
Published in Transactions on Machine Learning Research (11/2024)

Feature learning as alignment: a structural property of gra-
dient descent in non-linear neural networks

Daniel Beaglehole∗,† dbeaglehole@ucsd.edu
UC San Diego

Ioannis Mitliagkas ioannism@google.com
Mila, Université de Montréal
Google DeepMind

Atish Agarwala thetish@google.com
Google DeepMind

Reviewed on OpenReview: https: // openreview. net/ forum? id= JXCe2ZcUXr

Abstract

Understanding the mechanisms through which neural networks extract statistics from input-
label pairs through feature learning is one of the most important unsolved problems in
supervised learning. Prior works demonstrated that the gram matrices of the weights (the
neural feature matrices, NFM) and the average gradient outer products (AGOP) become
correlated during training, in a statement known as the neural feature ansatz (NFA). Through
the NFA, the authors introduce mapping with the AGOP as a general mechanism for neural
feature learning. However, these works do not provide a theoretical explanation for this
correlation or its origins. In this work, we further clarify the nature of this correlation, and
explain its emergence. We show that this correlation is equivalent to alignment between the
left singular structure of the weight matrices and the newly defined pre-activation tangent
features at each layer. We further establish that the alignment is driven by the interaction of
weight changes induced by SGD with the pre-activation features, and analyze the resulting
dynamics analytically at early times in terms of simple statistics of the inputs and labels.
We prove the derivative alignment occurs almost surely in specific high dimensional settings.
Finally, we introduce a simple optimization rule motivated by our analysis of the centered
correlation which dramatically increases the NFA correlations at any given layer and improves
the quality of features learned.

1 Introduction

Neural networks have emerged as the state-of-the-art machine learning methods for seemingly complex tasks,
such as language generation (Brown et al., 2020), image classification (Krizhevsky et al., 2012), and visual
rendering (Mildenhall et al., 2021). The precise reasons why neural networks generalize well have been the
subject of intensive exploration, beginning with the observation that standard generalization bounds from
statistical learning theory fall short of explaining their performance (Zhang et al., 2021).

A promising line of work emerged in the form of the neural tangent kernel, connecting neural networks to kernels
in the wide limit (Jacot et al., 2018; Chizat et al., 2019). However, subsequent research showed that the success
of neural networks relies critically on aspects of learning which are absent in kernel approximations (Ghorbani
et al., 2019; Allen-Zhu and Li, 2019; Yehudai and Shamir, 2019; Li et al., 2020; Refinetti et al., 2021). Other

*Corresponding author.
†Work partially done as an intern at Google DeepMind.

1

https://openreview.net/forum?id=JXCe2ZcUXr

Published in Transactions on Machine Learning Research (11/2024)

work showed that low width suffices for gradient descent to achieve arbitrarily small test error (Ji and Zhu,
2020), further refuting the idea that extremely wide networks are necessary.

Subsequently, the success of neural networks has been largely attributed to feature learning - the ability of
neural networks to learn representations of data which are useful for downstream tasks. However, the specific
mechanism through which features are learned is an important unsolved problem in deep learning theory. A
number of works have studied the abilities of neural networks to learn features in structured settings (Abbe
et al., 2022; Ba et al., 2022; Nichani et al., 2023; Barak et al., 2022; Damian et al., 2022; Moniri et al., 2023;
Parkinson et al., 2023). Some of that work proves strict separation in terms of sample complexity between
neural networks trained with stochastic gradient descent and kernels (Mousavi-Hosseini et al., 2022).

The work above studies simple structure, such as learning from low-rank data or functions that are hierarchical
compositions of simple elements. Recent work makes a big step towards generalizing these assumptions by
proposing the neural feature ansatz (NFA) (Radhakrishnan et al., 2024a; Beaglehole et al., 2023), a general
structure that emerges in the weights of trained neural networks. The NFA states that the gram matrix
of the weights at a given layer (known as the neural feature matrix or NFM) is aligned with the average
gradient outer product (AGOP) of the network with respect to the input to that layer. In particular, the NFM
and AGOP are highly correlated in all layers of trained neural networks of general architectures, including
practical models such as VGG (Simonyan and Zisserman, 2014), vision transformers (Dosovitskiy et al., 2021),
and GPT-family models (Brown et al., 2020).

A major missing element is an explanation for how and why the AGOP and NFM become correlated through
training with gradient descent. In this paper, we precisely describe the emergence of this correlation. We
establish that the NFA is equivalent to alignment between the left singular structure of the weight matrices
and the uncentered covariance of the pre-activation tangent kernel (PTK) (Section 2) features. We then
introduce the centered neural feature correlation (C-NFC) which isolates this alignment process. We show
empirically that the C-NFC is close to its maximum value of 1 at early times, and fully captures the NFA at
late times for a variety of architectures (fully-connected, convolutional, and attention layers) over a diverse
collection of datasets (Section 3). Our experiments suggest that the C-NFC drives the development of the
NFA. Through this centering, we show that the dynamics of the C-NFC can be understood analytically in
terms of the statistics of the data and labels at early times (Section 4). Using this decomposition, we show
that the NFA emerges as a structural property of gradient descent (analytical result in the commonly studied
setting of uniform data on the sphere, under certain assumptions on the activation and target functions). In
particular, the first non-zero derivatives of the centered NFM and AGOP will be asymptotically identical.
We further characterize how the NFA depends on the data distribution, and explore this analytically and
experimentally.

Finally, motivated by our theory, we design an intervention to increase the influence of the C-NFC and make
the NFA more robust: Speed Limited Optimization, a layerwise gradient normalization scheme (Section 5).
The effectiveness of the latter update rule suggests a path towards rational design of architectures and training
procedures that maximize the NFA notion of feature learning by promoting alignment dynamics.

2 Alignment between the weight matrices and the pre-activation tangents

In this section, we decompose the AGOP into the weight matrices and the feature covariance of the pre-
activation tangent kernel (PTK), and demonstrate that the NFA is equivalent to alignment between the
weights and these PTK features. We include a glossary of terms for ease of reference in Appendix A.

2.1 Preliminaries

We consider fully-connected neural networks with a single output of depth L ≥ 1, where L is the number
of hidden layers, written f : Rd → R. We write the input to layer ` ∈ {0, . . . , L} as x`, where x0 ≡ x is the
original datapoint, and the pre-activation as h`(x). Then,

h`(x) = W (`)x`, x`+1 = φ(h`(x)) , (1)

2

Published in Transactions on Machine Learning Research (11/2024)

where φ is an element-wise nonlinearity, W (`) ∈ Rk`+1×k` is a weight matrix, and k` is the hidden dimension
at layer `. We restrict kL+1 to be the number of output logits, and set k0 = d, where d is the input dimension
of the data. Note that f(x) = hL(x) and we ignore xL+1. We train f by gradient descent on a loss function
L(θ,X), where X is an input dataset, and θ is the collection of weights.

We consider a supervised learning setup where we are provided n input-label pairs (x(1), y(1)), . . . , (x(n), y(n)) ∈
Rd×R. We denote the network inputs (datapoints) X ∈ Rn×d and the labels y ∈ Rn×1. For a given network,
the inputs to intermediate layers ` ∈ {0, . . . , L} are written X` ∈ Rn×k` , where X0 ≡ X. We train a
fully-connected neural network to learn the mapping from network inputs to labels by minimizing a standard
loss function, such as mean-squared-error or cross-entropy, on the dataset.

EGOP W>W (NFM) W>KW (AGOP) W>QW

Figure 1: Various feature learning measures for target function y(x) =
∑r
k=1 xk mod r · x(k+1) mod r with

r = 5 and inputs drawn from standard normal. The EGOP Ex∼µ
[
∂y
∂x

∂y
∂x

>] (first plot) captures the low-rank
structure of the task. The NFM

(
W>W

)
(second plot) and AGOP

(
W>KW

)
(third plot) of a fully-connected

network are similar to each other and the EGOP. Replacing K with a symmetric matrix Q with the same
spectrum but independent eigenvectors obscures the low rank structure (fourth plot), and reduces the
correlation from ρ

(
F, Ḡ

)
= 0.93 to ρ

(
F,W>QW

)
= 0.53.

One can define two objects associated with neural networks that capture learned structure. For a given layer
`, the neural feature matrix (NFM) F` is the gram matrix of the columns of the weight matrix W (`), i.e.
F` ≡ (W (`))>W (`). F` depends on the right singular vectors (and corresponding singular values) of W (`).
The second fundamental object we consider is the average gradient outer product (AGOP) Ḡ`, defined as

Ḡ` ≡ 1
n

∑n
α=1

∂f(x(α))
∂x`

∂f(x(α))
∂x`

>
.

Since both these matrices have the same dimensions (k`+1 × k`+1), we can consider their cosine similarity.
We define the neural feature correlation (NFC) by:

ρ
(
F`, Ḡ`

)
≡ tr

(
F>` Ḡ`

)
· tr
(
F>` F`

)−1/2 · tr
(
Ḡ>` Ḡ`

)−1/2
. (NFC)

This takes on values in [0, 1] since F` and Ḡ` are both PSD.

Prior work has shown that in trained neural networks, the NFC will generally be close to 1 to varying degree
of approximation. This notion is formalized in the Neural Feature Ansatz (NFA):
Ansatz 1 (Neural Feature Ansatz (Radhakrishnan et al., 2024a)). The Neural Feature Ansatz states that, for
all layers ` ∈ [L] of a fully-connected neural network with L hidden layers trained on input data x(1), . . . , x(n),
the NFC will satisfy ρ

(
Ḡ`, F`

)
≈ 1 .

The inputs to the covariance are the NFM and AGOP with respect to the input of layer `. Here, ∂f(x)
∂x`

∈ Rk`×1

denotes the gradient of the function f with respect to the intermediate representation x`. For simplicity,
we may concatenate these gradients across the input dataset into a single matrix ∂f(X)

∂x`
∈ Rn×k` . Note we

consider scalar outputs in this work, though the NFA relation is identical when there are c ≥ 1 outputs,
where in this case ∂f(x)

∂x`
∈ Rk`×c is the input-output Jacobian of the model f .

We note that while the ansatz states exact proportionality, in practice, the NFM and AGOP are highly
correlated with correlation less than 1, where the final correlation depends on many aspects of training and
architecture choice (discussed further in Section 3).

3

Published in Transactions on Machine Learning Research (11/2024)

The relation between the NFM and the AGOP is significant, in part, because for a neural network that has
learned enough information about the target function, the AGOP of this model with respect to the first-layer
inputs will approximate the expected gradient outer product (EGOP) of the target function (Yuan et al.,
2023). In particular, the EGOP of the target function contains task-specific structure that is completely
independent of the model used to estimate it. Where the labels are generated from a particular target function
y(x) : Rd → R on data sampled from a distribution µ, the EGOP is defined as

EGOP(y, µ) = Ex∼µ

[
∂y

∂x

∂y

∂x

>
]
.

If the neural feature ansatz (Ansatz 1) holds, the correlation of the EGOP and the AGOP at the end of
training also implies high correlation between the NFM of the first layer and the EGOP, so that the NFM
has encoded this task-specific structure.

To demonstrate the significance of high correlation between the NFM and the AGOP in successfully trained
networks, we consider the following chain-monomial low-rank task:

y(x) =
r∑

k=1
xk mod r · x(k+1) mod r , (2)

where the data inputs are sampled from an isotropic Gaussian distribution µ = N (0, I). In this case, the
entries EGOP(y, µ) will be 0 for rows and columns outside of the r× r sub-matrix corresponding to x1, . . . , xr
(Figure 1), as y does not vary with coordinates xr+1, . . . , xd. Within this sub-matrix, the diagonal entries
will have value 2, while the off-diagonal entries will be either 1 or 0. Therefore, EGOP(y, µ) will be rank r,
where r is much less than the ambient dimension.

We verify for this task that the AGOP of the trained model resembles the EGOP (first and third panels of
Figure 1). Here the NFA holds and the NFM (second panel) resembles the AGOP and therefore the EGOP
as well. Therefore, the neural network has learned the model-independent and task-specific structure of the
chain-monomial task in the right singular values and vectors of the first layer weight matrix, as these are
determined by the NFM. In fact, previous works have demonstrated that the NFM of the first layer of a
well-trained neural network is highly correlated with the AGOP of a fixed kernel method trained on the same
dataset (Radhakrishnan et al., 2024a).

This insight has inspired iterative kernel methods which can match the performance of fully-connected
networks (Radhakrishnan et al., 2024a;b; Aristoff et al., 2024) and improve over fixed convolutional kernels
(Beaglehole et al., 2023). Additional prior works demonstrate the benefit of including the AGOP features to
improve feature-less predictors (Hristache et al., 2001; Trivedi et al., 2014; Kpotufe et al., 2016). Additionally,
because the NFM is correlated with the AGOP, the AGOP can be used to recover the features from feature-less
methods, such as kernel machines. The AGOP has also been show to capture surprising phenomena of neural
networks beyond low-rank feature learning including deep neural collapse (Beaglehole et al., 2024).

2.2 Alignment decomposition

In order to understand Ansatz 1, it is useful to decompose the AGOP. Doing so will allow us to show that
the neural feature correlation (NFC) can be interpreted as an alignment metric between weight matrices and
the pre-activation tangent kernel (PTK). The PTK K(`)(x, z) is defined with respect to a layer ` of a neural
network and two inputs x, z. The kernel evaluates to:

K(`)(x, z) ≡∂f(x)
∂h`

· ∂f(z)
∂h`

. (PTK)

When the arguments x and z are omitted, K(`) ∈ Rn×n consists of the matrix of kernel evaluations on all
pairs of datapoints. We may also consider the covariance K(`) ∈ Rk`×k` of the features associated with the
PTK, ∂f(X)

∂h`
∈ Rn×k` . In particular, we define the feature covariance of the PTK as,

K(`) ≡∂f(X)
∂h`

>
∂f(X)
∂h`

. (PTK feature covariance)

4

Published in Transactions on Machine Learning Research (11/2024)

Crucially, for any layer `, we can re-write the AGOP in terms of this feature covariance as,

Ḡ` = (W (`))>K(`)W (`) .

This gives us the following proposition:
Proposition 2 (Alignment decomposition of NFC).

ρ
(
F`, Ḡ`

)
= ρ

(
(W (`))>W (`), (W (`))>K(`)W (`)

)
.

This alignment holds trivially and exactly if K(`) is the identity. However, the correlation can be high in
trained networks where K(`) is non-trivial. For example, in the chain monomial task (Figure 1), K(0) is
far from identity (standard deviation of its eigenvalues is 5.9 times its average eigenvalue), but the NFA
correlation is 0.93 at the end of training. We also note that if K(`) is independent of W (`), the alignment is
lower than in trained networks; in the same example, replacing K(0) with a matrix Q with equal spectrum
but random eigenvectors greatly reduces the correlation to 0.53 and qualitatively disrupts the structure
relative to the NFM (Figure 1, rightmost column). We show the same result for the CelebA dataset (see
Appendix M). Therefore, the NFA is a consequence of alignment between the left eigenvectors of W (`) and
K(`) in addition to spectral considerations.

Note that K(`) itself is the AGOP of the neural network f with respect to the pre-activations at layer `, i.e.

K(`) ≡ 1
n

n∑
α=1

∂f(x(α)
`)

∂h`

∂f(x(α)
`)

∂h`

>

. (3)

For convolutional and attention layers, the K(`) are computed by additionally averaged over all patches and
token positions in the input, respectively (see Radhakrishnan et al. (2024a); Beaglehole et al. (2023) for the
formulation of the NFA in these architectures).

3 Centering the NFC isolates weight-PTK alignment

We showed that the neural feature ansatz is equivalent to PTK-weight alignment (Proposition 2). We now ask:
is the increase in the NFC due to alignment of the weight matrices to the current PTK, or the alignment of the
PTK to the current weights? In practice, both effects matter, but numerical evidence suggests that changes in
the PTK do not drive the early dynamics of the NFC (Appendix D). Instead, we observe that the alignment
between the weights and the PTK feature covariance is driven by a centered NFC that captures alignment
between the parameter changes and the PTK. We then show this centered NFC can hold robustly in settings
where the NFC holds with correlation less than 1, such as early in training and/or with large initialization.
Finally, we establish analytically through the centered NFC how the NFA emerges as a structural property of
gradient descent.

We begin by considering a decomposition of the NFM and AGOP into parts that depend on initialization and
a part that depends on the changes in the weight matrix. Let W (`)

t and K(`)
t be the weight matrix and PTK

feature covariance for layer ` at time t. We can write the NFM and AGOP in terms of the initial weights
W

(`)
0 and the change in weights W̄ (`)

t ≡W (`)
t −W

(`)
0 as follows:

F = W>t Wt = W̄>t W̄t +W>0 W̄t + W̄>t W0 +W>0 W0,

Ḡ = W>t KtWt = W̄>t KtW̄t +W>0 KtW̄t + W̄>t KtW0 +W>0 KtW0
(4)

where we omitted ` from all terms for ease of notation. The first term in each decomposition isolates the gram
matrix of the changes in the weight matrix. We call W̄>W̄ the centered NFM and W̄>KW̄ the centered
AGOP. The centered AGOP in particular measures the alignment of weight updates with the current PTK
feature covariance. Both terms are 0 at initialization, and if the weight matrices change significantly (that is,
if ||W̄ || � ||W0||), both the NFM and AGOP are dominated by the centered terms. (Note: in the limit that

5

Published in Transactions on Machine Learning Research (11/2024)

A. (MLP on SVHN)

C. (VGG-11 on CIFAR-10)

D. (GPT on Shakespeare characters)

B.

Layer

1 2 3 4 5

M
ea

n
Co

rr
el

at
io

n

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
NFA across MLP layers

Figure 2: Uncentered and centered neural feature correlations across (A,B) fully-connected, (C) convolutional,
and (D) attention layers with large initialization scale. (A,C,D) show trajectories of C/UC-NFC over training.
(B) shows NFC values across all layers of an MLP with five hidden layers, averaged over CIFAR-10, CIFAR-100,
SVHN, MNIST, GTSRB, and STL-10 datasets. (A-C) are additionally averaged over three random seeds.
Each row of (D) is an attention block (ordered from first to last in the GPT model), while the columns show
correlations for query, key, and value layers, respectively.

6

Published in Transactions on Machine Learning Research (11/2024)

initialization scale vanishes to 0 (i.e. small initialization), then we expect the centered and uncentered NFM
and AGOP to coincide, as W̄ = Wt −W0 →Wt, where t is a step at the end of training.)

The decomposition in Equation 4 suggests that updates which drive correlation of the centered NFM and
centered AGOP can also drive the overall value of the original NFC. Inspired by this observation, we define
the centered NFC (C-NFC) as,

ρ
(

(W̄ (`))>W̄ (`), (W̄ (`))>K(`)W̄ (`)
)
.

For the remainder of the paper, we will refer to the original NFC as the uncentered NFC (UC-NFC) to avoid
ambiguity.

The centered NFC is consistently higher than the uncentered NFC across training times, architectures, and
datasets (Figure 2). This especially holds at early times and in deeper layers of a network (Figure 2C and D,
VGG-11 on CIFAR-10 and the GPT model on Shakespeare respectively). For MLPs, we conduct a broader
set of experiments and verify that the trends hold on a wide range of vision datasets. We also note that the
C-NFC at early times is relatively robust to the initialization statistics of the weight matrix W (`) - unlike
the UC-NFC (for additional experiments, see Appendix H). We will return to this point in Section 5. These
experiments suggest the C-NFC is responsible for improvements in the uncentered correlation.

High C-NFC values can drive increases in the UC-NFC as long as the centered NFM and centered AGOP
are increasing in magnitude during training. We can confirm that the weights move significantly from
initialization, which drives the contribution from the centered NFM and centered AGOP (Figures 14, and 15
in Appendix M). The increased importance of the C-NFC leads the UC-NFC to converge to the C-NFC at
late times in most of our experimental settings, as the contribution from the weight changes dominates the
contribution from the initialization. These findings validate that the C-NFC is an important contributor to
increases in the UC-NFC.

Our experiments suggest that studying the C-NFC is a useful first step to understanding the neural feature
ansatz. In Section 4, we develop a theoretical analysis to understand why the C-NFC is generically large at
early times. We then use this analysis to predict the value of the C-NFC and motivate interventions which
can keep the C-NFC high and promote the NFA earlier on in training (Section 5).

4 Theoretical analysis of the C-NFC at early times

4.1 Gradient flow dynamics

We now theoretically identify why the centered AGOP and NFM become correlated as a structural property
of gradient descent, for at least the early training times. We consider the setup introduced in Equation (1).
For theoretical convenience we focus on the case of training under gradient flow, where the dynamics of a
weight matrix W (`) trained on loss L is given by

Ẇ (`) ≡ dW (`)

dt
= −∇W (`)L , (5)

where Ẇ (`) is the time derivative of W (`). We expect our results to apply to gradient descent with small and
intermediate learning rates as well. For simplicity of notation, we omit the layer index `.

We note that W̄ = 0. This gives us the following proposition, which shows that early time dynamics of the
centered NFM and AGOP are dominated by the second time derivatives:
Proposition 3 (Centered NFC dynamics). Let W be the weights of a fully-connected layer of a neural
network at initialization and X be the inputs to that layer. Then, when the neural network is trained by
gradient flow on a loss function L, we have W̄>W̄ = W̄>KW̄ = 0, d

d t (W̄
>W̄) = d

d t (W̄
>KW̄) = 0, and the

first non-zero time derivatives satisfy,

d2

d t2 (W̄>W̄) = 2 ·X>L̇KL̇X, d2

d t2 (W̄>KW̄) = 2 ·X>L̇K2L̇X (6)

7

Published in Transactions on Machine Learning Research (11/2024)

where L̇ is the n× n diagonal matrix of logit derivatives L̇ ≡ diag
(
∂L
∂f

)
.

Proof of Proposition 3. At initialization, all terms containing at least one copy of W̄ vanish, leading to
the zero and first time derivatives to be 0. Further, we have Ẇ = ∂f(X)

∂h

>
L̇X. Therefore, using that

K ≡ ∂f(X)
∂h

> ∂f(X)
∂h and K ≡ ∂f(X)

∂h
∂f(X)
∂h

>
,

1
2

d2

d t2 (W̄>W̄) = Ẇ>Ẇ = X>L̇∂f(X)
∂h

∂f(X)
∂h

>
L̇X = X>L̇KL̇X ,

and,

1
2

d2

d t2 (W̄>W̄) = Ẇ>KẆ = X>L̇∂f(X)
∂h

K
∂f(X)
∂h

>
L̇X

= X>L̇∂f(X)
∂h

∂f(X)
∂h

>
∂f(X)
∂h

∂f(X)
∂h

>
L̇X

= X>L̇K2L̇X .

We immediately see how gradient-based training can drive the C-NFC towards 1 at early times; the first
non-trivial time derivatives are often highly correlated as they differ by only a single matrix power of K, and
have the same dependence on the labels. If K is proportional to a projection matrix, then the two derivatives
will have perfect correlation; even if not, K and K2 will have identical eigenvectors, and hence we might
expect a range of spectra will enable high correlation between them. In the case that K and K2 are sufficiently
correlated, the C-NFC is driven to a high value immediately upon training, and the high value of the C-NFC
eventually drives the UC-NFC and causes the NFA to hold.

In the remainder of this section, we study this correlation in two different high-dimensional limits. Our
analysis suggests that for large models the C-NFC has a generic tendency to increase early in training.

4.2 Maximum C-NFC for data on the sphere

We first provide a general and well-studied setting where the first non-zero derivatives of the centered NFM
and AGOP are perfectly correlated - uniform data on the sphere in high dimensions (Ghorbani et al., 2020;
2021; Misiakiewicz, 2022). This limit corresponds to an infinite width network which, combined with the
data symmetry, induces the PTK matrix K to act like a projection matrix.

Data setup We sample data x ∼
√
d ·Unif

(
Sd−1) uniformly distributed on the sphere in d dimensions with

radius
√
d. We assume the labels are generated from a target function that maps f∗ : Sd−1 → [−d, d]. I.e. the

label for the point x is equal to f∗(x). We train the parameters a,W for a one-hidden layer fully-connected
neural network f(x) = f(x; a,W) = a>φ(Wx) with element-wise activation function φ. For a learning
trajectory (at,Wt), the initial values a0 and W0 are sampled i.i.d. standard Gaussian with variance at most
O(1/k). I.e. for all i, j, `, we have a0(i),W0(j, `) ∼ N (0, c) for c = O(1/k).

Notation We will use asymptotic notation Od, od,Θd,Ωd, ωd in the usual way, where the limits are taken
with respect to the data dimension d. Õd, õd, Θ̃d, Ω̃d, ω̃d are equivalent to their previous definitions but hide
dependencies of polylogarithmic functions of d. We will use ‖ · ‖ to refer to `2 vector norm and the operator
norm of a matrix, i.e. ‖A‖ = maxv∈Rd ‖Av‖‖v‖ , for a square matrix A ∈ Rd×d. Recall we sample n datapoints
and use hidden dimension k so that at ∈ Rk×1 andWt ∈ Rk×d. We write the vector of all ones in p dimensions
as 1 ∈ Rp×1. We will omit the time index t for ease of notation.

We make the assumption that f∗ has is bounded by a polylogarithmic factor of dimension with superlinearly
vanishing probability:

8

Published in Transactions on Machine Learning Research (11/2024)

Assumption 4 (Labels bounded). We have, for any positive δ > 0, with probability 1 − Od(d−1−δ),
|f∗(x)| = Od(log`(d)) for a constant integer `.

We also assume that the target function has a non-vanishing linear component:
Assumption 5 (Non-trivial linear component). We have, ‖Ex [f∗(x)x] ‖ = Ωd(1).

These assumptions hold for example when f∗ is exactly linear, i.e. f∗(x) = β>x for ‖β‖ ≤ 1. In this case,
the inner product x>β = Õd(1) with probability Od(d−1−δ) for x uniform on

√
d · Sd−1 and any positive δ.

We make an additional assumption on the differentiability of the PTK, inherited from the activation φ,
according to the conditions from Misiakiewicz (2022). This assumption is needed for our analysis, in which
differentiability enables us to Taylor expand the PTK matrix (El Karoui, 2008). We restate this assumption.
Assumption 6 (Differentiability of the PTK). Let K(x, x′) = Eak,wk

[
a2
kφ
′(w>k x)φ′(w>k x′)

]
= hd(〈x, x′〉/d)

be the PTK for the network f , where hd : [−1, 1] → R is a positive semi-definite kernel function, defined
for each dimension d. We assume there exist finite h(0), h′(0), h′′(0) > 0 such that limd→∞ hd(0) = h(0),
limd→∞ h′d(0) = h′(0), and limd→∞ h′′d(0) = h′′(0), where the first and second derivatives of hd, h′d and h′′d ,
are assumed to exist on [−1, 1] for all d.

Note this is a sub-case of Assumption 1 in Misiakiewicz (2022) for level ` = 1, and is satisfied for hd that is
twice differentiable everywhere. We now introduce our final simplifying assumption on the activation function
and data:

We will consider f trained using mean-squared error (MSE) loss. With this loss, L̇ corresponds to the
diagonal matrix of the residuals y − f(x). If the outputs of the network is 0 on the training data, then
L̇ = Y ≡ diag (y), the labels themselves. We can guarantee this by either of the following methods:
Method 7 (Subtract copy). Subtracting off an identical (untrained) copy of the neural network from each
output at initialization. I.e. we train the parameters of the network f on the loss with respect to outputs
f̂t(x) = ft(x)− f0(x), where f0(x) is a copy of f at initialization and ft(x) = f(x; at,Wt)
Method 8 (Small initialization). Initializing W = 0 or ‖a‖ = ε for ε > 0 arbitrarily small.

We now state our main theorem.
Theorem 9 (Maximum C-NFC). Suppose the data X are sampled uniformly at random from Sd−1 and the
labels are generated by f∗ satisfying Assumptions 4 and 5. Suppose we train f with MSE loss and initialize
the network so that the initial outputs are 0 by either Method 7 or Method 8 above. Assume the activation
function φ satisfies Assumption 6. We consider the regime that ωd

(
d log2`+1 d

)
≤ n ≤ od

(
d2−δ) for some

δ > 0, and width k →∞. Then, at t = 0 in training (in the setting of Proposition 3), almost surely over the
random X as n, d→∞,

ρ

(
d2

d t2 (W̄>W̄), d2

d t2 (W̄>KW̄)
)
→ 1 .

The proof follows from the mean term of K giving the leading order terms in the C-NFC derivatives calculation
here, and 11> is a rank-1 projector. The proof is deferred to Appendix C.

We clarify that although we take infinite width, we are not necessarily in the NTK regime, as we allow for
arbitrary scaling of the weights, including the µP parametrization (Yang and Hu, 2020). Hence, our setting
allows for feature learning.

In the next section we will construct a dataset which interpolates between adversarial and aligned eigenstructure
to demonstrate the range of possible values the derivative correlations can take, and theoretically predict
their values.

4.3 Early time C-NFC dynamics in co-scaling regime

Another interesting limit is the linear co-scaling regime, where n, d, k → ∞ with n/d ≡ ψ1 and k/d ≡ ψ2.
Here, we show it is possible to theoretically predict the correlation of the derivatives of the centered NFM
and AGOP.

9

Published in Transactions on Machine Learning Research (11/2024)

In this regime, we expect the following two properties (Adlam and Pennington, 2020), which we state as
assumptions. First, our key quantities can be written as traces of products of large random matrices; as the
dimensions of all such matrices increase, we expect these traces to converge to their average values. This
property is known as self-averaging.

Assumption 10 (Self-averaging). We assume that the expected traces appearing in the NFC across initial-
izations are equal to the traces themselves.

The elements of weight matrices W are drawn from independent Gaussians (i.i.d. within each matrix). If the
data X were also standard Gaussian, we would be able to apply free probability — the noncommutative
analog of classical independence — to compute traces of matrix products involving analytic functions of
W and X in the limit of large dimensions (Mingo and Speicher, 2017). To apply free probability for more
general X, we require the following assumption:

Assumption 11 (Asymptotic freedom of initial parameters, and input-label pairs). We assume W and X
are asymptotically freely independent. Further, we assume the labels Y (X) are asymptotically free of W (but
not X).

For example, the labels in the student teacher setups of Adlam and Pennington (2020); Adlam et al. (2019)
satisfy this condition.

From Proposition 3, we know that for MSE loss the correlation of NFM/AGOP time derivatives under
gradient flow at initialization can be written as:

ρ
(
Ẇ>Ẇ , Ẇ>KẆ

)
= tr

(
X>YKY XX>YK2Y X

)
· tr
(
(X>YKY X)2)−1/2 · tr

(
(X>YK2Y X)2)−1/2

. (7)

In our high-dimensional limit, we expect that, for example, the first term can be given as

lim
n,d,k→∞

tr
(
X>YKY XX>YK2Y X

)
= lim
n,d,k→∞

Eθ
[
tr
(
X>YKY XX>YK2Y X

)]
. (8)

We can decompose the average as

Eθ
[
tr
(
X>YKY XX>YK2Y X

)]
= tr

(
X>Y Eθ [K]Y XX>Y Eθ

[
K2]Y X)+ tr

(
Cov

(
X>YKY X,X>YK2Y X

))
(9)

with similar decompositions for the denominator term.

Therefore if the statistics of K can be understood as a function of X, we can compute the correlation in
this linear triple-scaling limit. We focus for now on a one-hidden layer quadratic network (similar to the
previous section) to avoid the branching of terms that arises in more complicated networks. We provide some
additional analysis of the first term in Equation 9 for more complicated architectures in Appendix E.

4.4 Exact predictions with one hidden layer and quadratic activations

Concretely, we study a neural network f which can be written as f(x) = a>(Wx)2, where a is the readout
layer, and the square is element-wise. Let M (4)

X|Y = (X>Y X)2, and M (2)
X = X>X, and Fa = W>diag

(
a2)W .

Then, the numerator of Equation 9 can be written as:

tr
(
X>YKY XX>YK2Y X

)
= tr

(
M

(4)
X|Y FaM

(4)
X|Y FaM

(2)
X Fa

)
.

We reiterate our assumptions and compute this trace (as well as those for the denominator terms) in
Appendix F using standard results from random matrix theory. These calculations show us that the
correlation is determined by traces of powers of M (4)

X|Y and M (2)
X by the calculations in Section F, which are

properties of the input-label pairs, and Fa, which is specific to the architecture and initialization statistics.

10

Published in Transactions on Machine Learning Research (11/2024)

0.0 0.25 0.5 0.75 1.0

Balance

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
or

re
la

tio
n

ρ(Ẇ>Ẇ, Ẇ>KẆ)

Mean

0.0 0.25 0.5 0.75 1.0

Balance

ρ̂(Ẇ>Ẇ, Ẇ>KẆ)

Mean

0.0 0.25 0.5 0.75 1.0

ρ(Ẇ>Ẇ, Ẇ>KẆ)

ρ̂
(Ẇ

>
Ẇ
,Ẇ

>
K
Ẇ

)

Figure 3: Predicted versus observed correlation of the second derivatives of centered F and Ḡ on the alignment
reversing dataset. Different shaded color curves correspond to four different seeds for the dataset. The solid
blue curve is the average over all data seeds. The rightmost sub-figure is a scatter plot of the predicted versus
observed correlations of these second derivatives, with one point for each balance value. We instantiate the
dataset in the proportional regime where width, input dimension, and dataset size are all equal to 1024.

Manipulating the C-NFC To numerically explore the validity of the random matrix theory calculations,
we developed a method to generate datasets with different values of ρ

(
Ẇ>Ẇ , Ẇ>KẆ

)
. We construct a

random dataset called the alignment reversing dataset, parameterized by a balance parameter γ ∈ (0, 1] to
adversarially disrupt the NFA near initialization in the regime that width k, input dimension d, and dataset
size n are all equal (n = k = d = 1024). By Proposition 16, for the aforementioned neural architecture, the
expected second derivative of the centered NFM satisfies, E

[
Ẇ>Ẇ

]
= X>Y E [K]Y X = (X>Y X)2, while

the expected second derivative of the centered AGOP, E
[
Ẇ>KẆ

]
= X>Y E

[
K2]Y X, has an additional

component X>Y X · X>X · X>Y X. Our construction exploits this difference in that X>X becomes
adversarially unaligned to X>Y X as the balance parameter decreases.

The construction exploits that we can manipulate X>Y X ·X>X ·X>Y X freely of the NFM using a certain
choice of Y . We design the dataset such that this AGOP-unique term is close to identity, while the NFM
second derivative has many large off-diagonal entries, leading to low correlation between the second derivatives
of the NFM and AGOP.

In our experiment, we sample multiple random datasets with this construction and compute the predicted
and observed correlation of the second derivatives of the centered NFC at initialization. For specific details
on the construction, see Appendix G.

We observe in Figure 3 that the centered NFC predicted with random matrix theory closely matches the
observed values, across individual four random seeds and for the average of the correlation across them.
Crucially, a single neural network is used across the datasets, confirming the validity of the self-averaging
assumption. The variation in the plot across seeds come from randomness in the sample of the data, which
cause deviations from the adversarial construction.

5 Increasing the centered contribution to the NFC strengthens feature learning

Our theoretical and experimental work has established that gradient based training leads to alignment
of the weight matrices to the PTK feature covariance. This process is driven by the C-NFC. There-
fore, one path towards improving the neural feature correlations is to increase the contribution of the
C-NFC to the dynamics - as measured, for example, by the centered-to-uncentered, or, C/UC, ratio
tr
(
W̄>W̄W̄>KW̄

)
tr
(
W>WW>KW

)−1. When this ratio is large, the C-NFC contributes significantly in
magnitude to the UC-NFC, indicating successful feature learning as measured by the uncentered NFC. We
will discuss how small initialization promotes feature learning, and design an optimization rule, Speed Limited
Optimization, that increases the C/UC ratio and drives the value of the UC-NFC to 1.

11

Published in Transactions on Machine Learning Research (11/2024)

5.1 Feature learning and initialization

One factor that modulates the level of feature learning is the scale of the initialization in each layer. In our
experiments training networks with unmodified gradient descent, we observe that the centered NFC will
increasingly dominate the uncentered NFC with decreasing initialization (third panel, first row, Figure 4).
Further, as the centered NFC increases in contribution to the uncentered quantity, the strength of the
UC-NFC, and to a lesser extent, the C-NFC increases (Figure 4). The decreases in correspondence between
these quantities is also associated with a decrease in the feature quality of the NFM (Appendix I), for the
chain monomial task.

For fully-connected networks with homogeneous activation functions, such as ReLU, and no normalization
layers, decreasing initialization scale is equivalent to decreasing the scale of the outputs, since we can write
f(Wx) = a−pf(aWx) for any scalar a for any homogenous activation f . This in turn is equivalent to
increasing the scale of the labels. Therefore, decreasing initialization forces the weights to change more in
order to fit the labels, leading to more change in F from its initialization. Conceptually, this aligns with the
substantial line of empirical and theoretical evidence that increasing initialization scale or output scaling
transitions training between the lazy and feature learning regimes (Chizat et al., 2019; Woodworth et al.,
2020; Agarwala et al., 2020; Lyu et al., 2023).

This relationship suggests that small initialization can be broadly applied to increase the change in F, and the
value of the UC-NFC. However, this may not be ideal; for example, if the activation function is differentiable
at 0, small initialization leads to a network which is approximately linear. This may lead to low expressivity
unless the learning dynamics can increase the weight magnitude.

5.2 Speed Limited Optimization

We can instead design an intervention which can increase feature learning without the need to decrease the
initialization scale. We do so by fixing the learning speed layerwise to constant values, which causes the
C-NFC to dominate the UC-NFC dynamics. For weights at layer ` and learning rate η > 0, we introduce
Speed Limited Optimization (SLO), which is characterized by the following update rule,

W
(`)
t+1 ←W

(`)
t − η · C` ·

∇
W

(`)
t
L

‖∇
W

(`)
t
L‖

where the hyperparameter C` ≥ 0 controls the amount of learning in layer `. We expect this rule to increase
the strength of the UC-NFC in layers where C` is large relative to Cm for m 6= `, as W (`) will be forced to
change significantly from initialization. By forcing the weights in a particular layer ` to have fixed learning
speeds, these weights will have fixed updates sizes at every epoch, regardless of the loss. We downscale the
speeds in other layers ` 6= m to prevent training instability. As a result,

∥∥∥W (`)
0

∥∥∥∥∥∥W (`)
t

∥∥∥−1
→ 0 for large t,

causing the centered and uncentered NFC to coincide for this layer.

We demonstrate the effects of SLO on the chain-monomial task (Equation (2)). We found that fixing the
learning speed to be high in the first layer and low in the remaining layers causes the ratio of the unnormalized
C-NFC to the UC-NFC to become close to 1 across initialization scales (Figure 4). The same result holds for
the SVHN dataset (see Appendix M). We note that this intervention can be applied to target underperforming
layers and improve generalization in deeper networks (see Appendix K for details).

We observe that both the C-NFC and the UC-NFC become close to 1 after training with SLO, independent
of initialization scale (Appendix I). Further, the quality of the features learned, measured by the similarity of
F and Ḡ to the true EGOP, significantly improve and are more similar to each other with SLO, even with
large initialization. In contrast, in standard training the UC-NFA fails to develop with large initialization, as
F resembles identity (no feature learning), while Ḡ only slightly captures the relevant features.

Speed Limited Optimization is a step toward the design of optimizers that improve generalization and training
times through maximizing feature learning.

12

Published in Transactions on Machine Learning Research (11/2024)

A.

C.

B.

D.

UC-NFC C-NFC C/UC Ratio Train Losses

Figure 4: The effect of SLO on C/UC neural feature correlations and feature learning on the chain monomial
task. In the first two rows, we plot the uncentered and centered NFA for the first layer weight matrix as
a function of initialization, (A) with standard training and (B) with SLO. We consider a two hidden layer
network with ReLU activations, where we set C0 = 500, and C1 = C2 = 0.002. The third column shows the
ratio of the unnormalized C-NFC to the UC-NFC: tr

(
W̄>W̄W̄>KW̄

)
· tr
(
W>WW>KW

)−1. The fourth
column shows the training loss. In the third row, we plot the NFM and AGOP from a trained network with
(C) standard training and (D) with Speed Limited Optimization with fixed initialization scale of 1.0.

6 Discussion

Analyzing more general settings In principle our analysis can be extended to a larger sample size and
activation functions with uncentered derivatives. Both of these settings require analyzing more terms in
the Taylor expansion of the PTK matrix. This is more complicated than studying the loss, as our most
complex calculations require understanding degree 8 polynomials of the inputs even in the simplest case of a
one-hidden layer network (as opposed to degree 4 to understand the loss). We may also want to understand
the case that n = d` for integer ` (i.e. without the logarithmic factor we consider). The appropriate Taylor
expansions in these cases are discussed in Misiakiewicz (2022), and will likely require additional structure on
the coefficients of the target function f∗ in the basis of spherical harmonics.

Centered NFC through training Our theoretical analysis in this work shows that the PTK feature
covariance at initialization has a relatively simple structure in terms of the weights and the data. To predict
the NFC later in training, we will likely need to account for the change in this matrix. One should be able
to predict this development at short times by taking advantage of the fact that eigenvectors of the Hessian
change slowly during training (Bao et al., 2023). An alternative approach would be to use a quadratic model

13

Published in Transactions on Machine Learning Research (11/2024)

for neural network dynamics (Agarwala et al., 2022; Zhu et al., 2022) which can capture dynamics of the
empirical NTK (and therefore the PTK). One promising avenue to study the time dynamics of the PTK
could be to adapt the results of Wang et al. (2024), which study how the effects of feature learning can
propagate to the conjugate kernel for neural networks. It may also be useful to unify our notion of alignment
with the observations of Arous et al. (2023), where they find that the weights align with the averaged outer
products of the loss gradients.

Speed Limited Optimization There are prior works that implement differential learning rates across
layers (Howard and Ruder, 2018; Singh et al., 2015), though these differ from differential learning speeds as in
SLO, in which the L2-norm of the gradients are fixed, and not the scaling of the gradients. Our intervention
is more similar to the LARS (You et al., 2017) and LAMB (You et al., 2019) optimizers that fix learning
speeds to decrease training time in ResNet and BERT architectures. However, these optimizers fix learning
speeds to the norm of the weight matrices, while our intervention sets learning speeds to free hyperparameters
in order to increase feature learning, as measured by the NFC. We also point out that as an additional
explanation for the success of SLO in our experiments, the PTK feature covariance may change slowly (or
just in a single direction) with this optimizer, because the learning rate is small for later layers, allowing the
first layer weights to align with the PTK.

Other works consider interventions that vary the strength of feature learning across layers. The authors
of Yang and Hu (2020) down-scale the final layer weights so that the weights in earlier layers must move
significantly in `∞ norm to fit the data. The SLO intervention is more extreme than this approach in that
SLO overrides the natural GD dynamics to exactly set the weight movement rates. In Chizat and Netrapalli
(2024) the authors consider adjusting learning rates in each layer so as to force the activation vectors to
substantially change across all layers. Instead, SLO sets learning speeds of the weights in each layer so that
some weights move much faster than others, depending on the layer where we want to maximize feature
learning.

Adaptive and stochastic optimizers We demonstrate in this work that the dataset (by our construction
in Section 4) and optimizer (with SLO in Section 5) play a significant role in the strength of feature learning.
Important future work would be to understand other settings where significant empirical differences exist
between optimization choices. In particular, analyzing the NFC may clarify the role of gradient batch size
and adaptive gradient methods in generalization (Zhu et al., 2023).

7 Acknowledgements

We thank Lechao Xiao for detailed feedback on the manuscript. We also thank Jeffrey Pennington for helpful
discussions. This work used the programs (1) XSEDE (Extreme science and engineering discovery environment)
which is supported by NSF grant numbers ACI-1548562, and (2) ACCESS (Advanced cyberinfrastructure
coordination ecosystem: services & support) which is supported by NSF grants numbers #2138259, #2138286,
#2138307, #2137603, and #2138296. Specifically, we used the resources from SDSC Expanse GPU compute
nodes, and NCSA Delta system, via allocations TG-CIS220009.

References
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind

Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25, 2012.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65(1):
99–106, 2021.

14

Published in Transactions on Machine Learning Research (11/2024)

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep
learning (still) requires rethinking generalization. Communications of the ACM, 2021.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and Generalization
in Neural Networks. In Advances in Neural Information Processing Systems, 2018.

Lenaic Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. Advances
in neural information processing systems, 32, 2019.

B. Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Limitations of Lazy Training of
Two-layers Neural Networks. In Advances in Neural Information Processing Systems, 2019.

Zeyuan Allen-Zhu and Yuanzhi Li. What Can ResNet Learn Efficiently, Going Beyond Kernels? In Advances
in Neural Information Processing Systems, 2019.

Gilad Yehudai and Ohad Shamir. On the Power and Limitations of Random Features for Understanding
Neural Networks. In Advances in Neural Information Processing Systems, 2019.

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer neural networks
beyond NTK. In Conference on Learning Theory, 2020.

Maria Refinetti, Sebastian Goldt, Florent Krzakala, and Lenka Zdeborová. Classifying high-dimensional
Gaussian mixtures: Where kernel methods fail and neural networks succeed. In International Conference
on Machine Learning, 2021.

Guangda Ji and Zhanxing Zhu. Knowledge distillation in wide neural networks: Risk bound, data efficiency
and imperfect teacher. In Advances in Neural Information Processing Systems, 2020.

Emmanuel Abbe, Enric Boix Adsera, and Theodor Misiakiewicz. The merged-staircase property: a necessary
and nearly sufficient condition for sgd learning of sparse functions on two-layer neural networks. In
Conference on Learning Theory, 2022.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-dimensional
Asymptotics of Feature Learning: How One Gradient Step Improves the Representation. arXiv preprint
arXiv:2205.01445, 2022.

Eshaan Nichani, Alex Damian, and Jason D Lee. Provable guarantees for nonlinear feature learning in
three-layer neural networks. arXiv preprint arXiv:2305.06986, 2023.

Boaz Barak, Benjamin L Edelman, Surbhi Goel, Sham Kakade, Eran Malach, and Cyril Zhang. Hidden
progress in deep learning: Sgd learns parities near the computational limit. arXiv preprint arXiv:2207.08799,
2022.

Alexandru Damian, Jason Lee, and Mahdi Soltanolkotabi. Neural networks can learn representations with
gradient descent. In Conference on Learning Theory, pages 5413–5452. PMLR, 2022.

Behrad Moniri, Donghwan Lee, Hamed Hassani, and Edgar Dobriban. A theory of non-linear feature learning
with one gradient step in two-layer neural networks. arXiv preprint arXiv:2310.07891, 2023.

Suzanna Parkinson, Greg Ongie, and Rebecca Willett. Linear neural network layers promote learning
single-and multiple-index models. arXiv preprint arXiv:2305.15598, 2023.

Alireza Mousavi-Hosseini, Sejun Park, Manuela Girotti, Ioannis Mitliagkas, and Murat A Erdogdu. Neural
networks efficiently learn low-dimensional representations with sgd. arXiv preprint arXiv:2209.14863, 2022.

Adityanarayanan Radhakrishnan, Daniel Beaglehole, Parthe Pandit, and Mikhail Belkin. Mechanism for
feature learning in neural networks and backpropagation-free machine learning models. Science, 383(6690):
1461–1467, 2024a.

Daniel Beaglehole, Adityanarayanan Radhakrishnan, Parthe Pandit, and Mikhail Belkin. Mechanism of
feature learning in convolutional neural networks. arXiv preprint arXiv:2309.00570, 2023.

15

Published in Transactions on Machine Learning Research (11/2024)

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale, 2021.

Gan Yuan, Mingyue Xu, Samory Kpotufe, and Daniel Hsu. Efficient estimation of the central mean subspace
via smoothed gradient outer products. arXiv preprint arXiv:2312.15469, 2023.

Adityanarayanan Radhakrishnan, Mikhail Belkin, and Dmitriy Drusvyatskiy. Linear recursive feature machines
provably recover low-rank matrices, 2024b.

D Aristoff, M Johnson, G Simpson, and RJ Webber. The fast committor machine: Interpretable prediction
with kernels. arXiv preprint arXiv:2405.10410, 2024.

Marian Hristache, Anatoli Juditsky, Jorg Polzehl, and Vladimir Spokoiny. Structure adaptive approach for
dimension reduction. Annals of Statistics, pages 1537–1566, 2001.

Shubhendu Trivedi, Jialei Wang, Samory Kpotufe, and Gregory Shakhnarovich. A consistent estimator of the
expected gradient outerproduct. In UAI, pages 819–828, 2014.

Samory Kpotufe, Abdeslam Boularias, Thomas Schultz, and Kyoungok Kim. Gradients weights improve
regression and classification. Journal of Machine Learning Research, 2016.

Daniel Beaglehole, Peter Súkeník, Marco Mondelli, and Mikhail Belkin. Average gradient outer product as a
mechanism for deep neural collapse, 2024.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When Do Neural Networks
Outperform Kernel Methods? In Advances in Neural Information Processing Systems, 2020.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers neural
networks in high dimension. The Annals of Statistics, 49(2):1029–1054, 2021.

Theodor Misiakiewicz. Spectrum of inner-product kernel matrices in the polynomial regime and multiple
descent phenomenon in kernel ridge regression. arXiv preprint arXiv:2204.10425, 2022.

Noureddine El Karoui. Spectrum estimation for large dimensional covariance matrices using random matrix
theory. 2008.

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020.

Ben Adlam and Jeffrey Pennington. The neural tangent kernel in high dimensions: Triple descent and a
multi-scale theory of generalization. In International Conference on Machine Learning, pages 74–84. PMLR,
2020.

James A Mingo and Roland Speicher. Free probability and random matrices, volume 35. Springer, 2017.

Ben Adlam, Jake Levinson, and Jeffrey Pennington. A random matrix perspective on mixtures of nonlinearities
for deep learning. arXiv preprint arXiv:1912.00827, 2019.

Blake Woodworth, Suriya Gunasekar, Jason D Lee, Edward Moroshko, Pedro Savarese, Itay Golan, Daniel
Soudry, and Nathan Srebro. Kernel and rich regimes in overparametrized models. In Conference on
Learning Theory, pages 3635–3673. PMLR, 2020.

Atish Agarwala, Jeffrey Pennington, Yann Dauphin, and Sam Schoenholz. Temperature check: theory and
practice for training models with softmax-cross-entropy losses. arXiv preprint arXiv:2010.07344, 2020.

Kaifeng Lyu, Jikai Jin, Zhiyuan Li, Simon S Du, Jason D Lee, and Wei Hu. Dichotomy of early and late
phase implicit biases can provably induce grokking. arXiv preprint arXiv:2311.18817, 2023.

16

Published in Transactions on Machine Learning Research (11/2024)

Xuchan Bao, Alberto Bietti, Aaron Defazio, and Vivien Cabannes. Hessian inertia in neural networks. 1st
Workshop on High-dimensional Learning Dynamics, 2023.

Atish Agarwala, Fabian Pedregosa, and Jeffrey Pennington. Second-order regression models exhibit progressive
sharpening to the edge of stability. arXiv preprint arXiv:2210.04860, 2022.

Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrishnan, and Mikhail Belkin. Quadratic models for
understanding neural network dynamics. arXiv preprint arXiv:2205.11787, 2022.

Zhichao Wang, Denny Wu, and Zhou Fan. Nonlinear spiked covariance matrices and signal propagation in
deep neural networks. arXiv preprint arXiv:2402.10127, 2024.

Gerard Ben Arous, Reza Gheissari, Jiaoyang Huang, and Aukosh Jagannath. High-dimensional sgd aligns
with emerging outlier eigenspaces. arXiv preprint arXiv:2310.03010, 2023.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification. arXiv
preprint arXiv:1801.06146, 2018.

Bharat Singh, Soham De, Yangmuzi Zhang, Thomas Goldstein, and Gavin Taylor. Layer-specific adaptive
learning rates for deep networks. In 2015 IEEE 14th International Conference on Machine Learning and
Applications (ICMLA), pages 364–368. IEEE, 2015.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training
bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Lénaïc Chizat and Praneeth Netrapalli. The feature speed formula: a flexible approach to scale hyper-
parameters of deep neural networks, 2024. URL https://arxiv.org/abs/2311.18718.

Libin Zhu, Chaoyue Liu, Adityanarayanan Radhakrishnan, and Mikhail Belkin. Catapults in sgd: spikes in the
training loss and their impact on generalization through feature learning. arXiv preprint arXiv:2306.04815,
2023.

Hong Hu and Yue M Lu. Universality laws for high-dimensional learning with random features. IEEE
Transactions on Information Theory, 69(3):1932–1964, 2022.

Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of two-layer neural
networks: An asymptotic viewpoint. In International Conference on Machine Learning, 2019.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. A short note on concentration
inequalities for random vectors with subgaussian norm. arXiv preprint arXiv:1902.03736, 2019.

17

https://arxiv.org/abs/2311.18718

Published in Transactions on Machine Learning Research (11/2024)

A Glossary

1. Expected gradient outer product (EGOP). Defined with respect to a target function f∗ and an
input data distribution µ over data in d dimensions.

EGOP(f∗, µ) ≡ Ex∼µ
[
∇xf∗(x)∇xf∗(x)>

]
∈ Rd×d.

2. Average gradient outer product (AGOP). Defined with respect to a predictor f and a set of inputs
{x(1), . . . , x(n)}.

AGOP(f, {x(α)}α) ≡ 1
n

n∑
α=1

∂f(x(α))
∂x

∂f(x(α))
∂x

>

∈ Rd×d.

In the context of a deep neural network, we write the AGOP Ḡ` with respect to the inputs of a given
layer ` as

Ḡ` ≡
1
n

n∑
α=1

∂f(x(α))
∂h`

∂f(x(α))
∂h`

>

.

3. Neural feature matrix (NFM). Given a neural network f with a weight matrix W (`) at layer `, the
NFM F` is defined as,

F` ≡ (W (`))>W (`).

4. Neural feature correlation (NFC). Defined with respect to a layer of a neural network, this is the
correlation ρ

(
F`, Ḡ`

)
.

5. Neural feature ansatz (NFA). This refers to the statement that the NFC will have correlation
approximately equal to 1.

6. Pre-activation tangent kernel (PTK). This is the kernel function corresponding, defined with respect
to a neural network and a layer `, that evaluates two inputs x, z to ∂f(x)

∂h`
· ∂f(z)
∂h`

∈ R.

7. PTK feature covariance. For a given layer of a neural network and a dataset X, the PTK feature
covariance K(`) is defined as K(`) ≡ ∂f(X)

∂h`

> ∂f(X)
∂h`

∈ Rk`×k` .

8. Centered NFC (C-NFC). Consider a layer W of a neural network with PTK feature covariance K
with respect to that layer. Let W̄ ≡W −W0, where W0 are weights at initialization. Then, the C-NFC is
equivalent to the correlation ρ

(
W̄>W̄ , W̄>KW̄

)
.

9. Uncentered NFC (UC-NFC). This quantity is identical to the NFC defined above.

18

Published in Transactions on Machine Learning Research (11/2024)

B Connection of the PTK to the empirical NTK

We note the following connection between the PTK entries and the empirical NTK (ENTK). In particular,
the PTK is a significant component of the ENTK.
Proposition 12 (Pre-activation to neural tangent identity). Consider a depth-L neural network f(x)
with inputs X` ∈ Rn×k` to weight matrices W (`) ∈ Rk`×k` for ` ∈ [L]. Consider the empirical NTK
where gradients are taken only with respect to W (`) evaluated between two points x and z denoted by
Θ̂`(x0, z0) = 〈∂f(x0)

∂W (`) ,
∂f(z0)
∂W (`) 〉. Then for all `, Θ̂` satisfies,

Θ̂`(x0, z0) = K(`)(x0, z0) · x>` z` .

Proof of Proposition 12. Note that ∂f(x0)
∂W (`) = ∂f(x0)

∂h`
x>0 ∈ Rk`×k` . Then,

Θ̂`(x0, z0) = tr
(
∂f(x0)
∂h`

x>` z`
∂f(z0)
∂h`

>
)

= ∂f(x0)
∂h`

>
∂f(z0)
∂h`

· x>` z`

= K(`)(x0, z0) · x>` z` .

C Additional proofs and statements

Theorem (Maximum C-NFC). Suppose the data X are sampled uniformly at random from Sd−1 and the
labels are generated by f∗ satisfying Assumptions 4 and 5. Suppose we train f with MSE loss and initialize
the network so that the initial outputs are 0 by either Method 7 or Method 8 above. Assume the activation
function φ satisfies Assumption 6. We consider the regime that ωd

(
d log2`+1 d

)
≤ n ≤ od

(
d2−δ) for some

δ > 0, and width k →∞. Then, at t = 0 in training (in the setting of Proposition 3), almost surely over the
random X as n, d→∞,

ρ

(
d2

d t2 (W̄>W̄), d2

d t2 (W̄>KW̄)
)
→ 1 .

Proof of Theorem 9. Applying Proposition 3 and using that we train with MSE and zero initial outputs, we
have

1
2

d2

d t2 (W̄>W̄) = X>YKY X, 1
2

d2

d t2 (W̄>W̄) = X>YK2Y X .

Given that k →∞, K is equal to a deterministic kernel matrix conditioned on the inputs X (i.e. does not
depend on the sampled initial weights). We then use that we are in the proportional limit to approximate
the kernel matrix K by its Taylor expansion (Misiakiewicz, 2022; El Karoui, 2008; Hu and Lu, 2022; Ba et al.,
2019). Namely, we have that with probability 1− od(1),

K = γ11> + α

d
XX> + µI + od(1) ·∆ , (10)

where γ = hd(0) + 1
dh
′′
d(0), α = h′(0), µ = h(1)− h(0)− h′(0), and ∆ with ‖∆‖2 = 1 is a matrix. In general,

we will write standalone asymptotic variables to indicate matrices ∆ of that order spectral norm.

By the linearization in equation (10) and the structure of XX>, we will show,

K = Θ(1) · 11> + Õ (1) ·∆1, K2 = Θ(d) · 11> + Õ (d) ·∆2 ,

19

Published in Transactions on Machine Learning Research (11/2024)

where ∆1,∆2 have spectral norm 1. To prove this, first note that 1
nX
>X = I + o(1) as uniform data on the

sphere are O(1)-subgaussian and have identity covariance. Therefore, as n = Θ̃(d), and the spectra of X>X
and XX> are identical, we have that ‖ 1

dXX
>‖ = ‖ 1

dX
>X‖ = Õ(1).

We now analyze the numerator in the correlation (using the normalized trace). To simplify notation we write
〈A,B〉 ≡ tr

(
A>B

)
for matrices A,B. The numerator is then:

〈X>YKY X,X>YK2Y X〉 = Θ̃(d) · tr
(
(X>yy>X)2)

+ Õ(d) · tr
(
(X>Y∆1Y X)(X>yy>X)

)
+ Õ(d) · tr

(
(X>yy>X)(X>Y∆2Y X)

)
+ Õ(d) · tr

(
(X>Y∆1Y X)(X>Y∆2Y X)

)
As the labels are bounded, ‖Y∆1Y ‖, ‖Y∆2Y ‖ = Õ(1). Therefore, by the sub-multiplicative property of the
spectral norm and that ‖X>‖‖X‖ = ‖X>X‖, we have ‖X>Y∆1Y X‖ ≤ ‖Y∆1Y ‖‖X>X‖ = Õ(1) · ‖X>X‖
and ‖X>Y∆2Y X‖ = Õ(1) · ‖X>X‖. Finally, again applying ‖X>X‖ = Õ(d),

tr
(
(X>Y∆1Y X)(X>yy>X)

)
≤ Õ(1) · ‖X>X‖ · ‖X>y‖2 = Õ(d) · ‖X>y‖2,

and,

tr
(
(X>yy>X)(X>Y∆2Y X)

)
≤ Õ(d) · ‖X>y‖2.

The fourth trace then satisfies,

tr
(
(X>Y∆1Y X)(X>Y∆2Y X)

)
≤ Õ(1) · ‖X>X‖2 = Õ(d2)

Combining the four traces and using that tr
(
(X>yy>X)2) = tr

(
(y>XX>y)2) = ‖X>y‖4,

〈X>YKY X,X>YK2Y X〉 = Ω̃(d) · ‖X>y‖4 + Õ(d2) · ‖X>y‖2 + Õ(d3) .

Recall by Assumption 5, we have ‖Ex [xf∗(x)] ‖ = Ω(1). We apply Lemma 13 for our choice of n so that
‖ 1
nX
>y − E [xf∗(x)] ‖ = o(1) w.p. 1− o(1). As a consequence, we have ‖X>y‖ = Ω̃(d) w.h.p. Therefore, the

leading term in the numerator of the correlation is that of tr
(
(X>yy>X)2) - the term due to the interaction

of the mean terms of K and K2.

Meanwhile the first denominator term decomposes as follows:

〈X>YKY X,X>YKY X〉 = Θ̃(1) · tr
(
(X>yy>X)2)

+ Õ(1) · tr
(
(X>Y∆1Y X)(X>yy>X)

)
+ Õ(1) · tr

(
(X>Y∆1Y X)2)

By a similar argument to the numerator term, we observe that the leading sub-term for the first denominator
term is Θ̃(1) · tr

(
(X>yy>X)2).

Further, the second denominator terms decomposes as follows:

〈X>YK2Y X,X>YK2Y X〉 = Θ̃(d2) · tr
(
(X>yy>X)2)

+ Õ(d2) · tr
(
(X>Y∆2Y X)(X>yy>X)

)
+ Õ(d2) · tr

(
(X>Y∆2Y X)2)

By a similar argument, the second denominator term has leading sub-term Θ(d2) · tr
(
(X>yy>X)2).

20

Published in Transactions on Machine Learning Research (11/2024)

Putting the numerator and denominator terms together, we have the correlation has the following asymptotics:

ρ

(
d2

d t2 (W̄>W̄), d2

d t2 (W̄>KW̄)
)

=
Θ̃(d) · tr

(
(X>yy>X)2)+ Õ(d3)

tr
(

Θ̃(1) · (X>yy>X)2 + Õ(d2)
)1/2

· tr
(

Θ̃(d2) · (X>yy>X)2 + Õ(d4)
)1/2

→ 1 ,

completing the proof.

Lemma 13. Suppose |f∗(x)| ≤ c · log`(d) with probability 1 − o(1) for constant c > 0, and the data are
sub-Gaussian with constant parameter K and some ` > 0. Then, ‖ 1

nX
>y − E [xf∗(x)] ‖ = o(1) w.p. 1− o(1),

provided n = ω(d log2`+1(d)).

Proof. As the data x are K-sub-Gaussian for a universal constant K, and the labels are bounded by c log`(d),
we have that xy is sub-Gaussian with parameter M = Kc log`(d). Therefore, the empirical expectation of xy,
1
n

∑n
i=1 xiyi is sub-Gaussian with parameter M/

√
n. Directly applying Lemma 1 in Jin et al. (2019), we see

that,

Pr
(∥∥∥∥∥ 1

n

n∑
i=1

xiyi − E [xy]

∥∥∥∥∥ > t

)
< 2 exp

(
− t2n

2cM2d

)
,

for a universal constant c > 0. Therefore, provided n = ω(d log2`+1(d)), we have
∥∥ 1
n

∑n
i=1 xiyi − E [xy]

∥∥ = o(1)
with probability 1− o(1), completing the proof.

D Additional centerings of the NFC

Double-centered NFC One may additionally center the PTK feature map to understand the co-
evolution of the PTK feature covariance and the weight matrices. We consider such a centering that
we refer to as the double-centered NFC, where we measure ρ

(
(W̄ (`))>W̄ (`), (W̄ (`))>K̄(`)W̄ (`)), where

K̄(`) =
(
∂f(X)
∂h`

− ∂f0(X)
∂h`

)> (
∂f(X)
∂h`

− ∂f0(X)
∂h`

)
, and f0 is the neural network at initialization.

However, the double-centered NFC term corresponds to higher-order dynamics that do not significantly
contribute the centered and uncentered NFC (Figure 5) when initialization is large or for early periods of
training. Note however this term becomes relevant over longer periods of training.

0 80 160 240 320 400 480 560 640 720

Steps

1.e+0

1.e-1

1.e-2

1.e-3

1.e-4

1.e-5

R
at

io

Layer 1

0 80 160 240 320 400 480 560 640 720

Steps

Layer 2

Unnormalized DC/C NFA

Initialization scale
0.001 0.01 0.1 1.0

Figure 5: Ratio of the unnormalized double-centered NFC to the centered NFC throughout neural network
training. In particular, we plot tr

(
W̄>W̄W̄>K̄W̄

)
· tr
(
W̄>W̄W̄>KW̄

)−1 throughout training for both
layers of a two-hidden layer MLP with ReLU activations.

21

Published in Transactions on Machine Learning Research (11/2024)

Isolating alignment of the PTK to the initial weight matrix One may also center just the PTK
feature map, while substituting the initial weights for W to isolate how the PTK feature covariance aligns to
the weight matrices. To measure this alignment, we consider the PTK-centered NFC, which is defined as the
correlation ρ

(
(W (`)

0)>W (`)
0 , (W (`)

0)>K̄(`)W
(`)
0

)
, where W (`)

0 is the initial weight matrix at layer `.

However, this correlation decreases through training, indicating that the correlation of these quantities does
not drive alignment between the uncentered NFM and AGOP (Figure 6).

Layer 1 PTK-NFC Layer 2 PTK-NFC Train Losses

0.0

1.0

0.5

(a) Isotropic data.

Layer 1 PTK-NFC Layer 2 PTK-NFC Train Losses

0.0

1.0

0.5

(b) Data spectrum with decay λk ∼ 1
1+k2 .

Figure 6: PTK-centered NFC throughout training for both layers of a two-hidden layer MLP with ReLU
activations on Gaussian data with two different spectra.

E Extending our theoretical predictions to depth and general activations

Precise predictions of the C-NFC become more complicated with additional depth and general activation
functions. However, we note that the deep C-NFC will remain sensitive to a first-order approximation in
which K is replaced by its expectation. We demonstrate that this term qualitatively captures the behavior of
the C-NFC for 2 hidden layer architectures with quadratic and, to a lesser extent, ReLU activation functions
in Figure 7. In this experiment, we sample Gaussian data with mean 0 and covariance with a random
eigenbasis. We parameterize the eigenvalue decay of the covariance matrix by a parameter α, called the data
decay rate, so that the eigenvalues have values λk = 1

1+kα . As α approaches 0 or ∞ the data covariance
approaches a projector matrix.

In this experiment, we see that the data covariance spectrum will also parameterize the eigenvalue decay of
E [K], allowing us to vary how close the expected PTK matrix (and its dual, the PTK feature covariance) is

22

Published in Transactions on Machine Learning Research (11/2024)

from a projector, where the NFA holds exactly. We see that for intermediate values of α, both the observed
and the predicted derivatives of the C-NFC decreases in value.

We plot the observed values in two settings corresponding to different asymptotic regimes. One setting is the
proportional regime, where n = k = d = 128. The other is the NTK regime where n = d = 128 and k = 1024.
For the quadratic case, as the network approaches infinite width, the prediction more closely matches the
observed values. Additional terms corresponding to the nonlinear part of φ′ in ReLU networks, the derivative
of the activation function, are required to capture the correlation more accurately in this case.

C-NFC 1st-order predicted C-NFCEigenvalue decay of 𝔼[𝐾]

(a) Quadratic.

C-NFC 1st-order predicted C-NFCEigenvalue decay of 𝔼[𝐾]

(b) ReLU.

Figure 7: Observed versus the first-order predicted C-NFC for the input to the first layer of a two hidden
layer MLP. The dashed line is neural network width k = n = d = 128, where n and d are the number of data
point and data dimension, respectively, while the solid line uses n = d = 128 and k = 1024.

F Free probability calculations of C-NFC

In order to understand the development of the NFC, we analyze the centered NFC in the limit that learning
rate is much smaller than the initialization for a one hidden layer MLP with quadratic activations. We write
this particular network as,

f(x) = a>(Wx)2 ,

where a ∈ R1×k and W ∈ Rk×d, where d is the input dimension and k is the width. In this case, the NFC
has the following form,

ρ
(
F, Ḡ

)
=

tr
(
X>YKY XX>YK2Y X

)
tr ((X>YKY X)2)−1/2 tr ((X>YK2Y X)2)−1/2 , (11)

where K = XW>diag (a)2
WX>.

23

Published in Transactions on Machine Learning Research (11/2024)

We assume two properties hold in the finite dimensional case we consider, that will hold asymptotically in
the infinite dimensional limit.
Assumption 14 (Self-averaging). We assume that computing the average of the NFC quantities across
initializations is equal to the quantities themselves in the high-dimensional limit.
Assumption 15 (Asymptotic freeness). We assume that the collections {X,Y } and {W,a} are asymptotically
free with respect to the operator E [tr(·)], where tr[M] = 1

n

∑n
i=1 Mii.

We will compute the expected values of the centered NFC under these assumptions. In the remainder of the
section we will drop the E [·] in the trace for ease of notation.

F.1 Free probability identities

The following lemmas will be useful: let {C̄i} and {Ri} be freely independent of each other with respect to
tr, with tr[C̄i] = 0. Alternating words have the following products:

tr[C̄1R1] = 0 (12)

tr[C̄1R1C̄2R2] = tr[R1]tr[R2]tr[C̄1C̄2] (13)

tr[C̄1R1C̄2R2C̄3R3] = tr[R1]tr[R2]tr[R3]tr[C̄1C̄2C̄3] (14)

tr[C̄1R1C̄2R2C̄3R3C̄4R4] = tr[R1]tr[R2]tr[R3]tr[R4]tr[C̄1C̄2C̄3C̄4]+
tr[R1]tr[R3]tr[R̄2R̄4]tr[C̄1C̄2]tr[C̄3C̄4] + tr[R2]tr[R4]tr[R̄1R̄3]tr[C̄2C̄3]tr[C̄1C̄4]

(15)

where R̄i ≡ Ri − tr[Ri].

Applying these identities to the one hidden layer quadratic case, we use the following definitions:

R = W>diag
(
a2)W, A = (X>Y X)2, B = X>X (16)

Crucially, R is freely independent of the set {A,B}. We will also use the notation M̄ to indicated the centered
version of M , M̄ = M − tr[M].

F.2 Numerator term of NFC

The numerator in Equation (11) is

tr
(
X>YKY XX>YK2Y X

)
= tr (ARARBR) (17)

Re-writing A = Ā+ tr[A] and B = B̄ + tr[B] we have:

tr
(
X>YKY XX>YK2Y X

)
= tr

(
(Ā+ tr[A])R(Ā+ tr[A])R(B̄ + tr[B])R

)
(18)

This expands to

tr
(
X>YKY XX>YK2Y X

)
= tr

(
ĀRĀRB̄R

)
+ 2tr (A) tr

(
ĀRB̄R2)+ tr (B) tr

(
ĀRĀR2)

tr (A)2 tr
(
B̄R3)+ 2tr (A) tr (B) tr

(
ĀR3)+ tr (A)2 tr (B) tr (R)3 (19)

Using the identities we arrive at:

tr
(
X>YKY XX>YK2Y X

)
= tr[A]2tr[B]tr

(
R3)

+ 2tr[A]tr[R2]tr[R]tr
(
ĀB̄
)

+ tr[B]tr[R]tr[R2]tr
(
Ā2)

+ tr[R]3tr
(
Ā2B̄

) (20)

24

Published in Transactions on Machine Learning Research (11/2024)

F.3 First denominator term of NFC

The first denominator term in Equation (11) is

tr
(
X>YKY XX>YKY X

)
= tr (ARAR) (21)

This is a classic free probability product:

tr
(
X>YKY XX>YKY X

)
= tr[A2]tr[R]2 + tr[A]2tr

(
R2)− tr[A]2tr[R]2 (22)

which can be derived from the lemmas.

F.4 Second denominator term of NFC

For the second denominator term of Equation (11) we have

tr
(
X>YK2Y XX>YK2Y X

)
= tr (ARBRARBR) (23)

Expanding the first A we have

tr
(
X>YK2Y XX>YK2Y X

)
= tr

(
ĀRBRARBR

)
+ tr[A]tr

(
R2BRARB

)
(24)

Next we expand the first B:

tr
(
X>YK2Y XX>YK2Y X

)
= tr

(
ĀRB̄RARBR

)
+ tr[B]tr

(
ĀR2ARBR

)
+ tr[A]tr[B]tr

(
R3ARB

)
+ tr[A]tr

(
R2B̄RARB

) (25)

The next A gives us

tr
(
X>YK2Y XX>YK2Y X

)
= tr

(
ĀRB̄RĀRBR

)
+ 2tr[A]tr

(
ĀRB̄R2BR

)
+ tr[B]tr

(
ĀR2ĀRBR

)
+ 2tr[A]tr[B]tr

(
R3ĀRB

)
+ tr[A]2tr[B]tr

(
R4B

)
+ tr[A]2tr

(
R2B̄R2B

) (26)

Expanding the final B we have

tr
(
X>YK2Y XX>YK2Y X

)
= tr

(
ĀRB̄RĀRB̄R

)
+ 2tr[B]tr

(
ĀRB̄RĀR2)+ 2tr[A]tr

(
ĀRB̄R2B̄R

)
+ 4tr[A]tr[B]tr

(
R3ĀRB̄

)
+ 2tr[A]tr[B]2tr

(
R4Ā

)
+ 2tr[A]2tr[B]tr

(
R4B̄

)
+ tr[A]2tr[B]2tr[R4] + tr[A]2tr[R2B̄R2B̄] + tr[B]2tr[R2ĀR2Ā]

(27)

Now all terms are in the form of alternating products from the lemma. This means we can factor out the
non-zero traces of the other terms. Simplifying we have:

tr
(
X>YK2Y XX>YK2Y X

)
= tr[R]4tr

(
(ĀB̄)2)+ 2tr[R]2(tr[R2]− tr[R]2)tr[ĀB̄]2

+ 2tr[R]2tr[R2]
(
tr[B]tr

(
Ā2B̄

)
+ tr[A]tr

(
ĀB̄2))

+ 4tr[A]tr[B]tr[R3]tr[R]tr
(
ĀB̄
)

+ tr[A]2tr[B]2tr[R4]
+ tr[A]2tr[B̄2]tr[R2]2 + tr[Ā]2tr[B2]tr[R2]2

(28)

All terms of the NFC are now in terms of traces of the matrices A, B, and R and functions on each term
separately. The matrices A and B are determined by the data, while the moments of the eigenvalues of R are
determined by the initialization distribution of the weights in the neural network, and neither training nor
the data.

25

Published in Transactions on Machine Learning Research (11/2024)

G Alignment reversing dataset

The data consists of a mixture of two distributions from which two subsets of the data X(1) and X(2) are
sampled from, and is parametrized by a balance parameter γ ∈ (0, 1] and two variance parameters ε1, ε2 > 0.
The subset X(1) which has label y1 = 1 and constitutes a γ fraction of the entire dataset, is sampled from a
multivariate Gaussian distribution with mean 0 and covariance Σ = 11> + ε1 · I . Then the second subset,
X(2), is constructed such that (X(2))>X(2) ≈ ((X(1))>X(1))−2, and has labels y2 = 0. Then, for balance
parameter γ sufficiently small, the AGOP second derivative approximately satisfies,

E
[
Ẇ>KẆ

]
∼ X>Y XX>XX>Y X = (X(1))>X(1)X>X(X(1))>X(1) ≈ (X(1))>X(1)(X(2))>X(2)(X(1))>X(1)

≈ I ,

In contrast, the NFM second derivative, E
[
Ẇ>Ẇ

]
= (X>Y X)2 = ((X(1))>X(1))2 ≈ Σ2, will be significantly

far from identity.

Specifically, we construct X(2) by the following procedure:

1. Extract singular values S1 and right singular vectors U1 from a singular-value decomposition (SVD)
of (X(1))>X(1).

2. Extract the left singular vectors V2 from a sample X̃2 that is sampled from the same distribution as
X(1).

3. Construct X(2) = V2S
−1
1 U>1 .

4. Where X = X(1) ⊕X(2), Set X ← X + ε2Z, where Z ∼ N (0, I).

5. Set y ← y + 10−5 · 1.

Note that U1S
−1
1 V >2 V2S

−1
1 U>1 = U1S

−2
1 U>1 = ((X(1))>X(1))−2, therefore, we should set X(2) = V2S

−1
1 U>1

to get (X(2))>X(2) = ((X(1))>X(1))−2. Regarding the variance parameters, in practice we set ε1 = 0.5 and
ε2 = 10−2.
Proposition 16 (Expected NFM and AGOP). For a one hidden layer quadratic network, f(x) = a>(Wx)2,
with a ∼ N (0, I) and W ∼ 1√

k
· N (0, I),

Ea,W
[
Ẇ>Ẇ

]
= (X>Y X)2 ,

and,

Ea,W
[
Ẇ>KẆ

]
= 3 · tr

(
X>X

)
· (X>Y X)2

+ 6X>Y XX>XX>Y X

Proof of Proposition 16.

E
[
Ẇ>Ẇ

]
= X>Y XE

[
W>0 diag (a)2

W0

]
X>Y X

= (X>Y X)2 .

Further,

E
[
Ẇ>KẆ

]
= X>Y E

[
K2]Y X .

We note that,

K2 = W>0 diag (a)2
W0X

>XW>0 diag (a)2
W0 (29)

=
k∑

s1,s2

n∑
α

d∑
p1,p2

(30)

a2
s1
a2
s2
Ws1,p1Xα,p1Xα,p2Ws2,p2XWs1W

>
s2
X> . (31)

26

Published in Transactions on Machine Learning Research (11/2024)

Therefore, applying Wick’s theorem, element i, j of K2 satisfies,

E
[
K2
ij

]
=

k∑
s

n∑
α

d∑
p1,p2

E
[
a4
sWs,p1Xα,p1Xα,p2Ws,p2X

>
i WsW

>
s Xj

]
=

k∑
s

n∑
α

d∑
p1,p2,q1,q2

E
[
a4
sWs,p1Ws,p2Ws,q1Ws,q2Xα,p1Xα,p2Xi,q1Xj,q2

]
= 3

k∑
s

n∑
α

d∑
p1,p2,q1,q2(

E [Ws,p1Ws,p2]E [Ws,q1Ws,q2] +

E [Ws,p1Ws,q1]E [Ws,p2Ws,p2] +

E [Ws,p1Ws,q2]E [Ws,p2Ws,q1]
)

·Xα,p1Xα,p2Xi,q1Xj,q2

= 3
n∑
α

d∑
p1,p2,q1,q2(

δp1p2δq1q2 + δp1q1δp2q2 + δp1q2δp2q1

)
·Xα,p1Xα,p2Xi,q1Xj,q2

= 3
n∑
α

(d∑
p1,q1

Xα,p1Xα,p1Xi,q1Xj,q1

+
d∑

p1,p2

Xα,p1Xα,p2Xi,p1Xj,p2

+
d∑

p1,p2

Xα,p1Xα,p2Xi,p2Xj,p1

)
= 3 · tr

(
X>X

)
·X>i Xj + 3

n∑
α

X>αXiX
>
αXj

+ 3
n∑
α

X>αXjX
>
αXi

= 3 · tr
(
X>X

)
·X>i Xj + 3XiX

>XXj + 3XjX
>XXi .

Finally, we conclude,

E
[
K2] = 3

(
tr
(
X>X

)
XX> + 2XX>XX>

)
,

giving the second statement of the proposition.

H Varying the data distribution

We verify that our observations for isotropic Gaussian data hold even when the data covariance has a
significant spectral decay. (Figures 9 and 10). We again consider Gaussian data that is mean 0 and where
the covariance is constructed from a random eigenbasis. In Figure 9, we substitute the eignevalue decay as
λk ∼ 1

1+k , while in Figure 10, we use λk ∼ 1
1+k2 . We plot the values of the UC-NFC, C-NFC, train loss,

and test loss throughout training for the first and second layer of a two hidden layer network with ReLU
activations, while additionally varying initialization scale. Similar to Figure 8, we observe that the C-NFC is
more robust to the initialization scale than the UC-NFC, and UC-NFC value become high through training,
while being small at initialization. We see that the test loss improves for smaller initializations, where the
value of the C-NFC and UC-NFC are higher.

27

Published in Transactions on Machine Learning Research (11/2024)

UC-NFC C-NFC Train Losses

UC-NFC C-NFC Test Losses

Figure 8: Centered neural feature correlations. Data covariance decay rate λk = 1. Top row is layer 1, bottom
row is layer 2. Train (test) losses are scaled by the maximum train (test) loss achieved so that they are
between 0 and 1.

UC-NFC C-NFC Train Losses

UC-NFC C-NFC Test Losses

Figure 9: Centered neural feature correlations. Data covariance decay rate λk ∼ 1
1+k . Top row is layer 1,

bottom row is layer 2. Train (test) losses are scaled by the maximum train (test) loss achieved so that they
are between 0 and 1.

28

Published in Transactions on Machine Learning Research (11/2024)

UC-NFC C-NFC Train Losses

UC-NFC C-NFC Test Losses

Figure 10: Centered neural feature correlations. Data covariance decay rate λk ∼ 1
1+k2 . Top row is layer 1,

bottom row is layer 2. Train (test) losses are scaled by the maximum train (test) loss achieved so that they
are between 0 and 1.

29

Published in Transactions on Machine Learning Research (11/2024)

I Effect of initialization on feature learning

We see that when initialization is small, the C-NFC and UC-NFC are high at the end of training with and
without fixing the learning speed (Figure 4). This is reflected by the quality of the features learned by the
NFM and the qualitative similarity of the NFM and AGOP at small initialization scale (Figure 11). Further,
we notice that as we increase initialization, without fixing speeds, the correspondence between the NFM
and decreases and the quality of the NFM features decreases (at a faster rate than the AGOP). Strikingly,
when learning speeds are fixed, the quality of the features in the AGOP and NFM becomes invariant to the
initialization scale.

0.001 0.01 0.1 1.0

(a) NFM, speeds not fixed.

0.001 0.01 0.1 1.0

(b) AGOP, speeds not fixed.

0.001 0.01 0.1 1.0

(c) NFM, speeds fixed.

0.001 0.01 0.1 1.0

(d) AGOP, speeds fixed.

Figure 11: The NFM at the end of training as a function of initialization scale in the first layer weights, with
and without fixing learning speeds. The task again is the chain monomial with rank r = 5. The title of each
plot is the initialization scale of the first layer s0.

30

Published in Transactions on Machine Learning Research (11/2024)

J Experimental details

We describe the neural network training and architectural hyperparameters in the experiments of this paper.
Biases were not used for any networks. Further, in all polynomial tasks, we scaled the label vector to have
standard deviation 1.

Corrupted AGOP For the experiments in Figure 1, we used n = 384 data points, d = 32, k = 128 as the
width in all layers, isotropic Gaussian data, initialization scale 0.01 in the first layer and default scale in the
second. We used ReLU activations and two hidden layers. For the experiments in Figure 8,9,10,5, and 6, we
used a two hidden layer network with ReLU activations, learning rate 0.05, 800 steps of gradient decent, and
took correlation/covariance measurements every 5 steps.

C/UC-NFC calculations on real datasets We describe the experimental details for Figure 2. For (A,B)
we trained a five layer MLP on the first 50,000 datapoints of Streetview House Numbers (SVHN), CIFAR-10,
CIFAR-100, STL-10, MNIST, and German Traffic Sign Recognition Benchmark (GTSRB) datasets. We used
the default PyTorch initialization (scale of 1) for all layers. We used width 256 in all layers, and trained with
SGD with batch size 128. For SVHN and CIFAR, we trained for 150 epochs with learning rate 0.2. For STL-10
and GTSRB we used learning rate 0.1 for 150 epochs. For MNIST we trained for 50 epochs with learning
rate 10. For the VGG-11 experiments on CIFAR-10, we used the default architecture from torchvision with
batch-norm layers removed. We trained for 50 epochs and learning rate 1. For experiments with a GPT-family
model, we adapted the model and dataset from NanoGPT (https://github.com/karpathy/nanoGPT). We
used all the default settings and the default Adam optimizer, but used no weight decay, learning rate 5e-3,
and removed all dropout layers. We also reduced the number of attention layers to 3 from the original 6. We
trained on the Shakespeare characters dataset.

Alignment reversing dataset For the experiments in Figure 3, we used k = n = d = 1024 for the width,
dataset size, and input dimension, respectively. Further, the traces of powers of Fa are averaged over 30
neural net seeds to decouple these calculated values from the individual neural net seeds. The mean value
plotted in the first two squares of figure is computed over 10 data seeds.

SLO experiments For the SLO figures (Figures 11, 4), we use isotropic Gaussian data, 600 steps of
gradient descent. The learning rates are chosen based on initialization scale in the first layer. For initialization
scales 1, 0.1, 0.01, and 0.001, we used learning rates 0.03, 0.1, 0.2, 0.4, respectively. We again used two hidden
layers with ReLU activations. We chose n = 256, d = 32, and k = 256 as the width. We divided the linear
readout weights by 0.01 at initialization to promote feature learning, and modified SLO to scale gradients by
(ε+ ‖∇L‖)−1, rather than just the inverse of the norm of the gradient, for ε = 0.1. This technique smooths
the training dynamics as the parameters approach a loss minimum, allowing the network to interpolate the
labels.

Predictions with depth For the Deep C-NFC predictions (Figure 7), we used n = 128, d = 128,
initialization scale of 1. The low rank task is just the chain monomial of rank r = 5. The high rank polynomial
task is y(x) =

∑d
i=1(Qx)2

i , where Q ∈ Rd×d is a matrix with standard normal entries.

Figures 16 and 17 For the experiments on the SVHN dataset, we train a four hidden layer neural network
with ReLU activations, initialization scale 1.0 in all layers and width 256. For SVHN, we subset the dataset
to 4000 points. We train for 3000 epochs with learning rate 0.2 for standard training, and 0.3 for SLO,
and take NFC measurements every 50 epochs. For SLO, we set C0 = 2.5, C1 = C2 = 0.4, and relaxation
parameter ε = 0.2. We pre-process the dataset so that each pixel is mean 0 and standard deviation 1. For the
experiments on CelebA, we train a two hidden layer network on a balanced subset of 7500 points with Adam
with learning rate 0.0001 and no weight decay. We use initialization scale 0.02 in the first layer, and width
128. We train for 500 epochs. We pre-process the dataset by scaling the pixel values to be between 0 and 1.

Code availability We make the code available for the experiments in Figure 2 available at https:
//anonymous.4open.science/r/centered_NFA-4795/ (for MLP+VGG).

31

https://github.com/karpathy/nanoGPT
https://anonymous.4open.science/r/centered_NFA-4795/
https://anonymous.4open.science/r/centered_NFA-4795/

Published in Transactions on Machine Learning Research (11/2024)

K Additional SLO experiments

We demonstrate the SLO can be applied adaptively to increase the strength of the UC-NFC in all layers of a
deep network on the chain monomial task of rank r = 3. We train a three hidden layer MLP with ReLU
activations and an initialization scale of 0.1 by SLO, and find that all layers finish at the same high UC-NFC
(Figure 12). Further, this final UC-NFC value is higher than the highest UC-NFC achieved by any layer with
standard training. The generalization loss is also lower with SLO on this example, corresponding to better
feature learning (through the UC-NFC).

UC-NFC Train Losses Test Losses

Figure 12: Training with SLO where the learning speeds are chosen adaptively based on the UC-NFC values
of all layers. The dashed lines correspond to training with standard GD.

At every time step we choose Ci = s for the layer i with the smallest UC-NFC correlation value, while setting
Cj = s−1 for all other layers, with s = 20. We again modify SLO by dividing the gradients by ε‖∇L‖ for
ε = 0.01. The learning rate is set to 0.05 in SLO and 0.25 for the standard training (gradient descent), and
the networks are trained for 500 epochs. We sample n = 256 points with d = 32, and use width k = 256.

32

Published in Transactions on Machine Learning Research (11/2024)

L Additional C-NFC/UC-NFC plots across architectures

A. (MLP on CIFAR-100)

B. (MLP on MNIST)

C. (MLP on SVHN)

D. (MLP on CIFAR-10)

E. (MLP on GTSRB)

F. (MLP on STL-10)

Figure 13: Full trajectories for the C/UC-NFC of a five hidden layer MLP trained on six datasets, averaged
over three seeds, with large (1.0) initialization scale. The blue curves are the UC-NFC, while green curves
are the C-NFC.

33

Published in Transactions on Machine Learning Research (11/2024)

A. (MLP on CIFAR-100)

B. (MLP on MNIST)

C. (MLP on SVHN)

D. (MLP on CIFAR-10)

E. (MLP on GTSRB)

F. (MLP on STL-10)

Figure 14: Losses and normalized changes in weights across datasets for a five hidden layer MLP. The change
in weight is measured as ‖W −W0‖‖W‖−1. First column of all subfigures are the losses, while the second
columns are the weight changes.

M Additional experiments on real datasets

We replicate Figures 1 and 4 on celebrity faces (CelebA) and Street View House Numbers (SVHN). We
begin by showing that one can disrupt the NFC correspondence by replacing the PTK feature covariance
with a random matrix of the same spectral decay. For this example, we measure the Pearson correlation,
which subtracts the mean of the image. I.e. ρ̄(A,B) ≡ ρ (A−m(A), B −m(B)), where m(A),m(B) are the
average of the elements of A and B.

34

Published in Transactions on Machine Learning Research (11/2024)

A. (VGG-11 on CIFAR-10)

B. (GPT on Shakesepeare)

Figure 15: Losses and normalized changes in weights across datasets for VGG-11 on CIFAR-10 and GPT on
Shakespeare character generation. The change in weight is measured as ‖W −W0‖‖W‖−1.

First column of (A) and (B) are the losses, while the remaining columns are the weight changes.

W>W (NFM) W>KW (AGOP) W>QW

Figure 16: Various feature learning measures for the CelebA binary subtask of predicting glasses. The
diagonals of the NFM

(
W>W

)
(first plot) and AGOP

(
W>KW

)
(second plot) of a fully-connected network

are similar to each other. Replacing K with a symmetric matrix Q with the same spectrum but independent
eigenvectors obscures the low rank structure (third plot), and reduces the Pearson correlation of the diagonal
from ρ̄

(
diag (F) ,diag

(
Ḡ
))

= 0.91 to ρ̄
(
diag (F) ,diag

(
W>QW

))
= 0.04.

35

Published in Transactions on Machine Learning Research (11/2024)

UC-NFC C-NFC C/UC Ratio Train Losses

(a) Feature learning measurements.

NFM AGOP

(b) Standard Training

NFM AGOP

(c) SLO

Figure 17: We demonstrate on the SVHN dataset, with a 4 hidden layer neural network with large initialization
scale, how SLO can improve the strength of the UC-NFC, the C-NFC, the ratio of the unnormalized C-NFC
to UC-NFC (plot (a)) and the feature quality (plots (b) and (c)). In plots (b) and (c), we visualize the
diagonal of the NFM and AGOP for the first layer of the trained network, where SLO was applied with
C0 = 2.5, C1 = C2 = 0.4.

36

	Introduction
	Alignment between the weight matrices and the pre-activation tangents
	Preliminaries
	Alignment decomposition

	Centering the NFC isolates weight-PTK alignment
	Theoretical analysis of the C-NFC at early times
	Gradient flow dynamics
	Maximum C-NFC for data on the sphere
	Early time C-NFC dynamics in co-scaling regime
	Exact predictions with one hidden layer and quadratic activations

	Increasing the centered contribution to the NFC strengthens feature learning
	Feature learning and initialization
	Speed Limited Optimization

	Discussion
	Acknowledgements
	Glossary
	Connection of the PTK to the empirical NTK
	Additional proofs and statements
	Additional centerings of the NFC
	Extending our theoretical predictions to depth and general activations
	Free probability calculations of C-NFC
	Free probability identities
	Numerator term of NFC
	First denominator term of NFC
	Second denominator term of NFC

	Alignment reversing dataset
	Varying the data distribution
	Effect of initialization on feature learning
	Experimental details
	Additional SLO experiments
	Additional C-NFC/UC-NFC plots across architectures
	Additional experiments on real datasets

