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ABSTRACT

Supervised fine-tuning (SFT) and alignment of large language models (LLMs) are
key steps in providing a good user experience. However, the concept of an appro-
priate alignment is inherently application-dependent, and current methods often
rely on heuristic choices to drive the optimization. In this work, we formulate
SFT and alignment as a constrained optimization problem: the LLM is fine-tuned
on a task while being required to meet application-specific requirements, without
resorting to heuristics. To solve this, we propose Lagrange Large Language Mod-
els (L3Ms), which employ logarithmic barriers to enforce the constraints. This
approach allows for the customization of L3Ms across diverse applications while
avoiding heuristic-driven processes. We demonstrate experimentally the versatil-
ity and efficacy of L3Ms in achieving tailored alignments for various applications.

1 INTRODUCTION

Large language models (LLMs) are used for a wide range of tasks: as chatbots (Brown et al., 2020;
OpenAI, 2024), for code generation (Ahmad et al., 2021; Wang et al., 2021; Rozière et al., 2024),
for medical assistance (Yang et al., 2022; Moor et al., 2023), and more. The key ingredients for
their impressive downstream performance are supervised fine-tuning (SFT) and alignment; the for-
mer fine-tunes the LLM to a task of interest, while the latter instills it with preferential properties.
Arguably, the right combination of preferential properties is highly application/task-dependent. For
instance, a scholar might want a chatbot to be honest and factual to assist with their work, whereas a
fiction writer might prefer the opposite behavior to help create fantastical imaginary worlds. There is
also plenty of (anecdotal) evidence in support: some LLMs refuse to provide information on how to
“kill” a process in Unix, recommending the use of less violent strategies for dealing with wayward
computer programs instead.1 Therefore, we need frameworks for the customization of LLMs.

Consequently, Li et al. (2021); Bai et al. (2022); Rame et al. (2023); Wu et al. (2023); Ji et al. (2023)
fine-tune LLMs on varying combinations of such preferential properties. In practice, one tends to
resort to trial and error to find the right preference combination for their particular task. In doing
so, one verifies if certain minimum baselines are satisfied, such as ensuring the factual correctness
of statements or confirming that the response lengths are capped at 100 words. Since there isn’t
a way to enforce such requirements directly, current methods resort to heuristics. Additionally,
existing pipelines carry out SFT and alignment in sequential steps. Hence they need to ensure that
the LLM does not forget relevant task information learned during the SFT stage. This is achieved
by penalizing the LLM for drastic deviations: the strength of the penalty is determined heuristically.

In this work, we formulate SFT and alignment in LLMs as a constrained optimization problem.
In particular, we fine-tune an LLM to minimize the task objective (the objective function) while
simultaneously satisfying application-specific minimum requirements (the constraints). This merges
the SFT and alignment stages and mitigates the reliance on heuristics altogether. Furthermore, we
propose Lagrange Large Language Models, a.k.a. L3Ms, to solve such constrained optimization
problems. Specifically, they do so by employing logarithmic barriers and enforcing the constraints
gradually over the optimization procedure. Lastly, we empirically demonstrate how one can pick
and choose constraints and tailor L3Ms to a range of applications without resorting to heuristics.
For example, Table 1 provides the generated responses from two such L3Ms; both fine-tuned on the
task of instruction-following, but one is constrained to be concise while the other is to be verbose.

1https://www.reddit.com/r/LocalLLaMA/comments/180p17f/new_claude_21_
refuses_to_kill_a_python_process/
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Prompt What are the four main types of macromolecules found in living organisms?

Response
(short response L3M)

1. Nucleic acids (DNA and RNA)
2. Proteins
3. Carbohydrates
4. Lipids

Response
(long response L3M)

1. Nucleic acids, including DNA and RNA, which carry genetic information
2. Proteins, which are responsible for the structure, function, and regulation

of living organisms
3. Lipids, which provide energy and form the membranes that surround cells
4. Carbohydrates, which are used as an energy source and as structural

components of cells.

Prompt Who discovered the law of universal gravitation?

Response
(short response L3M)

Sir Isaac Newton is credited with discovering the law of universal
gravitation in the late 17th century.

Response
(long response L3M)

Sir Isaac Newton is widely credited with the discovery of the law of
universal gravitation, which states that every particle in the universe attracts
every other particle with a force proportional to their masses and inversely
proportional to the square of the distance between them.

Table 1: Example responses from length constrained L3Ms. We provide example responses from
L3Ms with varying length constraints. We include the prompt along with the generated responses
from two L3Ms: one constrained to have short responses, and the other constrained to long ones.

In summary, our contributions are as follows:

1. We formulate SFT and alignment in LLMs as a constrained optimization problem: an LLM
is fine-tuned on a task while simultaneously satisfying custom requirements (cf. Section 4).

2. We propose L3Ms, a family of LLMs fine-tuned using the above framework (cf. Section 5).

3. We demonstrate experimentally how L3Ms can be customized to different applications and
their specific requirements while avoiding heuristic-driven processes (cf. Section 6).

2 OPTIMIZATION FOR LLMS

Training an LLM proceeds in multiple stages (Ouyang et al., 2022), which we discuss below.

2.1 PRE-TRAINING

The pre-training stage instills the LLM with a generic knowledge of language. It entails regenerating
text/token sequences by minimizing their perplexity, i.e., the negative log-likelihood of the sequence
normalized by its length. More formally, the perplexity on a sequence x is defined as:

lθ (x) = − log πθ (x)

|x|
= − 1

|x|

|x|∑
i=1

log πθ (xi|x<i) ,

where xi and x<i denote the i-th token in the sequence and its prefix, respectively. Additionally, the
function πθ(·) denotes the LLM’s predicted probability distribution over token sequences, where the
LLM is parameterized with weights θ. Then, the pre-training objective is given as follows:

min
θ
Ex∼q(·) [lθ (x)] ,

and the expectation is replaced by an empirical average over a large corpus with trillions of tokens.

2
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2.2 SUPERVISED FINE-TUNING (SFT)

Next, one fine-tunes the LLM to a task of interest, such as instruction-following, summarization, or
translation. The data are (prompt, response) pairs (x, y), and the LLM is fine-tuned to regenerate the
responses. Thus, one minimizes the perplexity (or a related loss) on the response given the prompt:

min
θ
E(x,y)∼p(·) [lθ (y|x)] , (1)

for the distribution p(·) over (prompt, response) pairs which reflects the task-related data.

2.3 ALIGNMENT

This stage aligns the LLM to generate responses with preferential properties. A common setup is to
learn preference reward functions that represent properties like helpfulness and harmlessness (Bai
et al., 2022), followed by reinforcement learning to adapt the LLM to maximize said rewards. This
is referred to as reinforcement learning from human feedback (RLHF; Knox & Stone, 2008; Griffith
et al., 2013; Christiano et al., 2017). Note that the preference reward functions need not always be
learned; they could also be engineered or rule-based, such as the length of the response.

Given a single preference reward function r(·), the alignment objective is given as follows:
max

θ
E(x,·)∼p(·)

y∼πθ(·|x)
[r (y|x)] . (2)

This maximizes the rewards for the LLM’s responses to prompts sampled from the task distribution.
To prevent over-optimization of the reward and avoid drastic deviation away from the SFT model, it
is common practice to add a regularization penalty such as the KL divergence (Gao et al., 2023).

We are interested in k ≥ 1 different preferential properties. In such a scenario, one could learn
individual preference reward functions ri’s and optimize the LLM to maximize their combination.
In particular, Li et al. (2021); Rame et al. (2023); Wu et al. (2023); Ji et al. (2023) use a linear
combination of the rewards, substituting the single reward in Eq. (2) with

∑k
i=1 αiri(y|x), for some

choice of αi ≥ 0. Alternatively, one could learn a single reward function by choosing the data
proportions of the different properties used to train it. For instance, Bai et al. (2022) use a 3:1
proportion of helpfulness to harmlessness data to train a single preference reward function. Note
that the proportions can also be represented via weights αi ≥ 0 with

∑k
i=1 αi = 1. Therefore, the

choice of αi’s, combined with the strength of the regularization penalty, together steer the alignment.
They are chosen based on the good judgment of the practitioner in a somewhat heuristic manner.

2.4 SHORTCOMINGS

While the above pipeline is commonly used to train LLMs for deployment, it has shortcomings.

Firstly, how does one choose the weights αi’s? Or equivalently, what is the right combination of
preference properties? Choosing between properties such as truthfulness, verbosity, and humor
depends on the application at hand. However, even when the application is known, the weights are
chosen through trial and error: trying different combinations and inspecting the achieved rewards.
For instance, if one wants the responses to be under 100 words for a summarization task, one might
repeatedly examine the length of the responses and adjust the weights αi’s to achieve that. This
inherently involves verification against a set of minimum baselines being satisfied. Can we avoid
heuristics and enforce such minimum requirements for the preference rewards in a principled way?

Secondly, recall that the original task objective is in Eq. (1). However, optimizing a special purpose
objective like Eq. (2) can lead to a decrease in performance on the original task. While penalizing the
deviation away from the SFT model helps mitigate this to some extent, the strength of the penalty is
again determined heuristically. Can we ensure the performance on the original task is maintained?

3 RELATED WORK

3.1 ONE SIZE DOES NOT FIT ALL

Early work on LLM alignment assumed homogeneity of preferences (Bakker et al., 2022). How-
ever, the reality is quite different: human preferences vary widely and are highly application-specific

3
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(Rame et al., 2023; Casper et al., 2023). Consequently, Rame et al. (2023); Wu et al. (2023); Ji
et al. (2023); Zhou et al. (2024) linearly combine several fine-grained preference rewards, where
each combination reflects a different customized preference. However, the right combination of
preferential properties for a particular application is determined heuristically through trial and er-
ror. Conversely, we formulate alignment as a constrained optimization problem, where the custom
requirements are naturally imposed as constraints. This alleviates the need for heuristic choices.

3.2 CONSTRAINED ALIGNMENT FOR LLMS

Independent of our work, Moskovitz et al. (2024); Dai et al. (2024) also introduced constrained
optimization for LLM alignment but for varying reasons. Motivated to avoid over-optimization of
preference rewards, Moskovitz et al. (2024) find “proxy points”, values of the reward functions
beyond which the performance of the LLM is negatively impacted. They constrain the average re-
wards to be in the vicinity of these proxy points. Dai et al. (2024) trade-off between helpfulness and
harmlessness from a safety standpoint. They maximize the LLM’s helpfulness while constraining
its average harmlessness reward. Our motivation on the other hand is to tailor to custom preferences
through sets of different constraints, while simultaneously learning to perform the task at hand.

Our work is different in two important ways. Firstly, both Moskovitz et al. (2024); Dai et al. (2024)
consider the alignment process in isolation, because of which their objective is either to maximize
one of the preference rewards or to minimize the deviation away from the SFT model. On the other
hand, we merge the SFT and alignment stages and choose to minimize the task objective as our
objective. This directly ensures that the LLM’s task-solving capabilities are preserved, and it avoids
loading an additional reference (SFT) model during the fine-tuning process to compute deviations.

Secondly, both Moskovitz et al. (2024); Dai et al. (2024) obtain solutions to the constrained problem
by computing the saddle-point of the Lagrangian. This is done by formulating a min-max game
where the LLM minimizes the Lagrangian and the Lagrange multipliers adapt to maximize it. How-
ever, the non-convexity of the objective makes this nontrivial. Instead, we choose the logarithmic
barrier approach as the associated Lagrange multipliers satisfy the KKT complementary slackness
condition by design (cf. Section 5.2) rather than letting the learning procedure do so (which in
our experience is extremely sensitive to the choice of the learning rate). We empirically observe
that while both methods satisfy the constraints, our approach using log-barriers minimizes the task
objective better (cf. Section 6.3). As a side effect, we avoid introducing new learning parameters.

Additionally, we provide experimental validation of our approach on more preferences than
Moskovitz et al. (2024); Dai et al. (2024), and use a 4.5× larger LLM than Moskovitz et al. (2024).

4 CONSTRAINED OPTIMIZATION FOR LLMS

Our goal is to reduce the task objective in Eq. (1) for the LLM to solve the intended task, while also
enabling custom alignment by having the LLM meet the application-specific minimum requirements
on different preference rewards. To do so, we propose the constrained optimization problem:

min
θ
E(x,y)∼p(·) [lθ (y|x)] (3)

subject to E(x,·)∼p(·)
y∼πθ(·|x)

[ri (y|x)] ≥ bi for all i ∈ {1, 2, . . . , k} . (4)

Here, the objective is the same as the task objective in SFT, and the constraints are enforced to satisfy
the custom requirements; this merges the SFT and alignment stages. The bi’s signify the minimum
baselines for each preference reward function ri(·) and the constraints are enforced on average.

Compared to the previous approach, we no longer rely on heuristics to find a set of weights αi’s to
satisfy the minimum requirements; we can do so directly through the constraints. Furthermore, with
the same objective as SFT, we can directly maintain task performance without any deviation penalty.
Additionally, note that whenever a constraint is satisfied, its influence vanishes. For instance, if the
LLM is naturally harmless and rharmless(y|x) ≥ bharmless, then the constraint is not active and the
LLM will not be penalized. Conversely, the previous approach would further penalize the LLM.

4
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Notation For ease of notation, we rewrite the constrained problem in Eqs. (3) and (4) as follows:

min
θ

L (θ) subject to Ci (θ) ≤ 0 for all i ∈ {1, 2, . . . , k} , (5)

with the objective L(θ) = E(x,y)∼p(·)[lθ(y|x)] and constraints Ci(θ) = E(x,·)∼p(·)
y∼πθ(·|x)

[bi − ri(y|x)].

4.1 TYPES OF CONSTRAINTS

While we write the constraints in Eq. (4) as expectation/average constraints, other forms exist. For
instance, uniform constraints impose a minimum reward on every generated (prompt, response) pair:

ri (y|x) ≥ bi for all (x, ·) ∼ p (·) , y ∼ πθ (·|x) and all i ∈ {1, 2, . . . , k} . (6)

Additionally, chance constraints bound the probability of the inequality holding away from zero:

P(x,·)∼p(·)
y∼πθ(·|x)

[ri (y|x) ≥ bi] ≥ 1− ϵi for all i ∈ {1, 2, . . . , k} . (7)

While these constraints are not equivalent, they are related. We can rewrite Eq. (7) in the form of
expectation constraints by using 1 − ϵi as the threshold and taking the expectation of the indicator
1{ri(y|x) ≥ bi}. Moreover, Eq. (6) implies Eq. (4), but the converse is not true. Unfortunately,
Eq. (6) is difficult to achieve in practice, especially when the data distribution is unknown.

We continue using the expectation constraints, but similar discussions can extend to the other types.

4.2 LAGRANGE MULTIPLIERS

We can introduce Lagrange multipliers λi ≥ 0 for the constraints and obtain the Lagrangian:

L (θ) = L (θ) +

k∑
i=1

λiCi (θ) . (8)

There is a rich literature connecting the Lagrangian with constrained optimization. Notably, the
KKT conditions (Karush, 1939; Kuhn & Tucker, 1951) provide sufficiency conditions for global
optimality under convexity, where the solution can be obtained by finding the saddle point of the
Lagrangian. However, these conditions are not enough for highly non-convex scenarios like ours.

Nonetheless, the Lagrangian is instructive in understanding the relative importance of the con-
straints. For an active constraint, i.e., one satisfied with equality, the corresponding Lagrange mul-
tiplier can be non-zero; the larger its value, the more important the constraint. Conversely, for an
inactive constraint, i.e., one satisfied with strict inequality, the corresponding Lagrange multiplier
must vanish to 0. This is known as complementary slackness and is one of the KKT conditions.

4.3 LOGARITHMIC BARRIER

A practical way to enforce constraints is with barrier functions. Consider the (relaxed) log-barrier:

Bµ,s (z) =

{
−µ log (−z) , z ≤ −s
µ
s z + µ− µ log s, z > −s , and hence ∂zBµ,s (z) =

µ

max (−z, s)
, (9)

with parameters µ, s > 0. This is a convex, continuous, and differentiable function, which is valid
for all z ∈ R. Importantly, for s = µ2, this barrier function converges to the characteristic function
χ{z ≤ 0} as µ → 0, i.e., it takes the value 0 when z ≤ 0 and∞ otherwise (Tal et al., 1992; Nash
et al., 1994; Hauser & Saccon, 2006; Feller & Ebenbauer, 2017); the condition s = µ2 is sufficient,
but not necessary (Kervadec et al., 2022). This convergence to the characteristic function is visually
depicted in Fig. 1, showing the change in the log-barrier function as we gradually decrease µ.

We can now use the log-barrier to enforce the constraints in Eq. (5) and simply add them to the
objective. We obtain an unconstrained objective, with µ controlling the strength of the constraints:

Gµ (θ) = L (θ) +
1

k

k∑
i=1

Bµ,µ2 (Ci (θ)) . (10)

5
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Figure 1: The relaxed logarithmic barrier. We depict the convergence of the relaxed logarithmic
barrier Bµ,µ2(z) to the characteristic function χ{z ≤ 0} as µ→ 0. We gradually decrease µ from 1
(blue) to 0.01 (red). Consequently, Bµ,µ2(z) gets closer to 0 for z ≤ 0 and increases to∞ otherwise.

5 LAGRANGE LARGE LANGUAGE MODELS (L3MS)

We have thus far formulated the SFT and alignment stages as a constrained optimization problem in
Eq. (5). We proceed to find solutions for the same by solving the unconstrained objective in Eq. (10).
We call the family of models obtained in this way L3Ms, i.e., Lagrange Large Language Models.

5.1 OPTIMIZATION PROCEDURE

Since the log-barrier converges to the characteristic function as µ→ 0, we want to find the minimizer
of Gµ(θ) for a very small µ. However, doing so directly leads to instabilities as the objective function
is ill-conditioned. Instead, it is common practice to follow an iterative procedure where one finds
the minimizer for a fixed µ, reduces µ, and repeats (Curtis et al., 2024). Specifically, the procedure
is instantiated with initial values θ0, µ1, and 0 < γ < 1. On the t-th iteration, µt ← γµt−1

is reduced and θt ← argθ minGµt(θ) (with initialization at θt−1). In doing so, the constraints are
enforced gradually, nudging the LLM to satisfy them over the optimization procedure while avoiding
instabilities. As {µt} ↘ 0, the weights θt converge to the minimizer of the constrained problem.

It is impossible to minimize Gµt
(θ) exactly in many practical applications. Instead, at each iteration,

we take a single optimization step toward the solution. Doing so is amenable to stochastic gradient
methods and mitigates computational overhead — the optimization proceeds as normal while the
value of µ is reduced over the course of the procedure. One can guarantee convergence of such
a procedure to the optimal solution in some settings; for instance, Curtis et al. (2024) prove con-
vergence when dealing with box constraints. However, convergence in a scenario like ours is not
guaranteed. Nonetheless, we will experimentally demonstrate its use for our constrained problems.

We employ stochastic gradient methods and derive the gradient of our objective function directly:

∂θGµ (θ) = ∂θL (θ) +
µ

k

k∑
i=1

∂θCi (θ)

max (−Ci (θ) , µ2)
. (11)

This follows immediately from Eqs. (9) and (10). Note that the ∂θCi(θ)’s are also known as the
policy gradients in reinforcement learning literature. We discuss our strategy for estimating these
gradients in Appendix B and refer readers to Schulman et al. (2016) for a more detailed review.

5.2 CONNECTION TO LAGRANGE MULTIPLIERS

The log-barrier and the Lagrangian are intrinsically connected; this becomes evident when compar-
ing Eq. (11) with the (gradient of the) Lagrangian in Eq. (8). In particular, we define the multipliers:

λ̂i =
µ

kmax (−Ci (θ) , µ2)
,

6
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corresponding to the gradients ∂θCi(θ)’s in Eq. (11). They can be interpreted as Lagrange multi-
pliers: for active constraints, λ̂i = 1/kµ is non-zero; for inactive constraints, λ̂i = −µ/kCi(θ)
vanishes to 0 as µ→ 0. Hence, the KKT complementary slackness condition is satisfied by design.

5.3 IMPLEMENTATION DETAILS

Alternating objective and gradient clipping A simple, yet effective way to ensure stable training
of large models is gradient clipping (Goodfellow et al., 2016; Zhang et al., 2020). We employ this
technique, albeit with the modification of clipping the gradients of both the task objective and the
constraints separately, as they can have varying magnitudes. We achieve this by alternating between
reducing the task objective and enforcing the constraints by flipping a fair coin to select one or the
other. While this doubles the number of steps to achieve the same effect, it does not increase the
amount of work done as now only one part of the objective or the other is evaluated at each step.

Length normalization The gradient of our objective function in Eq. (11) involves the log-
likelihoods of the generated responses through the gradients ∂θCi(θ)’s (cf. Eq. (12)). To avoid
a response length bias, we length-normalize the log-likelihoods, akin to the definition of perplexity.

Estimating the mean preference rewards We need to estimate the expectations involved in the
gradient of our objective function in Eq. (11). The expectations in the numerators can be estimated
with the per-mini-batch Monte Carlo averages (Mohamed et al., 2020). However, Ci(θ) in the de-
nominator needs careful consideration. Note that: (i) Ci(θ) does not involve the gradient, so its
estimates can include information from previous mini-batches to reduce variance, and (ii) since the
weights are updated during fine-tuning, Ci(θ) is non-stationary. Consequently, we use an exponen-
tial moving average estimate for the mean (offset) preference rewards Ci(θ) in the denominator.

6 EXPERIMENTAL RESULTS

To illustrate the versatility of L3Ms, we empirically evaluate them on two criteria: (i) the satisfaction
of the imposed custom constraints, and (ii) the minimization of the task objective. Note that L3Ms
have essentially the same time complexity as traditional approaches: the SFT and alignment stages
have been combined and the log-barrier parameter is adjusted during the fine-tuning procedure itself.

6.1 SETUP

We use LLaMA-7B (Touvron et al., 2023) for all our experiments, as it is a lightweight LLM pre-
trained on a large corpus. We are interested in the instruction-following task, for which we use
UltraChat (Ding et al., 2023), a large-scale dataset of instructional conversations. We refer to the
model fine-tuned via the SFT objective (without alignment) as the SFT model. We fine-tune LLMs
using the min-max approach to find the saddle-point of the Lagrangian, as proposed by Moskovitz
et al. (2024); Dai et al. (2024), referring to them as MMs. Lastly, we refer to models fine-tuned using
our approach as L3Ms. We use the Transformers package (Wolf et al., 2020) for our implementation
and run experiments on NVIDIA H100s. Further details on our setup are included in Appendix A.

In what follows, we use different preference reward functions and vary the custom constraint require-
ments. All results are obtained on a held-out test dataset (not seen during training or validation).

6.2 LENGTH CONSTRAINED L3MS

Consider tasks where the lengths of the responses need to be contained in the range [llow, lhigh] to
control its verbosity, in summarization tasks for example (Makino et al., 2019). The natural choice
of reward functions in this case are the ones that compute the response length and its negation via
r1(y|x) = |y| and r2(y|x) = −|y|; correspondingly, these rewards are to be controlled with the
requirements of llow and lhigh respectively. Note that these rewards are perfectly anti-correlated.

If we naively average the rewards, any unconstrained formulation of alignment (including RLHF)
will be ineffective as the loss will always vanish due to the anti-correlation. We could use a weighted

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

LLM type Length Perplexity

SFT 121.6 0.805±0.3

L3M [ 50 , 100 ] 81.3 0.804±0.3
L3M [100 , 150 ] 120.7 0.804±0.3

L3M [ 50 , 75 ] 64.4 0.807±0.3
L3M [ 75 , 100 ] 88.2 0.808±0.3
L3M [100 , 125 ] 111.7 0.810±0.3
L3M [125 , 150 ] 126.5 0.809±0.3

L3M [ 75 , 87.5] 82.9 0.811±0.3
L3M [ 87.5, 100 ] 92.7 0.809±0.3
L3M [100 , 112.5] 104.8 0.810±0.3
L3M [112.5, 125 ] 117.3 0.810±0.3
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Figure 2: Length constrained L3Ms. We report the response lengths (in tokens) and task perplex-
ities of the SFT model and the L3Ms with varying length constraints. Left: The mean response
length with the mean and standard deviation of the task perplexities. Right: The distribution of the
response lengths. The notches indicate the medians and their 95% confidence intervals, the boxes
show the ±25% quantiles, and the whiskers denote the 1.5× interquartile ranges. The white circles
mark the means and the black dashed lines depict the constraints imposed on the different L3Ms.

average and tune the weights heuristically, but this is tedious. Instead, we use the constrained for-
mulation and directly constrain the rewards r1(y|x) = |y| ≥ llow and r2(y|x) = −|y| ≥ −lhigh.

We fine-tune several L3Ms with varying length constraints. We illustrate the distributions of the gen-
erated response lengths (in tokens) and report the perplexities achieved on the task-related data in
Fig. 2. We observe that the mean response lengths are in the required range in each case, satisfying
the imposed expectation constraints. Additionally, the task perplexities increase slightly as the con-
straints on the response lengths are made more stringent. However, there is little to no degradation
relative to the SFT model, with all mean task perplexities being within 0.02 standard deviations.

The examples included in Table 1 are generated from such L3Ms. While all the responses correctly
answer the prompts, their lengths vary corresponding to the length constraints imposed on them.

6.3 HELPFUL AND HARMLESS L3MS

Next, we consider the Helpful and Harmless preferences that have been extensively used in the
LLM alignment literature (Ji et al., 2023; Wang et al., 2024; Zhou et al., 2024; Guo et al., 2024).
Specifically, we utilize the datasets by Bai et al. (2022) to train two preference reward functions
respectively. These learned reward functions are negatively correlated (Bai et al., 2022; Dai et al.,
2024). Furthermore, note that the numerical outputs of both these reward functions are interpreted as
ratings such that a higher numerical value indicates higher helpfulness/harmlessness and vice versa.

We fine-tune several L3Ms with varying HH constraints. We compare our L3M approach of using
log-barriers with the min-max optimization by Moskovitz et al. (2024); Dai et al. (2024) to find
the saddle-point of the Lagrangian (MMs). In our experience, learning the Lagrange multipliers
in this way is extremely sensitive to the choice of the learning rate. Moreover, to avoid loading an
additional reference LLM during fine-tuning, as is done by Moskovitz et al. (2024); Dai et al. (2024),
our implementation of MM minimizes the task objective directly (as is done by L3Ms as well).

Fig. 3 shows the achieved task perplexities and helpful-harmless rewards for the different LLMs. At
initialization, the helpful-harmless rewards are both low, with a high task perplexity of 1.316±0.4.
This is improved upon by the SFT model, reducing the perplexity to 0.805±0.3 and attaining a high
helpfulness reward (due to the task data instilling instruction-following capabilities). Further, MMs
sacrifice task performance to over-satisfy the constraints, with mean task perplexities≥ 0.822. Con-
versely, L3Ms satisfy the imposed helpful-harmless reward constraints with consistently lower task
perplexities (the mean perplexities are in the range 0.804-0.820). We attribute this to the L3Ms
having better Lagrange multipliers by design rather than learning them as in MMs (cf. Section 5.2).
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2 4 0.825±0.3 0.820±0.3
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Figure 3: Helpful and harmless L3Ms. We report the helpful-harmless rewards and task perplex-
ities achieved by the different LLMs. Left: The helpful-harmless rewards attained by the LLM at
initialization (at the bottom-left in blue), the SFT model (at the top-left in orange), the MMs (in
green), and the L3Ms (in red). We depict the imposed constraints in black, with the dotted gray
lines connecting LLMs to their corresponding constraints. Note that constraints are satisfied if the
obtained reward point is at the top-right of its corresponding constraint point. Right: The mean
and standard deviation of the task perplexities for MMs and L3Ms, along with their corresponding
constraints; the task perplexity at initialization is 1.316±0.4 and that of the SFT model is 0.805±0.3.

7 CONCLUSIONS

In this work, we formulate the SFT and alignment processes for LLMs as one of constrained op-
timization: we minimize the task objective while simultaneously imposing custom constraints on
preferences. This enables customization of the LLM to different preferential properties while main-
taining performance on the original task. Consequently, we propose Lagrange Large Language
Models (L3Ms) to solve this constrained problem by incorporating the constraints in the objective
function using the logarithmic barrier. We include experimental results to illustrate the customization
qualities of L3Ms, which can fit to different preferences, providing a personalized user experience.
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A EXPERIMENTAL SETUP

In addition to Section 6.1, here we provide further details of the experimental setup.

Task data We use UltraChat (Ding et al., 2023), a large-scale dataset of instructional conversa-
tions, as our task data to induce instruction-following capabilities. Since each sample contains a
sequence of multi-turn question-answer pairs, we randomly sample one of the answers as the re-
sponse and treat the preceding dialogue as the prompt. We then filter such (prompt, response) pairs
to a maximum token length of 512. Consequently, we obtain 340k training samples, 1.7k validation
samples, and 1.7 test samples, split randomly as the dataset does not contain train-val-test splits.

Hyper-parameters We fine-tune LLMs for 1 epoch on the task data, with a mini-batch size of
64. We use Adam with a learning rate of 10-6, and a cosine learning rate scheduler (with 5% of the
epoch used for warmup). We set weight decay to 0.1 and the gradient clipping maximum norm to 1.
We utilize 16-bit (mixed) precision training and gradient checkpointing. We exponentially decay the
log-barrier parameter µ during fine-tuning from 1 to 10-6, and use a smoothing factor of 0.1 for the
exponential moving average. Lastly, we use top-p sampling (p set to 0.9) for response generation.
Apart from this, we use the default hyper-parameters in the Transformers library (Wolf et al., 2020).

A.1 LEARNING PREFERENCE REWARD MODELS

While some preference reward functions are engineered or rule-based, others are learned. Such
preferences can often be difficult to quantify. Alternatively, it is easier to compare responses with
respect to the preference, e.g., ranking them from most to least helpful. Consequently, the data for
learning preference reward models consist of tuples of the form (x, y+, y−), where the prompt x is
accompanied by two responses y+ and y−, with the former response being preferred over the latter.

The preference reward model is denoted by rϕ(·) (parameterized by ϕ). Assuming the Bradley-Terry
model (Bradley & Terry, 1952), the model’s predicted probability for preferring y+ over y− is:

prϕ (y+ ≻ y−|x) = σ (rϕ (y+|x)− rϕ (y−|x)) ,

with the standard logistic function σ(·). Then, the model minimizes the negative log-likelihood:

min
ϕ
E(x,y+,y−)∼t(·)

[
− log prϕ (y+ ≻ y−|x)

]
.

Taking inspiration from Rafailov et al. (2023), we initialize the preference reward model rϕ(·) as
a pre-trained LLM, and set the reward to be its length-normalized log-likelihood. In this way, we
utilize the pre-trained model fully, not just its backbone. As the preference reward model is fine-
tuned, its log-likelihoods are updated to differentiate the preferred responses from the rejected ones.

Helpful and harmless data We use the Helpful and Harmless (Bai et al., 2022) preference data
to learn two reward models respectively. We obtain 161k training samples and 9k test samples after
filtering the (prompt, response) pairs to a maximum token length of 2024; 3/4-th are for helpfulness
while the remaining 1/4-th are for harmlessness. We further set 5% of the training data for validation.

Hyper-parameters We initialize all preference reward functions with LLaMA-7B. We fine-tune
for 2 epochs with a mini-batch size of 64. We use Adam with a learning rate of 10-6, and a cosine
learning rate scheduler (with 10% of the epoch used for warmup). We set weight decay to 0.1 and
the gradient clipping maximum norm to 1. We utilize 16-bit (mixed) precision training and gradient
checkpointing. Apart from this, we use the default hyper-parameters in the Transformers library
(Wolf et al., 2020). We validate after every 10% of the epoch and save the best model.
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B POLICY GRADIENT

We are interested in the policy gradient ∂θCi(θ). Note that when taking derivatives with respect to
the parameters of a distribution in an expectation, we can use the log-derivative trick:

∂θEx∼pθ(·) [f (x)] =

∫
dxf (x) ∂θpθ (x) =

∫
dxf (x)

pθ (x)

pθ (x)
∂θpθ (x)

=

∫
dxf (x) pθ (x) ∂θ log pθ (x) = Ex∼pθ(·) [f (x) ∂θ log pθ (x)] .

Applying this to the policy gradient ∂θCi(θ) yields,

∂θCi (θ) = ∂θE(x,·)∼p(·)
y∼πθ(·|x)

[ci (y|x)] = E(x,·)∼p(·)
y∼πθ(·|x)

[ci (y|x) ∂θ log πθ (y|x)] , (12)

where ci(y|x) = bi−ri(y|x). This is the simplest form of the policy gradient and can be estimated as
Monte Carlo averages. We refer readers to Schulman et al. (2016) for a review of other estimates.
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