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Abstract

Large Language Models (LLMs) have experi-
enced remarkable performance gains through
increased parameter counts and training data,
but this growth poses significant challenges
for on-device deployment. Quantization has
emerged as a critical technique to reduce
compute and memory overhead in resource-
constrained environments. Unfortunately, tra-
ditional quantization approaches are hampered
by outliers—rare but extreme activation values
that stretch quantization ranges and degrade
performance. Recent work suggests that the
Adam optimizer itself may contribute to out-
lier formation through its element-wise gradi-
ent normalization. In this paper, we introduce
Muon as a practical alternative to Adam for
large-scale LLM training. By employing effi-
cient gradient orthogonalization via Newton-
Schulz iterations, Muon avoids the heavy over-
head common in second-order methods like
Shampoo. We further propose an Qutlier-Safe
Pre-Training (OSP) framework that incorpo-
rates learnable embedding rotations and single-
scale RMSNorm, suppressing outliers without
architectural modifications at inference. Our
ablation study on a 100 billion token corpus
demonstrates that these components effectively
mitigate outliers while maintaining model qual-
ity. We validate our approach by training a
1.4B-parameter LLM on 1 trillion tokens—to
our knowledge, the first production-scale model
trained without Adam. The resulting model
exhibits distinct quantization behavior under
4-bit weight and activation (W4A4) quantiza-
tion compared to existing open-source LLMs,
suggesting new possibilities for robust low-bit
pre-training in LLM development.

1 Introduction

Large Language Models (LLMs) have grown at an
unprecedented pace, resulting in escalating com-
pute, memory, and energy costs. Such growth poses
significant challenges for on-device LLM deploy-
ment, especially on devices with limited resources.
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Figure 1: Comparison of Quantization-induced Degra-
dation (QiD) patterns under 4-bit weight and activation
(W4A4) quantization. In the plot, Adam refers to vari-
ous open-source LLMs trained with the Adam optimizer,
which exhibit one characteristic pattern of performance
under quantization. Muon (OSP) represents check-
points from our model trained with the Muon optimizer
over OSP framework, revealing a distinctly different
QiD pattern. Performance is evaluated across standard
LLM benchmarks detailed in Section 4.1.

As a practical solution, various quantization meth-
ods (Frantar et al., 2023; Shao et al., 2024; Ashk-
boos et al., 2024b; Liu et al., 2024b) have been
developed to reduce model size and computational
overheads by representing weights and activations
in lower-precision formats.

However, activation outliers in LLMs (Bon-
darenko et al., 2021; Wei et al., 2022; Liu et al.,
2024a; Dettmers et al., 2022; Xiao et al., 2023;
Ashkboos et al., 2024b; Liu et al., 2024b) present
a persistent obstacle: these rare but extreme val-
ues expand the dynamic range, rendering simple
methods like Round-To-Nearest ineffective. To ac-
commodate these outliers, the quantization range
must be widened, which results in a loss of pre-



cision for the majority of non-outlier values. To
address this, prior work has explored strategies
such as Quantization-Aware Training (QAT) (Liu
et al., 2024a; Chen et al., 2024; Nrusimha et al.,
2024), Post-Training Quantization (PTQ) that han-
dles outliers in a mixed-precision manner (Zhao
et al., 2024; Dettmers et al., 2022), shifting outliers
between weights and activations (Xiao et al., 2023;
Lin et al., 2024), or applying a random rotation
matrix to mitigate outliers through computational
invariance (Chee et al., 2023; Tseng et al., 2024;
Ashkboos et al., 2024b; Liu et al., 2024b). Despite
these efforts, existing methods often require addi-
tional training or calibration and have yet to fully
explain why outliers arise.

Recent findings (Elhage et al., 2023; He et al.,
2024; Caples and rrenaud, 2024) suspect that the
Adam optimizer itself may be responsible for
the occurrence of activation outliers. Adam’s
element-wise gradient normalization privileges the
coordinate-wise basis of model parameters over ar-
bitrary directions in parameter space (Elhage et al.,
2023), leading to basis-aligned outliers. When
models are trained with pure SGD, SOAP (Vyas
et al., 2024), or other non-Adam optimizers, out-
liers appear less frequently.

In this work, we introduce Muon (Jordan et al.,
2024; Bernstein and Newhouse, 2024a) as a prac-
tical, outlier-suppressing alternative to Adam for
large-scale LLM training. Although Muon draws
inspiration from second-order methods such as
Shampoo (Gupta et al., 2018; Anil et al., 2020)
and SOAP (Vyas et al., 2024), it circumvents the
high overhead associated with full matrix precondi-
tioning (as Table 2). By orthogonalizing gradients
with a momentum buffer, essentially a simplified
Shampoo (Bernstein and Newhouse, 2024b,a; Mor-
wani et al., 2024), Muon achieves efficiency far
superior to existing second-order methods. While
Shampoo and SOAP often suffer from slow perfor-
mance and large memory footprints, Muon matches
the convergence speed of these second-order op-
timization methods while requiring less memory
than Adam (Jordan et al., 2024). Our contributions
can be summarized as follows:

* Outlier-Safe Pre-Training (OSP). We propose
training LLMs without introducing outliers from
the start by replacing Adam with Muon. We
observe that Muon alone does not entirely elim-
inate outliers, contradicting some prior sugges-
tions (He et al., 2024). Hence, we propose

an OSP framework, adding an embedding rota-
tion matrix and a single-scale RMSNorm during
training. These modifications remove element-
wise scaling while retaining architectural equiva-
lence at inference (Ashkboos et al., 2024a,b; Liu
et al., 2024b).

* Scaling Up to 1 Trillion Tokens. While most
open-source LLMs still rely on Adam, we
demonstrate that Muon maintains stable train-
ing and our framework can reduce outliers in
a 1.4 billion parameter model trained on 1 tril-
lion tokens. To our knowledge, this is the first
production-level LLM of this scale trained with-
out Adam. We open-source the trained model to
facilitate further study of how different optimiz-
ers affect LLM behavior.

* State-of-the-Art Low-Bit Robustness. Com-
bining Muon training with post-training quanti-
zation (PTQ) achieves the best 4-bit weight and
activation over Round-To-Nearest (RTN) quanti-
zation performance among open-source LLMs,
substantially improving robustness to low-bit
quantization.

2 Preliminary

Several prior works have investigated activa-
tion outliers in LLMs. For instance, Nrusimha
et al. (2024) explored how outliers emerge dur-
ing pre-training and proposed a combination of
Quantization-Aware Training (QAT) and kurtosis
regularization to suppress them. While this ap-
proach reduces extreme activation values, it still
does not eliminate them entirely and incurs a signif-
icant training slowdown (over 10%) due to QAT’s
overhead. Likewise, He et al. (2024) proposed
an Outlier-Protected (OP) Transformer block, but
this architectural modification complicates exist-
ing inference pipelines and requires entropy regu-
larization to prevent issues like entropy collapse.
These approaches highlight two main challenges:
(1) modifications to the training pipeline (e.g., slow
QAT or custom CUDA kernels) and (2) architec-
tural changes that complicate deployment.

3 Method

Meanwhile, He et al. (2024) also explored to
replace Adam optimizer with SOAP variants,
suppressing outlier emergence while pre-training
LLMs. This aligns with findings that Adam’s
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Figure 2: Activation histograms from the 20th layer input of Multi-Head Self-Attention (MHSA) and Feed-Forward
Network (FFN) in 1.4B-parameter models trained on 100B tokens. Three optimization approaches are compared:
(a) standard Adam optimizer, (b) Muon optimizer without modifications, and (c) Muon with learnable embedding
rotations and single-scale RMSNorm (SSNorm). The histograms demonstrate that replacing Adam with Muon

alone is insufficient to fully mitigate activation outliers.

element-wise gradient normalization may con-
tribute to outlier emergence (Elhage et al., 2023;
Caples and rrenaud, 2024).

Building on these insights, We introduce a train-
ing pipeline for Large Language Models (LLMs)
that inherently avoids the activation outliers im-
peding low-bit quantization. In contrast to ap-
proaches that require architectural modifications
or additional training overhead like Quantization-
Aware Training, our method employs (1) a sim-
pler yet effective second-order-inspired optimizer
called Muon, (2) learnable embedding rotations,
and (3) a single-scale RMSNorm. Below, we de-
tail the motivation behind these design choices and
describe how each component helps mitigate out-
liers without incurring substantial computational
or implementation costs.

3.1 Learnable Embedding Rotations

Contrary to He et al. (2024), we observe that non-
diagonal preconditioning alone fails to remove all
outliers, often leaving residual extremes in the em-

bedding and unembedding layers. This is partially
because large embedding matrices (e.g., vocab size
V' x hidden dimension m) are often handled dif-
ferently by standard second-order routines. For
instance, Shampoo or SOAP might skip the vocabu-
lary dimension for the preconditioner factorization,
and Muon may revert to Adam for embeddings.

Drawing on the concept of computational in-
variance (Section 5.3), we insert learnable rota-
tion matrices around the embedding layers. Let
E = e, ea,...,ey]T € RVX™ be the embedding
matrix and ) € R™*™ be a learnable matrix ini-
tialized to be orthogonal. Each embedding vector
e; 1s then mapped to é; = ¢;Q, effectively rotating
the embedding space. A similar rotation is applied
before the unembedding layer.

Since those rotations are simply linear transfor-
mations, they can be merged into single effective
matrices for inference, i.e. V = V@, preserving
the original architecture and no additional overhead.
Empirically, we observed that training additional
matrices reduces outliers within the embedding
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Figure 3: Weight histograms from the 20th layer input of Multi-Head Self-Attention (MHSA) and Feed-Forward
Network (FFN) in 1.4B-parameter models trained on 100B tokens. Three optimization approaches are compared:
(a) standard Adam optimizer, (b) Muon optimizer without modifications, and (c) Muon with learnable embedding
rotations and single-scale RMSNorm (SSNorm). The histograms reveal that weight matrices, like activations,

exhibit outliers that complicate quantization.

space and the resulting model size increases by
only about 0.6%, making it a practical solution for
mitigating outliers in large-scale LLMs.

3.2 Single-Scale RMSNorm

Normalization layers also play a critical role in
outlier formation (Wei et al., 2022; He et al., 2024,
Nrusimbha et al., 2024). He et al. (2024) employ
Simple RMSNorm (SRMSNorm) (Qin et al., 2023),
which rescale the output vector by /m without
learnable parameters, where m is a dimensionality
of input activation vector.

Inspired by SRMSNorm, we propose a single-
scale RMSNorm (SSNorm), which use a single
learnable scalar to control the scale of activation
norm. SSNorm uses only a single scalar v € R to
scale the normalized activations:

X

z]l2

SSNorm(z) =~ (1)
This design removes the channel-wise multiplica-
tive degrees of freedom that can inflate specific
coordinates and cause outliers. By controlling all

dimensions uniformly with one parameter, SSNorm
helps stabilize activations and reduces extreme val-
ues across the dimensions.

4 Experiments

4.1 Experimental Setup

We train 1.4B-parameter LLAMA (Touvron et al.,
2023) models to evaluate quantization performance
under different optimizers and architectural con-
figurations. Training data is drawn from a mix-
ture of FineWeb-Edu (Lozhkov et al., 2024), Fine-
Math (Allal et al., 2025), Cosmopedia (Ben Allal
et al., 2024), and Python code samples from Star-
Coder’s training set (Li et al., 2023).

Training is conducted on TPU v4-512 Pod Slice,
utilizing the Adam optimizer with a learning rate of
5 x 10~2 and Muon optimizer with a learning rate
of 5 x 10~4. We use a batch size of 4M tokens with
sequence length of 2048 tokens. We use weight
decay of 0.01 and trapezoidal learning rate schedul-
ing (Higele et al., 2024; Wen et al., 2024), of which
learning rates are increased from 0 to maximum



- 16-16-16 4-8-16 4-8-8 4-4-16 4-4-4
Optimizer | EmbRot SSNorm | Ex. Kurt. | Had. Ave. PPL | Ave. PPL | Ave. PPL | Ave. PPL | Ave. PPL
409 114|384 216|383 216|283 1e5 | 283 8ed
Adam 181836 |, 1 409 114|399 223|400 223|292 3ed | 289 3es
Muont 26135 409 117|384 148|383 148|283 1e6 | 283  8e5
(w/o Adam) . Vo409 117|374 154|374 154|339 245 | 337 248
413 114398 138398 138|308 9343|305 led
Muon 7512 1 1413 114 | 404 129 | 405 129 | 384 157 | 383 158
399 123|384 148|384 148|322 997 | 319 1146
Muon v 703.23 v 1399 123]392 139393 139366 221 | 367 223
414 112 ] 408 124 | 408 124|367 433 | 366 442
Muon v 66.69 V| 414 112|406 122|406 122|385 33.7 | 383 341
412 112 404 122405 122381 194 | 37.8 196
Muon v v 0.04 Vo412 112|404 121|404 121|391 134 | 390 135

Table 1: Ablation study of models trained on 100B tokens. EmbRot denotes models with learnable embedding
rotations, and SSNorm indicates single-scale RMSNorm. Ex. Kurt represents excess kurtosis (Section 5.1), while
Had. indicates online Hadamard transformation from QuaRot Stage 1. Bit-width configurations (e.g., 16-16-16,
4-8-16) specify quantization precision for weights, activations, and key-value cache respectively. Avg. shows mean
performance across 11 LLM benchmarks, and PPL reports WikiText-2 perplexity. "Model trained with Muon

without Adam on embedding layers, applying Newton-Schulz orthogonalization to embedding gradients.

value for 5 billion tokens, and decayed to zero at Optimizer TPS  Relative Speed
the last 20% of the training steps.
. . Adam 4.07TM -
To achieve faster training throughput, we adopt Muon 3.99M 9799
Fully-Sharded Data-Parallel (Xu et al., 2020) with ' o
ully-Sharded Data-Parallel (Xu et al., 2020) wit ShampooT 3.07M 75.59%

parameters sharded across 16 accelerator cores. We
further implement a distributed variant of Muon,
distributing the Newton—Schulz iterations across
8 optimizer-parallel ranks for orthogonalization.
As shown in Table 2, our distributed Muon incurs
only about 2% overhead relative to Adam, whereas
Distributed Shampoo (Anil et al., 2020) degrades
performance by over 30% even with an relaxed
update frequency (every 32 steps).

We evaluate model performance using perplexity
on WikiText-2 (Merity et al., 2016) and accuracy
on 11 standard LLM benchmarks: ARC (Clark
et al., 2018), CommonsenseQA (Talmor et al.,
2019), GSM8k (Cobbe et al., 2021) (8-shot), Hel-
laSwag (Zellers et al., 2019), MMLU (Hendrycks
et al., 2021), OpenBookQA (Mihaylov et al.,
2018), PIQA (Bisk et al., 2020), SIQA (Sap et al.,
2019), TriviaQA (Joshi et al., 2017) (5-shot), Truth-
fulQA (Lin et al., 2022), and WinoGrande (Sak-
aguchi et al., 2020).

4.2 Ablation Study

To analyze each component of our proposed
method, we conduct an ablation study on a 100B-
token subset of our training corpus. By default,
we optimize embedding matrices using Adam for
two reasons: orthogonalizing gradients for large

Table 2: Performance comparison of different optimiz-
ers on TPU-v4 512 Pod Slice. TPS denotes tokens pro-
cessed per second during training, and Relative Speed
indicates training speed relative to Adam. Muon demon-
strates significantly better throughput than Distributed
Shampoo. 'Distributed Shampoo results shown with
update frequency of 32 steps.

vocabularies is computationally expensive, and
Adam achieves better final performance than Muon
alone (Jordan et al., 2024). This aligns with other
second-order optimizers, which typically exclude
the vocabulary dimension from their precondition-
ers due to the computational constraints of handling
such large matrices. While we use Adam for em-
beddings by default, we also evaluate full Muon
optimization as part of our ablation study.
Quantization robustness is first evaluated
through a simple Round-To-Nearest (RTN) ap-
proach. We also test QuaRot (Ashkboos et al.,
2024b) Stage 1 by applying an online Hadamard
transform to rotate hidden states within the FFN
layers. Each experimental setting involves four dis-
tinct quantization scenarios summarized in Table 1.
As shown in Table 1, using both learnable em-
bedding rotations and single-scale RMSNorm (SS-



Model Params. Tokens ‘ ARC CSQA GSMSK HS MMLU OBQA PIQA SIQA TQA TFQA WG ‘ Avg.
Pythia 1.4B 0.3T 27.2 21.5 0.0 25.8 26.2 24.8 532 37.2 0.0 50.1  49.0 | 28.6
TinyLlama 1.1B 2T 28.3 22.9 0.0 26.6 26.2 21.2 48.7 40.7 0.0 49.1 49.0 | 284
OPT 1.3B 0.3T 25.0 21.6 0.0 26.5 25.6 28.2 49.6 36.9 0.0 48.0 495 | 283
OLMo 1.2B 3T 27.7 25.8 0.0 27.0 26.1 25.8 54.1 374 0.0 49.0 519 | 295
MobileLLAMA 1.4B 1.3T 27.4 23.5 0.0 26.7 26.0 224 49.6 38.3 0.0 494  49.6 | 285
Qwen 1.5 1.8B 24T 27.2 254 0.0 28.3 25.7 25.0 54.1 39.1 0.0 50.1 493 | 29.5
Qwen 2 1.5B 7T 30.9 27.7 0.4 35.7 26.2 28.4 56.5 38.3 0.8 440 48.6 | 30.7
Qwen 2.5 1.5B - 27.7 25.0 0.0 26.9 25.7 24.0 522 384 0.0 499 475 | 289
LLAMA 3.2 1.2B - 29.3 24.7 0.5 30.1 25.8 27.4 53.3 39.5 0.1 453  50.3 | 29.7
Stable LM 2 1.6B 2T 26.2 24.0 0.0 27.0 24.6 27.0 51.1 37.8 0.0 50.2  51.1 | 29.0
SmolLM 1.7B 1T 28.4 25.7 0.0 27.0 26.1 28.0 51.0 38.8 0.0 489 484|293
SmolLM 2 1.7B 11T 25.8 224 0.0 259 24.2 26.6 51.5 36.0 0.0 48.0 50.0 | 28.2
Trained from scratch
Adam 1.4B 1T 25.7 25.3 0.0 26.8 254 26.0 49.0 37.2 0.0 49.1 499 | 28.6
Muon (OSP) 1.4B 1T 42.1 324 0.0 41.5 28.5 32.0 61.2 38.8 2.8 455 50.8 | 34.1

Table 3: W4A4 quantization performance comparison across 12 open-source LLMs and our implementations.
Params. indicates model size in parameters, and Tokens shows training dataset size. Benchmarks include CSQA
(CommonsenseQA), HS (HellaSwag), OBQA (OpenBookQA), TQA (TriviaQA), TFQA (TruthfulQA), and WG
(WinoGrande). Models trained with Outlier-Safe Pre-Training exhibit distinct quantization behavior across the

benchmark suite.

Norm) yields minimal excess kurtosis (Section 5.1)
and preserves performance under both RTN and
Hadamard rotation. Histograms of activations and
weights in Figures 2 and 3 further confirm that
outliers are substantially mitigated.

Notably, simply switching from Adam to a non-
diagonal optimizer for all parameters is insufficient
to remove outliers; skipping the vocabulary dimen-
sion or partially applying Muon can still leave out-
lier issues. Moreover, applying Newton—Schulz
updates to the embedding matrices raises training
costs by about 2.2% overall, yet still underperforms
our final approach on the 11 LLM benchmarks and
WikiText-2 perplexity.

Figure 4 visualizes perplexities on WikiText-2
for weight and activation quantization ranging from
8 bits down to 4 bits (via RTN). Our method con-
sistently preserves performance more effectively
across all bit configurations.

4.3 Scaling Up to 1 Trillion Tokens

We scale our training to 1 trillion tokens, a dataset
size commonly used for commercial LLMs but
rarely explored in academic research on outlier
mitigation (He et al., 2024; Nrusimha et al., 2024).
While previous works limited their experiments to
hundreds of billions of tokens, we demonstrate that
our OSP framework maintains its effectiveness at
trillion-token scale.

Table 3 compares W4A4 quantization perfor-
mance for 12 open-source small LMs, each trained
on a large corpus. Most baseline models suffer
heavy accuracy drops under W4 A4, and scores on
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Figure 4: WikiText-2 perplexity under varying weight
and activation quantization bit-widths for models trained
on 100B tokens. Three configurations are compared:
standard Adam, Muon, and Muon with Outlier-Safe
Pre-Training (OSP). The results demonstrate different
quantization robustness patterns, particularly in low-bit
scenarios.

multiple-choice benchmarks like ARC and Com-
monsenseQA degrade to near-random baselines
(around 25%). By contrast, our approach exhibits
notably stronger retention of performance, suggest-
ing that both Muon and our architectural modifica-
tions better maintain quantization resilience.

4.4 Analysis of Quantization Robustness

Finally, we investigate how models trained with our
method respond to standard Post-Training Quanti-
zation (PTQ) techniques. Since our approach fo-
cuses on pre-training, it can be combined with any
PTQ method. As shown in Table 4, Adam-trained
models suffer significant degradation under 4-bit
weight and activation quantization when using min-
imal PTQ methods like QuaRot and GPTQ, which
perform limited calibration. In contrast, models



Quantization Adam Muon (OSP)
RTN 14475.51 162.81
+ QuaRot' 4794.00 88.40
+ GPTQ 3723.46 18.72
+ SpinQuant 14.94 17.44

Table 4: WikiText-2 perplexity after applying various
Post-Training Quantization (PTQ) methods to models
trained with Adam versus Outlier-Safe Pre-Training
(OSP). The minimal PTQ methods (QuaRot and GPTQ)
show limited effectiveness in mitigating quantization er-
ror for Adam-trained models. Models trained with OSP
maintain consistent performance when combined with
SpinQuant. TOnly applies online Hadamard transform
to Feed-Forward Network (FFN) hidden states.

trained with Muon and OSP show remarkable ro-
bustness to quantization, particularly on WikiText-
2 where perplexity remains nearly unchanged after
applying the more advanced SpinQuant method.
This demonstrates that SpinQuant’s learnable rota-
tions serve a similar function to non-diagonal pre-
conditioner optimizers in preserving model quality
under quantization, which aligns to the previous
observation (He et al., 2024).

Recent work (Ouyang et al., 2024) indicates that
more extensively trained models are prone to se-
vere Quantization-induced Degradation (QiD) in
the low-bit setting. In Table 3, for instance, Qwen
2.5 and SmolLLM 2 are trained on significantly more
data than earlier versions, thereby achieving higher
benchmark scores but suffering worse drops under
W4A4 quantization.

To analyze quantization error patterns, we col-
lect 11 checkpoints from our OSP model during
its training and compare their performance before
and after W4A4 RTN quantization against various
Adam-trained open-source LLMs. As shown in
Figure 1, models trained with our OSP approach
follow a distinctly different Quality-in-Distribution
(QiD) pattern than Adam-trained models, achieving
higher absolute maximum performance. This dis-
covery of a different quantization behavior pattern
highlights the importance of exploring and ana-
lyzing non-Adam-trained LLMs for robust low-bit
compression.

5 Related Works

5.1 Quantization

Quantization reduces the precision of weights and
activations by mapping continuous floating-point

values to discrete integers. While standard floating-
point formats typically require 32 or 16 bits, quanti-
zation can reduce each value to 8 bits or even fewer
than 4 bits. Let N be the target number of bits.
A common baseline, Round-To-Nearest (RTN), is
expressed as:

X:o{X;ﬁ]Jrﬂ, @)

X
where o = I;%)iq_‘l)

zation, or o« = w,ﬁ = min(X) for
asymmetric quantization. In both cases, the quanti-
zation scale « is heavily influenced by the extreme
values in X, so outliers can severely degrade the
reconstruction error || X — X||. As a workaround,
some prior works keep outliers in higher precision
while compressing the remainder (Xiao et al., 2023;
Lin et al., 2024), or they mitigate outliers by ap-
plying additional training (Liu et al., 2024a; Chen
et al., 2024; Nrusimha et al., 2024).

To quantify those activation outliers, researchers
commonly use kurtosis, specifically excess kurto-
sis (shkolnik et al., 2020; He et al., 2024; Caples
and rrenaud, 2024; ?). Excess kurtosis is defined
as:

, 8 = 0 for symmetric quanti-

X —pu 4
Kurt(X] -3 =E -3, 3
o
where 1 and o are the mean and standard deviation
of activation X, respectively.

5.2 Second-Order Optimization

Early second-order methods in deep learning
were hindered by large computation and mem-
ory overhead, relying on relying on quasi-Newton
or Hessian-based approximations (Nocedal and
Wright, 1999). Kronecker-Factored Approximate
Curvature (K-FAC) (Martens and Grosse, 2015)
alleviated these costs by approximating the Fisher
information matrix with Kronecker-factored statis-
tics. Shampoo (Gupta et al., 2018) leverages the
multi-dimensional (tensor) structure of parameters,
maintaining and updating factorized precondition-
ers along each dimension of the gradient tensor,
thereby improving scalability; its distributed ver-
sion (Anil et al., 2020) demonstrated strong wall-
clock performance.

Formally, let W, G € R™*™ denote a weight
matrix and its gradient. Let L € R™*™ and R €
R™*" accumulate the statistics GGT and GTG,



respectively. Shampoo updates W as follows:
W« W — gL~ YAGR™/4, 4)

where 7 € R is the learning rate. Vyas et al. (2024)
showed that Shampoo is equivalent to Adafac-
tor (Shazeer and Stern, 2018) in the eigenbasis of
its preconditioner, and introduced SOAP to adapt
that eigenbasis to Adam.

More recently, Muon (Jordan et al., 2024)
was proposed to orthogonalize gradients via the
Newton—Schulz algorithm (Higham, 2008; Schulz,
1933), effectively approximating the Singular
Value Decomposition (SVD) of gradients. Specifi-
cally, the Newton—Schulz iteration transforms

G=UxvT s UuvT, (5)

where U € R"*™ and V € R™ ™ are the singu-
lar vectors, and ¥ € R™*™ is the diagonal matrix
of singular values. Unlike Shampoo and SOAP,
which require momentum buffers for both the pre-
conditioner and its inverse, Muon maintains only
a momentum buffer for the gradients. Subsequent
works (Bernstein and Newhouse, 2024b,a; Duvvuri
et al., 2024) has shown that Muon coincides with
Shampoo in the absence of preconditioner accumu-
lation.

5.3 Computational Invariance

Ashkboos et al. (2024a) introduced computational
invariance in Transformer architectures, whereby
inserting an orthogonal rotation into the residual
stream and removing it later yields identical out-
puts. Modern large language models usually em-
ploy RMSNorm (Zhang and Sennrich, 2019) as
a pre-normalization layer. Let X € R"*" be an
activation matrix, and Q € R™*" be orthogonal.
By definition of RMSNorm, the following holds:

RMSNorm(XQ)QT = RMSNorm(X).  (6)

Additionally, when linear layers follow RMSNorm,
multiplication by @7 can be merged with these
layers via the associative property of matrix mul-
tiplication. By carefully placing @ and Q7 across
normalization, projection, and embedding layers,
one can preserve network-level invariance.

Building on this idea, QuaRot (Ashkboos et al.,
2024b) applies a random Hadamard rotation to
the Transformer’s embedding space, while Spin-
Quant (Liu et al., 2024b) employs a learnable rota-
tion matrix which is optimized via Cayley SGD (Li
et al., 2020).

6 Conclusion

In this paper, we presented a pre-training pipeline
that substantially mitigates activation outliers by
replacing the Adam optimizer with Muon, intro-
ducing learnable embedding rotations, and adopt-
ing a single-scale RMSNorm. Unlike many pre-
viously proposed solutions, our method achieves
almost outlier-free training without expensive
quantization-aware fine-tuning or specialized archi-
tectural blocks that complicate model deployment.
The transition away from Adam alleviates the basis-
alignment issue that underpins outlier formation,
while our framework eliminates residual extremes
without negatively impacting convergence.

Extensive experiments on a 1.4B-parameter
LLM trained over 1 trillion tokens confirm the re-
liability and efficiency of our approach. In par-
ticular, the resulting model remains robust under
4-bit quantization, outperforming comparable open-
source models that rely on Adam. These find-
ings motivate further exploration of how optimizer
choices influence model behavior and quantization
readiness. We believe our work on Qutlier-Safe
Pre-Training will encourage broader adoption of
outlier-aware training practices as the field contin-
ues to develop larger, more efficiently deployable
language models.

Limitations

Our study focused primarily on Muon without ex-
tensive comparisons to other second-order meth-
ods like Shampoo or SOAP. This limitation stems
from practical constraints: TPU compilation times
for training pipelines often exceed one hour, mak-
ing comprehensive optimizer ablation studies pro-
hibitively time-consuming given our available com-
putational resources.

Additionally, while our experiments demonstrate
effectiveness on a 1.4B-parameter model, we have
not yet explored the impact across a range of model
sizes, particularly the 3B and 7B parameter scales
commonly targeted for mobile deployment. Look-
ing ahead, we plan to extend our analysis to these
larger models. Our distributed implementation of
Muon in JAX achieves comparable efficiency to
Adam, making such broader experiments computa-
tionally feasible.



References

Loubna Ben Allal, Anton Lozhkov, Elie Bak-
ouch, Gabriel Martin Blazquez, Guilherme Penedo,
Lewis Tunstall, Andrés Marafioti, Hynek Kydlicek,
Agustin Piqueres Lajarin, Vaibhav Srivastav, Joshua
Lochner, Caleb Fahlgren, Xuan-Son Nguyen, Clé-
mentine Fourrier, Ben Burtenshaw, Hugo Larcher,
Haojun Zhao, Cyril Zakka, Mathieu Morlon, Colin
Raffel, Leandro von Werra, and Thomas Wolf.
2025. Smollm2: When smol goes big — data-
centric training of a small language model. Preprint,
arXiv:2502.02737.

Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Le-
andro von Werra, and Thomas Wolf. 2024. Smollm -
blazingly fast and remarkably powerful.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Re-
gan, and Yoram Singer. 2020. Scalable second or-
der optimization for deep learning. arXiv preprint
arXiv:2002.09018.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari
do Nascimento, Torsten Hoefler, and James Hensman.
2024a. SliceGPT: Compress large language models
by deleting rows and columns. In The Tivelfth Inter-
national Conference on Learning Representations.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximil-
ian Croci, Bo Li, Pashmina Cameron, Martin Jaggi,
Dan Alistarh, Torsten Hoefler, and James Hensman.
2024b. Quarot: Outlier-free 4-bit inference in rotated
llms. In Advances in Neural Information Processing
Systems, volume 37, pages 100213-100240. Curran
Associates, Inc.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqgiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Marco Bellagente, Jonathan Tow, Dakota Mahan, Duy
Phung, Maksym Zhuravinskyi, Reshinth Adithyan,
James Baicoianu, Ben Brooks, Nathan Cooper,
Ashish Datta, et al. 2024. Stable Im 2 1.6 b tech-
nical report. arXiv preprint arXiv:2402.17834.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo,
Thomas Wolf, and Leandro von Werra. 2024. Cos-
mopedia.

Jeremy Bernstein and Laker Newhouse. 2024a. Mod-
ular duality in deep learning. arXiv preprint
arXiv:2410.21265.

Jeremy Bernstein and Laker Newhouse. 2024b. Old
optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory
Anthony, Herbie Bradley, Kyle O’Brien, Eric Hal-
lahan, Mohammad Aflah Khan, Shivanshu Purohit,
Usvsn Sai Prashanth, Edward Raff, Aviya Skowron,
Lintang Sutawika, and Oskar Van Der Wal. 2023.
Pythia: A suite for analyzing large language models
across training and scaling. In Proceedings of the
40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning
Research, pages 2397-2430. PMLR.

Yonatan Bisk, Rowan Zellers, Ronan Le bras, Jianfeng
Gao, and Yejin Choi. 2020. Piga: Reasoning about
physical commonsense in natural language. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
34(05):7432-7439.

Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. 2021. Understanding and overcoming
the challenges of efficient transformer quantization.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
7947-7969, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Diego Caples and rrenaud. 2024. Adam optimizer
causes privileged basis in transformer Im residual
stream. LessWrong.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and
Christopher M De Sa. 2023. Quip: 2-bit quanti-
zation of large language models with guarantees. In
Advances in Neural Information Processing Systems,
volume 36, pages 4396—4429. Curran Associates,
Inc.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang,
Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping Luo.
2024. Efficientqat: Efficient quantization-aware
training for large language models. arXiv preprint
arXiv:2407.11062.

Xiangxiang Chu, Limeng Qiao, Xinyang Lin, Shuang
Xu, Yang Yang, Yiming Hu, Fei Wei, Xinyu
Zhang, Bo Zhang, Xiaolin Wei, et al. 2023. Mo-
bilevim: A fast, reproducible and strong vision lan-
guage assistant for mobile devices. arXiv preprint
arXiv:2312.16886.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.


https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://arxiv.org/abs/2502.02737
https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://openreview.net/forum?id=vXxardq6db
https://proceedings.neurips.cc/paper_files/paper/2024/file/b5b939436789f76f08b9d0da5e81af7c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b5b939436789f76f08b9d0da5e81af7c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b5b939436789f76f08b9d0da5e81af7c-Paper-Conference.pdf
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://proceedings.mlr.press/v202/biderman23a.html
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.1609/aaai.v34i05.6239
https://doi.org/10.18653/v1/2021.emnlp-main.627
https://doi.org/10.18653/v1/2021.emnlp-main.627
https://doi.org/10.18653/v1/2021.emnlp-main.627
https://www.lesswrong.com/posts/yrhu6MeFddnGRSLtQ/adam-optimizer-causes-privileged-basis-in-transformer-lm
https://www.lesswrong.com/posts/yrhu6MeFddnGRSLtQ/adam-optimizer-causes-privileged-basis-in-transformer-lm
https://www.lesswrong.com/posts/yrhu6MeFddnGRSLtQ/adam-optimizer-causes-privileged-basis-in-transformer-lm
https://www.lesswrong.com/posts/yrhu6MeFddnGRSLtQ/adam-optimizer-causes-privileged-basis-in-transformer-lm
https://www.lesswrong.com/posts/yrhu6MeFddnGRSLtQ/adam-optimizer-causes-privileged-basis-in-transformer-lm
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/0df38cd13520747e1e64e5b123a78ef8-Paper-Conference.pdf

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3.int8(): 8-bit matrix multi-
plication for transformers at scale. In Advances in
Neural Information Processing Systems, volume 35,
pages 30318-30332. Curran Associates, Inc.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Sai Surya Duvvuri, Fnu Devvrit, Rohan Anil, Cho-Jui
Hsieh, and Inderjit S Dhillon. 2024. Combining axes
preconditioners through kronecker approximation for
deep learning. In The Twelfth International Confer-
ence on Learning Representations.

Nelson Elhage, Robert Lasenby, and Christopher Olah.
2023. Privileged bases in the transformer residual
stream. Transformer Circuits Thread.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan
Alistarh. 2023. OPTQ: Accurate quantization for
generative pre-trained transformers. In The Eleventh
International Conference on Learning Representa-
tions.

Dirk Groeneveld, 1z Beltagy, Evan Walsh, Akshita
Bhagia, Rodney Kinney, Oyvind Tafjord, Ananya
Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang,
Shane Arora, David Atkinson, Russell Authur,
Khyathi Chandu, Arman Cohan, Jennifer Dumas,
Yanai Elazar, Yuling Gu, Jack Hessel, Tushar Khot,
William Merrill, Jacob Morrison, Niklas Muen-
nighoff, Aakanksha Naik, Crystal Nam, Matthew
Peters, Valentina Pyatkin, Abhilasha Ravichander,
Dustin Schwenk, Saurabh Shah, William Smith,
Emma Strubell, Nishant Subramani, Mitchell Worts-
man, Pradeep Dasigi, Nathan Lambert, Kyle Richard-
son, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca
Soldaini, Noah Smith, and Hannaneh Hajishirzi.
2024. OLMo: Accelerating the science of language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 15789-15809, Bangkok,
Thailand. Association for Computational Linguistics.

Vineet Gupta, Tomer Koren, and Yoram Singer. 2018.
Shampoo: Preconditioned stochastic tensor optimiza-
tion. In Proceedings of the 35th International Con-
ference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pages 1842—
1850. PMLR.

Alex Hégele, Elie Bakouch, Atli Kosson, Loubna Ben al-
lal, Leandro Von Werra, and Martin Jaggi. 2024.
Scaling laws and compute-optimal training beyond
fixed training durations. In Advances in Neural Infor-
mation Processing Systems, volume 37, pages 76232—
76264. Curran Associates, Inc.

Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol
Schlag, and Thomas Hofmann. 2024. Understand-
ing and minimising outlier features in transformer

training. In Advances in Neural Information Process-
ing Systems, volume 37, pages 83786-83846. Curran
Associates, Inc.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

NJ Higham. 2008. Functions of matrices: Theory and
computation.

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng,
Franz Cecista, Laker Newhouse, and Jeremy Bern-
stein. 2024. Muon: An optimizer for hidden layers
in neural networks.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada. Association for Computational Linguistics.

Jun Li, Fuxin Li, and Sinisa Todorovic. 2020. Efficient
riemannian optimization on the stiefel manifold via
the cayley transform. In International Conference on
Learning Representations.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim,
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo,
Thomas Wang, Olivier Dehaene, Mishig Davaadorj,
Joel Lamy-Poirier, Jodo Monteiro, Oleh Shliazhko,
Nicolas Gontier, Nicholas Meade, Armel Zebaze,
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu,
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey,
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya,
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel
Romero, Tony Lee, Nadav Timor, Jennifer Ding,
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson,
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan-
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry
Bahdanau, Yacine Jernite, Carlos Mufoz Ferran-
dis, Sean Hughes, Thomas Wolf, Arjun Guha, Le-
andro von Werra, and Harm de Vries. 2023. Star-
coder: may the source be with you! arXiv preprint
arXiv:2305.06161.

Ji

Jury

Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
Awq: Activation-aware weight quantization for on-
device 1lm compression and acceleration. In Proceed-
ings of Machine Learning and Systems, volume 6,
pages 87-100.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human


https://proceedings.neurips.cc/paper_files/paper/2022/file/c3ba4962c05c49636d4c6206a97e9c8a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c3ba4962c05c49636d4c6206a97e9c8a-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c3ba4962c05c49636d4c6206a97e9c8a-Paper-Conference.pdf
https://openreview.net/forum?id=8j9hz8DVi8
https://openreview.net/forum?id=8j9hz8DVi8
https://openreview.net/forum?id=8j9hz8DVi8
https://openreview.net/forum?id=8j9hz8DVi8
https://openreview.net/forum?id=8j9hz8DVi8
https://transformer-circuits.pub/2023/privileged-basis/index.html
https://transformer-circuits.pub/2023/privileged-basis/index.html
https://transformer-circuits.pub/2023/privileged-basis/index.html
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://openreview.net/forum?id=tcbBPnfwxS
https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2024.acl-long.841
https://doi.org/10.18653/v1/2024.acl-long.841
https://proceedings.mlr.press/v80/gupta18a.html
https://proceedings.mlr.press/v80/gupta18a.html
https://proceedings.mlr.press/v80/gupta18a.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/8b970e15a89bf5d12542810df8eae8fc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/8b970e15a89bf5d12542810df8eae8fc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/8b970e15a89bf5d12542810df8eae8fc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/986292a930c3692168b177a770025ab3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/986292a930c3692168b177a770025ab3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/986292a930c3692168b177a770025ab3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/986292a930c3692168b177a770025ab3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/986292a930c3692168b177a770025ab3-Paper-Conference.pdf
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://openreview.net/forum?id=HJxV-ANKDH
https://openreview.net/forum?id=HJxV-ANKDH
https://openreview.net/forum?id=HJxV-ANKDH
https://openreview.net/forum?id=HJxV-ANKDH
https://openreview.net/forum?id=HJxV-ANKDH
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/42a452cbafa9dd64e9ba4aa95cc1ef21-Paper-Conference.pdf
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229

falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214-3252, Dublin,
Ireland. Association for Computational Linguistics.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie
Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi,
Raghuraman Krishnamoorthi, and Vikas Chandra.
2024a. LLM-QAT: Data-free quantization aware
training for large language models. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 467-484, Bangkok, Thailand. Associa-
tion for Computational Linguistics.

Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge
Soran, Dhruv Choudhary, Raghuraman Krishnamoor-
thi, Vikas Chandra, Yuandong Tian, and Tij-
men Blankevoort. 2024b.  Spinquant-llm quan-
tization with learned rotations. arXiv preprint
arXiv:2405.16406.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra,
and Thomas Wolf. 2024. Fineweb-edu: the finest
collection of educational content.

James Martens and Roger Grosse. 2015. Optimizing
neural networks with kronecker-factored approxi-
mate curvature. In Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages
2408-2417, Lille, France. PMLR.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question an-
swering. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 2381-2391, Brussels, Belgium. Association
for Computational Linguistics.

Depen Morwani, Itai Shapira, Nikhil Vyas, Eran
Malach, Sham Kakade, and Lucas Janson. 2024. A
new perspective on shampoo’s preconditioner. arXiv
preprint arXiv:2406.17748.

Jorge Nocedal and Stephen J Wright. 1999. Numerical
optimization. Springer.

Aniruddha Nrusimha, Mayank Mishra, Naigang Wang,
Dan Alistarh, Rameswar Panda, and Yoon Kim. 2024.
Mitigating the impact of outlier channels for lan-
guage model quantization with activation regulariza-
tion. arXiv preprint arXiv:2404.03605.

Xu Ouyang, Tao Ge, Thomas Hartvigsen, Zhisong
Zhang, Haitao Mi, and Dong Yu. 2024. Low-bit
quantization favors undertrained 1lms: Scaling laws
for quantized 1lms with 100t training tokens. arXiv
preprint arXiv:2411.17691.

11

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun,
Xuyang Shen, Xiaodong Han, Yunshen Wei, Bao-
hong Lv, Fei Yuan, Xiao Luo, et al. 2023. Scaling
transnormer to 175 billion parameters. arXiv preprint
arXiv:2307.14995.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adversar-
ial winograd schema challenge at scale. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):8732-8740.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
Le Bras, and Yejin Choi. 2019. Social IQa: Com-
monsense reasoning about social interactions. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-1IJCNLP), pages 4463—
4473, Hong Kong, China. Association for Computa-
tional Linguistics.

Giinther Schulz. 1933. Iterative berechung der rezipro-
ken matrix. ZAMM-Journal of Applied Mathematics
and Mechanics/Zeitschrift fiir Angewandte Mathe-
matik und Mechanik, 13(1):57-59.

Wengqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng
Xu, Lirui Zhao, Zhiqgian Li, Kaipeng Zhang, Peng
Gao, Yu Qiao, and Ping Luo. 2024. Omniquant:
Omnidirectionally calibrated quantization for large
language models. In The Twelfth International Con-
ference on Learning Representations.

Noam Shazeer and Mitchell Stern. 2018. Adafactor:
Adaptive learning rates with sublinear memory cost.
In Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pages 4596—4604.
PMLR.

moran shkolnik, Brian Chmiel, Ron Banner, Gil Shom-
ron, Yury Nahshan, Alex Bronstein, and Uri Weiser.
2020. Robust quantization: One model to rule them
all. In Advances in Neural Information Processing
Systems, volume 33, pages 5308-5317. Curran Asso-
ciates, Inc.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149-4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.


https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.18653/v1/2024.findings-acl.26
https://doi.org/10.57967/hf/2497
https://doi.org/10.57967/hf/2497
https://doi.org/10.57967/hf/2497
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://proceedings.mlr.press/v37/martens15.html
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.18653/v1/D18-1260
https://doi.org/10.1609/aaai.v34i05.6399
https://doi.org/10.1609/aaai.v34i05.6399
https://doi.org/10.1609/aaai.v34i05.6399
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://doi.org/10.18653/v1/D19-1454
https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW
https://openreview.net/forum?id=8Wuvhh0LYW
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.mlr.press/v80/shazeer18a.html
https://proceedings.neurips.cc/paper_files/paper/2020/file/3948ead63a9f2944218de038d8934305-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3948ead63a9f2944218de038d8934305-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/3948ead63a9f2944218de038d8934305-Paper.pdf
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr
Kuleshov, and Christopher De Sa. 2024. QulIP: Even
better LLM quantization with hadamard incoherence
and lattice codebooks. In Proceedings of the 41st
International Conference on Machine Learning, vol-
ume 235 of Proceedings of Machine Learning Re-
search, pages 48630-48656. PMLR.

Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai
Shapira, David Brandfonbrener, Lucas Janson, and
Sham Kakade. 2024. Soap: Improving and sta-
bilizing shampoo using adam. arXiv preprint
arXiv:2409.11321.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao
Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu, and
Xianglong Liu. 2022. Outlier suppression: Pushing
the limit of low-bit transformer language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 17402—17414. Curran Associates,
Inc.

Kaiyue Wen, Zhiyuan Li, Jason Wang, David Hall,
Percy Liang, and Tengyu Ma. 2024. Understand-
ing warmup-stable-decay learning rates: A river
valley loss landscape perspective. arXiv preprint
arXiv:2410.05192.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu,
Julien Demouth, and Song Han. 2023. SmoothQuant:
Accurate and efficient post-training quantization for
large language models. In Proceedings of the 40th
International Conference on Machine Learning, vol-
ume 202 of Proceedings of Machine Learning Re-
search, pages 38087-38099. PMLR.

Yuanzhong Xu, HyoukJoong Lee, Dehao Chen,
Hongjun Choi, Blake Hechtman, and Shibo Wang.
2020. Automatic cross-replica sharding of weight
update in data-parallel training. arXiv preprint
arXiv:2004.13336.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu,
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng,
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yugiong Liu, Zeyu
Cui, Zhenru Zhang, and Zhihao Fan. 2024a. Qwen2
technical report. arXiv preprint arXiv:2407.10671.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayi-
heng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang,
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang,
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei

12

Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men,
Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2024b. Qwen2.5 technical report. arXiv
preprint arXiv:2412.15115.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791-4800, Florence,
Italy. Association for Computational Linguistics.

Biao Zhang and Rico Sennrich. 2019. Root mean square
layer normalization. In Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Asso-
ciates, Inc.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and
Wei Lu. 2024. Tinyllama: An open-source small
language model. Preprint, arXiv:2401.02385.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn
Chen, Size Zheng, Luis Ceze, Arvind Krishnamurthy,
Tiangi Chen, and Baris Kasikci. 2024. Atom: Low-
bit quantization for efficient and accurate Ilm serving.
In Proceedings of Machine Learning and Systems,
volume 6, pages 196-209.


https://proceedings.mlr.press/v235/tseng24a.html
https://proceedings.mlr.press/v235/tseng24a.html
https://proceedings.mlr.press/v235/tseng24a.html
https://proceedings.mlr.press/v235/tseng24a.html
https://proceedings.mlr.press/v235/tseng24a.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f6db140de9c9f111b12ef8a216320a9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f6db140de9c9f111b12ef8a216320a9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/6f6db140de9c9f111b12ef8a216320a9-Paper-Conference.pdf
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://proceedings.mlr.press/v202/xiao23c.html
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://arxiv.org/abs/2401.02385
https://proceedings.mlsys.org/paper_files/paper/2024/file/5edb57c05c81d04beb716ef1d542fe9e-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/5edb57c05c81d04beb716ef1d542fe9e-Paper-Conference.pdf
https://proceedings.mlsys.org/paper_files/paper/2024/file/5edb57c05c81d04beb716ef1d542fe9e-Paper-Conference.pdf

A Appendix

A.1 Comprehensive Benchmark Results for
Open-Source LLMs

Table 5 presents the performance of various
open-source LLLMs across 11 benchmarks using
W16A16 precision (16-bit weights and activations,
without quantization). Notably, our Muon-trained
model achieves comparable performance to Adam-
trained models, marking the first successful appli-
cation of Muon to trillion-token scale training.

A.2 Detailed Distribution Analysis

For a comprehensive view of activation and weight
distributions, we provide detailed histograms in
Figures 5, 6, 7, and 8. These visualizations allow
direct comparison between Adam and Muon train-
ing approaches.
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Model Params. Tokens | ARC CSQA GSMS8K HS MMLU OBQA PIQA SIQA TQA TFQA WG | Avg.

Pythia 1.4B 0.3T | 41.27 3538 243 50.81 31.33 34.6 71.06 4345 922 3899 55.17 | 37.61
TinyLlama 1.1B 2T 36.51 25.39 1.74 5398 32.64 23.0 70.29 4130 2348 3544 49.96 | 35.79
OPT 1.3B 0.3T | 39.33 39.97 091 5222 29.58 35.8 71.00 4227 11.14 38.86 53.28 | 37.67
OLMo 1.2B 3T 4421 40.38 1.67 60.36 31.93 37.8 75.19 4411 17.57 3290 53.43 | 39.96
MobileLLAMA 1.4B 1.3T | 42.65 37.02 1.97 54.18  31.78 344 7329 43.04 2448 3495 5541 | 39.38
Qwen 1.5 1.8B 24T | 4685 3292 34.19 59.52  33.14 372 7432 4447 18.76 39.37 57.93 | 43.52
Qwen 2 1.5B 7T 48.18 30.96 58.07 63.89 37.42 36.8 7535 4422 2399 4585 59.19 | 47.63
Qwen 2.5 1.5B - 5877 34.32 61.56 66.47  40.26 39.6 75.68 4488 20.59 46.67 59.43 | 49.84
LLAMA 3.2 1.2B - 49.24  41.11 5.99 61.31 36.26 39.0 7492 4345 20.72 38.51 58.09 | 42.60
Stable LM 2 1.6B 2T 53.46 34.56 19.26 66.67 3598 37.0 76.82 4350 3559 38.76 59.19 | 45.53
SmolLM 1.7B 1T 59.69 38.00 6.75 63.02  39.36 42.8 7595 44.11 2584 3855 54.54 | 44.42
SmolLM 2 1.7B 11T 60.38 43.57 32.60 68.70  41.30 424 77.58 4340 27.08 36.70 60.14 | 48.53
Trained from scratch
Adam 1.4B 1T 59.50 40.62 14.48 63.97 39.52 41.0 76.06 43.60 2391 40.88 56.59 | 45.47
Muon (OSP) 1.4B 1T 57.68 38.74 14.25 6243 3891 41.0 7535 44773 2446 39.54 55.56 | 44.79

Table 5: W16A16 quantization performance comparison across 12 open-source LLMs and our implementations.
Params. indicates model size in parameters, and Tokens shows training dataset size. Benchmarks include CSQA
(CommonsenseQA), HS (HellaSwag), OBQA (OpenBookQA), TQA (TriviaQA), TFQA (TruthfulQA), and WG
(WinoGrande).
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Figure 5: Activation histograms from Adam-trained models on 1 trillion tokens. The plots show input distributions
to Multi-Head Self-Attention (MHSA) and Feed-Forward Network (FFN) layers at four different depths: Oth, 7th,
15th, and 23rd transformer blocks.
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Figure 6: Activation histograms from Muon-trained models with OSP on 1 trillion tokens. The plots show input
distributions to Multi-Head Self-Attention (MHSA) and Feed-Forward Network (FFN) layers at four different

depths: Oth, 7th, 15th, and 23rd transformer blocks.
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Figure 7: Weight histograms from Adam-trained models on 1 trillion tokens. The plots show weight distributions in
Multi-Head Self-Attention (MHSA) and Feed-Forward Network (FFN) layers across four different depths: Oth, 7th,
15th, and 23rd transformer blocks.
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Figure 8: Weight histograms from Muon-trained models with OSP on 1 trillion tokens. The plots show weight
distributions in Multi-Head Self-Attention (MHSA) and Feed-Forward Network (FFN) layers across four different

depths: Oth, 7th, 15th, and 23rd transformer blocks.
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