives:

HT-1 HT—1
TRerec = Z log po, (1j+185, 05,8541, %), Trrec = Z logpor(sjt1lsj,a5,2), (4)
Jj=0 j=0
z
Tros = log LGN 1o P 5)

4. (2| he, ye) e, (Yelhy)

The regularization objective Jres minimizes the KL divergence between the learned posterior Gaussian
distribution gy, (2¢|h¢, y¢) and learned Gaussian priors pg, (2¢|y:). Unlike the standard VAE that
assumes a standard normal prior, we learn K distinct Gaussian priors conditioned on y;. The
categorical objective J., maximizes the conditional entropy of y; given h; and prevents collapse.
Refer to Appendix [B|for the derivation of the ELBO objective. The reconstruction objectives in Eq.
() are computed for all timesteps from the first to the terminal step of the meta-episode. Therefore,
the subtask composition y; at time ¢ is not necessarily a one-hot label of the belief about the current
subtask at time ¢, but a mixture label of the belief on all subtasks that compose the current task in the
past and future within the meta-episode. Under the BAMDP setup, the agent learns to reduce the
uncertainty of the decomposition as quickly as possible, supporting the policy with the converged
parameterization. Combining the policy objective in Eq. (I) and the sum of the ELBO objectives in
Eq. (@) for all timesteps in a meta-episode, the overall objective over training tasks is to maximize:

Ht

T(,0,%) = ErgpMun) | Toia () + > ELBO4(9,0) | . (6)

t=0

Occupancy regularization The dimension of y; or the number of underlying subtasks K is a crucial
hyperparameter that should be determined based on the number of training tasks Ny, and their
similarities. However, in many cases, prior information about the optimal value of K, denoted as K*,
may not be available. One way to expand the scope of our method for unknown K* is to meta-learn
the number of effective subtasks as well. First, we assume K* < N, otherwise each task will be
classified into a separate subtask with one-hot label, preventing learning shareable subtasks. We start
with a sufficiently large K = Ny, and regularize the ELBO objective to progressively reduce the
number of effective subtasks (non-zero components) occupied in y; with the following occupancy
regularization that penalizes the usage of larger indices in the subtask composition:

Joce = —log K (e‘K+1,e_K+2,...,e_l,eo) Yy @)

We calculate the dot product of exponential weights and the subtask composition y; to penalize the
occupancy of higher dimensions of y;. We scale the dot product by log K to match the scale to the
upper bound of T.,.. We add J,.. multiplied by a coefficient «, to the GMVAE objective in Eq. (E])
Consequently, the agent prioritizes using lower indices in the decomposition to represent frequent
subtasks and sparingly uses higher indices for rare subtasks as in Figure @bland in Appendix [E.T]

Decoder dropout As the GMVAE is optimized using the trajectories induced by the policy, the
decoder can easily overfit the frequent states and actions of training tasks [35]. This can lead to low
predicted rewards for unexperienced states and actions, regardless of the latent context z;. When
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Figure 3: Virtual training. (a) Generation of imaginary rewards with the decoder conditioned on
a fixed imaginary subtask composition 3. (b)-(e) Examples depicting the diversity of generated
imaginary tasks, where K = 5 and all states are from the Meta-World “Reach.” Red rods and blue

circles represent the trajectories of the gripper and object, respectively. These trajectories, while
generated by the same policy, differ across various imaginary subtask compositions 7.

such overfitting happens, the latent context loses its task-informative value, leading to the potential
underperformance of policy based on this context. Following the approach of LDM [35]], we address
this by applying dropout (DO) to the state and action embeddings of the decoder while leaving latent
context z; untouched: pg,, (7+1|DO [s;,a;, sj+1], 2¢) and pg,. (s;41|DO [s;, a;], z;). This dropout
application is crucial for the virtual training discussed in the following section.

3.2 Virtual Training (VT) on Generated Tasks with Imaginary Subtask Compositions

The overall objective in Eq. (6) is optimized over the trajectories of training tasks. To enhance
generalization to test tasks with unseen subtask compositions, we generate virtual training tasks
using the imaginary dynamics produced by the GMVAE decoder. This process resembles those in
[35 L], but their generated tasks are limited to parametric variations, e.g., generating tasks with
unseen goal positions. Such methods can prepare for test tasks with unseen parametric changes but
struggle to prepare for qualitatively new tasks with unseen compositions of subtasks. Our GMVAE
model enables us to extend the process to the non-parametric setup by conditioning the decoder on an
imaginary subtask composition g. At the beginning of each meta-episode, we randomly determine
with probability p, whether to convert it into a virtual meta-episode. By training the policy on
imaginary tasks, it can better prepare for test tasks with unseen subtask compositions in advance. We
use the tilde accent to denote imaginary components, and the hat accent to denote estimates.

Latent context dispersion Inspired by the work of Ajay et al. [1]], we utilize the dispersion structure
for our GMVAE to support extrapolated generalization of the latent context z;. Instead of directly
using z; as the decoder input, we insert an additional MLP py, before the decoder to expand the

dimension of the context (the dotted box in Figure [2a)). The MLP output ilt = Do, (z¢) is trained to
reconstruct the embedding h; by appending adjdls = —aq||lht — ht H2 to the total GMVAE objective
in Eq. (3). We then use the d1spersed context h, instead of 2 to reconstruct the reward and transition.

This tr1ck is effective in generating imaginary tasks featuring extrapolated dynamics, albeit at the cost
of increased training complexity.

Imaginary reward generation Figure [3a]presents the imaginary reward generation process. The
goal is to create imaginary tasks based on the distribution of training subtasks but with unseen
compositions of subtasks. At the beginning of a virtual meta-episode, we randomly sample an
imaginary subtask composition §j ~ Dirichlet(%) fixed for that virtual meta-episode, where the
concentration parameter j € A is the empirical running mean of all y; over training. By re-
placing the real y; with the imaginary subtask composition y, we sample an imaginary context

Z ~ N(pg, (he, ), aiz (h¢, 7)), imaginary dispersed context h; = po; (Z), and finally the imagi-



nary reward 741 ~ pg,, (r141|DO [s¢, ar, St+1], ﬁt) accordingly using our GMVAE. We replace the
reward for the next timestep, 7441, with 7,11, while the states remain to be from the real training task.
The imaginary reward is used for the encoder input at the next time step and for the policy, where the

+_ ~
policy is trained to maximize the sum of generated rewards, ZtH:O ! 7'y 1. However, the GMVAE
is not trained to reconstruct the imaginary dynamics.

3.3 Summary of the Combined Methods: SDVT-LW and SDVT

By combining the subtask decomposition (SD) and virtual training (VT) processes, we propose two
methods: SDVT-LW and SDVT. Foremost, our primary contribution is the proposal of SDVT-LW,
which is the lightweight (-LW) version of our method that assumes the prior knowledge of the optimal
number of subtasks K, therefore not employing the occupancy regularization.

Furthermore, we propose SDVT with the occupancy regularization strategy. This generalizes SDVT-
LW to adapt to more difficult conditions where there is a lack of prior knowledge of the optimal
number of subtasks K*. We initialize the number of subtasks equal to the number of training tasks
and employ occupancy regularization to downscale higher dimensions, navigating to discover the
most efficient number of subtasks even without prior knowledge.

For the purposes of virtual training, we adopt two methodologies that have found application in
previous studies: dropout [35] and dispersion via structured VAE [1]]. Their use in our work remains
unchanged from their original applications. The efficacy of these components, within the context of
virtual training, is demonstrated via ablations in Appendix [E] We summarize the entire meta-training
process with a pseudocode in Appendix [A]

4 Related Work

Classical meta-RL Classical meta-RL methods assume that both training and test tasks are sampled
from the same distribution. These methods are divided into two main categories: gradient-based
methods and context-based methods. Gradient-based methods [[13} |54, 48l,[73| 53] learn a common
initialization of a lightweight model for all tasks, allowing the agent to achieve high performance
on unseen target tasks with a few steps of gradient updates. However, these methods lack online
adaptation capability within a meta-episode because they require many pre-update rollouts before
adaptation. Context-based methods [9} [18], 146, 32, 34, 43| 74} 140]] use a recurrent or memory-
augmented network to encode the collected experience into a latent context. In general, the context
is trained to optimize auxiliary objectives such as reward dynamics, transition dynamics, and value
function. These methods can adapt to target tasks through online, in-context learning without
requiring gradient updates. However, they are vulnerable to test-time distribution shifts since the
encoded context and the policy given the context are hardly generalized to out-of-distribution tasks.

Out-of-distribution meta-RL A group of recent studies focuses on training a generalizable agent
that is robust to test-time distribution shifts. A group of works generates imaginary observations
using image augmentation techniques [[18} 21 31} 144} 33,161} 166]. Most of these methods depend
on predefined heuristic augmentations, without utilizing the training task dynamics. On the other
hand, some works explicitly address varying environment dynamics. For example, MIER [7] reuses
the trajectories collected during training by relabeling according to the test dynamics. Our work is
related to AAMRL [36], LDM [35], and DiAMetR [1]], which generate imaginary tasks with unseen
dynamics using learned models. However, these works focus on generating parametric variants of
training tasks, while we focus on generalizing across non-parametric task variants.

Skill-based meta-RL  Our task parameterization based on the subtask decomposition is related to
the recently spotlighted skill-based meta-RL methods [[11} |51} 50} 55]], which aim to achieve fast
generalization on unseen tasks by decomposing and extracting reusable skills from training tasks’
trajectories. These works often require refined offline demonstrations to learn skills using behavioral
cloning objectives, where the skills distinguish a sequence of actions given a sequence of states. For
example, SimPL [42] extracts skills from offline demonstrations before meta-training, and during
a meta-test, it only adapts the high-level skill policy, with the low-level policy frozen. HeLMS
[47] learns a 3-level skill hierarchy by decomposing offline demonstrations of a single task. Online
learning of the skills is often unstable because the set of skills should develop along with the online
improvement of the policy. The subtask decomposition of our method is conceptually different from



the skill decomposition [68]. Even when the policy is not stationary during online updates, the
underlying reward and transition dynamics, which our model has to estimate, do not change.

S Experiments

5.1 Experimental Setup

Meta-World benchmark The Meta-World V2 benchmark [71]] stands as the most prominent, if
not the only, established benchmark for assessing meta-RL algorithms featuring non-parametric task
variability. This benchmark comprises 50 qualitatively distinct robotic manipulation tasks, with each
task containing 50 parametric variants that incorporate randomized goals and initial object positions.
Specifically, the Meta-World Meta-Learning 10 (ML-10) benchmark, consists of N, = 10 training
tasks and N = 5 held-out test tasks. We denote each task by an index, where the training tasks are
numbered from 1 to 10 and the test tasks from 11 to 15. Likewise, the ML-45 benchmark consists of
Nirain = 45 training tasks and Ny = b test tasks. Refer to the tables in Appendix for the set
and indices of tasks. The agent must maximize its return from experience while exploring to identify
the initially unknown task dynamics within a meta-episode of H™ = 5000 steps that consists of
nron = 10 rollout episodes of horizon H = 500 steps each.

SDVT variants and baselines setup We evaluate our methods SDVT and SD (only subtask
decomposition without virtual training and dispersion). Without the prior knowledge of K™, we set
K = Niyin and apply the occupancy regularization (o, = 1.0) with o, = 1.0. We also evaluate a
lightweight (-LW) version of ours with smaller K = 5 with o, = 0.5 and without the occupancy
regularization (c, = 0.0). To ensure a fair comparison and to exclude the gains from orthogonal
contributions, we compare SDVT with state-of-the-art meta-RL methods that do not require any
refined offline demonstrations, ensembles, or extensive test-time training: RL2 [9], MAML [13]],
PEARL [46], and VariBAD [74]. We also compare with a parametric OOD meta-RL method, LDM
[35], to evaluate the efficacy of our virtual training over subtasks. All methods do not perform
gradient updates during the test except for MAML. Appendix [C|presents more implementation details.
Briefly, SDVT without a Gaussian mixture reduces to LDM, LDM without virtual training reduces to
VariBAD, and VariBAD without a VAE decoder reduces to RL?. Our implementation is available at
https://github.com/suyoung-lee/SDVT.

Evaluation metric We follow the standard success criterion of Meta-World as follows. A timestep
is considered successful if the distance between the task-relevant object and the goal is less than a
predefined threshold. A rollout episode is considered successful if the agent ever succeeds at any
timestep during the rollout episode. The success of a meta-episode is defined as the success of the
last (10th) rollout episode. In Table[I} we report the success rates of 750 (15 tasks x 50 parametric
variants) meta-episodes at 250M steps for ML-10 and 2500 (50 tasks x 50 parametric variants)
meta-episodes at 400M steps for ML—45E] Likewise, we report the returns of the last rollout episodes.

5.2 Results

Table [T]illustrates that no method attains a 100% success rate even on training tasks, emphasizing
the challenge posed by non-parametric task variability. The training success rates on ML-45 are
consistently lower than those on ML-10, reflecting the inherent difficulty in adapting to a broader
range of tasks, such as conflicting gradients [70]. Notably, SD surpasses all other baselines in training
success rate. In particular, outperforming VariBAD underscores the limitations of employing a single
Gaussian distribution to model the latent task space in cases of non-parametric variability.

On the test tasks, SDVT and SDVT-LW substantially outperform all baselines, even outperforming
LDM, which surpasses VariBAD with parametric virtual training. Our gain is attributed to our virtual
training process, which is specifically designed for test tasks involving non-parametric variability.
Notably, SDVT and SD outperform their LW counterparts in training success rates, primarily due to
its fine-grained subtask decomposition which provides a more precise representation of each task.
For example, a “grip object” subtask may be split and represented as a combination of two distinct
subtasks “move gripper” and “tighten gripper” with a larger K. In contrast, SDVT-LW scores higher

2Our aggregation method diverges from the atypical method employed in the Meta-World paper [[71]], which
presents the main results as the average of the maximum success rate of each task (details in Appendix@
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Table 1: Meta-World V2 success rates and returns. We report the final success rates (%) and
returns of our methods and baselines averaged across training tasks and test tasks of the ML-10 and
ML-45 benchmarks. All results are reported as the mean success rate £ 95% confidence interval of 8
seeds. Individual scores of all tasks are reported in Appendix@

Success Rate Return
ML-10 ML-45 ML-10 ML-45
Methods Train Test Train Test Train Test Train Test
SDVT 77.24+3.0 32.84£3.9 55.644.2 28.1+3.2 3656+62 12254+160 2379+214 839+74
SDVT-LW 62.1+4.1 33.445.0 50.4+4.1 31.2+1.2 3454+137 15274214 22944202 894427
SD 77.04£5.9 30.847.7 61.0+1.7 23.0+5.1 3630+241 11124190 2672+79 786469
SD-LW 75.5+£5.5 262+8.7 56.7£1.5 254429 35254297 10434234 2578+64  793+49
RL2 67.4+44 15.1+£2.7 58.04+04 11.8+£3.2 1159+83 715433 1411422  663+£100

MAML 422445 39437 32.0+14 19.8+£6.3 1822+136 439+78 1388+104 658496
PEARL 232419 0.84+0.5 103£24 6.7£3.3 1081£77  340+54  597£121 5061122
VariBAD 582489 14.1+£6.1 57.0£1.2 22.14£3.5 3055£466 919+143 2492447  762+40
LDM 56.7£12.3 19.8£6.0 54.1£0.9 24.8+2.9 29634626 1166+264 2515£67 768+63

test success rates than SDVT, presumably due to its coarser decomposition that allows imaginary
compositions to encompass a broader range of unseen test tasks.

Please refer to the tables in Appendix [D.T] for individual task results. Our methods achieve the
highest success rates across all test tasks on the ML-10 benchmark. However, all methods encounter
challenges in solving “Shelf-place,” which includes an unseen shelf not present in the observation.
As such, this task cannot be decomposed into previously seen subtasks but rather into unseen ones,
making it difficult to prepare through virtual training. These tasks, composed of unseen subtasks,
pose a considerable challenge for zero-shot adaptation as with SDVT. Addressing these tasks may
require a substantial increase in rollouts and updates during tests, an area of potential future work.
Detailed ablation results are reported in Appendix [E} For additional results such as rendered videos,
refer to our webpage https://sites.google.com/view/sdvt-neurips|

5.3 Analysis

In this subsection, we explore whether the performance enhancements attributed to our methods are
indeed the result of effectively decomposed subtasks and a diverse range of imaginary tasks.

Learned Subtask Compositions From Figure[2b] we observe a rapid context convergence within
the first rollout episode for a sufficiently meta-learned task. To validate our motivation, we visualize
the converged subtask compositions in Figure[d We find that such converged subtask compositions
are shared by qualitatively similar tasks. For example, in Figure tasks (3) “Pick-place,” (7)
“Peg-insert-side,” and (10) “Basketball,” which require placing an object at a goal position, share
subtask indices 1 and 3. Additionally, simple tasks that require moving the gripper in a straight
line: (1) “Reach,” (5) “Drawer-close,” and (8) “Window-open” are classified into the same subtask 2.
These observations suggest that our model can effectively meta-learn the decomposition process of
tasks into shareable subtasks. Furthermore, the test tasks may not necessarily have the same subtask
compositions as the training tasks. For instance, (3) “Pick-place” and (14) “Sweep-into” share subtask
3, but not subtasks 1 or 5, revealing the potential for virtual training to be effective.

Occupancy Regularization Figure[d]indicates that it is important to set the subtask class dimension
K and the categorical coefficient «. appropriately according to the number of training tasks and the
correlations among them. Otherwise, the decomposition may suffer from a collapse or degeneration.
With the occupancy regularization, we can avoid the extensive search for the optimal subtask
dimension K* and corresponding a.. In Figure 4bl we find that our occupancy regularization
successfully limits the use of unnecessary subtasks with higher indices as intended.

Generated imaginary tasks To demonstrate the dynamics of the imaginary tasks, we show the
trajectory of the gripper and object over a meta-episode (5000 steps) on generated imaginary tasks for
different imaginary subtask compositions  in Figure[3] When we set ¢ as a one-hot vector, the policy
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Figure 4: Learned subtask compositions on ML-10. (a) Default SDVT-LW (b) Default SDVT. (c)
and (d) SDVT-LW with varying «.. Each column displays the terminal subtask composition (yz+)
of each task learned after 250M training steps of training, averaged across 50 parametric variants.
The decompositions at different timesteps can be found in Appendix[D.3] The results shown are from
the first random seed, as different seeds yield distinct decompositions. Results of other seeds are
provided in Appendix [D.4]

returns a trajectory that solves an elementary subtask, such as placing and reaching up. We observe
that the trajectories vary across different ¢, and similar compositions result in similar trajectories.

6 Conclusion

In conclusion, our proposed method has demonstrated a considerable enhancement in meta-RL with
non-parametric task variability. This improvement is achieved by meta-learning shareable subtask
decompositions and executing virtual training on the imaginary subtask compositions. However, it’s
essential to acknowledge certain potential limitations beyond the scope of this study, particularly
when addressing test tasks involving entirely novel subtasks and in broader setups where the action
and state spaces may also vary. Despite these limitations, we believe that expanding the realm of
meta-RL to accommodate a wider range of task variability is a critical research topic. Incorporating
orthogonal approaches such as using offline demonstrations or test time training techniques into our
method could lead to interesting future work addressing the limitations. We are optimistic that our
study lays a robust foundation for future research in this field.
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A Pseudocode

Algorithm 1 Subtask Decomposition and Virtual Training (SDVT)

Initialize Encoder gy, decoder pg, policy 7y, set of training tasks Mgin, virtual ratio p,,, GMVAE buffer
Bvag, policy buffer By, total number of meta-episodes to train on 7mew, number of rollout episodes per
meta-episode nyop, running mean of subtask composition .

for meta-episode k =0, ..., Nmea — 1 do
Sample a training task My ~ p(Mgin)

Sample a virtual meta-episode flag V' ~ Bernoulli(p, )

if V =1 then
Sample an imaginary subtask composition § ~ Dirichlet(y)

end if

Reset ho, Yo, Bpol
for timestept =0, ...
ift mod H = 0 then
Reset rollout episode s: ~ Tp ()

end if

, Mpoll X H —1do

Sample an action a; ~ 1 (st g (bt 92), 0. (e, y1), wis, (e))

Take an environment step
St41 ~ Tk(-|st,at)
Ti4+1 < Rk(st, Qt, Sz+1)
if V =1 then
%t ~ N(/U’(Pz (h’ta g)v O-iz (hta g))

ilt = Pe;, (gt)

T4l ~ PGR('|DO [Sta at, 8t+1] s ilt)
Replace ri41 < Ti41

else

Add the transition (s¢, at, St+1,7t+1) t0 Byag - - - VAE NOT TRAINED WITH VIRTUAL DYNAMICS

end if

Add the transition (s, at, St+1, Tt+1) 10 Bpol

Update hidden embedding h¢+1 = go,, (T:t41)
Update subtask composition y;+1 ~ Cat (w¢y (ht+1 ))
Update the running mean of subtask composition § +— RunningMeanUpdate (¥, 1)

end for

Update GMVAE {¢, 6} < {¢,0} + V{401 Zﬁq;o ELBO; with samples from Bvag
Update policy ¥ +— 9 + ijl); with samples from Byl

Anneal virtual ratio p, < p, + Apy

end for

B ELBO Derivation

The GMVAE’s ELBO objective is derived as follows.

Ea, 7 ) logpo(mm+)] = Bauy r 1)

> Eang,r ppe)
= Ed(Mva:bH»)

= Ed(Mva:bH»)

log E% (yt,2t|ht) |:

E

E

E

94 (yt,zt|he)

94 (yt,zt|he)

a6 (Yt,2t|he)

log

PO(T:H+ y Yt Zt)

Q¢(yt72t\ht)

pe(T:H+ » Yt Zt)

Q¢(yt72t\ht)

|
|

Po(T.r+ Y, 20)po (2¢]ye)p(yt) } }
46 (Yt he)ag (ze|he, ye)

log po(T.+]2¢) + log

pe(zt|yt)

Q¢(Zt|ht, yt)

®)

Eq. ) is equivalent to the ELBO objective in Eq. (3)) without weighting coefficients. We assume

that the reconstruction 7. 5+ is conditionally independent of the subtask composition y; given z;.
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C Implementation Details

C.1 Reference Implementations

reported in the Meta-World paper [[71], we utilize the exact version’|of the Garage repository [[15]
without any modifications. For their hyperparameters, please refer to Appendix D.7, D.8, and D.9 of
the Meta-World paper. MAML is the only baseline that has the advantage to take gradient updates
during the test.

SDVT, SD, LDM, VariBAD Task-inference-based methods (SDVT, SD, LDM [35], and VariBAD
[74]) are adapted to the Meta-World benchmark based on the VariBAD’s implementationE] We
begin with VariBAD’s hyperparameter configuration for MuJoCo [58]] Ant-goal and modify certain
hyperparameters to accommodate the Meta-World benchmark (e.g., batch size, network capacity,
etc.). In line with VariBAD and LDM, we train SDVT’s policy using PPO [49]. The GMVAE
is based on an implementatiorE] that employs the Gumbel-Softmax reparameterization trick [23]]
when sampling the categorical subtask variable. The virtual training processes of SDVT and LDM
require agent-environment interaction since they use states from the real environment. Therefore,
the virtual training steps are also added when counting the total number of training steps. For a
comprehensive list of SDVT hyperparameters, shared among SD, LDM, and VariBAD to ensure a
fair comparison, please refer to Appendix and our source code available at https://github,
com/suyoung-lee/SDVT.

MAML, RL?, and PEARL To replicate the results of MAML [1(361, RL? [9], and PEARL [46] as

. i

| SDVT . DM |
. GMVAE I + Gaussian mixture ! VAE I
(recurrent encoder & _4—' (recurrent encoder & 1

I dynamics decoder) ! dynamics decoder) |
1

1

1

Policy network I : Policy network
= Virtual training (subtask)

+ Virtual training + Virtual training
(subtask) (parametric)

I
I GMVAE . + Gaussian mixture : VAE : +4Dynamics decoder R I_2
(recurrent encoder & « —| (recurrent encoder & € Recurrent encoder
: dynamics decoder) I 1 dynamics decoder) : Policy network
e o o  —— b T !

Policy network L Policy network

Figure 5: Schematic overview of algorithms. SDVT without a Gaussian mixture reduces to LDM,
LDM without virtual training reduces to VariBAD, and VariBAD without a VAE decoder reduces to
RL2. MAML and PEARL use fully connected networks.

C.2 Computational Complexity

Table 2: Computational complexity. The total wall-clock time required to generate the results for
the ML-10, averaged across all eight random seeds.

SDVT SDVT-LW SD SD-LW RL? MAML PEARL VariBAD LDM
Wall-clock time (hours) 142 140 138 135 192 17 258 126 131

Our experiments were conducted using an Nvidia TITAN Xp. Due to the considerably larger variety
of tasks compared to standard meta-RL benchmarks, non-parametric benchmarks require significantly
more computational resources and time. In Table [2] we detail the total wall-clock time expended by
our methods and baselines during the training and evaluation of the ML-10 benchmark. This time
includes the environmental interaction time for 250M training steps, roughly 100M steps dedicated to

*https://github.com/rlworkgroup/garage/pull/2287
“https://github. com/lmzintgraf/varibad
https://github.com/jariasf/GMVAE
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evaluations, and the time taken to train the neural networks. Despite incorporating the GMVAE and
virtual training, our method’s computational demand does not substantially surpass that of VariBAD.

C.3 Hyperparameters

Table 3: Hyperparameters of SDVT and SD. Hyperparameters of SDVT used for Meta-World
ML-10 and ML-45 along with the notations in the manuscript and the argument names in the source
code. SD shares the same hyperparameters except without those of virtual training. Different
hyperparameters of our lightweight variant are denoted as (-LW).

Category Description Notation Value (ML-10, 45) Argument Name
Rollout episode horizon H 500 max_episode_steps
Number of rollout episodes Troll 10 max_rollouts_per_task
General Discount factor o4 0.99 policy_gamma
Number of parallel processes 10 num_processes
Total Environment Steps 2.5e8,4.0e8 num_frames
Optimizer Adam optimiser_vae
Learning rate le—3 1lr_vae
Subsample ELBO 100 vae_subsample_elbos
Subsample decodes 100 vae_subsample_decodes
Buffer size (meta-episodes) | Byag| 1000 size_vae_buffer
ELBO categorical coefficient Qe 1.0 cat_loss_coeff
ELBO categorical coefficient (-LW) «. 0.5 cat_loss_coeff
ELBO Gaussian coefficient oy 1.0 gauss_loss_coeff
ELBO reward coefficient R 10 rew_loss_coeff
GMVAE ELBO transition coefficient ar 1000 state_loss_coeff
ELBO occupancy coefficient Qo 1.0 occ_loss_coeff
ELBO occupancy coefficient (-LW) «a, 0 occ_loss_coeff
Gumbel softmax temperature 1 gumbel_temperature
Number of updates per epoch 10,20 num_vae_updates
Subtask dimension K = Nyain 10,45 vae_mixture_num
Subtask dimension (-LW) K 5 vae_mixture_num
Gaussian dimension dim(z) 5,10 latent_dim
Dropout rate Ddrop 0.7 dropout_rate
Reward reconstruction objective MSE rew_pred_type
State reconstruction objective MSE state_pred_type
Algorithm PPO policy
Optimiser Adam policy_optimiser
Learning rate Te—4 lr_policy
Optimizer epsilon 10e — 8 policy_eps
PPO update epochs 5 ppo_num_epochs
. Steps per policy update mmlf% 5000 policy_num_steps
Policy Number of minibatches ) 10 ppo_num_minibatch
PPO clipping parameter 0.1 ppo_clip_param
GAE )\ 0.9 policy_tau
Initial standard deviation 1.0 policy_init_std
Minimum standard deviation 0.5 policy_min_std
Maximum standard deviation 1.5 policy_max_std
Entropy coefficient le -3 policy_entropy_coef
Virtual Iqitial virn:lal. ratio 0.0 virtual_ratio
training Virtual ratio increment per step Ap, 5e — 8,2.5e — 8 virtual_ratio_increment
ELBO dispersion coefficient Qg 10 ext_loss_coeff
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Table 4: Hyperparameters of VariBAD and LDM. VariBAD and LDM employ identical hyper-
parameters for the general and policy categories of SDVT and SD, as shown in Table[3] The sole
distinction lies in the structural variation resulting from the utilization of GMVAE and VAE. We
choose the Gaussian dimension that yielded the most favorable outcomes among 5, 10, 15, and 20.

Category  Description Notation  Value (ML-10, 45)  Argument Name
Optimizer Adam optimiser_vae
Learning rate le— 3 1r_vae
Subsample ELBO 100 vae_subsample_elbos
Subsample decodes 100 vae_subsample_decodes
Buffer size (meta-episodes) | Byakg| 1000 size_vae_buffer
ELBO KL coefficient 0.1 kl_weight

VAE ELBO reward coefficient aRr 10 rew_loss_coeff
ELBO transition coefficient ar 1000 state_loss_coeff
Number of updates per epoch 10,20 num_vae_updates
Gaussian dimension dim(z) 5,10 latent_dim
Dropout rate (VariBAD) Ddrop 0.0 dropout_rate
Dropout rate (LDM) Ddrop 0.7 dropout_rate
Reward reconstruction objective MSE rew_pred_type
State reconstruction objective MSE state_pred_type

C.4 Network Architecture

The network architectures comprising our method are described in Table[5] Prior to being input into
the encoder or decoder, all state, action, and reward inputs pass through embedding networks. The
values of K = dim(y) and dim(z) differ for the ML-10 and ML-45, as indicated in Table

Table 5: Network architecture. Details of the network architecture composing the GMVAE. The
numbers in the Layers column represent the dimension of the hidden layers and the output.

Network Notation  Architecture Layers Activations (last layer)
State embedding MLP [32] (Tanh)
Reward embedding MLP [16] (Tanh)

Action embedding MLP [16] (Tanh)
Recurrent encoder dén GRU [256] (None)
Categorical parameter We, MLP [512,512, K] ReLU (Softmax)
Gaussian parameters Lo, O'QZ MLP [512,512,dim(z)] ReLU (None, SoftPlus)
Gaussian regularization parameters  fig_, 0, MLP [dim(z)] (None, SoftPlus)
Latent context dispersion Po; MLP [256, 256, 256] ReLU (None)
Reward decoder Dog MLP [64,64,32,1] ReL.U (None)
Transition decoder Doy MLP [64, 64, 32, 40] ReLU (None)
Policy (o MLP [256, 256, 4] Tanh (Tanh)

C.5 Aggregation method for the Success Rate

The main results in the Meta-World paper (Table 1 and Figure 6 of Yu et al. [[71]) present the average
of the maximum success rate for each task, diverging from the raw scores in their Figure 17 and
18. For instance, if an agent achieves a 90% success rate on “Door-close” in one evaluation during
training and scores 10% in all other evaluations at different times, the reported success rate for
“Door-close” is 90%. The mean of these maximum scores across tasks is reported as the aggregated
success rate.

This unconventional aggregation method does not accurately represent the meta-RL objective, which
aims to train a single agent capable of solving multiple tasks. Meta-World calculates success rates for
various tasks at distinct time points during training, even though the agent might specialize in different
tasks at various stages. As a result, the agent may excel at specific tasks by chance. Consequently,
evaluating the agent more frequently could yield higher maximum scores. We report the conventional
final performance, which better reflects the meta-RL objective.
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D Detailed Experimental Results

D.1 Performance on Individual Tasks

Table 6: Meta-World V2 ML-10 success rate. We report the final success rates (%) of baselines and
our methods for training tasks and test tasks of the Meta-World ML-10 benchmark. All results are
reported as the mean success rate &= 95% confidence interval of 8 seeds at 250M steps.

Index. Task SDVT SDVT-LW SD SD-LW RL? MAML PEARL VariBAD LDM

1. Reach 50.0£11.0 22.0£3.5 538%11.5 56249.1 27.54+19.8 50.0£34.6 70.0+11.9 28.5+50 28.5+4.1
2. Push 57.5£18.6 2524165 61.2+7.3 68.8+10.6 60.0+13.0  0.0£0.0 0.0+£0.0  258+12.9 255+12.8
3. Pick-place 475+£9.6  39.0+£54  52547.6 55.0+13.9 425+21.0 0.0£0.0 0.0£0.0 24.8+133 2724133
4. Door-open 100.0£0.0 60.5£31.9 100.0+0.0 63.8+32.5 93.8+9.1 79.54+22.1 10.2£11.9 86.8+22.7 62.54+33.5
5. Drawer-close 100.0+0.0 100.0+£0.0 100.0+0.0 100.0£0.0 98.8+23 99.5+1.1 86.8+56 100.0+0.0 100.0+0.0
6. Button-press 98.8+2.3 98.8+1.8 96.2+6.9 100.0+£0.0 87.5+83  93.0+£83 46.0E£11.2 985409 99.5+09
7
8
9
1

. Peg-insert-side  31.2+£13.2 24.5+102 50.0+19.9 36.2+11.5 45.0+21.6  0.0£0.0 0.0+£0.0  19.8+14.0 21.8+15.3
. Window-open ~ 100.0£0.0 100.0+0.0 98.8+2.3 100.0+£0.0 100.0+0.0 100.0+£0.0 19.2+11.5 100.0£0.0 100.0-£0.0
. Sweep 96.2+4.8 722429.0 83.8+£222 83.8+15.1 750£17.3  0.0£0.0 0.0£0.0 60.2+32.4 61.2432.9
0. Basketball 91.2+6.4  78.8+9.8 73.8+143 91.2+88 438+16.6 0.0£0.0 0.0£0.0 37.2+26.0 40.54+28.9

Train mean 772£3.0 62.1+4.1  77.0£59  755+£55 674+44 422445 232419 582489 56.7+12.3

11. Drawer-open  65.0+19.9 30.5£12.9 48.8423.4 4504240 22+19 1584193 1.5+1.1 12.8£12.8 21.8+12.0
12. Door-close 7.5£9.0 81.2+19.0 33.8+254 18.8+24.1 82473 3.2+6.0 1.2£1.5  27.0+21.8 30.2428.2
13. Shelf-place 0.0£0.0 1.0+1.2 0.0£0.0 0.0£0.0 0.240.2 0.0£0.0 0.0£0.0 0.040.0 0.040.0
14. Sweep-into 90.0+8.5 5124189 7124149 55.0+21.6 64.5+83 0.0£0.0 0.8+£1.0 30.5+22.0 46.5421.8
15. Lever-pull 12423 32427 0.0£0.0  12.5£10.2 0.5+0.8 0.5£0.9 0.5£0.9 0.2£0.5 0.5£0.9

Test mean 328439 33445.0 30.847.7 262487  15.1+£2.7 39437 0.84+0.5 14.1£6.1 19.8+6.0

Table 7: Meta-World V2 ML-10 return. We report the final return of baselines and our methods at
the last rollout episode on the Meta-World ML-10 analogous to the success rate in Table[6] Results
are reported as the mean =+ 95% confidence intervals of 8 seeds at 250M steps.

Index. Task SDVT SDVT-LW SD SD-LW RL? MAML PEARL VariBAD LDM

1. Reach 3565+132 3681115 37084228 3806+£220 22914276 38994560 3841+554 3829+153 3740£59
2. Push 3923+339 3493+£469 3636+£628 35794870 815+133 17+1 1542 26094990 24701220
3. Pick-place 22574239 2241£300 21314441 21564593 5014137 6+0 5+1 1395£759 15611861
4. Door-open 4441437 3171825 44474106 3530+£831 12494115 3561£753 1064254  4051£780  3249+1134
5. Drawer-close 4813+71 485010  4850+13 4854+9 21934336 4804455 40811314  4841+£18 4837418
6. Button-press 3392459 34374133 3257+£265 34234209 11894151 2574+274 956£300  3246+161  3252+£140
7. Peg-insert-side  1903£430 19194348 26344588 22254592 6824157 740 7+1 1148+761 12374825
8. Window-open  4486+39 4371177 4349+165 4398+79 1230112 32714732 784+390 4483132 4458442
9. Sweep 42354202 3617+£682 3823+702 35574634 9061223 79+£38 S51+14 2807£1260 278941333
10. Basketball 35494292 3759+307 34664511 3726£331 532£116 7+£1 6+2 2141+1119  2035+£1256

Train mean 3656162 3454+137 36304241 35254297 1159+83 18224136 1081+77  3055+466 29634626

11. Drawer-open  2558+165 22804271 2305£298 2310+280 16494100 1737+£270 113087  2336+340  2389+386
12. Door-close 5664335 3030+857 1068+£740 638+670 568+£137  2631+278  321£221 11214689  1343+1214

13. Shelf-place 501477 5504138  494+102 4344154 578+70 040 040 211+144 3284204
14. Sweep-into 2221+£764 1455+615 1359£632 15324721 490446 41+£3 48433 658358 15094889
15. Lever-pull 279438 318445 335+45 300+48 291+66 15649 200458 271426 260448

Test mean 1225£160 1527+214 11124+190 1043+£234 715433 439478 340+54 9194143 1166264
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Table 8: Meta-World V2 ML-45 success rate. We report the final success rates (%) of baselines and
our methods for training tasks and test tasks of the Meta-World ML-45 benchmark. All results are
reported as the mean success rate &= 95% confidence interval of 8 seeds at 400M steps.

Index. Task SDVT  SDVT-LW SD SD-LW RL2 MAML  PEARL  VariBAD  LDM

1. Assembly 00400 00400 00400 00400 22404 00400  0.04£0.1  004£00  0.0%0.0

2. Basketball 2484177 30436 2384192 2424136 210498 00400 00400 1984137  102+89
i;;;‘(‘)‘;’/:"ms 95.0+£7.6 945406 100.0+0.0 980417 988+10 7824212 75486 995406 8254187
i;;(‘;g\iﬁ:‘\f:ﬁs 940479 965406 99014 995406 985+1.5 7824216 9.5+10.6 99.8+0.5 8624156
5. Button-press 932433  965£0.6 89.04£8.1  99.0+£0.7 842432 955+19 268+113 98.0+1.0 93.5+8.0
i;vfl?“"“'pre“ 86.0+11.6 68.044.0 805487 755494 670448 7124106 202483 745483  56.0+11.3
7. Coffee-button ~ 100.0£0.0  100.04£0.0 100.0+£0.0 97523 97516 920449 28413  78.0£147 100.0-0.0
8. Coffee-pull 3724191 3324122 4554234 4654220 650443  05+03  00£0.1 5254105 48.8+129
9. Coffee-push 648465 37.0£158 S56.8+27 67.8£12.6 60.8+£9.0 2204106 30424 765+108 81.8+5.8
10. Dial-turn 872444 862429 828479 6724119 145+83 812488 98477 4404139 60.8+5.9
11. Disassemble ~ 59.5:£32.0 320147 87.8£62 740109 2324271 00400 02402 4454218 655185
12. Door-close ~ 100.0£0.0 100.0+£0.0 995+0.6 97.0+£3.6 982+12 100.0£0.0 5224212 100.0+£0.0 99.2+1.0
13. Door-open 5624312 5604243 998405 6484269 5404238 68119 05403  98.0+14  962+3.6
14. Drawer-close ~ 100.0£0.0  99.0+1.2 972422  100.0£0.0 98.5£0.5 100.0£0.1 96.542.9 992407  96.54+4.0
15. Drawer-open  96.5+1.1 838+163 960+4.8 8724138 835484  00+£00  25+13  100.0+£0.0 932466
16. Faucet-open  99.50.6 82.5421.0 99241.0 100.0£0.0 86.8+9.7 70.5+19.1 288+117 955+17 982+15
17. Faucet-close ~ 97.04£5.5 77.0£18.3 992407 97.04£23 568168 5284225 150463 995406 99.2+1.0
18. Hammer 20437 00400 004200 1518 12.8+154 68£58  22£13  00£00  0.0£0.0

}za?a“dle’p““ 97.844.1  100.020.0 100.020.0 100.0-=0.0 99.8:0.1 832122 12.8+11.8 100.0+£0.0 99.8+0.5
20. Handle-press ~ 98.5£1.1  99.0£12 100.0£0.0 100.0£0.0 99.8+0.1 7204202 66.8£19.8 100.0+£0.0 100.0-:0.0
_zsliafa“dle'p”“ 4004223 52452 5054252 3954241 832443 1384155 08+£07 4124233 31.8+285
22. Handle-pull 00400  10£12 3524315 38426 02402  49.0+189 08404 10407  1.0+1.0

23. Lever-pull 10.0+£9.8 160444 115468 232£166 10208 32439 00200 200+113  60+3.9

_zg.dgeg-msen 10407 00400 08407 05406 195458 00400 00400  00+£00  22+27

_z‘iélll)mk'place 3004167 29549.8 485437 412:+117 425440 65460  00+00 355446 3124159
_zof’f'_t]:;?s'o‘“ 2684164 2324120 53.0+7.0 438484 55427 00400 00400 32.04£208 34.0+114
27. Reach 3154267 135440 360£87 255467 458484 188+10.6 135472 270447 285432
28. Push-back 4084213 31.0£119 76.0£53 445493  77.8+46  00£00  00+£00 41.5+24.1 49.5+10.5
29. Push 505457 628451 3624143 2924183 585+16 1684149 18+14 450495 3524117
30. Pick-place 2824135 262465 575491 368439 435418  48+53  00£00 348+39  44.0+52
31. Plate-slide 758457 565469 582+10.8 602+£104 205+144 17.0£152 9.5410.6 552468  57.047.3
izi'df late-slide 81.840.8 10407  97.0+£3.6 87.0+£32 708451 20436 02403  89.5+13.6 59.5+24.2
?Sécila‘e'“‘de 820462 860497 835442 7654108 90.0439 00400 08408 840461 802479
ii;cil_z‘i‘;:hde 718456 590445 60.8£112 7354108 SL5+19 55457  05+06 735424  80.848.0
?Ssia:eg’”“plug 4004172 508+12.0 5404501 478417.8 540437  13.0434 35421 605458  48.840.1

36. Soccer 298472 255488 160427 245+£169 378447 1452127 25418 202454 152425
37. Stick-push 00400 4754329 00200 2054246 882434 00200  00£00  00£00  0.0£0.0

38. Stick-pull 00400 1504104 00400 120144 45436 00200  00£00  00£00  0.0+0.0

39. Push-wall 510449 50.0+254 6284217 2754208 725454 1824165 02402 6384157 4404205
40. Reach-wall 162459  7.0+£49 270481 28.0+73  65.0+56 3524202 150469 18.043.6  13.849.1

41. Shelf-place 0.0£00 05206 08407 00400 38429 004200  0.0£00 45146 0810

42. Sweep-into 928432 910429 905+58 902486 87.5+15 2384213 48432 978426 98.5+1.3
43. Sweep 1184101 27.0£174 33.0£17.7 2004232 4154211 00200 00400 4054£28.1  55+6.5

44. Window-open ~ 99.5+0.6  100.0+0.0 100.0+0.0 100.0+£0.0 97810 915+6.6 275+114 982416 98.842.3
45. Window-close  100.0£0.0  99.0+12  100.0£0.0 100.0+£0.0 952433  97.0+£19 2724110 100.0£0.0  99.840.5
Train mean 556442 504441 610£L7  567+15 580404 320+£14 103224 57012 541209
46. Bin-picking 00400 1518 22411 12410 12409 00400 00400  18+11  054+09

47. Box-close 05206 00200 05206 00200 05203 00200 00400 55146  0.0£0.0

48. Hand-insert 22423 38431 1.0£12  15+£18 52430 23.0+158 00400 15+l 0810

49. Door-lock 59249.1 74.8+75 498+155 515495 140482 1124105 82:+100 37.54£203 592496
50. Door-unlock ~ 78.5+£7.9  75.849.1 6184102 725495 3804113 645+£192 2504192 642443 632469
Test mean 281432 312412 230451 254429 118432 198463 67433 221435 248429
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Table 9: Meta-World V2 ML-45 return. We report the final return of baselines and our methods at
the last rollout episode on the Meta-World ML-45 analogous to the success rate in Table[8] Results
are reported as the mean + 95% confidence intervals of 8 seeds at 400M steps.

Index. Task SDVT  SDVT-LW SD SD-LW RL2 MAML PEARL  VariBAD  LDM

1. Assembly 1813485  2573:£117 24145233 2285195 1202419 268470 20849 2434161 2572456
2. Basketball 19294688 1443524 2215148 25815129  489-£38 100490 642 1311651 22274236
i(ﬁf)‘\i’/ﬁ’pre“ 31204447 32074328 3580487 3343+176  1344+14 26604633  543+£273 33484227 32084354
i;;;g‘;g:f:;ﬁs 32174384 33862246 3614110 3392185  1359+18 26644638 6044314 33374279 32184319
5. Button-press 31002270 29774199 28334208 2038193 1165429 29424178 434195 2878474 27454205
_6&5;’“"“"““ 34014220 2916494 31484157 31654292 137817 2589341 3274183 30404136 29914108
7. Coffee-button 16054678 21964430 25174296 24204303 1348240 33422157 8020 2253303 26104271
8. Coffee-pull 10324307 916323 10105338 13055395 57235 3847 2145 12924260 12444220
9. Coffee-push 1424443 880455 1254137 16874497 504441 111447 20410 19014413 21754491
10. Dial-turn 1821478 17042520 1835414 1825484 944470 15534254 4494407 680130  1101£571
11. Disassemble 24511226  897:£350 3387382 28404485 264241397 130458 150425 1564749 2268-£688
12. Door-close 41784204 440422 437517 4251493 1231420 42654158 24304965 41814105 40674174
13. Door-open 3086761 22154430 4134151 28334517 13124216 10954316 469142 37414333 38574325
14. Drawer-close 43104274 4544454 43924307 468080 1626225 4725428 45394225 45154112 45064206
15. Drawer-open 3964296 36242334 42652106 403542221 2169118 22594235 12884367 4180114 38764270
16. Faucet-open 457268 40574692 4582481 467421 19254193 3757540 1810497 4338155 4479+118
17. Faucet-close 41664351 36564471 44574194 43004295 1662115 3298-£561 14704414 4267457 44014196
18. Hammer 466460 46517 4695 45916 73842233 649+135 420420 4764 3844115
_lzagandle'press 46761192 4722414 4767438 479717 227643 3696522 6524524 4772419 4737451
20. Handle-press ~ 4601:£74  4355:£183 44802147 478914 223086 2902791 30361958 4728422 4747455
_Zsli'd?andle'p““ 8534523 83430 15074832 9074731  565+43 199-£300 1245 9914576 9174826
22. Handle-pull 1469153 1491110 2260666 1541100 2048486 20014597 29419  1549+57 1612170
23. Lever-pull 4461484 49674 483239 5004106 305421 26460 119438 457432 345427
_zga:eg""se“ 7674408 757448 1106186 1067192 64077 33424 742 7784101 9624232
?\iﬁ“'plm 16474893 20114717 2765464 2570543 491422 3894359 040 20424501 18734854
_sz'_lfgl""“t 8094435 10154365 13194183 13854310  270+26 2041 8+1 11294261 12474392
27. Reach 2682:£225 24484313 30484238 3116182 2273149 24474829 246651079 2843147 3085183
28. Push-back 6744362 514154  1438+£156 12184334 433442 1147 843 871£372  1404£324
29. Push 31304£290  3139£655 2961253 2581£530 945432 6344555 34413 34274185  3524-:200
30. Pick-place 12214650 15824433 21454159 19924122 576423 2474222 541 203448 2128144
31. Plate-slide 35264161 2950232 3022196 2828303 28631349  1043+789 5614490 2858251 2801231
izi;i:la“”*hde 30584289 136237 34714258 2761£317 949420 3224249 56435 31074167 23514462
fécila‘”hde 37834204  3790::239 38445128 3754272 1544410 5814364 6554259 3900155 3720325
34. Plate-slide

Chackoside 3732491 3764149 375545256 39874228 1S61+7 6764420  133k56 4099272 40944130
isiageg'”“pl“g 9824390 9714331 11874111 10794464 40136 62426 45428 1523+142 10874282
36. Soccer 13744169 15664207 1311129 13484332 671431 4394359 98460 1399490  1486:£82
37. Stick-push 47470 7864533 112 2914333 955414 1284212 61 1742 1044
38. Stick-pull 25423 9054616 1443 600702 730446 39452 71 1943 1144
39. Push-wall 25474426 21974668 32914421 24964639 877485 5974532 2047 28134716 27444549
40. Reach-wall 1871157 1889412 2447£462 27414456 2303489 280241052 17414641 21024128 1836569
41. Shelf-place 608308 657195 92055  1056:£165 62361 948 040 7954186  725+167
42. Sweep-into 37555333 38474400 38694214 35844495 793167 6234541 148482 37504159 41514185
43. Sweep 11484298 14332477 1905449 14152623 8724230 160482 3649 186542799 12194325
44. Window-open 37894249 40042190 413856 412153 1163£37 24631004  705+184 41774123 39864154
45. Window-close 4201166  4333£135 429314209 449629 11524109 32152425 990417  4346:£111 4450433
Train mean 23794214 2204202 2672479 2578464 1411422 13884104 5974121 24924447 2515467
46. Bin-picking 114444 113456 322470 140472 265473 3746 1245 127427 90429
47. Box-close 190-£49 12842 143£5 13749 820+159 215426 176440 243483 151+10
48. Hand-insert 209464 465101 386425 30264 467448 3371188 642 377461 398439
49. Door-lock 16045302 19732160 1359262 1427280 995303 8214243 9604149 13584445 1573168
50. Door-unlock ~ 1898-£158 17924225 17214132 18704245 7694108 18804426 1374537 17074324 1627169
Test mean 830474 894427 78669 79349  663£100 658496 506122 762440 76863
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D.2 Learning Curves

In Figures [6] through 0] the mean training and test success rates are represented by solid and dashed
lines respectively, with the shaded region indicating the 95% confidence interval. All results are
compiled from 8 random seeds. The data corresponding to the final training steps in these plots
(250M steps for ML-10 and 400M steps for ML-45) are used to present the main results in Table[T]
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D.3 Subtask Compositions Learned over Training

Seed 0 at OM steps
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(b) SDVT (K = 10, ac = 1.0, o = 1.0).

Figure 10: Subtask compositions learned over training. We visualize the development of subtask
compositions for (a) SDVT-LW and (b) SDVT during training on ML-10. Similar to FigureEl each
column represents the terminal subtask composition (yz+) averaged across 50 parametric variants.
(a) As training progresses, subtask compositions of (4) “Door-open” and (12) “Door-close” merge
due to shared transition dynamics, which may cause the “Door-close” policy to keep the door open
during testing without virtual training, underscoring the crucial role that virtual training can play in
these scenarios. (b) With occupancy regularization, as the training progresses, the decomposition
process prioritizes occupying lower indices over higher ones in the subtask compositions.
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D.4 Subtask Compositions of all Seeds
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Figure 11: Subtask compositions of all seeds. We visualize the subtask compositions of (a) SDVT-
LW and (b) on ML-10 after 250M training steps for all seeds. Decomposition processes differ among
random seeds due to varying initialization and sample tasks during meta-training. One subtask can
be interpreted as a combination of multiple subtasks and vice versa, depending on the seed and
the dimension K. We rarely have a collapse to a single Gaussian as in (a) Seed 5, which lowers
the average performance. (b) With occupancy regularization, we find that the 10th element of the
composition is rarely occupied, whereas the first element is occupied by many tasks.
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E Ablation Results

In order to confirm the source of the gain obtained from the proposed method, we conduct an extensive
ablation study based on SDVT and SDVT-LW on ML-10.

E.1 Occupancy Regularization

Seed 0 at 250M steps Seed 0 at 250M steps
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(a) SDVT (a, = 5.0). (b) SDVT (v, = 10.0).

Figure 12: Occupancy ablation. We report the learned subtask compositions of SDVT (K =
10, a. = 1.0) for different occupancy coefficients analogous to Figure@

Figures [4b] and [I2] indicate that our occupancy regularization effectively constrains the use of
higher indices as intended. We fix the default choice of a,, = 1.0 that we found to work well on
ML-10. Our default SDVT with «, = 1.0 scores a test success rate of 32.8%, which scored the
best among «, € {0.0,1.0,5.0,10.0} that scored 22.8%, 25.5%, and 21.0%, respectively. Also,
our default SD with a,, = 1.0 scores a test success rate of 30.8%, which scored the best among
a, € {0.0,1.0,5.0,10.0} that scored 22.8%, 28.4%, and 11.2%, respectively.

E.2 Dropout and Dispersion

Table 10: Ablation results. We report the mean success rate (%) and the difference caused by the
changes made from the default SDVT-LW (K = 5, . = 0.5, o, = 0.0) on ML-10 in parenthesis.

SDVT.LW without K Qe
Dropout  Dispersion 3 7 10 0.1 1.0 2.0
ML-10 Train 65.6 73.0 60.1 69.5 70.8 59.8 70.3 66.3
) a (+3.5) (+10.9) (-2.0) (+74) 87  (-23) (+82) (42
16.5 21.5 25.0 22.0 21.1 20.5 16.1 17.9
ML-10 Test

(-16.9) (-11.9) (-84) (-11.4) (-12.3) (-12.9) (-17.3) (-15.5)

Table [I0] demonstrates the significant roles played by both dropout and dispersion in generating
extrapolated dynamics during virtual training, thereby enhancing the test success rate. As outlined in
Appendix E.1 of the LDM paper [35], virtual training without dropout does not exhibit a significant
improvement due to decoder overfitting on the state and action inputs of the training tasks. In fact,
virtual training without dropout can even lead to a decrease in test performance.

However, it is important to note that these factors are not the primary contributors to the empirical
gains of our method. Dropout is specifically essential for virtual training, but not necessarily for other
methods that do not employ virtual training, such as VariBAD and RL2 (as discussed in Appendix
E.2 of the LDM paper). We verified this in our ML-10 experiment using VariBAD with dropout. The
inclusion of dropout marginally improves the training success rate of vanilla VariBAD from 58.2%
to 63.0% and the test success rate from 14.1% to 16.5%. However, the performance enhancement
achieved through dropout is not as substantial for VariBAD as it is for SDVT-LW’s virtual training.
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E.3 Decomposition Distribution

Table[I0]emphasizes the significance of hyperparameters such as subtask dimension K and categorical
coefficient «. in determining subtask compositions. It is crucial to carefully set these hyperparameters
based on the number of training tasks and their correlations. In our lightweight (LW) approach, we
have selected K = 5 and o, = 0.5, which effectively distributes subtasks across the ML-10 tasks.
When a. is set to a small value, task classification collapses into a few subtasks, as depicted in Figure
Conversely, with a large value of «., the entropy of the composition is maximized, and all tasks
exhibit a uniform probability distribution, as illustrated in Figure[#d] However, it is noteworthy that
SDVT-LW outperforms VariBAD and LDM in test success rate, regardless of the specific values
chosen for K, such as K = 3,7,10. To alleviate the burden of hyperparameter tuning in our LW
methods, we introduce the occupancy regularization.

E.4 Number of parameters

Table 11: Number of parameters and success rates. We report the number of parameters used by
our methods and baselines. We demonstrate that our gain is not from the increased capacity.

Number of Parameters ML-10 Success Rate (%)
Methods Encoder Decoder  Policy Sum Train Test
SDVT-LW 1,047,455 174,821 235,401 1,457,677 62.1 334
SD-LW 1,047,455 25,637 235,401 1,308,493 75.5 26.2
LDM 502,580 25,577 202,249 730,406 56.7 19.8
LDM (matched) 2,144,692 175,593 267,401 2,587,686 64.2 22.0
VariBAD 251,290 25,577 202,249 479,116 58.2 14.1
VariBAD (hidden x2) 894,362 25,577 663,305 1,583,244 624 12.0
VariBAD (matched) 1,072,346 175,593 267,401 1,515,340 67.6 17.2

Table [[T]indicates that SDVT-LW employs 3 and 2 times more parameters compared to VariBAD
and LDM, respectively. The encoder of our method has more parameters than VariBAD due to the
added categorical layer. The decoder of SDVT-LW includes the parameters of the dispersion layers.
However, we find that the model’s improvement is not mainly attributed to the increased capacity.
Generally, a larger capacity does not necessarily guarantee better generalization.

VariBAD (hidden x2) While selecting encoder (GRU) and policy hidden sizes, we experimented
with 128, 256, and 512, discovering that 256 works best for all task-inference methods (LDM, SD
only, and SDVT). Notably, VariBAD (hidden x2) with hidden dimensions of 512 possesses more
parameters than SDVT but exhibits an even lower test success rate than the vanilla VariBAD.

VariBAD (matched) We add MLP layers with hidden sizes of [1600, 256] into the encoder and
[128] into the policy. The decoder’s hidden size is increased from [64, 64, 32] to [128, 256, 160] to
match the capacities of VariBAD and SDVT-LW. The components of VariBAD possess slightly more
parameters than SDVT-LW. LDM employs two VariBAD encoders. While the matched baselines
improve, they still lag behind ours.

E.5 Conditioning policy on belief

Table 12: Masking contexts. We present the success rates (%) on ML-10, achieved by ablating the
contexts fed into the policy, to illustrate the effective utilization of learned contexts by the policy.

SDVT-LW SDVT-LW SDVT-LW
SDVELW  asked (we,) masked (ug,,04,) masked (wg,, e, ,04.)
ML-10 Train 62.1 58.6 36.9 34.8
ML-10 Test 334 33.6 25.8 24.5
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We employ VariBAD’s stop gradient architecture to avoid the instability that may arise from the
concurrent training of policy and ELBO objectives. This may lead to a potential vulnerability where
the policy neglects contexts. However, in Meta-World, identical observations could belong to different
tasks, such as “Reach” and “Pick-place.” Therefore, the agent must rely on the inferred context. To
confirm this, we evaluate SDVT by masking either (wy,) or (14,04, ) in the policy input.

Our findings reveal that masking the contexts severely damages the training and test success rates.
Especially, masking the Gaussian parameters of z is more critical than masking the categorical
parameter of y. However, this does not suggest that y is redundant, given that the continuous context
z is trained to include y’s information. Interestingly, the test success rate, with all contexts masked
(i.e., solely relying on the current state s;), achieves a success rate of 24.5%, surpassing all baseline
scores. Although the policy does not directly employ the context learned by the GMVAE, it can still
be effectively trained in the imaginary task generated by the learned GMVAE to prepare for tests with
unseen compositions of subtasks.

E.6 Smaller number of rollouts

Table 13: Success rate on ML-10 for smaller rollouts. We report the success rates at three different
rollouts, n., = 1, 2, 10. Note that the results reported in our manuscript are for n.,; = 10.

Training Success Rate (%) Test Success Rate (%)
Methods Mot =1 ot =2 mon =10 nen =1 ngon =2 1401 = 10
SDVT-LW 61.4 62.3 62.1 32.8 32.7 334
SD-LW 74.9 75.1 75.5 25.8 25.2 26.2
VariBAD 57.0 58.4 58.2 14.5 15.3 14.1
LDM 55.5 56.0 56.7 18.4 18.5 19.8

We use nyo = 10, following the original setup of the Meta-World benchmark [69,[71]]. Notably, this
benchmark utilizes dense rewards, therefore the context converges rather quickly, even within the
first rollout (Figure 2b). As a result, the performance across rollouts does not exhibit substantial
improvement. To provide further insight, we report the success rates for smaller n,,); in Table

28



	Introduction
	Background
	Meta-Reinforcement Learning
	Bayes-adaptive Meta-Reinforcement Learning
	Non-parametric Task Variability

	Method
	Subtask Decomposition (SD) with a Gaussian Mixture Variational Autoencoder
	Virtual Training (VT) on Generated Tasks with Imaginary Subtask Compositions
	Summary of the Combined Methods: SDVT-LW and SDVT

	Related Work
	Experiments
	Experimental Setup
	Results
	Analysis

	Conclusion
	Pseudocode
	ELBO Derivation
	Implementation Details
	Reference Implementations
	Computational Complexity
	Hyperparameters
	Network Architecture
	Aggregation method for the Success Rate

	Detailed Experimental Results
	Performance on Individual Tasks
	Learning Curves
	Subtask Compositions Learned over Training
	Subtask Compositions of all Seeds

	Ablation Results
	Occupancy Regularization
	Dropout and Dispersion
	Decomposition Distribution
	Number of parameters
	Conditioning policy on belief
	Smaller number of rollouts


