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Abstract
Significant efforts have been directed towards
adapting self-supervised multimodal learning for
Earth observation applications. However, most
current methods produce coarse patch-sized em-
beddings, limiting their effectiveness and inte-
gration with other modalities like LiDAR. To
close this gap, we present DUNIA, an ap-
proach to learn pixel-sized embeddings through
cross-modal alignment between images and full-
waveform LiDAR data. As the model is trained in
a contrastive manner, the embeddings can be di-
rectly leveraged in the context of a variety of envi-
ronmental monitoring tasks in a zero-shot setting.
In our experiments, we demonstrate the effec-
tiveness of the embeddings for seven such tasks:
canopy height mapping, fractional canopy cover,
land cover mapping, tree species identification,
plant area index, crop type classification, and per-
pixel waveform-based vertical structure mapping.
The results show that the embeddings, along with
zero-shot classifiers, often outperform specialized
supervised models, even in low-data regimes. In
the fine-tuning setting, we show strong perfor-
mances near or better than the state-of-the-art on
five out of six tasks.

1. Introduction
With the rapid expansion of Earth Observation (EO) satellite
missions, deep learning has emerged as a powerful solution
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Figure 1. DUNIA’s alignment strategy leverages temporal and ver-
tical information at the pixel level, enabling the model to develop a
cross-modal understanding from a single satellite image. This ap-
proach serves as a foundation for cross-modal retrieval tasks across
diverse EO applications. The pre-trained model is represented in
navy blue, the multi-temporal autoencoder (AE) in yellow, and the
waveform AE in green.

for key EO applications, ranging from monitoring natural
resources (Chen et al., 2023; Fayad et al., 2024; Li et al.,
2023; Liu et al., 2022; 2023; Tolan et al., 2024; Lang et al.,
2023; Pauls et al., 2024; Schwartz et al., 2023; Pauls et al.,
2025) and assessing environmental impacts (Dalagnol et al.,
2023; Wagner et al., 2023), to climate monitoring and fore-
cast (Andrychowicz et al., 2023; Schultz et al., 2021), as
well as agricultural and land resource management (Ienco
et al., 2019; Kussul et al., 2017; Zhang et al., 2019).

While research of new deep learning architectures and up-
coming remote satellite missions is expected to enhance ex-
isting EO applications, supervised deep learning approaches
have key limitations. First, these models depend on labeled
data, often requiring large annotated datasets. For exam-
ple, the estimation of above-ground biomass (AGB) still
heavily relies on traditional methods due to limited ground-
based measurements and the need to use other variables as
proxies (Morin et al., 2023; Schwartz et al., 2023).

Second, EO models are often tailored to specific tasks, lim-
iting their adaptability and reusability, even when using
similar input data sources. For instance, a land cover classi-
fication model cannot easily predict canopy height due to
differences in input-output relationships, as the network may
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prioritize learning features that are highly discriminative for
a given task but not the other.

Third, EO models often use optical or radar imagery to
predict single-valued targets like canopy height or land cover
classes. However, they struggle with more complex outputs
like the full vertical structure of vegetation.1

Foundation models (FMs) offer a promising solution to the
aforementioned limitations by leveraging self-supervised
pre-training on vast amounts of unlabeled data (Brown et al.,
2020; Devlin, 2018; Kirillov et al., 2023; Minderer et al.,
2022; Radford et al., 2021). For EO applications, such
models are being developed to process diverse data types,
including time series processing (Yuan et al., 2022), adapta-
tion to different input satellite sensors (Xiong et al., 2024)
or varying Ground Sample Distances (GSD) (Reed et al.,
2023), and multi-modal data fusion (Astruc et al., 2025;
2024; Fuller et al., 2024). Most of current foundation mod-
els primarily address the adaptability issue, but not label
scarcity. In fact, most EO-focused FMs are pre-trained
masked auto-encoders (MAEs), which require extensive
fine-tuning (Lehner et al., 2024; Singh et al., 2023). More-
over, existing FMs, even multi-modal ones, only leverage
image-based modalities. As such, they excel in EO tasks re-
quiring horizontal structural understanding (e.g., land cover
mapping, tree species identification), but struggle with EO
applications requiring vertical structure understanding (e.g.,
canopy height estimation). Additionally, their patch-based
approach limits direct pixel-level prediction capabilities.
This hinders the integration of LiDAR data, such as full-
waveform LiDAR data available as labels at resolutions
higher than the patch scale.

In this work, we propose a Dense Unsupervised Nature
Interpretation Algorithm (DUNIA) that learns to generate
pixel-level embeddings by aligning vertical (from a space-
borne full waveform LiDAR) and horizontal structure infor-
mation with satellite imagery through contrastive learning.
This dual alignment strategy enables understanding of both
vertical and horizontal structures, supporting diverse EO ap-
plications with minimal, if any, training. DUNIA achieves
strong retrieval performance for several tasks and excels in
forest structure benchmarks. In our experiments, we demon-
strate the effectiveness of the resulting embeddings for seven
key EO applications and show that zero-shot classification
operating on these embeddings can outperform specialized
supervised EO models in several cases. A simplified version
of our approach is presented in Figure 1.

1Capturing such vertical structures is essential for understand-
ing biomass allocation and species diversity. Predicting vertical
structure from EO imagery is challenging due to its complexity
and limited sensor data, requiring cross-modal understanding over
direct prediction (Tan et al., 2024).

2. Background & Contribution
We sketch the related works along with our contributions.

2.1. Contrastive Learning

Contrastive learning trains networks to produce similar em-
beddings for semantically related inputs and dissimilar em-
beddings for unrelated ones. Related inputs may include
different augmentations of the same sample or paired exam-
ples from different modalities. In this context, one of the
main challenges is to avoid model collapse, where model
outputs become constant. This is typically addressed by: 1)
architectural designs or 2) specialized objective functions.

Prominent examples of architectural designs are
BYOL (Grill et al., 2020) and SimSiam (Chen &
He, 2021), which respectively use asymmetry to prevent
collapse, BYOL employing a momentum encoder and
SimSiam using a stop-gradient operation with a predictor
network. Specialized objective functions can be categorized
into pair-based contrastive losses, clustering losses, and
negative-pair-free losses. Here, pair-based losses, such
as those presented in SimCLR (Chen et al., 2020) and
MoCo (He et al., 2020), align positive pairs and separate
negative pairs, but assume unique positive pairs within a
mini-batch, which is not always true for EO data, especially
at high resolutions. Clustering methods like SeLa (Asano
et al., 2019) and SwAV (Caron et al., 2020) relax this
constraint by optimizing a contrastive objective over cluster
assignments instead. Negative-pair-free methods, such as
Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes
et al., 2021), focus on redundancy reduction in the feature
dimension. Zero-CL (Zhang et al., 2021) uses whitening
transformations on the embeddings to maximize the trace
of the cross-covariance matrix, achieving alignment and
redundancy reduction without negative pairs.

2.2. Self-Supervised Learning for EO

Inspired by masked image modeling (MIM) from vision
transformers, several SSL frameworks have adapted MAE-
style objectives to the remote sensing domain. These
methods mainly focus on reconstructing masked inputs to
learn spatial, spectral, and temporal representations. Sat-
MAE (Cong et al., 2022) introduces a spectral-temporal
aware masking scheme for Sentinel-2 (S-2) timeseries. Sat-
MAE++ (Noman et al., 2024) extends SatMAE by incor-
porating multi-scale feature extraction. Scale-MAE (Reed
et al., 2023) embeds spatial resolution information into po-
sitional encodings for multiscale imagery. DOFA (Xiong
et al., 2024) extends masked autoencoding with a dynamic,
spectral-aware weighting mechanism, enabling the model to
encode diverse sensor modalities through a shared encoder.

Other related works on SSL for EO applications relies on

2



DUNIA: Pixel-Sized Embeddings via Cross-Modal Alignment for Earth Observation Applications

a contrastive objective to capture the relationships within
the data. CROMA (Fuller et al., 2023) aligns radar and
optical modalities using a cross-modal contrastive loss, sup-
ported by an auxiliary reconstruction head. DeCUR (Wang
et al., 2024) explicitly disentangles intra- and inter-modal
contrastive signals based on Barlow Twins (Zbontar et al.,
2021). AnySat (Astruc et al., 2024) proposed a resolution-
and temporal-adaptive framework capable of handling data
from various sensors and resolutions, effectively combining
multiple EO data sources into a shared embedding space.

2.3. Multi-Modal Learning

Multi-modal SSL approaches can be categorized into three
main categories. (1) Modality-agnostic models use a shared
network for different modalities (Carreira et al., 2022; Gird-
har et al., 2022; Jaegle et al., 2021), but are typically limited
to one modality at a time during training, restricting cross-
modal knowledge sharing (Srivastava & Sharma, 2024). For
EO applications, several models follow this approach. Scale-
MAE (Reed et al., 2023) and DOFA (Xiong et al., 2024)
both process imagery across varying resolutions, the lat-
ter also processes different wavelengths using a common
encoder. (2) Fusion-encoder models integrate data from
multiple modalities through cross-modal attention, effec-
tively combining information from each modality (Bach-
mann et al., 2022; Bao et al., 2021; Singh et al., 2022). Om-
niSat (Astruc et al., 2025) and AnySat (Astruc et al., 2024)
exemplify this by integrating data from diverse EO sources
into a unified representation. (3) Finally, multi-encoder ap-
proaches use separate encoders for each modality, which
are then aligned in a shared latent space. This strategy
is highly effective for tasks such as cross-modal retrieval
and zero-shot classification across different modalities: im-
age/text (Radford et al., 2021; Jia et al., 2021; Yuan et al.,
2021; Yu et al., 2022), audio/text (Guzhov et al., 2022), and
video/text (Luo et al., 2022; Pei et al., 2023).

2.4. Contribution

Our work aligns closely with the abovementioned third cat-
egory, focusing on mono- and cross-modal retrieval within
the multi-encoder approach. Unlike prior models that align
paired data at the instance level (e.g., matching an image to
its textual description), here we perform pixel-level align-
ment. This is necessary to preserve the spatial resolution
required to match with full LiDAR waveform footprints.

Specifically, our approach aligns sparse LiDAR waveforms
with high-resolution imagery through contrastive learning to
understand the vertical structure (i.e., pixel-waveform align-
ment) and simultaneously performs pixel-pixel alignment
for horizontal structure understanding. DUNIA enables per-
pixel vertical and horizontal structure retrieval and surpasses
specialized models in forest structure benchmarks. For land

cover understanding, it performs competitively in zero-shot
and low-shot evaluations. Additionally, pixel embeddings
can directly generate waveforms representing forest vertical
structures — a task not possible with existing methods.

3. Approach
Our objective is to learn two distinct pixel-level embed-
ding spaces corresponding to two EO data modalities —
vertical and horizontal — using a single pre-trained model.
This enables simultaneous understanding of both horizon-
tal and vertical structures. Vertical information is derived
from the Global Ecosystem Dynamics Investigation (GEDI)
instrument (Dubayah et al., 2020), a spaceborne LiDAR
that provides sparse measurements of 3D structures via 1D
waveform signals. Horizontal information comes from 10
m resolution imagery acquired by the S-1 & 2 missions.

While our framework can be implemented in various ways,
we adopt a modular design centered around a transformer
encoder and two independent convolutional decoders. This
encoder-decoder architecture enables us to generate pixel-
sized embeddings for each input. The two decoders are
designed to disentangle horizontal and vertical structure
understanding: one focuses on spatial (horizontal) relation-
ships, the other on vertical structure.

For horizontal structure alignment, we use a multi-temporal
autoencoder (AE) that encodes a sequence of satellite im-
ages and produces temporally informed, per-pixel embed-
dings. This design achieves two goals: 1) it provides an
augmented input to the pre-trained model, and 2) it allows
the model to implicitly capture phenological patterns with-
out requiring a time series at inference time.

For vertical structure alignment, we also use an AE, this time
encoding GEDI waveforms. The waveform encoder projects
the 1D input into a latent space, which is aligned with the
corresponding pixel embedding from the pre-trained model.
While the decoder is not needed for the alignment itself, it is
necessary for waveform generation, ensuring that the latent
space remains semantically and structurally meaningful.

Figure 2 illustrates the main components of our approach, in-
cluding the inputs to each model, their architectural building
blocks, and the layers used for alignment. Below, we de-
scribe the main modules in more detail, followed by our pre-
training objectives and the latent diffusion model for wave-
form generation. Full details are provided in Appendix A.

3.1. Pre-trained Model

The pre-trained model in DUNIA (Figure 2) takes an im-
age I ∈ RH×W×C and produces pixel level embeddings
in RH×W×Dp . C is the number of input channels, (H,W )
is the image resolution, and Dp is the target projection di-
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Figure 2. Simplified architectural overview of the proposed framework. The figure illustrates the key encoder and decoder components,
input modalities, and the layers where alignment is performed (red dashed arrows). The pre-trained model is shaded in blue. The
multi-temporal image AE, is shaded in yellow. The waveform encoder is shaded in green. Additional components, losses and training
objectives are omitted for clarity; see Figure A1 for full details.

mension. I is a median composite image generated from
S-1 & 2 observations over several dates. The pre-trained
model comprises five building blocks: a patch embedding,
a shared encoder, two similar decoders, neighborhood at-
tention layers and several projection heads. Following is a
brief description of each of these blocks.

Patch Embedding. The 2D composite image I is split
into N = HW/P 2 patches, each of dimension D using a
convolutional layer, with P and D the patch size and the
patch embedding dimension respectively.

Encoder Architecture. The encoder consists of 16 stan-
dard transformer layers (Vaswani et al., 2017), organized
into four Transformer Blocks, of four layers each. Each
layer inputs/outputs a sequence of image tokens in RN×D.

Decoder Architecture. The two decoders transform the
encoder outputs into two sets of pixel-sized embeddings
(OV , OH ∈ RH×W×Dp) for pixel-waveform and pixel-
pixel alignment respectively. They use a hierarchical struc-
ture inspired by Ranftl et al. (2021) that progressively up-

samples features while combining information from differ-
ent encoder layers to maintain both fine and coarse details.
Each decoder block (d ∈ {1, 2, 3, 4}, with d = 1 represent-
ing the final decoder layer) produces an image-like feature
map of shape H

2(d−1) × W
2(d−1) ×Dpd

, where Dpd
= 2d−1Dp

is the feature dimension out of block d. We refer to the out-
put at these stages for a given decoder asOd. For simplicity,
we will henceforth refer to O1 as O.

Neighborhood Attention (NA). To enhance local spatial
relationships, we add two NA layers (Hassani et al., 2023)
for each decoder block at the highest resolution (d = 1),
where each pixel attends to its surrounding window of size w.
This complements the global attention from the transformer
layers with explicit element relation modeling mechanism.

Projection Head. For the pixel-pixel alignment objective,
we follow standard practice and append a projection head
for each output of OH

d . As the projection head becomes
more specialized towards the training objective (Xue et al.,
2024), its output becomes less generalizable when training
and downstream objectives are misaligned, and as such it is
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discarded after training. For the pixel-waveform alignment
OV no projection head is used as the downstream tasks (e.g.,
waveform generation) align with the training objective.

3.2. Waveform Model

The waveform AE is based on a VQ-VAE (Vector Quan-
tized Variational Autoencoder) (van den Oord et al., 2017)
architecture. It consists of three primary components: a
waveform encoder (Figure 2), a residual vector quantizer
(RVQ), and a waveform decoder. The input to this model
are GEDI LiDAR waveforms (W) available only for certain
pixel locations in the composite image I.

Waveform Encoder. The waveform encoder (Ew) uses a
ResNet-based architecture to process 1D waveform inputs
through multiple stages, progressively reducing their length
while increasing feature representation capacity. Ew trans-
forms a waveform (W) of shape RL×1 into a latent represen-
tation ze ∈ RL/16×16. To align ze with its corresponding
pixel embedding from OV we perform a channel-wise aver-
age pooling followed by a linear projection. This process
transforms ze into OW ∈ RDp .

Residual Vector Quantizer (RVQ). For regularization
by enforcing discrete representations, we use an RVQ layer
with Q quantizers each containing V codebook vectors.
The RVQ iteratively quantizes the latent waveform repre-
sentation ze through a sequence of quantizers, with each
processing the residual from the previous one to produce
the final quantized representation z.

Waveform Decoder. The waveform decoder Dw mirrors
the structure of the encoder but operates in reverse order
to reconstruct the waveform from its quantized latent rep-
resentation z. In essence, Dw(z) = Ŵ . While waveform
reconstruction is not necessary for the alignment, recon-
structing directly from aligned encoded waveforms ensures
that the future generation process operates on a waveform
latent space that is already structured based on the shared
semantic and structural alignment with the pixel embed-
dings. This approach is beneficial as we are interested in
generating waveforms given pixel inputs.

3.3. Multitemporal Image Processing Model

The multitemporal image model (Figure 2) is designed to
process temporal sequences of median composite images,
following an autoencoder (AE) architecture. The input to
this model is a sequence of images M ∈ RT×H×W×C

covering the same area as the input to the pre-training model.
These images come from T S-1 & 2 acquisition dates that
overlap with the dates used to generate the composite image
I. This design choice, unlike multi-temporal pre-training
models that require time series data during training and

inference, or mono-temporal models limited to a single
date, is a trade-off that enables the model to capture some
phenological traits without needing time series data during
inference. Indeed, while image composites such as a median
composite may be richer than single-date images, they are
still less informative than a full time series, as they only
provide a median reflectance value over a given period.
Conversely, even this simple form of aggregation preserves
significantly more information than a single-date image.

Multi-temporal Image AE. This AE follows a UNet
structure, but replaces conventional convolutional blocks
with ConvLSTM (Shi et al., 2015) layers to explicitly
model temporal correlations. The model takes a multi-
temporal input image M and produces a feature map
X ∈ RT×H×W×Dp , which is then reconstructed back to
a tensor M̂ of the same shape as the inputs. Each de-
coder block produces an image-like feature map of shape

H
2(d−1) × W

2(d−1) denoted as Xd for a respective decoder stage.

Temporal Pooling. To align the output embeddings from
the multi-temporal image AE with those from the pre-
training model, we first perform temporal average pool-
ing. This transforms Xd ∈ RT× H

2(d−1)
× W

2(d−1)
×Dp to

OT
d ∈ R

H

2(d−1)
× W

2(d−1)
×Dp , which then passes through a

projection head. For the output with the highest resolu-
tion (i.e., OT

1 ) we also append two NA layers before the
projection head. For simplicity we refer to OT

1 as OT .

3.4. Pre-Training Objective

DUNIA is pre-trained on pixel-waveform and pixel-pixel
alignment, alongside modality reconstruction for the
modality-specific AEs. For the alignment task, we rely
on two, similarly performing, non-negative-pair contrastive
losses, namely VICReg (Bardes et al., 2021) and Zero-CL
(Zhang et al., 2021). The selection between either loss func-
tions is determined by the number of available elements
within a mini-batch and the requirements of each loss func-
tion. VICReg requires large batch sizes to perform well
(Bardes et al., 2021), which is a non-issue for the pixel-pixel
contrastive objective given the high number of pixels avail-
able in each mini-batch of images. However, this is not
suitable for the waveforms which are few in number within
the mini-batch. On the other hand, Zero-CL performs well
even for small batch sizes but faces computational bottle-
necks with very large batches.

3.4.1. PIXEL-WAVEFORM ALIGNMENT

Zero-CL replaces the alignment and uniformity terms in
negative-pair-based contrastive losses (Arora et al., 2019)
with, respectively, an instance-wise contrastive loss (LIns)
and a feature-wise contrastive loss (LFea). The overall
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loss LZero−CL is LFea + LIns. LZero−CL is applied on
ZA ∈ RG×Dp , the L2 normalized pixel embeddings from
OV , and ZB ∈ RG×Dp their corresponding L2 normalized
waveform embeddings fromOW , where G is the number of
available GEDI samples in a given mini-batch. The formu-
lation for this loss can be found in Appendix B.

3.4.2. PIXEL-PIXEL ALIGNMENT

VICReg is formulated as three loss terms: variance (Lvar), in-
variance (Linv), and covariance (Lcov). Let ZH

d ∈ RMd×Dpd

represent the L2 normalized pixel embeddings from OH
d ,

Md = B × H
2(d−1) × W

2(d−1) with B the mini-batch size,
H

2(d−1) and W
2(d−1) the height and width of a decoder’s out-

put feature map. ZT
d ∈ RMd×Dpd is their corresponding

L2 normalized pixel embeddings from OT
d . The overall

hierarchical pixel-pixel alignment loss is expressed as:

LVICReg =

4∑
d=1

αvLvar(Z
H
d , ZT

d )

+βiLinv(Z
H
d , ZT

d )

+γcLcov(Z
H
d , ZT

d ) (1)

Following Bardes (2021) we set αv and βi to 25.0 and γc to
1.0. VICReg formulation can be found in Appendix B.

3.4.3. RECONSTRUCTION LOSSES

In addition to the previously defined contrastive losses, our
pre-training objective also has three additional reconstruc-
tion losses for the modality-specific AEs (i.e., the waveform
AE and the multi-temporal image AE) and on the outputs of
OH for regularization. The reconstruction losses are simply
the mean squared error loss (MSE) on the reconstructed
waveform Ŵ ∈ R1×L given input waveformW , the recon-
structed multi-temporal image M̂ ∈ RT×H×W×C given
input imageM, and the reconstructed mono-temporal im-
age Î ∈ RH×W×C given input image I . The reconstruction
term is formulated as:

Lrec = MSE(W, Ŵ) +MSE(M,M̂)

+MSE(I, Î) (2)

3.5. Waveform Generation

To generate a full GEDI waveform given a pixel input, we
leverage latent diffusion models (LDMs) (Rombach et al.,
2022). LDMs are generative models that iteratively refine
a latent representation, starting from a normally distributed
prior in a learned latent space. These models can also be
conditioned on auxiliary inputs y to model conditional dis-
tributions p(z|y). In our case, the conditioning variable con-
sists of pixel embedding OV

ϕ,λ at coordinate (ϕ, λ), while
the latent variable z ∈ RL/16×16 represents the embedding

of the quantized waveform obtained from the RVQ layer
(Section 3.2). During inference, the waveform generation
follows a two-step process. First we sample a representation
z given condition OV

ϕ,λ using the LDM, and then the frozen
Dw(z) yields a waveform.

For a detailed description of the diffusion process, including
the denoising objective, noise schedule, and latent variable
sampling, we refer the reader to Appendix C.

4. Experimental Evaluation
We provide a detailed experimental evaluation showing that
DUNIA is able to achieve high performance across a vari-
ety of tasks in zero-shot and fine-tuned settings, including
land cover classification, crop mapping, and vertical for-
est structure analysis (e.g., canopy cover, height and GEDI
waveform retrieval). We leverage diverse datasets to inform
the model on horizontal structures – S-1 & 2, and vertical
structures with GEDI waveforms.

The following section contains a summary of the experimen-
tal setup, with full details in the appendix. Model config-
uration and optimisation can be found in Appendix E. For
clarity, during the pre-training phase, we set the input image
size to 64× 64 pixels, with 14 channels from stacked S-1 &
2 image composites. The embedding dimension is set to 64
(i.e., Dp = 64). During inference, the input image can be
of any size, but we inferred on 256× 256 pixel images. Our
code is available at github.com/AI4Forest/DUNIA.

4.1. Experimental Setup

For our evaluation, we resort to various datasets and tasks.
The datasets and experimental details are described next.

4.1.1. DATASETS

Pre-training Datasets. We used S-2 Level-2A surface
reflectance data from Google Earth Engine, including 10 m
and 20 m spatial resolution bands with the latter upscaled
to 10 m. Two sets of mosaics were created over the entire
metropolitan French territory: a single leaf-on season mo-
saic (April-September 2020) for the pre-trained model, and
three four-month mosaics (October 2019-September 2020)
for the multitemporal AE. Cloud filtering was applied using
the S-2 Cloud Probability dataset.

S-1 data were obtained from the S-1A and S-1B satellites op-
erating at C-band, collected in Interferometric Wide swath
mode with VV and VH polarizations. The data was cal-
ibrated, geometrically corrected, and resampled to 10 m
resolution. Similar to S-2, we created two sets of mosaics
with normalized backscattering coefficients.

GEDI is a full-waveform LiDAR sensor on the International
Space Station (ISS), operational between 51.6◦ N and 51.6◦
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S from 2019-2023. We used Level 1B, 2A, and 2B data
from April 2019 to December 2021, extracting waveforms,
geolocation, height metrics (Wrh), canopy cover (Wc), and
Plant Area Index (Wpai). After quality filtering following
Fayad et al. (2024) and seasonal selection, the dataset con-
tained ≈ 19 million waveforms, covering less than 1% of
the total surface area of France.

Overall, our pre-training dataset consisted of 836K 64× 64
pixels S-1 & 2 images with, on average, 26 GEDI wave-
forms per image. Additional details on the pre-training
datasets can be found in Appendix F.

Evaluation Datasets. We evaluated our model on seven
downstream tasks using labels from various data products
at resolutions matching or lower than our model’s output
(10 m). PureForest (PF ) provides a benchmark dataset of
ground truth patches for classifying mono-specific forests in
France, featuring high-resolution imagery and annotations
for over 135K 50 × 50 m (i.e., 5x5 pixels) patches across
13 tree species (Gaydon & Roche, 2024). CLC+Backbone
(CLS+) is a pan-European land cover inventory for 2021,
utilizing S-2 time series (2020-2022) and a TempCNN clas-
sifier (Pelletier et al., 2019) to produce a 10 m raster indi-
cating the dominant land cover among 11 classes. PASTIS
is a crop mapping dataset by Garnot et al. (2021), covering
18 crop classes and 1 background class with 2433 densely
annotated 128× 128 pixels images at 10 m resolution. The
vertical structure dataset assesses model performance in
mapping forest heights, canopy cover, plant area index, and
waveform retrieval at 10 m resolution, relying on GEDI-
derived products as presented earlier. When available, we
used the train/val/test split used by the references (i.e., PF
and PASTIS). For the CLS+ dataset, we used the same split
as the unsupervised dataset, which followed a 65/10/25 split.

4.1.2. PERFORMANCE EVALUATION

We evaluated our model’s retrieval capacities for both zero-
shot dense prediction tasks and its performance in the fine-
tuned setting. For both settings, we used the weighted F1
score (wF1) for classification tasks, root mean squared error
(RMSE) and Pearson’s correlation coefficient (r) for re-
gression tasks. To evaluate the similarity between acquired
and retrieved/generated waveforms, we used Pearson’s cor-
relation coefficient, computed between the time-aligned
retrieved/generated waveforms and the acquired waveforms.

For zero-shot classification, we constructed retrieval
databases based on the downstream tasks. For vertical
structure tasks, outputs from OV served as queries, and
we created a single database with L2 normalized waveform
embeddings from OW as keys, paired with four target la-
bels: Wrh, Wc, Wpai, and the complete waveform (W).
For horizontal structure tasks, outputs from OH were used

as queries, creating a separate database for each target as
not all targets were available at all pixels simultaneously.
Here, keys are L2 normalized pixel embeddings from OH,
with targets being a land cover class (i.e., CLC+), crop
type (i.e., PASTIS), or tree species (i.e., PF ). For tree
species identification, the labels cover a 5 × 5 pixel area,
so queries and keys are the averaged embeddings over this
window. Next, given an input image and its L2 normalized
pixel embeddings fromOV orOH, we retrieve the k nearest
neighbors (KNN) for each pixel based on cosine similarity
and assign the target class by distance-weighted voting. For
the KNN retrieval, keys were obtained from the training
split while the queries were obtained from the test split.

For the low-shot fine-tuning, we froze the entire pre-trained
network except for the last NA layer in each decoder, which
were appended with an output head consisting of two se-
quential 1× 1 convolutional layers. The first layer halves
the input channels, and the second projects the reduced
representation to the desired output size.

We evaluated zero-shot classification and low-shot fine-
tuning in a low-data regime. We define a dataset with a
low number of labels based on the type of labels usually
available for this dataset. For CLC+ and PASTIS, la-
beled data are available as densely annotated images. For
PF ,W ,Wrh,Wc andWpai, labeled data are available as
single annotated pixels.

4.1.3. COMPETING MODELS.

We compared DUNIA in the fine-tuned setting to five cur-
rent state-of-the-art Earth Observation FMs: SatMAE (Cong
et al., 2022), DOFA (Xiong et al., 2024), DeCUR (Wang
et al., 2024), CROMA (Fuller et al., 2023) and AnySat
(Astruc et al., 2024). SatMAE takes as input S-2 imagery,
DOFA, DeCUR, and CROMA take as input S-1 & 2 im-
agery, while Anysat is pre-trained using S-1 & 2 times
series as well as very high-resolution imagery. For a fair
comparison, we pre-trained all competing models (using pre-
trained weights when available) for 250K steps using our
datasets and the training details from the respective papers.
For AnySat, we used multi-temporal S-1 & 2 mosaics with
three time steps and included SPOT images at 1.5 m reso-
lution as an additional input modality during pre-training
but fine-tuned using only S-1 & 2. All competing models
were evaluated on all downstream tasks except waveform
generation, as they do not support this task.

4.2. Results

Our evaluation shows that embeddings from our proposed
framework, combined with simple zero-shot classifiers, sur-
pass specialized supervised models in several tasks. In the
fine-tuned setting, our model demonstrates strong low-shot
performance, rivaling or exceeding state-of-the-art methods.
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Table 1. Top-1 retrieval-based zero-shot classification performance of DUNIA for different retrieval settings. SOTA results, when available,
represent the best-performing supervised models for any given dataset. † are retrained models for a particular dataset. — and — are
DUNIA query embeddings from OV and OH respectively. S represents the number of samples in the retrieval database, with im meaning
a 64 × 64 pixels fully annotated image, and l meaning a single annotated pixel. KNN represents the k nearest neighbors used in the
distance-weighted voting. W∗∗ represents performance results for vertical structures higher than 5 m. Best scores are in bold.

DATASET METRIC SOTA S DUNIA

KNN = 50 KNN = 5 KNN =1

SCHWARTZ ET AL. (2023) 5.2 (.77)
LIU ET AL. (2023) 5.2 (.76)
TOLAN ET AL. (2024) 8.5 (.59)Wrh RMSE (r)

LANG ET AL. (2023) 5.6 (.76)

50K l ∗ 2.0 (.93) 2.1 (.93) 2.1 (.91)

Wc RMSE (r) SCHWARTZ ET AL. (2023)† 22.1 (.54) 50K l 11.7 (.89) 12.1 (.84) 12.3 (.86)
Wpai RMSE (r) SCHWARTZ ET AL. (2023)† 1.5 (.35) 50K l 0.71 (.75) 0.74 (.73) 0.74 (.72)
CLC+ wF1 — 500 im 80.1 74.3 69.5
PASTIS OA GARNOT & LANDRIEU (2021) 84.2 500 im 56.2 54.1 49.5
PF wF1 GAYDON & ROCHE (2024) 74.6 50K l 73.8 76.0 75.8
W∗∗ r — 50K l — — .70

∗ This number of samples is considered as a low data regime due to: 1) a total coverage area of ≈ 31Km2 2) only ≈ 0.25% of data
required compared to some supervised models.

4.2.1. ZERO-SHOT CLASSIFICATION PERFORMANCE

Zero-shot results in Table 1 demonstrate that for verti-
cal structure products (Wrh, Wc, Wpai), DUNIA with
KNN=50 outperforms specialist models. It achieves RMSE
(r) improvements of 3.2 m (.16), 10.4% (.35), and 0.79 (.4)
for, respectively, canopy height, cover, and plant area index,
and, matching the mapping quality of supervised methods
(Figures I1 and I2). For tree species identification (PF ),
DUNIA slightly underperforms by 0.8% at KNN=50 but ex-
ceeds the baseline by 1.4% when decreasing the number of
neighbors (KNN=5) used for the distance-weighted voting.
For land cover mapping (CLC+), DUNIA achieves strong
performance with a wF1 score of 80.1%. However, for crop
type mapping (PASTIS), DUNIA significantly underper-
forms compared to the state-of-the-art, which is likely due
to the variability of the phenological cycles of crops that
cannot be well captured by a single median composite.

For lower KNN values, the performance of vertical structure-
related products and tree species identification remains sta-
ble. In contrast, land cover and crop type mapping expe-
rience significant performance drops, indicating that the
model needs more samples for accurate classification. For
retrieval databases with fewer samples (Table G1), verti-
cal structure-related products (Wrh, Wc, Wpai) maintain
their performance and map qualities (Figure I4), while other
products (CLC+, PASTIS, PF ) show a substantial degra-
dation in performance.

Regarding waveform (W) retrieval performance, we observe
that our model is able to retrieve relevant waveforms given a
pixel embedding as a query, with a correlation coefficient of
.70 for S=50k l, and decreases by a small factor with smaller

retrieval database sizes (Table G1). This is to be expected
given the small subset of waveforms in the retrieval database
that might not reflect all possible variations for a particular
height class. Retrieved vs. reference waveforms can be
found in Figures I5 to I8.

4.2.2. FINE-TUNING PERFORMANCE

Fine-tuning results in Table 2 demonstrate that DUNIA out-
performs the other models in vertical structure-related prod-
ucts, with all models except AnySat trailing significantly.
In comparison to DUNIA’s zero-shot results, all the models
underperformed in the finetuning setting forWc andWpai

due to the long-tailed distribution of these two products that
are not well modeled with the simple L1 loss that we used.
Qualitatively, as shown in Figures I1 and I2, DUNIA and
AnySat show a similar level of detail; however, DUNIA is
capable of producing higher values, which we attribute to
the alignment with the vertical structure in the pre-training
stage. For CROMA, Figures I1 and I2 shows that this model
produces much smoother maps than the two other models.

For CLC+ and PF , DUNIA’s performance in the fine-
tuned setting increased in comparison to the zero-shot set-
ting with results on par with the much more data-heavy
AnySat model (Table 2). However, DUNIA underperformed
by a significant margin (↓ 4.1%) in comparison to AnySat
for the PASTIS dataset. Qualitatively (Figure I3) both
DUNIA and AnySat show similar level of detail for the
CLC+ dataset, in contrast to CROMA which also showed
very smooth maps with fewer details.

In the novel task of waveform generation, we observed a
correlation (r) increase of .08 between reference and gener-
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Table 2. Fine-tuning performance of DUNIA and the five competing models. — and — are DUNIA’s embeddings from OV and OH

respectively. S represents the number of samples used for the fine-tuning, with im meaning a 64× 64 pixels fully annotated image, and l
meaning a single annotated pixel. W∗∗ represents performance results for vertical structures higher than 5 m. Best scores are in bold.

DATASET METRIC SAMPLES (S) DUNIA ANYSAT CROMA DOFA DECUR SATMAE

Wrh RMSE (r) 5K im 1.3 (.95) 2.8 (.89) 3.5 (.78) 11.0 (.51) 11.0 (.55) 10.5 (.52)
Wc RMSE (r) 5K im 9.8 (.85) 12.1 (.79) 14.2 (.73) 29.2 (.50) 28.5 (.48) 30.2 (.48)
Wpai RMSE (r) 5K im 0.62 (.71) 0.95 (.67) 1.2 (.61) 1.5 (.38) 1.6 (.38) 1.6 (.39)
CLC+ wF1 5K im 90.3 90.1 86.4 72.0 75.1 75.0
PASTIS wF1 1.5K im 77.0 81.1 73.3 54.5 57.3 55.2
PF wF1 50K l 82.2 82.3 80.5 79.8 78.9 78.8
W∗∗ r ≈19M l .78 — — — — —

ated waveforms compared to retrieval (r=.70 with S=50K l,
KNN=1). This correlation dropped to .75 when the diffusion
model was trained on just 20% of the available waveforms
(Table G2). Retrieved vs. generated waveforms can be
found in Figures I5 to I8.

To further analyze the contributions of different architectural
choices, including the use of separate decoders and the
impact of our alignment strategies, we provide additional
ablation studies in Appendix H.

5. Discussion
We introduced DUNIA, a novel framework for Earth Obser-
vation applications that learns dense representations through
mono-modal and cross-modal alignment. This strategy en-
ables our model to perform mono-modal and cross-modal
retrieval tasks on several datasets with high precision. It
also allows novel capabilities like retrieving or generating
highly complex outputs from pixel inputs. To the best of
our knowledge, this is the only model capable of generating
GEDI waveforms at this scale.

Our main contributions lie in several design choices at the
decoding stage. The proposed pre-trained model encoder is
flexible and can be adapted to components from other ex-
isting approaches; for instance, modules that support multi-
temporal input, or handle images with varying resolutions.
Nonetheless, in this work we focused on input data - S-1 &
2, alongside GEDI - that are freely accessible globally to
promote easier adoption.

One of the main limitations of this work is also coinciden-
tally the reliance on static inputs from S-1 & 2 data, which
has limitations for datasets requiring multi-temporal images,
such as crop type mapping. However, our design choices pri-
oritize mono-temporal data to reduce storage requirements
and enable applications in areas where time series data are
not readily available. Another limitation, common to all EO
models, is that the current pre-trained model is tailored to
the area and year on which it was trained on; we expect that
it will require pre-training when used elsewhere. Nonethe-

less, the model was designed to be pre-trained with limited
computational resources.
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Impact Statement
Forests are the third-most important terrestrial carbon sink
for climate change mitigation by absorbing about one-
third of anthropogenic CO2 emissions (Friedlingstein et al.,
2022). However, these ecosystems are under increas-
ing threat from deforestation, degradation, and climate-
induced disturbances such as wildfires, insect outbreaks,
and droughts (Anderegg et al., 2022). Global initiatives,
including the Glasgow Declaration and the Sustainable De-
velopment Goals2 emphasize the need for accurate forest
monitoring to support conservation, restoration, and carbon
sequestration projects. Unfortunately, despite these high
praises, many other major initiatives have struggled due to a
lack of reliable, high-resolution data on forest carbon stocks
and how they change over time.

Current forest monitoring systems heavily rely on ground-
based inventories, which provide robust statistical estimates
of biomass and carbon at national or regional scales but
lack the spatial granularity needed for tracking localized
carbon gains and losses. Additionally, the largest forested
regions—particularly in boreal and tropical areas—remain
vastly under-sampled. While satellite data offers global
coverage, traditional approaches are often constrained by
their reliance on extensive labeled datasets, limiting their
ability to map forest properties comprehensively.

DUNIA introduces a novel self-supervised learning ap-

2https://sdgs.un.org/2030agenda
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proach that overcomes these limitations by generating pixel-
level embeddings from freely accessible satellite data, in-
cluding optical and radar imagery. By aligning these embed-
dings with sparse but highly informative LiDAR waveforms,
our approach enables the estimation of multiple forest at-
tributes—including canopy height, fractional cover, land
cover, tree species, and vertical structure—without requir-
ing task-specific labels. This method allows for zero-shot
and low-shot predictions of key forest variables, paving the
way for scalable monitoring of global ecosystems.

By providing a unified, multimodal representation of forests,
DUNIA democratizes access to advanced Earth Observation
tools, enabling researchers, policymakers, and conservation-
ists to make informed decisions with minimal reliance on
expensive field data collection. This work lays the founda-
tion for high-resolution, large-scale ecosystem monitoring,
offering a transformative approach to quantifying forest
structure, biomass, and biodiversity in support of climate
change mitigation and sustainable land management.
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A. Implementation Details
In the main text, we provided a high-level overview of the architecture and training setup. Here, we include additional
implementation details for key modules and components of our framework. These details were omitted from the main body
for brevity and are provided here for completeness and reproducibility.

Figure A1. An overview of our framework showcasing the main blocks and connections. The pre-trained model, which take as input
a single date S-1 & 2 image mosaic, is shaded in blue. The multi-temporal image AE, which take as input a multi-date S-1& 2 image
mosaic, is shaded in yellow. The vertical structure AE, which take as input the GEDI waveforms, is shaded in green.

A.1. Pre-Trained Model

Patch Embedding. To generate patch embeddings, the 2D composite image I ∈ RH×W×C is processed using a
convolutional layer with kernel size (P, P ) and stride P . This operation partitions I into N = HW/P 2 non-overlapping
patches, which are reshaped into a sequence of embeddings in RN×D. Here, C represents the number of input channels,
(H,W ) denotes the resolution of the input image, P is the patch size, and D is the patch embedding dimension.

Unlike tokenization strategies that rely on fixed-size input grids, the use of convolutions allows the model to adapt to varying
input resolutions. This is particularly useful in EO applications, where spatial resolutions can vary across datasets. While
transformer-based architectures address sequence length variability through techniques like rotary embeddings (Su et al.,
2021), ALiBi (Press et al., 2022), and relative position encodings (Shaw et al., 2018), convolutional patch embedding
provides a structured inductive bias that benefits spatial feature extraction while maintaining translational invariance.
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Decoder Architecture. The decoding process begins by reshaping the encoded token sequence from RN×D into an
image-like feature representation at different resolutions. At each decoder stage d ∈ 1, 2, 3, 4, tokens are rescaled to
H

2d−1 × W
2d−1 ×Dpd

, where Dpd
= 2d−1Dp represents the channel dimension at each stage. This transformation involves an

initial 1 × 1 convolution to adjust channel dimensions, followed by strided 3 × 3 convolutions for downsampling when
2d−1 ≥ P , or transpose convolutions when 2d−1 < P .

To reconstruct high-resolution embeddings, feature maps from deeper layers (d = 4) are progressively upsampled using
bilinear interpolation and refined through two 3× 3 Conv-BatchNorm-ReLU operations before being concatenated with
corresponding features from earlier transformer layers. A final 1× 1 convolution ensures that the final output dimension
matches Dp when required. This architecture is instantiated as two separate decoders, outputting OV and OH.

Projection Head. For the pixel-pixel alignment objective, we apply a lightweight two-layer 1× 1 convolutional projection
head to each output OH

d . The first layer expands the feature dimension by a factor of two, followed by a second layer
that projects it back to Dp. This design enhances feature expressiveness during training but, as observed in prior work
(Xue et al., 2024), projection heads tend to overfit to the pretraining task, reducing their transferability to downstream
applications. Consequently, we discard the projection head after training. In contrast, the pixel-waveform alignment output
OV is directly used without an additional projection head, as its representation remains well-aligned with downstream tasks
such as waveform retrieval and generation.

A.2. Waveform Model

Waveform Encoder. The waveform encoder consists of an input stem and three stages designed to progressively reduce
the 1D waveform of length L (i.e.,W ∈ RL×1) while increasing its feature representation capacity. First, the input stem
processes the waveform using a 3 × 1 convolutional layer with a stride of 2. This initial operation halves the length of
the waveform to L/2 and increases the channel dimension to 2. Following the input stem, the encoder comprises three
stages, each containing three ResNet blocks. Each ResNet block is designed with two 3× 1 convolutional layers, batch
normalization, ReLU activations, and a skip connection. At the beginning of each stage, the first ResNet block incorporates
a strided convolution in its initial layer to halve the waveform’s length and double the channel dimension. The subsequent
blocks within the same stage operate with a stride of 1. By the end of the three stages, the waveform encoder reduces the
input waveform’s length to L/16 while progressively increasing the channel dimension to 16. Thus, the waveform encoder
Ew transforms a waveform of shape RL×1 into a latent representation z ∈ RL/16×16.

The alignment of the waveforms and the pixels is performed on this latent representation ze = Ew(W). However, to adapt
them to the outputs of OV , we first apply an average pooling along the channel dimension, followed by a projection to the
OV projection dimension (i.e., Dp) using a linear layer. In essence, this process transforms ze into OW ∈ RDp .

Residual Vector Quantizer (RVQ). The RVQ layer takes a segment from the latent waveform representation zie ∈ R1/16,
where zie is the ith row of the waveform latent representation, and iteratively quantizes it. It operates by first mapping each
zie to the closest codebook vector in the first quantizer, then computing the residual (i.e., the difference between the input
vector and the quantized approximation). This residual is passed to the next quantizer in the sequence, and the process is
repeated for all Q quantizers. At the end of the process, the latent waveform representation ze is converted into a discrete
series of quantized residual vectors, which are summed to produce the final quantized waveform representation z.

Waveform Decoder. The waveform decoder (Dw) mirrors the structure of the encoder but operates in reverse order to
reconstruct the waveform from its quantized latent representation z. Similar to the encoder, the decoder consists of three
stages and an output stem. However, instead of using strided convolutions for downsampling, the decoder replaces them
with transpose convolutions to progressively upsample the waveform. Each stage in the decoder increases the length of the
waveform while halving the channel dimension, reversing the transformations applied by the encoder. By the end of the
decoding process, the latent representation is transformed back into a waveform Ŵ with length L.

A.3. Multitemporal Image Processing Model

Multitemporal Image AE. The AE has four processing and downsampling stages. In each stage we replace the
conventional double Conv2D-BatchNorm-ReLU layers in UNets with a two-layer ConvLSTM followed by a BatchNorm
layer and ReLU activation layer. This design choice is to explicitly model temporal correlations across time steps as
mentioned earlier. Downsampling is performed using a strided Conv3D layer applied on the spatial dimension, while
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upsampling is performed using a trilinear upsampling operation also on the spatial dimension, followed by a Conv3D
layer. As such, the model takes a multi-temporal input imageM∈ RT×H×W×C , where T is the temporal dimension, and
produces a feature map X ∈ RT×H×W×Dp . Finally, as this is an autoencoder, the original input shape is recovered using a
Conv3D layer producing M̂ ∈ RT×H×W×C . All Conv3D layers in the AE have a kernel of 3× 3 on the spatial dimension.

B. Objective Functions.
Zero-CL Loss. Let ZA ∈ RG×Dp represent a L2 normalized pixel embeddings from OV , where G is the number of
waveforms in a minibatch and Dp is the feature dimension, and ZB ∈ RG×Dp denote their corresponding L2 normalized
waveform embeddings from OW . The instance-wise contrastive loss is defined as:

LIns =

G∑
i=1

1−
Dp∑
d=1

HA,Ins
i,d ·HB,Ins

i,d

2

(3)

Hi,d represents the dth feature value of the ith instance. H Ins is a zero-phase component analysis (ZCA) whitened embedding
matrix defined as:

H Ins = W InsZ, W Ins = EInsΛ
−1/2
S E⊤ (4)

where EIns ∈ RG,G and ΛS are the eigenmatrix and diagonal of the eigenvalue matrix of the affinity matrix S = 1
Dp

ZZ⊤,
respectively. Similar to the instance-wise contrastive objective, the feature-wise contrastive loss is formulated as:

LFea =

Dp∑
d

(
1−

G∑
i

HA,Fea
i,d ·HB,Fea

i,d

)2

(5)

Where HFea is defined as:

HFea = W FeaZ⊤, W Fea = EΛ
−1/2
C E⊤ (6)

where E ∈ RDp,Dp and ΛC are the eigenmatrix and diagonal of the eigenvalue matrix of the covariance matrix C = 1
GZ⊤Z,

respectively.

The overall loss LZero−CL is LFea + LIns.

VICReg Loss. Let ZH ∈ RM×Dp represent an L2 normalized pixel embedding from OH and ZT ∈ RM×Dp its
corresponding L2 normalized pixel embeddings from OT , with M = B ×H ×W the number of pixels in the mini-batch
of size B. VICReg is expressed as a sum of three losses: a variance loss, an invariance loss, and a covariance loss. The
variance loss is formulated as:

Lvar =
1

2
(v(ZH) + v(ZT )),

v(Z) =
1

Dp

Dp∑
d

max

0, 1−

√√√√ 1

M

M∑
i

(Zi,d − Zd)2 + ϵ

 (7)

where Zi,d represents the dth feature value of the ith instance.

The invariance loss is formulated as:

Linv =
1

M

M∑
i=1

∥ZH
i − ZT

i ∥22 (8)
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The covariance loss is formulated as:

Lcov = c(ZH) + c(ZT ),

c(Z) =
1

Dp

∑
k ̸=l

[cov(Z)]2k,l

cov(Z) =
1

M − 1

M∑
i

(Zi − Z)(Zi − Z)⊤

(9)

The overall loss term LVICReg is then:
LVICReg = αvLvar + βiLinv + γcLcov (10)

Following Bardes (2021) we set αv and βi to 25.0 and γc to 1.0.

C. Waveform Generation
Denoising diffusion models (DM) (Sohl-Dickstein et al., 2015) are generative models that learn a data distribution pdata by
gradually denoising a noisy variable following a predefined noise schedule. Let ϵθ be a neural network. Its goal is to predict
the original data x from a noisy version xt generated by xt = αtx0 + σtϵ, where ϵ ∼ N (0, I) is Gaussian noise, αt and σt

are parameters of a noise scheduling function, and t is a time step from {1, ..., T}.

The corresponding objective of a DM can then be written as:

LDM = Ex0∼pdata,ϵ∼N (0,I),t

[
∥y − ϵθ(xt, t)∥22

]
(11)

where pdata denotes the data distribution over the clean inputs x0, and the target y can be the input noise ϵ, the original
input x variable, or the velocity v = αtϵ− σtx. DMs can also be parametrized by a condition c ∈ RD in addition to the
diffusion time t, and the corresponding objective becomes:

LCDM = Ex0∼pdata,ϵ∼N (0,1),t,c

[
∥y − ϵθ(xt, t, c)∥22

]
(12)

Another class of diffusion models, known as Latent Diffusion Models (LDMs) (Rombach et al., 2022; Shen et al., 2023;
Ramesh et al., 2022), operate in a latent space rather than directly in the high-dimensional data space. By operating in a
lower-dimensional latent space, LDMs significantly reduce the computational cost of training and inference compared to
DMs, which operate in the original data space. LDMs leverage the latent representation of data obtained by training an
autoencoder, defined by an encoder E and a decoderD. The autoencoder is trained such that x̂ = D(E(x)) is a reconstruction
of the original data x. After training the autoencoder, a diffusion model is trained directly on the encoded data samples
z = E(x). A new sample is then obtained by first sampling a representation z, and then D(z) yields x.

Following the LDM formulation, we learn a network ϵθ conditioned on OV
ϕ,λ, where ϕ and λ are the waveform coordinates,

that directly predicts a denoised waveform latent z0 ∈ R L
16×16, where z0 = E(W), by minimizing:

LLDM = Ez0∼p(z0),ϵ∼N (0,1),t∼U [1,T ],OV
ϕ,λ

[∥∥ϵθ(zt, t,OV
ϕ,λ)− z0

∥∥2
2

]
(13)

In our formulation, the network ϵθ(zt, t,OV
ϕ,λ) is a 1D UNet model which takes the current noisy latent zt, the time step t as

input, and the condition OV
ϕ,λ is integrated into the UNet via cross-attention at each layer. To sample z0 from the diffusion

model, we start from a Gaussian noise zT and gradually denoise it into samples zT−1, ..., z0 using the ordinary differential
equation (ODE) solver proposed by Karras et al. (2022), as we found that it produces high-quality samples with fewer
denoising steps. To make the sampled latent waveform z0 better match its conditioning we use classifier-free guidance.
Specifically, during training we randomly drop the conditioning for 50% of the examples to make the model capable of
conditional and unconditional denoising. In practice, we replace the conditioning signal with a random vector. Within the
classifier-free guidance formulation, model predictions can be written as:

ϵ̂θ(zt, t,OV
ϕ,λ) = ϵθ(zt, t) + s · (ϵθ(zt, t,OV

ϕ,λ)− ϵθ(zt, t)) (14)
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where s is the guidance scale. Setting s to 0 is equivalent to unconditional sampling, while setting it to ≥ 1 has shown to
produce more coherent but less diverse results. Here we set s to 3. Finally, to synthesize a waveform at any location (ϕ, λ)
given a pixel embedding OV

ϕ,λ as a condition, we use eq. 14 to get ẑ0, and leverage the frozen waveform decoder Dw, where
Dw(ẑ0) is a generated waveform.

D. Visual Comparison: Pixel vs. Patch Embeddings
To highlight the difference in spatial granularity between our proposed pixel-level embedding model and a patch-based
baseline (e.g., CROMA), we present a side-by-side qualitative visualization in Figure D1. Both models are applied to the
same S-1 & 2 input, and their embeddings are projected to RGB using t-SNE. The pixel-based model captures finer spatial
structures and preserves object boundaries more effectively than the patch-based baseline, yielding lower-resolution outputs.

Figure D1. Comparison between pixel-level embeddings from our proposed model (top row) and patch-based embeddings from one of the
baseline models (bottom row), both generated from the same S-1 & 2 inputs (left). Embeddings are visualized using t-SNE.

E. Model Configuration and Optimization
E.1. Model Configuration

The image model is pre-trained on 64× 64 pixel sized images with 14 bands, a 16-layer transformer with 8 attention heads,
a patch size of eight, 512 embedding dimensions, a feedforward layer with two linear layers with a hidden dimension of
2048, GeGLU activation, and 0.1 dropout and attention dropout rates. The two image decoders are identical and project
the decoded image feature map to 64 embedding dimensions (i.e. Dp = 64). Finally, we set the window size w of the
NA layers to 19 pixels. The waveform AE is trained on 256 bin-long waveforms, with RVQ layers composed of eight
quantizers, and each quantizer containing 512 codebook entries. As such, the waveform encoder encodes the waveforms
into a 16× 16 latent representation which is average pooled along the channel dimension and projected to 64 embeddings
dimension for the pixel-waveform alignment. The multi-temporal image AE is trained on three 64× 64 pixel sized input
images, each with 14 bands, and produces a similarly shaped feature map on the temporal and spatial dimensions, and 64
embeddings dimension. This output is then average-pooled on the temporal dimension for the pixel-pixel alignment. Finally,
the diffusion model is trained on the 16× 16 quantized waveform latents, which are first projected to 128 channels before
being passed to the UNet model.

E.2. Training, Inference, and Generation

DUNIA was pre-trained on a single NVIDIA A6000 48GB GPU with a batch size of 60 for 250K steps using the Lion
optimizer (Chen et al., 2024), a learning rate of 5e−5, weight decay of 0.4, 5K warmup steps, and a cosine annealing
schedule. For finetuning, we used AdamW (Loshchilov, 2017) with a 2e−4 learning rate, a cosine annealing schedule, a
batch size of 20, and trained until plateau. The diffusion model was trained with a batch size of 4096 for 100K steps using
AdamW, a 1e−4 learning rate, 5K warmup steps, and a cosine annealing schedule. During inference, diffusion steps were
set to 30. Both DUNIA and the diffusion model were regularized with the Switch EMA (SEMA) technique (Li et al., 2024),
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maintaining an EMA with a decay rate of 0.9, updating every 5 steps, and replacing online model parameters every 1K steps
with a SEMA coefficient of 0.9.

F. Experimental Settings
Sentinel-2 Data. We used Level-2A surface reflectance data (S2-L2A) from Google Earth Engine (GEE). The dataset
includes bands at 10m (Blue, Green, Red, and NIR) and 20m (Red Edge 1-4, SWIR1, and SWIR2) spatial resolutions,
all upscaled to 10m ground sampling distance (GSD) using cubic interpolation. We created two sets of mosaics: a single
mosaic during the leaf-on season using the median of all available images from April to September 2020. This mosaic is
used as input for the pre-trained model. The other set is used as input for the multitemporal AE and is comprised of three
mosaics, each representing the median acquisitions of all images in a four-month span from October 2019 until September
2020. Cloudy pixels were filtered out using the S-2 Cloud Probability dataset provided by SentinelHub in GEE.

Sentinel-1 Data. Sentinel-1 data were obtained from the Sentinel-1A and Sentinel-1B satellites, operating at the C-band
( 6 cm wavelength). Images were collected in Interferometric Wide swath mode (IW) with VV and VH polarizations, derived
from the high-resolution Level-1 ground range detected (GRD) product. The original 20 m × 22 m resolution was resampled
to 10 m × 10 m GSD. Similar to S-2, we also created two sets of mosaics. The S-1 data were calibrated using the Sentinel
SNAP toolbox, converting pixel values to backscattering coefficients (σ0) in linear units and applying geometric correction
using the 30m Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM). Finally, the backscattering
coefficients σ0

θ acquired at difference incidence angles θ were normalized to a common reference incidence angle set at
σref = 40◦ using the cosine correction equation (N. Baghdadi & Neeson (2001); Topouzelis et al. (2016)):

σref
0 =

σ0
θcos

2(θref )

cos2(θ)
(15)

GEDI Data. GEDI measures the vertical structure of objects (e.g., vegetation) using three lasers emitting near-infrared
light (1064 nm), one of the laser beams is split in two, and after applying optical dithering, this results in eight ground tracks
spaced 600 m apart, with each shot having a 25 m footprint. For this study, we used GEDI Level 1B (L1B), Level 2A (L2A),
and Level 2B (L2B) data from April 2019 to December 2021. From the L1B product we extracted the waveforms and their
geolocation (i.e., latitude, longitude, and elevation), and the geolocation of the GEDI instrument for each shot. Finally, as
the waveforms are stored as vectors of 1420 bins (1 bin = 0.15 m), we also extracted for each waveform the bin count, the
signal start (Wstart) and signal end (Wend). The latter two indicate the location of the canopy top and the end position of
the waveform before the noise, respectively. From the L2A data product, we extracted the RH98 (referred toWrh), which
represents the estimated height of the tallest object within the waveform footprint, the canopy cover (Wc). Finally, from the
L2B data product, we extracted the Plant Area Index (Wpai).

As the waveforms are affected by the atmospheric conditions at acquisition time, we followed the filtering scheme of Fayad
et al. (2024) to remove low-quality waveforms. Finally, due to the different waveform shapes between the leaf-off and
leaf-on seasons, especially for those acquired over deciduous forests, we only considered waveforms acquired during the
leaf-on season. This resulted in a GEDI dataset of ≈19 million waveforms and their associated metrics.

PureForest (PF ). The PureForest dataset was designed as a benchmark and provides ground truth patches for the
classification of mono-specific forests in France (Gaydon & Roche, 2024). It includes high-resolution imagery and
corresponding annotations for more than 13K 50× 50 m forest patches for 13 tree species.

CLC+Backbone (CLS+). The CLS+ A pan-European wall-to-wall land cover inventory for the 2021 reference year.
The product is based on Sentinel 2 (i.e., optical) time series from 2020 to 2022 and a temporal convolutional neural network
(TempCNN) (Pelletier et al., 2019) serving as a classifier. The product is available as a 10 m raster and shows for each pixel
the dominant land cover among the 11 basic land cover classes.

PASTIS dataset. A crop mapping dataset by Garnot (2021) for 18 crop classes and 1 background class from the French
Land Parcel Information System. The dataset contains 2433 128× 128 pixels densely annotated patches at 10 m resolution.
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Vertical Structure dataset. For vertical structure evaluation, we evaluated our model on its ability to map at 10 m
resolution: (1) forest heights (Wrh), forest fractional canopy cover (Wc), plant area index (Wpai), and complete waveform
(W) retrieval or generation. For these products, we rely on the products derived from the GEDI dataset presented earlier.

G. Impact of Label Quantity on Performance

Table G1. Top-1 retrieval-based zero-shot classification performance of DUNIA for different database sizes. — and — are DUNIA
query embeddings from OV and OH respectively. S represents the number of samples in the retrieval database, with im meaning a
64× 64 pixels fully annotated image, and l meaning a single annotated pixel. KNNb represents the best KNN value for a given dataset.
W∗∗ represents performance results for vertical structures higher than 5 m.

DATASET METRIC S KNNb 100% S 10% S 5% S

Wrh RMSE (r) 50K l ∗ 50 2.0 (.93) 2.1 (.92) 2.1 (.92)
Wc RMSE (r) 50K l 50 11.7 (.89) 12.4 (.86) 12.0 (.84)
Wpai RMSE (r) 50K l 50 0.71 (.75) 0.72 (.75) 0.72 (.74)
CLC+ wF1 500 im 50 80.1 75.2 70.2
PASTIS OA 500 im 50 56.2 52.4 48.3
PF wF1 50K l 5 76.0 73.5 70.9
W∗∗ r 50K l 1 .70 .67 .66

Table G2. Fine-tuning performance of DUNIA and the five competing models. — and — are DUNIA’s embeddings from OV and OH

respectively. S represents the number of samples used for the fine-tuning, with im meaning a 64× 64 pixels fully annotated image, and l
meaning a single annotated pixel. W∗∗ represents performance results for vertical structures higher than 5 m. Best scores are in bold.

DATASET METRIC SAMPLES (S) DUNIA ANYSAT CROMA DOFA DECUR SATMAE

Wrh RMSE (r) 1K im 1.4 (.93) 2.8 (.89) 3.6 (.76) 11.2 (.50) 11.1 (.52) 10.5 (.52)
Wc RMSE (r) 1K im 10.0 (.83) 12.4 (.79) 14.5 (.72) 30.1 (.48) 29.4 (.47) 30.7 (.47)
Wpai RMSE (r) 1K im 0.61 (.70) 0.94 (.67) 1.5 (.60) 1.7 (.35) 1.7 (.36) 1.9 (.37)
CLC+ wF1 1K im 89.4 89.5 85.9 71.1 74.6 73.8
PASTIS wF1 300K im 75.3 80.2 71.0 52.2 56.4 54.8
PF wF1 10K l 80.1 80.0 80.2 79.8 78.5 78.7
W∗∗ r ≈3.8M l .75 — — — — —

H. Ablation Studies
H.1. Loss Choice

We used two different loss functions for the Pixel-Pixel alignment and Pixel-Waveform alignment. Table H1 shows that
the cosine similarity (CS) using the VICReg loss for the pixel-waveform alignment only reaches a maximum of 0.56 for
the positive pairs and 0.10 for the negative pairs, indicating poor alignment. On the other hand, using the ZERO-CL loss,
the CS between the positive pairs reaches 0.86, and 0.35 between the negative pairs. We attribute the poor results for
Pixel-Waveform alignment using the VICReg loss to the low number of available waveforms within a mini-batch. In contrast,
for the Pixel-Pixel alignment, the CS for the positive pairs is 0.99, and 0.04 for the negative pairs using the VICReg loss. It
decreases to 0.98 for the positive pairs and 0.45 for the negative pairs with ZERO-CL. Nevertheless, using ZERO-CL for
both modalities increased training times exponentially due to the whitening transformation and the high number of available
pixels within the mini-batch.

Table H1. Cosine similarity between positive pairs (+) and negative pairs (-) during pre-training. P represents a pixel embedding, W
represents a waveform embedding. Positive Pairs consist of a pixel embedding and its corresponding pixel/waveform embedding, while
negative pairs are computed between a pixel embedding and other pixel/waveform embeddings within the mini-batch.

Loss +P↔P -P↔P +P↔W -P↔W

VICReg 0.99 0.04 0.56 0.10
ZERO-CL 0.98 0.45 0.86 0.35
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H.2. Using a Shared Decoder

In our formulation, we used two different decoders for horizontal and vertical structural understanding. We hypothesized that
a single real-valued embedding cannot simultaneously encode contrasting information, such as trees of the same species with
different vertical structures. Table H2 Shows that in the retrieval case, training a single decoder produces pixel embeddings
with no semantic overlap with the waveforms with an average CS of -0.42, while the retrieved pixel embeddings given a
pixel input are still highly similar. In the case of training separate decoders, retrieval performance is drastically different,
with high correlations (0.99) between pixels and the retrieved waveforms.

Table H2. Average cosine similarity (CS) between retrieved pixels and pixel queries (P←P) and between retrieved waveforms and pixel
queries (P←W) for KNN=1.

P←P CS P←W CS

Shared decoder 0.97 -0.42
Separate decoders 0.98 0.99

H.3. Hierarchical VICReg Loss

The original VICReg loss proposed by Bardes et al. (2021) was applied between two views of the same input image. They
later extended their work and applied it to local image features (Bardes et al., 2022). Their results showed that better results
were obtained when applying the VICReg loss on local features and at the instance level. Here, we further extend this work
and apply it hierarchically to the decoder outputs between the pre-trained model and the multi-temporal AE. Results in
Table H3 show significant improvements for both datasets when using this formulation. These results are also in line with
the findings in Bardes et al. (2022).

Table H3. Zero-shot classification performance (wF1) on the PF and CLC+ datasets using a model pre-trained with multiple VICReg
losses at different decoder levels (VICRegh) against a single loss applied on the embeddings from the last decoder layer (VICRegs).

PF CLC+

VICRegh 76.0 80.1
VICRegs 67.6 74.2

H.4. Neighborhood Attention

The output of our pre-trained model is composed of two neighborhood attention layers per output head, instead of the
standard convolutional layers. This design choice allows each embedding to be modeled based on its local neighborhood
instead of relying on small and fixed receptive fields. Table H4 shows an increase of 2.1% (wF1) for the CLC+ dataset and
an RMSE decrease of 0.4 m for theWrh dataset using this new configuration.

Table H4. Performance differences between a convolutional output layer (CNN) vs. a NA layer on the CLC+ andWrh datasets.

CLC+ Wrh

CNN 72.1 (wF1) 2.4 (RMSE)
NA 74.2 (wF1) 2.0 (RMSE)

H.5. Embedding sensitivity

Our results, either in the zero-shot setting or the fine-tuned setting used embeddings fromOH for horizontal structure-related
products (e.g., tree species identification, land cover mapping) and embeddings from OV for vertical structure-related
products (e.g., canopy height mapping, waveform retrieval). We perform the same tests in the zero-shot setting, but reversing
the query and retrieval embeddings for the other structure direction. Table H5 shows that relying on vertical structure data
for products requiring horizontal understanding and vice versa performs poorly for the six tested products. This validates
our design choice of cross-modal alignment with vertical structure data for EO products relying on this type of information.
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Table H5. Top-1 retrieval-based zero-shot classification performance of DUNIA with opposite direction query and retrieval embeddings.
OG represents the original results from Table 1 for KNN=50. — and — are DUNIA query embeddings from OV and OH respectively.

DATASET METRIC OG DUNIA

Wrh RMSE (r) 2.0 (.93) 4.3 (.63)
Wc RMSE (r) 11.7 (.89) 18.9 (.53)
Wpai RMSE (r) 0.71 (.75) 1.6 (.42)
CLC+ wF1 80.1 35.1
PASTIS OA 56.2 0.0
PF wF1 73.8 56.1

H.6. Inference Runtime (Zero-Shot)

Generating maps in the zero-shot setting requires: 1) a forward pass through the pre-trained model (encoder-dual decoders)
to obtain the embeddings, 2) for each pixel, retrieve the k nearest neighbors (KNN) from the retrieval database (DB),
and 3) classify the queried pixel embedding based on distance-weighted voting. As such, generating a map over e.g. a
20.48× 20.48 Km area at 10 m resolution, requires querying and classifying 4,194,304 pixels. However, Table H6 shows
that the querying and classification times only add a small overhead. Moreover, the time required for the three operations
(forward pass, retrieval, and classification) is still faster than a similarly capable model like AnySat.

Table H6. Inference runtime (in seconds) of DUNIA in the zero-shot setting, compared to AnySat. DB denotes the retrieval database of
N key/value pairs (embedding/label), and KNN is the number of nearest neighbors retrieved per pixel. All times are in seconds.

MODEL DB KNN FORWARD PASS RETRIEVAL CLASSIFICATION TOTAL

DUNIA 256K 100 2.52 0.36 1.34 4.22
DUNIA 512K 200 2.52 0.40 1.88 4.80
ANYSAT — — 177.37 — — 177.37

H.7. Impact of Input Size

To assess the sensitivity of DUNIA to the input image resolution, we conducted experiments using three different input sizes:
128× 128, 256× 256, and 512× 512. As shown in Table H7, the results across datasets and metrics remain unchanged.
This confirms that image size has a negligible impact on the final performance of the model in the zero-shot setting.

Table H7. Zero-shot performance of DUNIA at different input image sizes for several datasets.

DATASET METRIC 128×128 256×256 512×512

Wrh RMSE (r) 2.2 2.0 2.1
Wc RMSE (r) 11.6 11.7 11.7
CLC+ wF1 80.2 80.1 80.2

H.8. Temporal Stability

To evaluate the temporal stability of DUNIA, we conducted two experiments on several vertical structural products across
the years 2019, 2020, and 2021. Other products were excluded due to the unavailability of labels for different years.

1. Fine-tuning an MLP head on top of a model pre-trained in 2020, and evaluating on 2019 and 2021.
2. Pre-training DUNIA using combined data from 2019–2021 and evaluating it in the zero-shot setting.

Table H8 shows that fine-tuning on individual years yields consistent performance across time. Similarly, Table H9
demonstrates that zero-shot performance is also stable over several years.
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Table H8. Fine-tuned performance (RMSE) on vertical structure variables estimation across several years.

DATASET METRIC 2019 2020 2021

Wrh RMSE 1.35 1.34 1.40
Wc RMSE 9.8 9.8 10.1
Wpai RMSE 0.65 0.62 0.63

Table H9. Zero-shot performance (RMSE) on vertical structure variables retrieval across years.

DATASET METRIC 2019 2020 2021

Wrh RMSE 2.4 2.0 2.1
Wc RMSE 11.6 11.7 11.9
Wpai RMSE 0.75 0.71 0.74

H.9. Impact of S-2 and S-2 Input Images

Table H10 shows that combining both modalities yields the best performance for height estimation and tree species
identification, while land cover classification is relatively robust to the choice of modality.

Table H10. Performance of DUNIA when using S-1 only, S-2 only, or both modalities. Results are reported for height prediction (RMSE),
land cover classification (wF1) on the CLC+ dataset, and tree species identification (wF1) on the PF dataset. Performance results
obtained in the fine-tuned setting.

DATASET METRIC S-1 ONLY S-2 ONLY S-2 & 1

Wrh RMSE 3.80 2.80 1.34
PF wF1 65.5% 81.2% 82.2%
CLC+ wF1 90.2% 90.0% 90.3%

H.10. Median Composites vs. Single-Date Images

Results on height estimation and crop classification (PASTIS) (Table H11) show that median composites — even without
full time series — significantly outperform single-date imagery by capturing more stable and representative reflectance
patterns over time.

Table H11. Comparison between single-date and median composite inputs for products where temporal information is critical. Performance
results obtained in the fine-tuned setting.

DATASET METRIC SINGLE-DATE IMAGE MEDIAN COMPOSITE

Wrh RMSE 1.9 1.3
PASTIS wF1 42.3 77.0
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I. Further Results

Figure I1. Fractional canopy cover (Wc) maps produced with different models. Baseline represents reference maps from adapted FORMS
(Schwartz et al., 2023). DUNIA (ZS) represents maps obtained in the zero-shot setting, while DUNIA (FT) represents maps obtained in
the fined-tuned setting. Best viewed zoomed-in (300+%).
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Figure I2. Canopy height (Wrh) maps produced with different models. Baseline represents reference maps from FORMS (Schwartz et al.,
2023). DUNIA (ZS) represents maps obtained in the zero-shot setting, while DUNIA (FT) represents maps obtained in the fined-tuned
setting. Best viewed zoomed-in (300+%).
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Figure I3. Land cover classes (CLC+) maps produced with different models. Baseline represents reference maps from the European
Environment Agency (2024). DUNIA (ZS) represents maps obtained in the zero-shot setting, while DUNIA (FT) represents maps
obtained in the fined-tuned setting. Best viewed zoomed-in (300+%).
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Figure I4. Comparison of map qualities for the task of estimating the canopy height in the zero-shot setting using 50K l GEDI samples as
queries (top row) vs. only 10K l (bottom row).
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Figure I5. Uncurated list of retrieved ( ) and generated waveforms ( ) overlayed on a reference waveform ( ). ’Correlation’ is
Pearson’s correlation coefficient (r) between the reference and the retrieved/generated waveforms. Best viewed zoomed-in (200+%).
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Figure I6. Uncurated list of retrieved ( ) and generated waveforms ( ) overlayed on a reference waveform ( ). ’Correlation’ is
Pearson’s correlation coefficient (r) between the reference and the retrieved/generated waveforms. Best viewed zoomed-in (200+%).
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Figure I7. Uncurated list of retrieved ( ) and generated waveforms ( ) overlayed on a reference waveform ( ). ’Correlation’ is
Pearson’s correlation coefficient (r) between the reference and the retrieved/generated waveforms. Best viewed zoomed-in (200+%).
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Figure I8. Uncurated list of retrieved ( ) and generated waveforms ( ) overlayed on a reference waveform ( ). ’Correlation’ is
Pearson’s correlation coefficient (r) between the reference and the retrieved/generated waveforms. Best viewed zoomed-in (200+%).

32


