
Under review as submission to TMLR

Analysis of generalization capacities of Neural Ordinary Dif-
ferential Equations

Anonymous authors
Paper under double-blind review

Abstract

Neural ordinary differential equations (neural ODEs) represent a widely-used class of deep
learning models characterized by continuous depth. Understanding the generalization error
bound is important to evaluate how well a model is expected to perform on new, unseen data.
Earlier works in this direction involved considering the linear case on the dynamics function
(a function that models the evolution of state variables) of Neural ODE Marion (2024).
Other related work is on bound for Neural Controlled ODE Bleistein & Guilloux (2023) that
depends on the sampling gap. We consider a class of neural ordinary differential equations
(ODEs) with a general nonlinear function for time-dependent and time-independent cases
which is Lipschitz with respect to state variables. We observed that the solution of the
neural ODEs would be of bound variations if we assume that the dynamics function of Neural
ODEs is Lipschitz continuous with respect to the hidden state. We derive a generalization
bound for the time-dependent and time-independent Neural ODEs. We showed the effect
of overparameterization and domain bound in the generalization error bound. This is the
first time, the generalization bound for the Neural ODE with a general non-linear function
has been found.

1 INTRODUCTION

Neural Ordinary Differential Equations (Chen et al. (2018)) are a class of deep learning models where the
transformation between layers is treated as a continuous process defined by an ordinary differential equation
(ODE). This idea generalizes the concept of residual networks (ResNets), where the evolution of the hidden
state z(t) over time is modeled by a differential equation

dz(t)
dt

= f(z(t), t, θ(t)) with z(0) = x, (1.1)

where θ(t) represents the parameters of the model.

Unlike discrete representations from the conventional methods, neural ordinary differential equations (Neural
ODEs) directly learn continuous latent representations (or latent states) based on a vector field parameterized
by a neural network. Kidger et al. (2020) introduced neural controlled differential equations (Neural CDEs),
which are continuous-time analogs of ResNets that use controlled paths to represent irregular time series.
Neural ODEs are also extended to neural stochastic differential equations (Neural SDEs) with a focus on
aspects such as gradient computation, variational inference for latent spaces, and uncertainty quantification.
In neural stochastic ODEs (neural SDEs, Oh et al. (2024)), usually a diffusion term is incorporated but a
careful design of drift and diffusion term is essential.

With neural ODEs, generally, it is difficult to handle irregular time-series data. Neural controlled differential
equations (Kidger et al. (2020)) generalize neural ODEs by incorporating a control mechanism, allowing
them to model the evolution of hidden states as controlled differential equations. Studying the statistical
properties of neural ODEs is not a trivial task. Since standard measures of statistical complexity in neural
networks, such as those discussed by Bartlett et al. (2019), typically increase with depth, it is unclear why
models with effectively infinite depth, like neural ODEs, would demonstrate strong generalization capabilities.

1

Under review as submission to TMLR

Marion (2024) studied the statistical properties of a class of time-dependent neural ODEs described
by the following equation:

dHt

dt
= Wtσ(Ht),

where Wt ∈ Rd×d is a weight matrix that depends on the time index t, and σ : R → R is an activation
function applied component-wise. The model considered by Marion (2024) does not include the case where
there are weights inside the non-linearity since they assume the dynamics at time t to be linear with respect
to the parameters.

Contribution. For a general class of well-posed neural ODEs, where the neural network involves the non-
linear weights within the function, there is no result related to the generalization bound. In this work, we
consider a Neural ODE model parameterized by θ(t) of the following form:

dz(t)
dt

= f(z(t), t, θ(t)) with z(0) = x, (1.2)

where f : Rd × Rd → Rd and z(t) : [0, L] → Rd. We provide a generalization bound for the large class of
parameterized ODEs instead of a linear class, the bound we provided here will hold for a linear class as well
and is stricter than the earlier bounds for the linear class of functions. To the best of our knowledge, this is
the first available bound for neural ODEs for this class of functions.

Organization. Section 1 is devoted to the introduction, and in Section 2, we discuss the realted works. In
section 3, we discuss some of the preliminaries and definitions that are crucial for understanding the problem
setup. In section 4, we formulated the problem statement and section 5 is devoted to derive results related
to generalization bounds. We performed numerical experiments in section 6. In the end, some concluding
remarks are given in section 7.

2 RELATED WORKS

Hybridizing deep learning and differential equations. The fusion of deep learning with differential
equations has recently garnered renewed interest, although the concept has been explored since the 1990s
Rico-Martinez et al. (1992; 1994). A notable advancement was presented by Chen et al. (2018), where they
introduced a model that learns a representation u ∈ Rn by setting the initial condition z(0) = ϕθ(t)(u) for
the following ordinary differential equation (ODE):

dz(t)
dt

= f(z(t), t, θ(t))

where both f and ϕθ(t) are neural networks. The solution at the final time t1, denoted z(t1), is then utilized
as input to a conventional machine learning model. This approach seamlessly integrates neural networks and
ODEs, offering a robust framework for learning complex dynamical systems. Since then, several works have
built on this idea, including theoretical advancements and practical applications as seen in Dupont et al.
(2019); Chen et al. (2019; 2020); Finlay et al. (2020). For a more comprehensive overview, readers may refer
to the reviews by Massaroli et al. (2020) and Kidger (2022), which delve into the intersection of differential
equations and deep learning.

Generalization of Neural Controlled Differential Equations. Bleistein & Guilloux (2023) used a
Lipschitz-based argument to obtain a sampling-dependant generalization bound for neural controlled differ-
ential equations (NCDEs). The NCDE considered was of the following form:

dzt = Gψ(zt)dx̃t,

where zt ∈ Rp, and Gψ : Rp → Rp×d is neural network parametrized by ψ, also x̃t ∈ Rp is continuous path.
In this work, it is assumed that (xt) is Lipschitz which implies that x = (xt)t∈[0,1] is of bounded variation.
They also analyzed how approximation and generalization are affected by irregular sampling.

2

Under review as submission to TMLR

Generalization bounds for neural networks. Bartlett et al. (2017a) derived a margin-based multiclass
generalization bound for neural networks that scales with margin-normalized spectral complexity, involving
the Lipschitz constant (the product of the spectral norms of the weight matrices) and a correction factor.
Long & Sedghi (2019) established generalization error bounds for convolutional networks based on training
loss, parameter count, the Lipschitz constant of the loss, and the distance between current and initial weights,
independent of input size and hidden layer dimensions. Experiments on CIFAR-10 show these bounds align
with observed generalization gaps under varying hyperparameters in deep convolutional networks. Wang
& Ma (2022) derive generalization error bounds for deep neural networks trained via SGD by combining
control of parameter norms with Rademacher complexity estimates. These bounds, which apply to various
architectures like MLPs and CNNs, depend on the training loss and do not require L-smoothness, making
them more broadly applicable than stability-based bounds.

3 PRELIMINARIES

In this section, we present essential preliminary results and definitions necessary for constructing the the-
oretical framework to derive the desired generalization bound. We begin with the definition of functions
of bounded variation, as the solutions of the ordinary differential equations (ODEs) under consideration
are observed to exhibit this property. Next, we review several formulations of Gronwall’s lemma, a critical
tool for establishing bounds on ODE solutions. We then introduce the concept of covering numbers, which
plays a pivotal role in bounding the Rademacher complexity. Finally, we summarize key results related to
Rademacher complexity, enabling the subsequent derivation of the generalization bound.
Definition 3.1 (Dutta & Nguyen (2018)). The function u ∈ L1(Ω,R) is a function of bounded variation on
Ω (denoted by BV (Ω,R)) if the distributional derivative of u is representable by a finite Radon measure in
Ω, i.e., if

∫
Ω
u · ∂φ

∂xi
dx = −

∫
Ω
φdDiu for all φ ∈ C1

c (Ω,R), i ∈ {1, 2, . . . , n},

for some Radon measure Du = (D1u,D2u, . . . ,Dnu). We denote by |Du| the total variation of the vector
measure Du, i.e.,

|Du|(Ω) = sup
{∫

Ω
u(x) div(ϕ) dx

∣∣∣∣ϕ ∈ C1
c (Ω,Rn), ∥ϕ∥L∞(Ω) ≤ 1

}
.

Lemma 3.2. (Particular case of Gronwall’s Inequality) Let I denote an interval of the real line of the form
[a,∞) or [a, b] or [a, b) with a < b. Let α, β, and u be real-valued functions defined on I. Assume that β and
u are continuous and that the negative part of α is integrable on every closed and bounded subinterval of I.

If β is non-negative and if u satisfies the integral inequality and if the function α is non-decreasing, then

u(t) ≤ α(t) +
∫ t

a

β(s)u(s) ds, ∀t ∈ I,

then
u(t) ≤ α(t) exp

(∫ t

a

β(s) ds
)
, t ∈ I.

Lemma 3.3. (Gronwall’s Lemma for sequences). Let (yk)k≥0, (bk)k≥0, and (fk)k≥0 be positive sequences
of real numbers such that

yn ≤ fn +
n−1∑
l=0

blyl

for all n ≥ 0. Then

yn ≤ fn +
n−1∑
l=0

flbl

n−1∏
j=l+1

(1 + bj)

3

Under review as submission to TMLR

for all n ≥ 0.

Proof can be found in Holte (2009) and Clark (1987). We need a variant of Gronwall’s Lemma for sequences.
Lemma 3.4. Let (uk)k≥0 be a sequence such that for all k ≥ 1,

uk ≤ akuk−1 + bk

for (ak)k≥1 and (bk)k≥1 two positive sequences. Then for all k ≥ 1,

uk ≤

 k∏
j=1

aj

u0 +
k∑
j=1

bj

 k∏
i=j+1

ai

 .

Definition 3.5 (Bartlett et al. (2017b)). Let (M,ρ) be a metric space. A subset T̂ ⊆ M is called an τ -cover
of T ⊆ M if for every m ∈ T , there exists an m′ ∈ T̂ such that ρ(m,m′) ≤ τ . T̂ is called a proper cover if
T̂ ⊂ T . The τ covering number of T is the cardinality of the smallest τ -cover of T , that is

N(τ, T, ρ) = min{|T̂ | : T̂ is an τ cover of T}.
Lemma 3.6 (Gautschi (1959)). For x > 0 and 0 < λ < 1, the inequality holds

x1−λ ≤ Γ(x+ 1)
Γ(x+ λ) ≤ (x+ 1)1−λ.

Rademacher Complexity : Rademacher complexity is a concept from statistical learning theory that
measures the richness of a class of functions in terms of how well they can fit random noise. It is commonly
used to derive bounds on the generalization error of learning algorithms.
Definition 3.7 (Mohri (2018)). Given a class of functions H mapping from an input space X to R and a
sample S = {x1, x2, . . . , xn} drawn from a distribution D, the empirical Rademacher complexity of H with
respect to the sample S is defined as:

R̂S(H) = Eσ

[
sup
h∈H

1
n

n∑
i=1

σih(xi)
]
,

where σi are independent Rademacher variables, which take values +1 or −1 with equal probability. and the
expectation Eσ is taken over the distribution of the Rademacher variables.
Lemma 3.8 (Bartlett et al. (2017b)). For any function class F containing functions f : X → R, we have
that

R̂n(F) ≤ inf
ϵ≥0

4ϵ+ 12
∫ supf∈F

√
E[f̂2]

ϵ

√
logN(τ,F , L2(Pn))

n
dτ


where N(τ,F , L2(Pn)) denotes the covering number of F .
Definition 3.9. Let z(t) be the solution of the neural ODE to 1.1 with x as the initial solution. The empirical
risk over the training data is :

R̂(z(t)) = 1
n

n∑
i=1

ℓ(yi, z(t)).

The expected risk or generalization error over the data distribution is :

R(z(t)) = E(x,y)∼P [ℓ(y, z(t))].

R(z(t)) = E[ℓ(y, z(t))].

4

Under review as submission to TMLR

Lemma 3.10 (Mohri (2018)). Rademacher complexity regression bounds : Let L : Y × Y → R be a non-
negative loss function, upper bounded by M > 0 (ℓ(y, y′) ≤ M for all y, y′ ∈ Y), and such that for any fixed
y′ ∈ Y, the function y 7→ ℓ(y, y′) is µ-Lipschitz for some µ > 0.

E(x,y)∼D [ℓ(h(x), y)] ≤ 1
n

n∑
i=1

ℓ(h(xi), yi) + 2µR̂S(H) + 3M

√
log 2

δ

2n .

4 THE LEARNING PROBLEM

The evolution of the hidden state z(t) over time is modeled by a differential equation

dz(t)
dt

= f(z(t), t, θ(t)) with z(0) = z0, (4.3)

We now detail our learning setup. Let z(t) be the solution of Neural ODE and let yi be the true label of the
differential equation at ith time step to be learned by Neural ODE.

We consider an i.i.d. sample {(yi, ti)}ni=1 ∼ y, t. For a given predictor z(t) ∈ F , define

Rn(z(t)) = 1
n

n∑
i=1

ℓ(yi, z(ti)) and R(z(t)) = Et,y [ℓ(y, z(t))]

as the empirical risk and expected risk on the continuous data. Rn(z(t)) cannot be optimized, since we do
not have access to the continuous data. Let θ̂(t) ∈ arg minθ(t) ∈ Θ(t), Rn(z(t)) be an optimal parameter
and ẑ(t) be the optimal predictor obtained by empirical risk minimization. In order to obtain generalization
bounds, the following assumptions on the loss and the outcome are necessary Mohri (2018).

Assumption 1. f(z(t), t, θ(t)) is assumed to be Lipschitz continuous with respect with z(t).

Assumption 2. Weights Ai(t) and biases bi(t) are Lipschitz continuous.

Assumption 3. The outcome y ∈ Rd is bounded almost surely.

Assumption 4. The loss ℓ : Rd ×Rd → R+ is Lipschitz continuous with respect to its second variable, that
is, there exists Lℓ such that for all u, u′ ∈ Y and y ∈ Y ,

|ℓ(y, u) − ℓ(y, u′)| ≤ Lℓ|u− u′|.

This hypothesis is satisfied for most of the classical loss functions, such as the mean squared error, as long
as the outcome and the predictions are bounded. This is true by Assumption 3 and Lemma 5.1. The loss
function is thus bounded since it is continuous on a compact set, and we let Mℓ be a bound on the loss
function.

5 MAIN RESULTS

We state and prove important lemmas before proceeding to the proof of the main theorem 5.9. We assume
that f(z(t), t, θ(t)) is Lipschitz continuous with respect to z. So, by the mean value theorem, the solution
to equation 1.1 will be of bounded variation.
Lemma 5.1. For z(t) ∈ Rd, Ai(t) ∈ Rm×d and bi(t) ∈ Rd for i = 1, 2 . . . N

fN (z(t)) := σ (AN (t)σ (AN−1(t)σ (. . . σ (A1(t)z + b1)) + bN−1) + bN) .

Assume that σ is Lσ Lipschitz, and Ai’s are bounded by A and biased terms are bounded by B. Let ∥Ai(0)∥ ≤
BA0 , ∥bi(0)∥ ≤ Bb0 , t ∈ [0, L] and LA and Lb are Lipschitz constant for weights and biases respectively.

5

Under review as submission to TMLR

Using equation A.5 we have, ∥Ai(t)∥ ≤ ∥Ai(0)∥ + LAL ≤ BA0 + LAL = A and ∥bi(t)∥ ≤ ∥bi(0)∥ + LbL ≤
Bb0 + LbL = B. Then,

∥z(t)∥ ≤
(

∥z(0)∥ + tLσB (LσAN − 1
LσA

)
exp

(
tLfθ(t)

)
.

Corollary 5.2. In the case of time-independent Neural ODE Lipschitz constants for weights and biases will
be 0, hence BA0 = A and Bb0 = B and

∥z(t)∥ ≤

(
∥z(0)∥ + LLσBb0

(LσBNA0
− 1

LσBA0

)
exp (LLfθ

) . (5.4)

This bound on the solution will be useful to obtain the explicit form for covering number bound. This bound
involves the Lipschitz constant, bound on biased terms and weights.
Lemma 5.3. Let

V =
(

∥z(0)∥ + LLσB (LσAN − 1
LσA

)
exp

(
LLfθ(t)

)
and 0 < τ ≤ LV

τ , then

N(τ, I, L2(Pn)) ≤ 24 LV
τ

18 .

Remark 5.4. Observe that the covering number bound increases exponentially with domain size and the
bound of solution. We obtain a strict bound on covering number for the class of L1 functions.
Corollary 5.5. Let 0 < τ ≤ LV

τ , then

N(τ,B, L2(Pn)) ≤ 216 LV
τ

324 .

Proof. From Dutta & Nguyen (2018), we know that

N(τ,B, L2(Pn)) ≤ N2
(τ

2 , I, L2(Pn)
)
,

which proves the required result.

Remark 5.6. In the above lemma, the bound is dependent on covering number of non-decreasing functions
with the radius of balls getting half. But for the class of bounded variation functions, we do not assume that
the functions are non-decreasing.
Lemma 5.7. Let B′ be the class of Rd valued functions with domain [0, L] that are of bounded variation,
then

R̂n(B′) ≤ 96

√
bLV d

3
2 log 2

√
n

− 576LV d
3
2 log 2
n

.

Remark 5.8. Lemma 5.7 ensures that the bound on Rademacher complexity increases with the dimension
of range space for bounded variation functions. Also, due to the constant V , we also get the dependence on
weight parameters and Lipschitz constant of activation functions.
Theorem 5.9. (Generalization bound for Neural ODEs) Let V be the upper bound of the solution of neural
ODE, d be the dimension of the solution, ẑ(t) be the optimal predictor and z∗(t) be the true solution and L be
the upper bound for time and M > 0 be an upper bound of non-negative loss function l : [0, V] × [0, V] → R,
i.e., l(ẑ(t), z∗(t)) ≤ M for all ẑ(t), z∗(t) ∈ [0, V]. Also, assume that for any fixed ẑ(t) ∈ [0, V], the mapping
y 7→ l(ẑ(t), z∗(t)) is µ-Lipschitz for some µ > 0. Then generalization error is bounded with probability at
least 1 − δ by:

R(ẑ(t)) ≤ Rn(ẑ(t)) + 2µ

96

√
bLV d

3
2 log 2

√
n

− 576LV d
3
2 log 2
n

+ 3M

√
log 2

δ

2n .

6

Under review as submission to TMLR

Outline of the proof. We observed that the solution of the Neural ODEs described by equation 1.1 will be
of bounded variations. We found stricter bound for covering number of this class of functions. We observed
that the covering number is related to the number of positive integer solutions of an equation which is equal to
central binomial coefficients. The central binomial coefficient obeys a recurrence relation which has a closed
form solution. We then used inequality which the ratio of gamma functions satisfies. In this way, we obtained
a stricter bound for the covering number of bounded variation functions. We assumed the parameters to be
Lipschitz continuous and obtained a bound on Weights and biases. We then found Rademacher complexity
bound using Dudley’s entropy integral stated in Lemma 3.8. Finally, we used the result for the Rademacher
complexity in Lemma 5.7 to regression bound stated in Lemma 3.10. Since Rademacher complexity is non
negative, b ≥ 36LV log 2

n .

Comparison: The bound given in our work is stricter in terms of n for the linear case since it is O
(1
n1/2

)
for

the term consisting of Lipschitz constant of weights while it is O
(1
n1/4

)
for the bound given in Marion (2024).

Also, bound given in Marion (2024) does not depend on depth but has a worse dependence on width, our
bound depends on depth but does not depend on width.Also it i In the bound given in Bleistein & Guilloux
(2023), if we take the case x(t) = t, in which case it is neural ODE, the bound is the same in terms of n
but the bound depends on the discretization of time, here it is independent of that and also the bound is
simpler in this case as it contains less number of parameters. More details can be found in appendix A.4.

6 NUMERICAL ILLUSTRATIONS

The experiment shown by figure 1 investigates the impact of varying the number of hidden units in a Neural
ODE model on the generalization error. Neural ODEs are continuous-depth neural networks that model the
dynamics of a system using ordinary differential equations. In this setup, we train a Neural ODE with a
hidden layer whose dimension is altered across different experiments. We utilize a simple two-dimensional
input and a synthetic dataset where the target is generated by applying a sine function to the sum of the
input features. The network’s task is to predict the scalar output corresponding to this target. By adjusting
the number of hidden units in the ODE block, we analyze how the model’s capacity affects its generalization
ability, defined as the difference in error on unseen test data after training. Overall as the number of hidden
units increases the generalization error increases which validates the theorem 5.9 , because as the number
of hidden units increases the norm bound increases.The experiment presented in Figure 1 investigates the
impact of varying the number of hidden units in a Neural ODE model on generalization error. Neural ODEs,
which model continuous transformations of data using ordinary differential equations, allow for varying
model capacity by adjusting the number of hidden units in their ODE block. The results show that as
the number of hidden units increases, the generalization error also increases. This observation empirically
validates Theorem 5.9 , which suggests that the generalization gap is influenced by the norm bound of the
network parameters. As the number of hidden units grows, the norm of the weight matrices also increases,
amplifying the Lipschitz constant of the transformation and making the model more sensitive to small input
perturbations. This heightened sensitivity reduces robustness and leads to a larger generalization gap. Thus,
the experiment provides empirical confirmation of the theoretical prediction, demonstrating that increasing
model capacity leads to a higher generalization error due to the growing norm bound.

7

Under review as submission to TMLR

Figure 1: Generalization Error vs Number of Hidden Units in Neural ODE.

In the experiment illustrated by figure 2, we utilized a deeper Neural ODE model to assess the effect of
different regularization parameters on the generalization gap. The synthetic data simulates complex real-life
phenomena, such as a particle trajectory in a potential field. Regularization was applied to the model’s loss
function to enforce model stability, and the regularization term V was computed as a function of various
properties of the model, such as the spectral norms of weight matrices. For each trial, we recorded the
generalization gap as the difference between training and test losses. The results were visualized using a
box plot, which shows the distribution of generalization gaps for each regularization parameter, providing
insights into the bound which is directly proportional to V . As we increase the value of the regularization
parameter, the mean generalization gap decreases which is possible only if V decreases indicating that the
bound is directly proportional to V . So, V should be in the numerator which is confirmed from the theory.
The constant V is dependent on the bound of weights and bias terms which changes for each training.

Figure 2: Plot of generalization gap against regularization parameter for time-independent Neural ODE. V
which is the bound of the solution is added as a penalty term to the loss function. For each value of the
regularization parameter Neural ODE, 20 trials were done. For each trial, it was trained for 25 epochs.

The experiment shown by figure 3 is to investigate how the generalization gap is related to the Lipschitz
constant of weights sup0≤k≤L−1 ∥Wk+1 −Wk∥.The Neural ODE is defined with time-varying weights, where
the forward pass involves applying a sinusoidal time dependency to the weights of the hidden layer. The
model computes the Lipschitz constant by calculating the largest singular value of the weight matrices,
which serves as a measure of how sensitive the model is to input changes. Lipschitz constant of weights
is added as a penalty term in the loss function with different regularization parameters (λ)values. The
results are summarized in a box plot, showing the generalization gap versus λ, to visualize the impact of
varying the penalization factor on the model’s generalization performance. As we increase the value of the
penalization factor the average generalization gap decreases which is possible only if Lipschitz constant of

8

Under review as submission to TMLR

weights decreases which indicates models with less Lipschitz constant of weights have less generalization gap.
So, the Lipschitz constant of weights should be in the numerator, which is confirmed by theoretical bound.

Figure 3: Plot of generalization gap against regularization parameter for time dependent Neural ODE.
Lipschitz constant for weights which is the bound of solution is added as a penalty term to the loss function.
Four different λ values (0, 0.01, 0.1, and 1) are tested over 20 trials. For each trial, the generalization gap is
calculated as the difference between the validation loss and training loss after training for 50 epochs.

7 CONCLUSION

We obtain the first generalization bounds for time-independent and time-dependent neural ODEs. We proved
the generalization bound for the time-dependent neural ODEs of the form dHt = f(Ht, θ(t))dt. Using this
result we also obtain the generalization bound for the time-independent neural ODEs. We also showed
how the generalization gap is dependent on the Lipschitz constant of weights for the case of time-dependent
Neural ODEs. Since stochastic Neural ODEs have been found to deep limits of a large class of residual neural
networks, it will be interesting to extend our result to the more involved case of Neural SDEs. Mean-field
approach can also be explored to get better estimates for generalization bound.

References
Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural

networks. Advances in neural information processing systems, 30, 2017a.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for neural
networks. Advances in neural information processing systems, 30, 2017b.

Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-dimension and
pseudodimension bounds for piecewise linear neural networks. Journal of Machine Learning Research, 20
(63):1–17, 2019.

Linus Bleistein and Agathe Guilloux. On the generalization and approximation capacities of neural controlled
differential equations. arXiv preprint arXiv:2305.16791, 2023.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary differential
equations. Advances in neural information processing systems, 31, 2018.

RTQ Chen et al. Symplectic recurrent neural networks. ICLR, 2019.

TQ Chen et al. Scalable and efficient neural odes with stochastic jump processes. arXiv preprint
arXiv:2002.10445, 2020.

Dean S Clark. Short proof of a discrete gronwall inequality. Discrete applied mathematics, 16(3):279–281,
1987.

9

Under review as submission to TMLR

E. Dupont et al. Augmented neural odes. Advances in Neural Information Processing Systems (NeurIPS),
2019.

Prerona Dutta and Khai T Nguyen. Covering numbers for bounded variation functions. Journal of Mathe-
matical Analysis and Applications, 468(2):1131–1143, 2018.

C. Finlay et al. How to train your neural ode: the world of jacobian and kinetic regularization. arXiv
preprint arXiv:2002.02798, 2020.

Walter Gautschi. Some elementary inequalities relating to the gamma and incomplete gamma function. J.
Math. Phys, 38(1):77–81, 1959.

John M Holte. Discrete gronwall lemma and applications. In MAA-NCS meeting at the University of North
Dakota, volume 24, pp. 1–7, 2009.

P. Kidger. Neural odes: Foundations and applications. arXiv preprint arXiv:2202.02435, 2022.

Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations for
irregular time series. Advances in Neural Information Processing Systems, 33:6696–6707, 2020.

Philip M Long and Hanie Sedghi. Generalization bounds for deep convolutional neural networks. arXiv
preprint arXiv:1905.12600, 2019.

Pierre Marion. Generalization bounds for neural ordinary differential equations and deep residual networks.
Advances in Neural Information Processing Systems, 36, 2024.

S. Massaroli et al. Dissecting neural odes. arXiv preprint arXiv:2002.08071, 2020.

Mehryar Mohri. Foundations of machine learning, 2018.

YongKyung Oh, Dongyoung Lim, and Sungil Kim. Stable neural stochastic differential equations in analyzing
irregular time series data. arXiv preprint arXiv:2402.14989, 2024.

R. Rico-Martinez et al. Continuation of models for nonlinear dynamical systems via the karhunen-loéve
decomposition. Proceedings of the 31st IEEE Conference on Decision and Control, 1992.

R. Rico-Martinez et al. Discrete-time models for nonlinear dynamics. Chemical Engineering Communications,
1994.

Mingze Wang and Chao Ma. Generalization error bounds for deep neural networks trained by sgd. arXiv
preprint arXiv:2206.03299, 2022.

Appendix

Organization of the Appendix: Section A in appendix provides the proofs for three lemmas which we
used to prove the main theorem. We also provide comparison results in section A. We proved lemma 5.1,
5.3, and 5.7 in this section. Section B is devoted to details related to numerical experiments.

A Proofs

A.1 Proof of lemma 5.1

Proof. Let A(t) be a time-dependent matrix. We assume that A(t) is Lipschitz continuous, meaning there
exists a constant LA such that for all t1, t2 ∈ [t0, tf]:

∥A(t1) −A(t2)∥ ≤ LA|t1 − t2|

10

Under review as submission to TMLR

where LA is the Lipschitz constant and ∥ · ∥ is a suitable matrix norm (e.g., Frobenius norm or operator
norm).

To express A(t) as a function of its initial value A(t0), we use the integral representation:

A(t) = A(t0) +
∫ t

t0

dA(s)
ds

ds

where dA(s)
ds is the time derivative of A(s), and the integral captures the accumulation of changes over time.

Using the assumption that A(t) is Lipschitz continuous, the time derivative dA(s)
ds is bounded by the Lipschitz

constant LA. Therefore, for s ∈ [t0, tf], we have:

∥∥∥∥dA(s)
ds

∥∥∥∥ ≤ LA

Substituting this bound into the integral representation of A(t):

∥A(t) −A(t0)∥ ≤
∫ t

t0

∥∥∥∥dA(s)
ds

∥∥∥∥ ds ≤
∫ t

t0

LA ds

This simplifies to:

∥A(t) −A(t0)∥ ≤ LA|t− t0|

Thus, we have the bound:

∥A(t)∥ ≤ ∥A(t0)∥ + LA|t− t0|

Finally, to remove the time dependency, we maximize the bound over the interval [t0, tf]:

∥A(t)∥ ≤ ∥A(t0)∥ + LA(tf − t0)

Thus, the matrix A(t) is uniformly bounded by a time-independent constant MA:

∥A(t)∥ ≤ MA = ∥A(t0)∥ + LA(tf − t0)

Since t ∈ [0, L],
MA = ∥A(0)∥ + LAL (A.5)

Let

fN (z(t))
:= σ (AN (t)σ (AN−1(t)σ (. . . σ (A1(t)z + b1(t)))

+bN−1(t)) + bN (t)) .

where z ∈ Rd.
Let us first consider the case when d=1.
Let Dz be the distributional derivative of solution function z and

I = {z ∈ L1([0, L]) | z is non decreasing}

B = {z ∈ L1([0, L]) | |Dz|((0, L)) ≤ M}.

11

Under review as submission to TMLR

We know that finding solution to neural ODE (5.1) is equivalent to finding solution to the integral equation

z(t) = z(0) +
∫ t

0
f(z(t), t, θ(t) dt. (A.6)

Taking norms, this yields:

∥z(t)∥ ≤ ∥z(0)∥ +
∫ t

0
∥f(z(t), t, θ(t))∥ dt. (A.7)

Notice that since we assumed f is Lipschitz with respect to z, we have that for all z ∈ Rd:

∥f(z(t), t, θ(t))∥ ≤ ∥f(z(t), t, θ(t)) − f(0, t, θ(t))∥ + ∥f(0, t, θ(t))∥ (A.8)
≤ ∥f(z(t), t, θ(t)) − f(0, t, θ(t))∥ + ∥f(0, t, θ(t))∥ (A.9)
≤ Lf∥z(t)∥ + ∥f(0, t, θ(t))∥ (A.10)

where the last inequality follows from the fact that f is Lipschitz. It follows that:

∥z(t)∥ ≤ ∥z(0)∥ +
∫ t

0
(Lf∥z∥ + ∥f(0, t, θ(t))∥) dt. (A.11)

Using the fact that
∫ t

0 dt = t, one gets:

∥z(t)∥ ≤ ∥z(0)∥ + t∥f(0, t, θ(t)∥ + Lf

∫ t

0
∥z(t)∥ dt (A.12)

Applying Gronwall’s inequality stated in Lemma 3.2 yields,

∥z(t)∥ ≤ (∥z(0)∥ + t∥f(0, t, θ(t))∥) exp (tLf) . (A.13)

Let ∥Ai(0)∥ ≤ BA0 and ∥bi(0)∥ ≤ Bb0

Then using equation A.5 we get, ∥Ai(t)∥ ≤ ∥Ai(0)∥+LAL ≤ BA0 +LAL = A and ∥bi(t)∥ ≤ ∥bi(0)∥+LbL ≤
Bb0 + LbL = B

Since

∥fN (0)∥ = ∥fN (0) − σ(0)∥ ≤ Lσ∥AN (t)fN−1(0)∥ + LσB, (A.14)

≤ LσA∥fN−1(0)∥ + LσB. (A.15)

Using lemma 3.4,

∥fN (0)∥ ≤ (LσA)N−1 ∥σ(b1)∥ + LσB
N−2∑
j=0

(LσA)j , (A.16)

≤ LσB
N−1∑
j=0

(LσA)j , (A.17)

12

Under review as submission to TMLR

= LσB (LσA)N − 1
LσA − 1 . (A.18)

This implies

∥z(t)∥ ≤
(

∥z(0)∥ + tLσB (LσAN − 1
LσA

)
exp (tLf) . (A.19)

A.2 Proof of lemma 5.3

Proof. For a fixed positive integer n, let us set the discretization size as ∆x = L
n , ∆y = V

n . To each z ∈ I,
we associate the pair of functions (ψ+[z], ψ−[z]) defined by

ψ
−
+[z] =

N−1∑
k=0

ψ
−
+
k · I[k · ∆x, (k + 1) · ∆x], (A.20)

where

ψ−
k =

[
z(k · ∆x+ 0)

∆y

]
,

ψ+
k =

[
z((k + 1) · ∆x− 0)

∆y

]
+ 1.

For X
−
+ ∈ I, define

U(X −,X +) = {z ∈ I | X − ≤ z ≤ X +}.

Since z ∈ U(X −[z],X +[z]), the set

U = {U(X −[z],X +[z]) | f ∈ I}

is a covering of I.

Since
#U ≤ {0 ≤ a0 ≤ a1 ≤ · · · ≤ aN−1 ≤ N | (ak ∈ N)}2

and

#{0 ≤ a0 ≤ a1 ≤ · · · ≤ aN−1 ≤ N | (ak ∈ N)}
=

{
(p1, . . . , pN+1) ∈ NN+1 | p1 + · · · + pN+1 = N

}
=

(
2N
N

)
,

the covering number for the class of functions in I is bounded by
(2n
n

)2. Consider sums of powers of binomial
coefficients: arn =

∑n
k=0

(
n
k

)r
. For r = 2, the closed-form solution is given by

a(2)
n =

(
2n
n

)

i.e., the central binomial coefficients. a(2)
n obeys the recurrence relation

13

Under review as submission to TMLR

(n+ 1)a(2)
n+1 − (4n+ 2)a(2)

n = 0.
After solving the recurrence relation we get,(

2n
n

)
= C1

4n−1

Γ(n+ 1)

(
3
2

)
2n−1

((x)n denotes Pochhammer symbol.)

= 2 · 22(n−1)

Γ(n+ 1)

(
3
2

)
2n−1

(since C1 = 2,which we can
obtain by setting n = 0 in previous equation.)

= 22(n−1)

Γ(n+ 1)
Γ(3

2 + n− 1)
Γ(3

2)

= 22(n−1)

Γ(n+ 1)
Γ(n+ 1

2)√
π
2

= 22(n−1)√
π
2

Γ(n+ 1
2)

Γ(n+ 1)

= 22n
√
π

Γ(n+ 1
2)

Γ(n+ 1)

≤ 22n
√
π

1√
n

(using Lemma 3.6)

= 22n
√
nπ

.

=⇒
(

2n
n

)2
≤ 24n

nπ

≤ 24n

6π (if n ≥ 6)

≤ 24n

18 .

Let n =
[
LV
τ

]
+ 1, then

N(τ, I, L2(Pn)) ≤ 24 LV
τ

18 .

A.3 Proof of lemma 5.7

Proof. Since,

N(τ,B′, L2(Pn)) ≤ 216 LV
τ

324 .

For z ∈ Rd ,

N(τ,B′, L2(Pn)) ≤

(
216 LV

√
d

τ

324

)d
Observe that, √

logN(τ,B′, L2(Pn)) ≤
4
√
LV d

3
2 log 2

√
τ

= g(τ).

14

Under review as submission to TMLR

Therefore, ∫ b

a

g(τ)dτ = 8
√
LV d

3
2 log 2

[√
b−

√
a
]

(A.21)

We know that from Lemma (3.8) that empirical Rademacher Complexity R̂n(B′) has the following bound

R̂n(B′) ≤ inf
ϵ≥0

{
4ϵ+ 12

∫ b

ϵ

√
logN(τ,B′, L2(Pn))

n
dτ

}
,

where b = supf∈B′

√
E[f2]. Using (A.21), we have

R̂n(B′) ≤ inf
ϵ≥0

4ϵ+
96
√
LV d

3
2 log 2

√
n

[√
b−

√
ϵ
] .

This implies

R̂n(B′) ≤ 96

√
bLV d

3
2 log 2

√
n

− 576LV d
3
2 log 2
n

.

A.4 Comparison with other bounds (Neural ODE)

Theorem A.1. (Marion (2024) Generalization bound for parameterized ODEs).

H0 = x,

dHt =
m∑
i=1

θi(t)fi(Ht) dt,

Fθ(x) = H1, where,

• θ = (θ1, . . . , θm) is a parameter function mapping [0, 1] to Rm.

• fi(Ht) represents the dynamics associated with the i-th component of the system.

• Ht is the state of the system at time t, with the initial state H0 = x.

• Fθ(x) denotes the output state H1 after the evolution.

Θ = {θ : [0, 1] → Rm | ∥θ∥1,∞ ≤ RΘ and θi is KΘ-Lipschitz for i ∈ {1, . . . ,m}} .

Consider the class of parameterized ODEs FΘ = {Fθ, θ ∈ Θ}. Let δ > 0, then, for n ≥ 9 max(m−2R−2
Θ , 1),

with probability at least 1 − δ,

R(θ̂n) ≤ Rn(θ̂n) +B

√
(m+ 1) log(RΘmn)

n
+ Bm

√
KΘ

n1/4 +
B
√

log 1
δ√

n
,

where B is a constant depending on Kℓ, Kf , RW , RX , RY , and M . More precisely,

B = 6KℓKf exp(KfRΘ) (RX +MRΘ exp(KfRΘ) +RY) .
Theorem A.2. Bleistein & Guilloux (2023) Let Gψ(z) be the dynamic function as neural network

Gψ(z) = σ
(
Aqσ

(
Aq−1σ

(
· · ·σ

(
A1z + b1

))
+ bq−1

)
+ bq

)
, where (A.22)

15

Under review as submission to TMLR

(i) The activation function σ is Lσ-Lipschitz. This means that for any x, y ∈ R:

|σ(x) − σ(y)| ≤ Lσ|x− y|.

Moreover, σ(0) = 0, ensuring that the activation function is centered.

(ii) A1, A2, . . . , Aq are weight matrices for each layer of the network, and b1, b2, . . . , bq are bias vectors
for each layer of the network.

(iv) z is the input vector to the multi-layer perceptron (MLP).

With probability at least 1 − δ, the generalization error RD(f̂D) −Rn(f̂D) is upper bounded by

24M
D
Θ Lℓ√

2

√
2pUD1 + (q − 1)p(p+ 1)UD2 + dp(2 + p)UD3 +Mℓ

√
log(1/δ)

2n , with

UD1 := log(
√
nCqK

D
1), UD2 := log(√npCqKD

2), UD3 := log(
√
ndpCqK

D
2),

and Cq := (8q + 12). Here, ∥Ah∥ ≤ BA, ∥bh∥ ≤ Bb, ∥U∥ ≤ BU , ∥v∥ ≤ Bv, ∥Φ∥ ≤ BΦ, K
D
1 and KD

2 are two
discretization and depth-dependent constants equal to

KD
1 := max{BΦM

D
Θ , BvCv}, KD

2 := max{BbCDb , BACDA , BUCU},

where CDA , CDb , Cv, and CU are Lipschitz constants.

MΘ := BΦLσ exp(BALσ)qLx
(
BUBx +Bv + κΘ(0)Lx

)
,

CA := BΦLx exp(LσBA)qLx × max
z∈Ω,1≤i≤q

CiA(z), Cb := BΦLx exp(LσBA)qLx × max
1≤i≤q

Cib,

CU := BΦBx exp(LσBALx)Lσ, Cv := BΦ exp(LσBA).

κΘ(0) = LσBb
LσBA

(
q − 1

)
LσB

−1
A ,

which serves as an upper bound for ∥Gψ(0)∥op, defined as:

∥Gψ(0)∥op := max
∥u∥=1

∥Gψ(u)∥.

B Experiment details

B.1 For experiment illustrated by figure 1

The objective of this experiment is to analyze the effect of the number of hidden units on the generalization
error of a Neural ODE model. The generalization error is defined as the model’s performance on unseen test
data, measured using the mean squared error (MSE). The study investigates the relationship between model
complexity, as determined by the number of hidden units, and its ability to generalize.

The dataset is synthetically generated and consists of training and testing samples. The training set comprises
100 samples, while the test set includes 30 samples. Each input sample has two features, sampled from a
standard normal distribution. The target values are computed using a non-linear function of the inputs with
some added randomness. This introduces a non-linear relationship between inputs and targets, mimicking
the challenges of real-world data.

The Neural ODE model used in this experiment consists of three main components. First, a linear input layer
maps the input data into a higher-dimensional space determined by the number of hidden units. Second, the
ODE function models the dynamics of the hidden state using a fully connected layer with ReLU activation,

16

Under review as submission to TMLR

solving the ODE using the ‘torchdiffeq.odeint‘ solver over the time interval [0.0, 1.0]. The final state of the
ODE solver is passed through an output layer to produce the scalar prediction.

The independent variable in this study is the number of hidden units, which is varied across the follow-
ing values: [100, 200, 300, 400, 500, 600, 700, 800, 900]. For each configuration, the model is trained for 100
epochs using the Adam optimizer with a learning rate of 0.01. The loss function used is the mean squared
error (MSE), and the training process is conducted on a GPU if available. The dependent variable is the
generalization error, which is evaluated as the mean squared error on the test dataset.

Reproducibility is ensured by setting random seeds for both torch and numpy. The model performance
is evaluated by calculating the MSE on the training and test datasets after training. The generalization
error is analyzed as a function of the number of hidden units, and a line plot is generated to visualize this
relationship. The x-axis represents the number of hidden units, and the y-axis represents the corresponding
generalization error.

The hypothesis of the experiment is that increasing the number of hidden units will initially reduce the
generalization error as the model’s capacity improves. However, beyond a certain point, overfitting may
occur, leading to an increase in the generalization error. The experiment is designed to identify this trend
and explore the optimal model complexity for the given task.

B.1.1 Data Generation

The dataset used in this experiment is synthetically generated to test the Neural ODE model’s capability
to generalize to unseen data. The process creates input-output pairs based on random input vectors and a
non-linear transformation for the target values. This ensures that the task is sufficiently challenging while
allowing for reproducibility.

The steps for generating the data are as follows:

1. The input data, denoted as X, is a set of nsamples random vectors, where each vector has a dimen-
sionality of input_dim. The elements of X are drawn from a standard normal distribution:

X ∼ N (0, 1)nsamples×input_dim.

2. The target values, denoted as y, are generated by applying a sinusoidal transformation to the sum
of the elements in each input vector:

yi = sin

input_dim∑
j=1

Xij

 , ∀i ∈ {1, 2, . . . , nsamples}.

This non-linear transformation introduces complexity into the data while ensuring a bounded range
for the output values.

3. The inputs X and the corresponding targets y are paired together to form the dataset:
Dataset = {(Xi, yi)}nsamples

i=1 .

4. Two datasets are generated:
• A training dataset with nsamples = 100.
• A testing dataset with nsamples = 30.

Both datasets are created independently using the same generation process to ensure the test data
remains unseen during training.

5. The generated data is stored as PyTorch tensors, making it compatible with the Neural ODE model.
This enables efficient data loading and processing during training and evaluation.

This synthetic data generation process provides a controlled setup for evaluating the generalization capa-
bilities of the Neural ODE model. The use of a sinusoidal target function introduces a non-trivial learning
problem while maintaining interpretability and ease of reproducibility.

17

Under review as submission to TMLR

B.2 For experiment illustrated by figure 2

The primary objective of this experiment is to evaluate the relationship between regularization parameters
and the generalization gap of a Neural ODE model. The model is trained on a real-life complex dataset,
simulating the trajectory of particles in a potential field. The generalization gap is computed as the difference
between the mean squared error (MSE) on the training and testing datasets.

The dataset is generated synthetically to simulate realistic particle trajectories. For each trajectory, the
data points are computed by introducing sinusoidal patterns with added Gaussian noise. Specifically, the
x-coordinates are defined as sin(t) + 0.5ϵx, and the y-coordinates as cos(t) + 0.5ϵy, where ϵx and ϵy represent
Gaussian noise. A total of 2000 samples are generated for both the training and testing datasets. The
generated data is converted into tensors for compatibility with PyTorch operations.

The Neural ODE model used in the experiment consists of a multi-layer neural network. The ODE function
is parameterized by a deep neural network with four fully connected layers, each containing 100 hidden
units and ReLU activation. The integration of the ODE is performed using the ‘torchdiffeq.odeint‘ solver
over the time interval [0.0, 1.0]. Regularization is applied by augmenting the loss function with a penalty
term proportional to the bound V , derived from the norms of the parameters and Lipschitz constants of the
network layers.

The experiment is conducted for four regularization parameters: 0.0, 0.01, 0.08, and 0.1. For each parameter,
20 trials are performed, and the model is trained for 25 epochs using the Adam optimizer with a learning
rate of 0.01. During each training step, the gradients of the weights are monitored to compute the spectral
norm and other components required for V .

The generalization gap is computed as the difference between the training and test losses, both evaluated as
MSE. To ensure reproducibility, the random seed is fixed at 100 for PyTorch and NumPy operations. After
the training process, the generalization gaps for all regularization parameters are plotted using a box plot to
visualize their distributions. The x-axis represents the regularization parameters, and the y-axis represents
the generalization gaps.

This experiment highlights the trade-off between regularization and model generalization, offering insights
into how different regularization strengths affect the performance of Neural ODEs on complex datasets.

B.2.1 Data Generation

The data used in this experiment is synthetically generated to simulate realistic particle trajectories in a po-
tential field. The trajectories are designed to exhibit sinusoidal patterns with added Gaussian noise, capturing
the complexity often found in real-life systems. This synthetic data allows for controlled experimentation
while maintaining a level of realism.

To generate the data, the following procedure is employed:

1. Define a time vector t that spans the interval [0, 10] with nsamples evenly spaced points. For this
experiment, nsamples = 2000 is used for both training and testing datasets.

2. Compute the x-coordinates of the trajectory as:

x = sin(t) + 0.5ϵx,

where ϵx is a Gaussian noise term sampled from N (0, 1).

3. Similarly, compute the y-coordinates of the trajectory as:

y = cos(t) + 0.5ϵy,

where ϵy is another independent Gaussian noise term sampled from N (0, 1).

18

Under review as submission to TMLR

4. Combine the x and y coordinates to form a dataset of two-dimensional points, represented as:

data =


x1 y1
x2 y2
...

...
xnsamples ynsamples

 .

5. Convert the generated data into PyTorch tensors for compatibility with the Neural ODE framework.
The data is moved to the computation device (CPU or GPU) to optimize performance during training
and evaluation.

The generated dataset exhibits variability in particle trajectories due to the added noise, introducing chal-
lenges similar to those encountered in real-world dynamical systems. This ensures that the trained Neural
ODE model can learn to approximate complex behaviors while being evaluated for its ability to generalize
across different initial conditions. Separate datasets are generated for training and testing, ensuring that the
model is not exposed to test samples during training.

By synthesizing the data in this manner, the experiment captures the intricacies of noisy particle trajectories,
providing a robust benchmark for evaluating the generalization capabilities of the Neural ODE model.

B.3 For experiment illustrated by figure 3

This experiment investigates the impact of Lipschitz regularization on the generalization gap in Neural
Ordinary Differential Equation (ODE) models. A Neural ODE model is implemented where the parameters
of the ODE depend on time. The primary goal is to examine how adding a penalty term proportional to the
Lipschitz constant of the model’s weights influences the generalization gap, which is defined as the difference
between validation loss and training loss.

The Neural ODE model consists of an ODE function with two fully connected layers. The first layer maps
2-dimensional input data to a hidden representation of size 50 with ReLU activation. The second layer
projects this representation back to a 2-dimensional output. To incorporate time-dependency, the hidden
layer’s output is modulated by a sine function of time, introducing a dynamic weight adjustment. The ODE
is solved using the odeint function from the torchdiffeq library over a fixed time interval of [0, 1].

To measure and regulate the Lipschitz constant of the model, the singular values of the weight matrices
are computed. The Lipschitz constant is defined as the maximum singular value across all weight matrices.
During training, the loss function combines the mean squared error (MSE) between model predictions and
ground truth labels with a penalty term proportional to the Lipschitz constant. The overall loss is expressed
as:

Loss = MSE + λ · L,

where λ is the regularization strength, and L is the Lipschitz constant of weights.

The datasets for training and validation are synthetically generated. Both datasets consist of 2-dimensional
samples drawn from a standard normal distribution, N (0, 1). The training dataset contains 100 samples,
while the validation dataset contains 20 samples. The corresponding labels are generated by scaling the
input data by a factor of 2, resulting in a simple linear relationship. This ensures a clear evaluation of the
model’s generalization capabilities.

B.3.1 Data Generation

In this experiment, the input data and corresponding labels are synthetically generated to evaluate the
generalization capability of a neural ODE model with a Lipschitz constant penalty. The input data consists
of random 2-dimensional points, generated independently from a standard normal distribution. Specifically,
for each input data point x = (x1, x2), both features x1 and x2 are independently drawn from the standard
normal distribution N (0, 1). This ensures that the dataset contains diverse points distributed across the

19

Under review as submission to TMLR

2-dimensional space. The dataset used for training consists of 100 such points, and the dataset used for
validation consists of 20 points.

The corresponding labels for the input data are generated by a simple linear transformation. The label for
each data point x = (x1, x2) is computed as twice the value of the input features, i.e., y = 2 · x. This linear
transformation ensures that the label is directly related to the input data, which makes it easier for the model
to learn the mapping. The training labels ytrain and validation labels yval are computed as ytrain = 2 · xtrain
and yval = 2 · xval, respectively.

The dataset is randomly split into training and validation datasets. The training dataset consists of 100
data points, and the validation dataset contains 20 data points. This splitting is done to ensure that the
model is evaluated on unseen data, allowing for the measurement of its generalization performance.

To summarize, the input data is generated by independently sampling 2-dimensional points from a standard
normal distribution, ensuring a variety of input values. The corresponding labels are generated through a
simple linear scaling by a factor of 2. The dataset is split into training and validation sets, with 100 samples
for training and 20 samples for validation. This dataset setup serves to evaluate the performance of a neural
ODE model with a Lipschitz penalty term.

20

	INTRODUCTION
	RELATED WORKS
	PRELIMINARIES
	THE LEARNING PROBLEM
	MAIN RESULTS
	NUMERICAL ILLUSTRATIONS
	CONCLUSION
	Proofs
	Proof of lemma 5.1
	Proof of lemma 5.3
	Proof of lemma 5.7
	Comparison with other bounds (Neural ODE)

	Experiment details
	For experiment illustrated by figure 1
	Data Generation

	For experiment illustrated by figure 2
	Data Generation

	For experiment illustrated by figure 3
	Data Generation

