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ABSTRACT

Real-world image super-resolution (Real-SR) is a challenging problem due to the
complex degradation patterns in low-resolution images. Unlike approaches that
assume a broadly encompassing degradation space, we focus specifically on achiev-
ing an optimal balance in how SR networks handle different degradation patterns
within a fixed degradation space. We propose an improved paradigm that frames
Real-SR as a data-heterogeneous multi-task learning problem. Our work addresses
degradation task imbalance in the paradigm through coordinated advancements in
task definition, imbalance quantification, and adaptive data rebalancing. Specifi-
cally, we introduce a novel task definition framework that segments the degradation
space by setting parameter-specific boundaries for degradation operators, effec-
tively reducing the task quantity while maintaining task discrimination. We then
develop a focal loss based multi-task weighting mechanism that precisely quantifies
task imbalance dynamics during model training. Furthermore, to prevent sporadic
outlier samples from dominating the gradient optimization of the shared multi-task
SR model, we strategically convert the quantified task imbalance into controlled
data rebalancing through deliberate regulation of task-specific training volumes.
Extensive quantitative and qualitative experiments demonstrate that our method
achieves consistent superiority across all degradation tasks.

1 INTRODUCTION

Image super-resolution aims to recover high-resolution (HR) images from degraded low-resolution
(LR) inputs. Unlike conventional non-blind Dong et al. (2014); Zhang et al. (2018d;c) and blind Huang
et al. (2020); Wang et al. (2021a); Gu et al. (2019) SR methods assuming simplified degradations, real-
world SR (Real-SR) must contend with complex, unknown degradations, such as sensor noiseZhang
et al. (2021), motion blur Bistroń & Piotrowski (2024), compression artifacts Wang et al. (2024a),
and optical aberrations Zhang et al. (2021). These distortions corrupt high-frequency details and vary
spatially, making traditional approaches inadequate for demanding applications Zhu et al. (2020);
Liebel & Körner (2016); Wan et al. (2020). Consequently, Real-SR frameworks must accommodate
diverse, unpredictable degradation patterns while preserving perceptual fidelity.

To bridge the simulation-to-reality gap, prior studies have prioritized the design of sophisticated
degradation models to synthesize training pairs that mimic real-world conditions. Pioneering works
like RealESRGAN Wang et al. (2021b) employ randomized degradation pipelines combining degra-
dation operators like blur, noise, resize and compression in varying sequences. Such methods train
a single SR network on synthetically degraded data, aiming for the broadest coverage of potential
degradation cases.

On the other hand, our work shifts focus to examining the consistency of SR network optimization
across different degradation patterns within a fixed degradation space. TGSR Zhang et al. (2023) has
posited that the rebalancing of diverse degradation patterns can be fundamentally framed as a multi-
task learning paradigm with data heterogeneity, where each task corresponds to a set of HR-LR image
pairs generated under a specific degradation pattern. To intuitively demonstrate the phenomenon of
task imbalance during the training of real-SR network, we sampled multiple degradation patterns
following the degradation process of RealESRGAN. We then quantified the degree of task competition
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Figure 1: Task-defining capacity of each degradation operator.

capacity for specific patterns by comparing the performance between single-task networks, each
trained exclusively on one degradation pattern, and the multi-task network trained on all patterns. As
illustrated in Fig. 1(a), the learning progress for each task exhibits significant variance. This disparity
reveals the inherent task imbalance problem the model confronts when attempting to address multiple
degradation patterns simultaneously without external intervention.

In this paper, we delve further into this paradigm. We observe that not all degradation operators exhibit
the same strong discriminative power when defining tasks, some operators contribute redundantly
to task differentiation. We conduct a further validation experiment to empirically analyze the
discriminative capacity of individual degradation operators. The results in Fig. 1 reveal that operators
such as noise injection and blur artifacts exert significantly stronger influence on task formulation and
imbalance, demonstrating a higher discriminative power compared to others like down-sampling or
JPEG compression. We thus propose simplifying the paradigm definition, focusing primarily on the
more impactful degradation operators as the defining factors for distinct tasks, thereby deprioritizing
those less influential in task differentiation. Concurrently, we partition the degradation space by the
parameter ranges of these influential operators, redefining tasks as sets of sample pairs from each
resulting subspace.

Building upon an explicit definition of degradation tasks, we systematically investigate task imbalance
within the multi-task SR paradigm and identify two critical issues. (1) Tasks possess various inherent
difficulties. Methods relying on short-term absolute performance gains (like Zhang et al. (2023))
wrongly assume that equal gains reflect equivalent task competition, without accounting for this
variance in difficulty. (2) External regulation to mitigate task imbalance inevitably introduce secondary
imbalances. As both task imbalance and relative learning progress evolve significantly during training,
static approaches are fundamentally limited. For example, the fixed task grouping in TGSR cannot
adapt to these dynamic imbalances induced by the regulation itself. To address these challenges,
we introduce a dynamic multi-task loss-weighting algorithm that both implicitly captures task
difficulty by referencing single-task model performance and adapts to evolving training dynamics by
periodically re-evaluating loss weights.

Previous studies Grégoire et al. (2024) have demonstrated that the gradient stability of multi-task
loss re-weighting methods is susceptible to the negative impact of outliers. To address this stability
challenge, we prove that under our proposed task definition framework, the weighting term of multi-
task losses is equivalent to controlling the sample quantity for each task, and that this data rebalancing
can provide a more stable training process.Consequently, we strategically regulate task-specific
sample generation at different intervals, address task imbalance through controlled data rebalancing.
Notably, the conventional practice of constructing LR training images from HR counterparts through
degradation models enables straightforward manipulation of task-specific data quantities. Our findings
reveals new potential for multi-task learning paradigms in real-world SR scenarios.

Our main contributions are: (1) We reframe the paradigm of multi-task learning for real-world
image super-resolution by proposing a novel task definition framework. This definition removes
redundant degradation parameters while preserving degradation model’s capacity. (2) We develop
a difficulty-aware loss weighting mechanism to dynamically quantify and address task imbalance
during training. (3) We theoretically prove that task imbalance, as quantified by loss weighting,
is equivalent to an adjustable data quantity imbalance , and that the latter provides a more stable
optimization process. Notably, this strategy can be readily integrated with other Real-SR methods.
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2 RELATED WORKS

Real-world super-resolution. Compared to non-blind SR methods, Real-SR requires handling
complex degradations. Early works Kim et al. (2016); Ledig et al. (2017); Zhang et al. (2018a)
model degradation spaces using Gaussian kernels and noise. BSRGAN Zhang et al. (2021) and
RealESRGAN Wang et al. (2021b) advance explicit degradation modeling via shuffled and high-order
strategies. Recently, diffusion-based models Wu et al. (2024a;b); Fan et al. (2024) address intricate
degradations via iterative refinement but incur high inference costs. Somewhat similarly, DASR Liang
et al. (2022) proposes three degradation patterns and introduces an additional network for degradation
recognition. In contrast, our method prioritizes balanced training progression across distinct degra-
dation patterns within a fixed degradation space, rather than expanding it to accommodate broader
degradation variations.

Multi-task learning. Multi-task learning methodologies can generally be classified into three main
types: (1) Task rebalancing Guo et al. (2018); Kendall et al. (2018) mitigates task imbalance via
loss weighting or gradient manipulation. (2) Task grouping Zamir et al. (2018); Fifty et al. (2021)
identifies synergistic tasks for joint learning, leveraging concepts like task taxonomy Zamir et al.
(2018) or affinity scores Fifty et al. (2021). (3) Architecture design methods include hard parameter
sharing (shared encoder, distinct decoders) Kokkinos (2017) and soft parameter sharing (separate
networks with cross-talk) Misra et al. (2016). Our approach adopts the most relevant task rebalancing
methods to quantify and address the issue of degradation task imbalance within SR models.

3 METHOD

Problem Formulation. Real-SR addresses the ill-posed inverse problem of reconstructing a high-
resolution (HR) image x ∈ RH×W×c from its degraded low-resolution (LR) observation y ∈
Rh×w×c, where the degradation process D(·) explicitly encapsulates the complexities inherent in
physical imaging systems. Formally, the forward degradation model can be expressed as:

y = D(x; Θ) = (fθn ◦ · · · ◦ fθ2 ◦ fθ1) (x) (1)

Here, D(x; Θ) is a parameterized degradation model with a set of empirically predefined parameters
Θ = {θn, · · · , θ2, θ1}, each function fθi represents an individual degradation operator, such as
blurring, noise addition, down-sampling, or JPEG compression, applied in a sequential manner.
Existing Real-SR methods (e.g. RealESRGAN Wang et al. (2021b)) customize D through the
binding of stochastic sampling parameters and optimize the sequential ordering to mimic real imaging
pipelines.

We recall the conception proposed by TGSR, mapping the Real-SR onto a multi-task learning problem.
Since the degradation model D can be regarded as a vast degradation space, an SR task τ is defined
as training pairs (X,Y = d(X)), where the degradation d(·) is sampled from the infinite degradation
space D and applied to an HR image set X to produce an LR image set Y . Due to the infinite size of
D, TGSR chose to sampled a large number of fixed degradation parameters to form the task space,
and tried to handle the task competition problem from a multi-task learning perspective.

The pipeline of our framework is shown in Fig. 2. The detailed introduction of each part is below.

3.1 TASK REDEFINATION VIA DEGRADATION SUBSPACE PARTITIONING

To quantitatively validate the task discrimination ability of different degradation operators, we conduct
a validation experiment. For each operator (e.g., Gaussian blur, noise, JPEG compression and down-
sampling), we create 50 degradation configurations by varying only the severity of the target operator
while keeping others fixed. We then fine-tune a pre-trained Real-SR model on each configuration
separately, yielding 50 operator-specific single-task models. The PSNR differences between the
pre-trained model and each fine-tuned model are used to assess the task-specific learning progress. A
larger variance in PSNR improvements indicates stronger task imbalance. As illustrated in Fig. 1(b)
and Fig. 1(c), noise and blur operators exhibit substantial variance, indicating severe task imbalance
during joint training of shared models. In stark contrast, Fig. 1(d) and Fig. 1(e) reveal a markedly
stable PSNR distances variation curve while varying down-sampling (and JPEG compression)
degradation parameters, implying weaker task imbalance under this set of configurations.
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Figure 2: Overview of our proposed pipeline. At the beginning of each training interval, PSNR
distances for each task are measured relative to the respective single-task networks to compute task
weights, which are then converted into the task data volume for the duration of that interval.

The results in Fig. 1 show that different degradation operators fθi demonstrate heterogeneous
contribution weights in task formulation, as their representational capacities vary significantly across
the degradation space D. In other words, degradation task clusters formed by varying intensity levels
of noise contamination operators (and blur artifacts operators) demonstrate significantly stronger task
imbalance and negative transfer problems compared to those formed by other degradation operators
(e.g., down-sampling or JPEG compression artifacts).

Building upon these insights, we strategically shift our task definition focus to noise contamination
operators and blur artifacts operators while excluding redundant hyperparameters (e.g. fixed down-
sampling ratios or predetermined compression levels), thereby refining the task definition into a more
practical and performance-impactful paradigm. Meanwhile, unlike Zhang et al. (2023) samples a
number of fixed degradation task parameters to represent the whole degradation space - this random
and discrete task sampling approach inevitably compromises the expressiveness of the original
degradation space D - we establish the parameter values of noise and blur operators as degradation
task boundaries to partition the degradation space D, redefine tasks as training data pairs generated
from distinct continuous degradation subspaces.

Specifically, we partition the degradation space D into n distinct subspaces based on the parametric
values of noise and blur operators, Dsub = {D1,D2, . . . ,Dn}. Given the whole set of HR images
X (|X | ≫ n), we construct n SR tasks T = {τi = (Xi, Yi)}ni=1, where each Xi ∈ X corresponds
to an LR counterpart Yi generated by applying degradation parameters from the subspace Di ∈
Dsub. Therefore, without compromising the expressive power of degradation models, Real-SR is
reformulated as a multi-task learning framework, where a shared model collaboratively addresses
degradation tasks derived from distinct degradation subspaces. Fig. 3 illustrates the differences in
task definitions between our method and TGSR.

Figure 3: Divergent task definition between our
method and TGSR.

Analysis for Task Imbalance. From the multi-
task learning perspective, task imbalance occurs
when tasks exhibit uneven learning progress
or disparate resource allocation during joint
optimization, leading to compromised conver-
gence or sub-optimal performance for individ-
ual tasks Yu et al. (2020). For instance, in tasks
combining semantic segmentation and depth es-
timation, gradients from one task may dominate
parameter updates, suppressing the learning of
other tasks.

In the context of conventional multi-task learning, task imbalance stems primarily from task diversity,
reflecting the absence of adequately shared latent representations across different tasks. On the other
hand, within our task definition framework, the involved tasks are semantically homogeneous as
they all belong to the super-resolution domain, yet exhibit heterogeneity in their degradation prior
distributions. As we illustrated in Fig. 1(b) and (c), the degradation tasks partitioned by varying
severity levels may compete for the shared capacity of jointly trained models. This competition
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could induce an optimization bias where the model preferentially learns to restore textures with
higher-frequency distortions (e.g. severely degraded regions requiring intensive reconstruction),
while insufficiently addressing the restoration needs of mildly degraded images.

Most real-world SR algorithms utilize randomized degradation parameters to generate LR training
data. This unbiased generation approach is equivalent to giving all degradation tasks equal opti-
mization priority. However, when the entire task cluster exhibits severe task imbalance, owing to
lack of external regulation, such random task selection mechanism tends to impede the optimization
efficiency of shared models and ultimately restricts the performance of under-optimized tasks.

3.2 ADAPTIVE LOSS WEIGHTING FOR MULTI-TASK SUPER-RESOLUTION

Loss function re-weighting is an effective external regulatory mechanism to address task imbalance
in multi-task field. In this section, we present our methodology for quantifying task imbalance to
determine adaptive loss weights. As analyzed in Sec. 1, our loss weighting strategy must account
for two critical aspects: (1) inherent task difficulty discrepancies arising from varying degradation
severity levels, (2) dynamic evolution of task imbalance throughout the training process. Drawing
inspiration from Yun & Cho (2023), we formulate our adaptive SR task weighting scheme based on
the focal loss.

Focal loss was proposed to address class imbalance in dense detection scenarios, and it modifies
the standard cross-entropy loss by introducing a focusing weighting term (1− pt) to prioritize
hard-classified examples. The loss function is formulated as:

FL (pt) = (1− pt)
γ
CE = − (1− pt)

γ
log (pt) (2)

where pt denotes the model’s estimated probability for the true class. The focusing weighting term
(1− pt) dynamically scales loss contributions by suppressing well-classified samples while preserving
higher weights for ambiguous cases, forcing optimization to prioritize challenging examples.

Building upon the focusing weighting term, we define the loss weight for task τ as follows:

wτ = DP
(
Nτ

single , N
τ
multi

)
(3)

where DP
(
Nτ

single , N
τ
multi

)
denotes the PSNR distance on validation set generated by degradation

task τ between the dedicated single-task network trained on task τ and multi-task network built on
joint training. Compared with solely relying on the absolute PSNR values of the shared model, this
relative measurement mitigates the impact of inherent task difficulty variations. Tasks exhibiting
smaller PSNR distances are identified as dominant competitors in current shared training process,
and we accordingly assign them lower weights to balance gradient updates across tasks.

However, since the shared model serves as a mediator for cross-task knowledge transfer during
joint training, the validation PSNR of the shared model may surpass that of the single-task network,
resulting in negative PSNR distances. To address this phenomenon, we reformulate the task weights
through applying an exponential transformation. Meanwhile, to further accommodate the evolving
task imbalance dynamics during joint optimization, we introduce temporal partitioning of the training
schedule into K intervals, T = {T1, T2, . . . , Tk, . . . , TK}, each spanning a fixed number of iterations.
At the onset of every interval Tk, we dynamically calibrate all task weights by recomputing the
exponential weighting formula given by Equ. 3 using the latest validation metrics. After the final
weight normalization, the proposed multi-task SR loss can be formulated as:

For each Tk ∈ T, LSR (Tk) =
∑
τ∈T

wk
τLτ

wk
τ = exp

(
DP

(
Nτ

single , N
τ
multi

)) (4)

3.3 CONTROLLED DATA REBALANCING FOR ADDRESSING TASK IMBALANCE

In this section, we theoretically prove the equivalence between loss function re-weighting and sample
rebalancing . We further demonstrate that the latter enhances stability by providing a smaller gradient
variance. As the proof is intricate and relatively self-contained, we only present the conclusion here
due to space constraints. The detailed derivation is provided in Appendix A.2.
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Conclusion 1 (Equivalence of Loss Reweighting and Data Rebalancing).

Ni =
wk

τi

α
= N · wk

τi , α =
1

N
.

where Ni denotes the number of samples of task τi within interval k, and wk
τi is the normalized loss

weight assigned to task τi in interval k.

Conclusion 2 (Variance Comparison between Re-weighting to Re-sampling).

∆ =

n∑
j=1

∆j =

n∑
j=1

wj(nwj − 1)E[G2
j ].

Here ∆ = Var(Zrw)−Var(Zrs) measures the variance reduction, and ∆j denotes the contribution
from task j. Tasks with nwj > 1 contribute positively, demonstrating that reweighting amplifies their
variance, while resampling mitigates this effect. This explains why data rebalancing leads to more
stable training dynamics in practice.

4 EXPERIMENT

Training Datasets. We employ DIV2K Agustsson & Timofte (2017), Flickr2K Agustsson &
Timofte (2017) and OutdoorSceneTraining Wang et al. (2018) datasets for training. We use the same
degradation pipeline as RealESRGAN Wang et al. (2021b) to synthesize LR-HR pairs.

Test Datasets. For evaluation, we construct the DIV2K4Level dataset from the DIV2K validation
set, comprising four distinct validation subsets aligned with the four degradation subspaces defined
in our task formulation. Each subset consists of 100 image pairs. Beyond this, we evaluate our
model on a synthetic test set, DIV2K-random, as well as two real-world datasets, RealSR Cai et al.
(2019) and DRealSR Wei et al. (2020). The synthetic dataset comprises 100 image pairs. The LQ
images are synthesized by applying random degradations using Real-ESRGAN Wang et al. (2021b)
to DIV2K_valid Agustsson & Timofte (2017).

Evaluation Metrics. For evaluating our method, we apply both fidelity and perceptual quality metrics.
Fidelity metrics include PSNR and SSIM Wang et al. (2004) (calculated on the Y channel in YCbCr
space). Perceptual quality metrics include LPIPS Zhang et al. (2018b).

Degradation Task Definition Settings. In the domain of Real-SR, partitioning the degradation
space based on the semantic properties of operators to apply a "divide and conquer" approach is not
uncommon. Chen et al. (2023a) employ partitioning schemes with blur and noise biased degradation
spaces to train scenario-specific data augmentation models. Wang et al. (2021a) defines three
degradation types and introduces an auxiliary network to estimate the degradation of the input image.

Broadly referencing the overall degradation ranges adopted by these methods, we partition the overall
degradation space into 4 subspaces by uniformly dividing the value ranges of two parameters: blur
kernel standard deviations and noise injection rate. These subspaces are termed mild, blur, noise,
and severe. We adopt the high-order degradation model proposed by Real-ESRGAN as the Real-SR
degradation model in our experiments. Detailed degradation settings and further analysis of the
partitioning boundaries are provided in Appendix A.1.

4.1 COMPARISON WITH STATE-OF-THE-ART

We compare our method with the state-of-the-art methods, contrastive learning method include
DASR Liang et al. (2022), Gan-based methods include RealESRGAN Wang et al. (2021b),
SwinIR Liang et al. (2021), and MM-RealSR Mou et al. (2022). Diffusion-based methods in-
clude ResShift Yue et al. (2023), SinSR Wang et al. (2024b), TSD-SR Dong et al. (2025), and
AdcSR Chen et al. (2025). Officially released pre-trained models are used for the compared methods.

Quantitative Comparisons on DIV2K4Level. DASR defines three degradation types for image
degradation estimation. It achieves exceptionally high PSNR metrics, which is often attributed to
specific hyperparameter configurations in its loss function weighting. However, its performance on
LPIPS is notably poor (the worst and exhibiting a significant disparity). In contrast, MM-RealSR
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DIV2K_mild DIV2K_blur DIV2K_noise DIV2K_severe
PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM

DASR(CVPR’21) Liang et al. (2022) 23.72 0.5581 0.6508 23.40 0.6466 0.5677 23.68 0.6403 0.5782 23.46 0.6344 0.5863
RealESRGAN(ICCV’21) Wang et al. (2021b) 23.62 0.4273 0.6382 23.44 0.4343 0.6314 23.58 0.4330 0.6364 23.39 0.4403 0.6292
RealSwinIR(ICCV’21) Liang et al. (2021) 23.52 0.4372 0.6374 23.46 0.4416 0.6337 23.45 0.4424 0.6337 23.39 0.4471 0.6299
MM-RealSR(ECCV’22) Mou et al. (2022) 23.44 0.4293 0.6468 23.45 0.4352 0.6430 23.44 0.4343 0.6448 23.45 0.4412 0.6340
ResShift(NIPS’23) Yue et al. (2023) 23.71 0.4646 0.6174 23.41 0.4711 0.6110 23.57 0.4728 0.6090 23.48 0.4796 0.6031
SinSR(CVPR’24) Wang et al. (2024b) 23.39 0.4835 0.5654 23.29 0.4901 0.5585 23.24 0.4938 0.5524 23.13 0.5004 0.5456
TSD-SR(CVPR’25) Dong et al. (2025) 22.16 0.4256 0.5753 22.04 0.4308 0.5694 22.16 0.4380 0.5727 22.03 0.4333 0.5666
AdcSR(CVPR’25) Chen et al. (2025) 23.27 0.4272 0.6050 23.18 0.4332 0.6002 23.22 0.4336 0.6000 23.13 0.4398 0.5949
TGSR(NIPS’23) Zhang et al. (2023) 23.64 0.4283 0.6425 23.49 0.4354 0.6359 23.54 0.4339 0.6395 23.39 0.4415 0.6330
Ours 23.79 0.4190 0.6511 23.66 0.4308 0.6483 23.73 0.4272 0.6424 23.54 0.4383 0.6396

Table 1: Quantitative results of different methods on DIV2K4Level.
RealSRset-Nikon RealSRset-Canon DRealSR DIV2K-random

PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM
DASR(CVPR’21) Liang et al. (2022) 27.15 0.4391 0.7598 27.67 0.4236 0.7893 30.41 0.4387 0.8261 24.43 0.5726 0.6438
RealESRGAN(ICCV’21) Wang et al. (2021b) 25.62 0.3820 0.7607 26.06 0.3629 0.7864 28.64 0.3766 0.8052 23.50 0.4341 0.6338
RealSwinIR(ICCV’21) Liang et al. (2021) 25.72 0.3768 0.7663 26.33 0.3573 0.7945 28.24 0.3819 0.7983 23.45 0.4424 0.6335
MM-RealSR(ECCV’22) Mou et al. (2022) 23.54 0.3822 0.7425 24.06 0.3606 0.7708 26.97 0.3723 0.7972 23.43 0.4353 0.6434
ResShift(NIPS’23) Yue et al. (2023) 25.11 0.4736 0.6999 25.87 0.4626 0.7501 27.12 0.4689 0.7407 23.69 0.4724 0.6101
SinSR(CVPR’24) Wang et al. (2024b) 25.68 0.4702 0.6843 26.35 0.4596 0.7279 28.45 0.4496 0.7516 23.25 0.4921 0.5552
TSD-SR(CVPR’25) Dong et al. (2025) 23.71 0.4023 0.6849 23.89 0.3956 0.7073 26.23 0.4019 0.7160 22.10 0.4338 0.5709
AdcSR(CVPR’25) Chen et al. (2025) 25.49 0.3925 0.7187 25.71 0.3796 0.7457 28.21 0.3822 0.7723 23.20 0.4343 0.5996
TGSR(NIPS’23) Zhang et al. (2023) 25.88 0.3862 0.7688 26.35 0.3660 0.7954 28.91 0.3839 0.8142 23.51 0.4348 0.6376
Ours 26.16 0.3763 0.7728 26.54 0.3580 0.7960 29.27 0.3697 0.8393 23.72 0.4254 0.6441

Table 2: Quantitative Comparisons on Synthetic and Real-World Test Sets.
and RealESRGAN utilize higher-order degradation models. These approaches typically sacrifice
some PSNR performance to achieve enhanced perceptual quality. SwinIR, which leverages the Swin
Transformer architecture for image super-resolution, demonstrates strong performance across selected
evaluation metrics. Diffusion-based methods generally excel on non-reference metrics, indicating
their capacity to generate perceptually realistic images. However, the outputs from these models can
sometimes exhibit considerable differences from the ground truth images, consequently leading to
lower performance on reference-based metrics. The result is shown in Tab. 1. Our proposed method
consistently demonstrates either the best or second-best performance across all degradation settings,
underscoring the effectiveness of our balanced approach to these degradation tasks.

Quantitative Comparisons on Synthetic and Real-World Test Sets. Our method demonstrates
consistent superiority not only on specialized task-specific benchmarks but also across the synthetic
DIV2K-random dataset and real-world test sets (RealSRset & DRealSR). The result is shown in
Tab. 2. These results demonstrate that our method does not merely achieve a performance balance
among the delineated degradation tasks, but rather fulfills our foundational goal: achieving an optimal
balance in how SR networks handle different degradation patterns within a fixed degradation space.

Qualitative Comparisons. The qualitative comparisons in Fig. 4 demonstrate the superiority of
our framework over mainstream Real-SR methods. Under heavy and mixed degradations (first two
rows), competing approaches either fail to remove blur and noise or introduce unnatural textures,
whereas our model effectively restores structures with minimal artifacts. In high-contrast regions
(last row), our results exhibit crisper edges and more faithful texture reconstruction compared to the
overly smooth or artifact-ridden outputs of prior methods.

4.2 ANALYSIS AND ABLATION STUDY

Task Imbalance Dynamics Analysis during Training. Fig. 5 visualizes the adaptability of TGSR
and our proposed method to dynamic task imbalance. For Fig. 5(a), we selected two checkpoints
during the training process and employed the grouping indicator from TGSR to evenly group 100
randomly sampled discrete tasks into 4 groups. The resulting changes in grouping outcomes reveal
how task imbalance evolves. Because TGSR’s task grouping is executed only once at initialization
and remains fixed throughout training, this static strategy cannot adapt to shifting the secondary
imbalances that arise from the optimization process itself. This limitation is evidenced by the marked
disparity in the grouping results between the two intervals. In contrast, Fig. 5(b) demonstrates
the stable optimization and convergence of task weights in our method, showcasing its ability to
dynamically track and adapt to the evolving task imbalance.

Algorithm Integrability Verification. To validate the algorithmic integrability of our method,
we conduct extensive experiments by integrating our framework into mainstream real-world image
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Figure 4: Qualitative results of different methods. Zoom in for details.

Figure 5: A comparison of the adaptability of TGSR and our method to the dynamic evolution of task
imbalance. Tasks grouped into same groups are represented with identical colors in (a).

super-resolution models. As our approach builds a multi-task learning framework based on training
data heterogeneity modeling, it imposes no assumptions on the specific architecture of the base
SR model. We select 4 mainstream models-RealSRGAN Ledig et al. (2017), RealESRGAN Wang
et al. (2021b), SwinIR Liang et al. (2021), and HAT Chen et al. (2023b)—as integration baselines.
Without modifying their original architectures or training configurations, we apply our task definition
framework and dynamic loss weighting mechanism to their training pipelines. As shown in Tab. 3,
our method achieves significant performance gains across real-world datasets, Fig. 6 shows the visual
improvements of our method compared to the baselines, for regions with composite degradations and
complex textures, baseline methods tend to uniformly smear details, whereas our method demonstrates
superior detail recovery.

Study of the performance upper bound. We train 4 dedicated single-task networks for each
degradation subspace, and compare their performance against our multi-task network on respective
DIV2K4Level validation sets. As shown in Fig. 7, our multi-task network achieved performance
metrics comparable to those of the single-task networks across all degradation tasks. Notably, for the
’noise’ and ’severe’ degradation tasks, our multi-task network achieved PSNR improvements of 0.08
dB and 0.07 dB, respectively, surpassing the performance of the single-task models. These results
highlight the capability of our framework to leverage cross-task information interaction, demonstrating
its potential in addressing highly degraded real-world image super-resolution scenarios.

Ablation Study for Loss Function Weighting Algorithms. To investigate the effectiveness of our
proposed loss weighting method in addressing task imbalance, we conduct an ablation study on the
loss weighting component. We compare our approach with several classical multi-task loss weighting
algorithms, including RLW Lin et al. (2021), DWA Liu et al. (2019) and GLSChennupati et al. (2019).
As shown in Tab. 4, our task weighting algorithm achieves superior performance in real-world image
super-resolution applications. In the table, "Diff" denotes difficulty-aware algorithms, while "Dyna"
denotes dynamic algorithms. This improvement can be attributed by the fact that the loss function
weighting of traditional multi-task learning is mainly oriented to heterogeneous task semantics (e.g.,

8
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RealSRset-Nikon RealSRset-Canon
PSNR LPIPS PSNR LPIPS

RealSRGAN 24.71 0.4159 25.42 0.3902
RealSRGAN+ours 25.27 0.3997 25.86 0.3752
RealESRGAN 25.62 0.3820 26.06 0.3629
RealESRGAN+ours 26.16 0.3763 26.54 0.3580
RealSwinIR 25.72 0.3768 26.33 0.3573
RealSwinIR+ours 26.68 0.3652 27.01 0.3415
RealHAT 27.17 0.3612 27.72 0.3360
RealHAT+ours 27.65 0.3691 28.01 0.3417

Table 3: The quantitative results of applying proposed
framework to mainstream Real-SR methods.

Figure 6: The qualitative results of algo-
rithm integrability.

Diff Dyna Methods
RealSRset-Nikon RealSRset-Canon
PSNR LPIPS PSNR LPIPS

✓ RLW 26.02 0.3833 26.14 0.3699
✓ DWA 25.82 0.3759 26.38 0.3594

✓ ✓ GLS 25.68 0.3801 26.10 0.3606
✓ ✓ Ours 26.16 0.3763 26.54 0.3580

Table 4: Ablation study for loss weighting algorithms.

Strategy #Tasks
RealSRset-Nikon RealSRset-Canon
PSNR LPIPS PSNR LPIPS

re-sampling 2 25.89 0.3759 26.29 0.3580
re-sampling 3 26.02 0.3783 26.40 0.3615
re-sampling 5 26.14 0.3749 26.48 0.3552
re-weighting 4 25.83 0.3788 26.31 0.3597
re-sampling 4 26.16 0.3763 26.54 0.3559

Table 5: Ablation study for the quantity of tasks and
data rebalancing strategy.

Figure 7: Comparison of Single-task Net-
works and Proposed Multi-task Network.

cross-domain tasks like segmentation and depth estimation), while our proposed method aims to
better handle task imbalance under different data distribution definitions.

Other Ablation Study Results. We conducted supplementary ablation studies to validate the
effectiveness of our task-imbalance-to-data-imbalance transformation approach described in Sec. 3.3,
and investigating model performance under varying granularities of task grouping configurations. As
demonstrated in Tab. 5, our algorithm consistently achieves stable performance gains across different
task quantity settings. Notably, while finer task partitioning yields finite incremental gains, it incurs
linearly increasing training costs proportional to the number of task groups.

5 CONCLUSION

This work enhances multi-task real-world image super-resolution by refining task-space modeling and
task imbalance management. We propose a degradation operator-aware task definition framework that
segments the degradation space with parameter-specific boundaries, balancing task discrimination and
efficiency. A focal loss-based weighting mechanism dynamically quantifies task imbalance, while a
task-to-data imbalance conversion strategy stabilizes optimization by regulating task-specific training
volumes. Experiments demonstrate consistent superiority across various degradation scenarios, with
seamless integration into existing architectures. A potential limitation of our method is that the
training cost increases proportionally with the number of defined tasks, this inherently restricts the
extent to which tasks can be subdivided.
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A APPENDIX

A.1 DETAILED DEGRADATION SETTINGS AND ANALYSIS OF TASK BOUNDARIES

A.1.1 DETAILED PARAMETER BOUNDARIES FOR TASK DEFINITION.

The detailed parameter settings for our degradation task are reported in Tab. 6 7 8 9. We partition the
entire degradation space D into 4 distinct levels: mild, blur, noise, and severe.

For the blur operator, we employ isotropic and anisotropic blur kernels with probabilities of 0.69 and
0.31, respectively. When an isotropic blur kernel is applied, its standard deviations along both axes
are set equal. In the second degradation stage, following the practice of Real-ESRGAN Wang et al.
(2021b), we skip the blur operation with a probability of 0.2 and apply sinc kernel filtering with a
probability of 0.8.

The primary distinctions in our configuration pertain to the blur kernel standard deviations and noise
levels. We highlight lower values for blur kernel standard deviations and noise levels in blue, and
higher values for these parameters in red.

Table 6: Degradation Operator Parameters for Task "mild".

Operator Parameter Stage 1 Stage 2

Blur

Kernel size 2m+ 1 m ∈ [3, 11] m ∈ [3, 11]
Kernel list iso, aniso iso, aniso

Kernel list probability [0.69, 0.31] [0.69, 0.31]
Sinc kernel probability 0.1 0.1
Standard deviation θ θ ∈ [1.6, 2.3] θ ∈ [0.8, 1.2]

Resize

Resize list down, same, up down, same, up
Resize list probability [0.2, 0.7, 0.1] [0.2, 0.7, 0.1]

Resize range ϕ ϕ ∈ [0.15, 1.5] ϕ ∈ [0.15, 1.5]
Resize mode area, bilinear, bicubic area, bilinear, bicubic

Noise

Noise list Gaussian, Poisson Gaussian, Poisson
Noise list probability [0.5, 0.5] [0.5, 0.5]
Sigma of Gaussian σ σ ∈ [1, 4.5] σ ∈ [1, 4]
Scale of Poisson γ γ ∈ [0.1, 0.4] γ ∈ [0.1, 0.35]

JPEG Quality factor α α ∈ [30, 95] α ∈ [30, 95]
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Table 7: Degradation Operator Parameters for Task "blur".

Operator Parameter Stage 1 Stage 2

Blur

Kernel size 2m+ 1 m ∈ [3, 11] m ∈ [3, 11]
Kernel list iso, aniso iso, aniso

Kernel list probability [0.69, 0.31] [0.69, 0.31]
Sinc kernel probability 0.1 0.1
Standard deviation θ θ ∈ [2.3, 3] θ ∈ [1.2, 1.6]

Resize

Resize list down, same, up down, same, up
Resize list probability [0.2, 0.7, 0.1] [0.2, 0.7, 0.1]

Resize range ϕ ϕ ∈ [0.15, 1.5] ϕ ∈ [0.15, 1.5]
Resize mode area, bilinear, bicubic area, bilinear, bicubic

Noise

Noise list Gaussian, Poisson Gaussian, Poisson
Noise list probability [0.5, 0.5] [0.5, 0.5]
Sigma of Gaussian σ σ ∈ [1, 4.5] σ ∈ [1, 4]
Scale of Poisson γ γ ∈ [0.1, 0.4] γ ∈ [0.1, 0.35]

JPEG Quality factor α α ∈ [30, 95] α ∈ [30, 95]

Table 8: Degradation Operator Parameters for Task "noise".

Operator Parameter Stage 1 Stage 2

Blur

Kernel size 2m+ 1 m ∈ [3, 11] m ∈ [3, 11]
Kernel list iso, aniso iso, aniso

Kernel list probability [0.69, 0.31] [0.69, 0.31]
Sinc kernel probability 0.1 0.1
Standard deviation θ θ ∈ [1.6, 2.3] θ ∈ [0.8, 1.2]

Resize

Resize list down, same, up down, same, up
Resize list probability [0.2, 0.7, 0.1] [0.2, 0.7, 0.1]

Resize range ϕ ϕ ∈ [0.15, 1.5] ϕ ∈ [0.15, 1.5]
Resize mode area, bilinear, bicubic area, bilinear, bicubic

Noise

Noise list Gaussian, Poisson Gaussian, Poisson
Noise list probability [0.5, 0.5] [0.5, 0.5]
Sigma of Gaussian σ σ ∈ [4.5, 8] σ ∈ [4, 7]
Scale of Poisson γ γ ∈ [0.4, 0.7] γ ∈ [0.35, 0.6]

JPEG Quality factor α α ∈ [30, 95] α ∈ [30, 95]

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 9: Degradation Operator Parameters for Task "severe".

Operator Parameter Stage 1 Stage 2

Blur

Kernel size 2m+ 1 m ∈ [3, 11] m ∈ [3, 11]
Kernel list iso, aniso iso, aniso

Kernel list probability [0.69, 0.31] [0.69, 0.31]
Sinc kernel probability 0.1 0.1
Standard deviation θ θ ∈ [2.3, 3] θ ∈ [1.2, 1.6]

Resize

Resize list down, same, up down, same, up
Resize list probability [0.2, 0.7, 0.1] [0.2, 0.7, 0.1]

Resize range ϕ ϕ ∈ [0.15, 1.5] ϕ ∈ [0.15, 1.5]
Resize mode area, bilinear, bicubic area, bilinear, bicubic

Noise

Noise list Gaussian, Poisson Gaussian, Poisson
Noise list probability [0.5, 0.5] [0.5, 0.5]
Sigma of Gaussian σ σ ∈ [4.5, 8] σ ∈ [4, 7]
Scale of Poisson γ γ ∈ [0.4, 0.7] γ ∈ [0.35, 0.6]

JPEG Quality factor α α ∈ [30, 95] α ∈ [30, 95]

A.1.2 ANALYSIS OF PARTITIONING STRATEGY

In our multi-task SR framework, the choice of a partitioning strategy for the task subspaces should
follow the principle of maximum task dissimilarity. This involves defining tasks that are as distinct as
possible to maximize the efficacy of our algorithms in mitigating task imbalance. From an empirical
standpoint, since our degradation process involves uniformly sampling parameters within a specified
range, adopting a uniform partition of the degradation space is the most natural and unbiased strategy.
This approach ensures that each task covers a parametric region of equal size, thus maintaining a high
degree of differentiability between tasks.

To validate the reasonableness of this uniform partitioning, we conducted an additional validation
experiment. The overall protocol is largely identical to the experiment shown in Fig.1(b) and (c).
The key distinction is that when selecting values for the noise (and blur) degradation operator, we
uniformly sample 30 discrete values from within our defined degradation subspaces. The parameters
for the second-stage degradation are chosen proportionally to those of the first stage. We then
calculate the PSNR distances between the shared model and the single-task networks for each of
these 30 degradation settings. This validation was performed on 6 model checkpoints saved randomly
throughout the training process. The results are illustrated in the Fig.8.

The experimental results shown in Fig.8 indicate that for the task clusters generated by uniformly
sampling the noise (and blur) operators within our defined ranges, the degree of task imbalance
exhibits a roughly linear trend. The curve of the performance gap remains relatively stable and shows
no pronounced non-linearities or inflection points. This finding validates the reasonableness of our
uniform partitioning strategy, as it confirms that this approach provides substantial and consistent
differentiability among the tasks across the predefined degradation space.

Furthermore, we performed a follow-up experiment to determine the effective range of this linearity
by expanding the overall degradation parameter space. As illustrated in Fig.9, the results indicate that
within the RealESRGAN degradation model, the linear trend in task imbalance is largely preserved
for blur standard deviation values within the range of [0.4, 3.8], while the corresponding linear range
for the noise ratio is [1, 19].
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Figure 8: Validation of task imbalance at six random training checkpoints. The plots show the PSNR
distance between the shared and single-task models across 30 uniformly sampled Noise ratio (and
blur standard deviation) values. A consistently linear trend is observed at all stages.

Figure 9: Determining the effective range of linearity for the noise operator. The blue and orange bars
show the region where the task imbalance (PSNR distance) maintains a linear trend. The gray bars
show the post-inflection region where this linearity breaks down. Dashed lines mark the approximate
boundaries of the effective range.

A.2 THE DETAILED DERIVATION PROCESS

A.2.1 EQUIVALENCE OF LOSS RE-WEIGHTING AND DATA REBALANCING

We begin from Equ. 4 and reformulate the multi-task loss function into a sample re-weighting
formulation. Given a set of degradation tasks T = {τi = (Xi, Yi)}ni=1, each task corresponds to
a degradation subspace Dsub = {D1,D2, . . . ,Dn}. Within a specific interval Tk (determined by a
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fixed number of iterations), the total number of training samples is N . We first assume that all tasks
share an identical sample size, i.e., N1 = N2 . . . = Nn = N/n. The loss function for task τi is
defined as follows:

Lτi =
1

Ni

∑
(xi,yi)∈τi

ℓ(xi, yi) (5)

where ℓ(xi, yi) denotes the single sample loss. Substituting this into the multi-task loss function
Equ. 4 yields:

L =

n∑
i=1

wk
τi ·

1

Ni

∑
(xi,yi)∈τi

ℓ(xi, yi) (6)

By interchanging the order of summation, we derive a unified loss summation over all samples:

L =

n∑
i=1

∑
(xi,yi)∈τi

wk
τi

Ni
ℓ(xi, yi) (7)

We define the sample weight w(xi, yi) as:

w(xi, yi) =
wk

τi

Ni
, for (xi, yi) ∈ τi (8)

Thus, the loss function can be reformulated as:

L =
∑

(x,y)∈T

w(x, y)ℓ(x, y) (9)

Through this formulation, we convert the multi-task weighted loss into sample re-weighting, where
samples from task τi are assigned weight of wk

τi/Ni.

Next, we enforce equal sample weights across all tasks, while adjusting the sample size of each task
to preserve the task imbalance quantification results from Section 3.2. Specifically, we set the sample
weight w(xi, yi) to a uniform value:

∀τi ∈ T , w (xi, yi) =
wk

τi

Ni
= α (10)

We substitute
∑n

i=1 Ni = N and
∑n

i=1 w
k
τi = 1 into the above equation and solve for α:

α =

∑n
i=1 w

k
τi

N
=

1

N
(11)

Consequently, the adjusted sample size for each task in interval Tk is:

Ni =
wk

τi

α
= N · wk

τi (12)

Through the above transformations, we equivalently convert the quantified task imbalance weights
into controllable data rebalancing.

A.2.2 A VARIANCE REDUCTION ANALYSIS FROM LOSS REWEIGHTING TO DATA
REBALANCING

To avoid confusion, and with a slight abuse of notation, we redefine the symbols as follows:
we consider a multi-task setup with n tasks and normalized task weights w1, . . . , wn satisfying∑n

j=1 wj = 1. For task j let Gj denote the scalar random variable given by the (projected) single-
sample stochastic gradient coming from a sample of task j. Define the conditional first and second
moments

µj := E[Gj ], Ej := E[G2
j ] = Var(Gj) + µ2

j .

The population target gradient component we wish to estimate is

G := Ej∼q[µj ] =

n∑
j=1

wjµj ,

17
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where q denotes the desired (normalized) task distribution qj = wj . Below we compare two
single-sample estimators of G used in practice.

(1) Loss reweighting (importance-weighting baseline). Sample a task index J uniformly, J ∼
Unif{1, . . . , n} (so prw

j = 1/n). For a draw from task J use the importance-weighted estimator

Zrw =
qJ
pJ

GJ = nwJ GJ .

(2) Data rebalancing / resampling. Sample a task index J directly from q (so prs
j = wj) and use the

direct estimator
Zrs = GJ .

Both estimators are unbiased for G:

E[Zrw] =

n∑
j=1

1

n
(nwj)µj =

n∑
j=1

wjµj = G, E[Zrs] =

n∑
j=1

wjµj = G.

We compare their variances. Using Var(Z) = E[Z2]− E[Z]2 and denoting E[G2
j ] = Ej , the second

moments are

E[Z2
rw] =

n∑
j=1

1

n
(nwj)

2 Ej = n

n∑
j=1

w2
jEj , E[Z2

rs] =

n∑
j=1

wjEj .

Hence the difference of single-sample variances (reweighting minus resampling) is

∆ := Var(Zrw)−Var(Zrs) =
(
E[Z2

rw]−G2
)
−
(
E[Z2

rs]−G2
)

= E[Z2
rw]− E[Z2

rs] = n

n∑
j=1

w2
jEj −

n∑
j=1

wjEj

=

n∑
j=1

(
nw2

j − wj

)
Ej =

n∑
j=1

wj

(
nwj − 1

)
Ej .

Therefore, defining the per-task contribution

∆j := wj

(
nwj − 1

)
Ej ,

we obtain the exact decomposition

∆ =

n∑
j=1

∆j =

n∑
j=1

wj(nwj − 1)E[G2
j ].

We continue from the decomposition

∆ = Varrw −Varrs =

n∑
j=1

∆j =

n∑
j=1

wj(nwj − 1)Ej , Ej := E[G2
j ],

which exactly expresses the single-sample variance gap between the pure loss-reweighting scheme
(uniform task sampling with importance weights, denoted “rw”) and the pure data-rebalancing /
resampling scheme (sampling tasks directly from q, denoted “rs”) as a sum of task-wise contributions
∆j .

Now partition the task index set into two disjoint subsets according to the sign of the factor nwj − 1:

H := { j : nwj > 1 }, L := { j : nwj < 1 },
(we may treat indices with nwj = 1 as boundary cases for which ∆j = 0). Then the global
decomposition separates into the two groups:

∆ =
∑
h∈H

∆h +
∑
j∈L

∆j =
∑
h∈H

wh(nwh − 1)Eh +
∑
j∈L

wj(nwj − 1)Ej .

The above separation suggests a hybrid (mixed) strategy: treat the two groups differently—
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• for tasks in H (those with nwh > 1) adopt data rebalancing / resampling (i.e. draw task
indices J from q for these tasks), and

• for tasks in L (those with nwj < 1) retain loss reweighting (i.e. continue to sample
uniformly among those tasks and apply importance weights).

We now show rigorously that, compared to the pure reweighting baseline, this hybrid scheme
eliminates the negative contribution from the L-group in the variance-difference expression and
leaves only the strictly positive contributions from the H-group; consequently the hybrid variance is
strictly smaller than the pure-reweighting variance whenever at least one h ∈ H has Eh > 0.

Formal proof. Let Varrw denote the single-sample variance under the pure reweighting baseline
(uniform sampling prwj = 1/n with estimator Zrw = nwJGJ ), and let Varhyb denote the single-
sample variance under the hybrid scheme defined above. We compute Varhyb by assembling the
contribution of each task under the hybrid sampling/weighting rule.

• For h ∈ H: under the hybrid scheme we resample from H according to q for those tasks, so
the marginal contribution to the second moment is whEh (exactly as in the pure-resampling
case).

• For j ∈ L: under the hybrid scheme we retain reweighting for those tasks (i.e. keep uniform
sampling and apply the same importance weights as in the baseline), hence the marginal
contribution to the second moment from each such task is exactly the same as in the baseline,
namely nw2

jEj .

Therefore the hybrid second moment equals

E[Z2
hyb] =

∑
h∈H

whEh +
∑
j∈L

nw2
jEj ,

while the baseline second moment is

E[Z2
rw] =

∑
h∈H

nw2
hEh +

∑
j∈L

nw2
jEj .

Subtracting (and cancelling the identical L-group terms) gives the exact difference of second moments
(and therefore variances, since means coincide and cancel):

Varrw −Varhyb =
∑
h∈H

(
nw2

h − wh

)
Eh =

∑
h∈H

wh(nwh − 1)Eh.

But each summand satisfies nwh − 1 > 0 by definition of H , and Eh = E[G2
h] ≥ 0 with strict

positivity whenever the task’s per-sample gradient second moment is nonzero. Hence every ∆h :=
wh(nwh − 1)Eh is nonnegative, and at least one is strictly positive whenever there exists h ∈ H
with Eh > 0. Consequently

Varrw −Varhyb =
∑
h∈H

∆h ≥ 0,

with strict inequality whenever ∃h ∈ H : Eh > 0. Equivalently,

Varhyb < Varrw (when some h ∈ H has Eh > 0).

Interpretation and practical remark. The algebra above shows the precise mechanism: because
the hybrid scheme uses the same reweighting procedure as the baseline on the small-weight group L,
the contributions of those tasks to the variance are identical and thus cancel in the variance difference;
all remaining contributions come from the large-weight group H , for which replacing reweighting by
resampling reduces each per-task term from nw2

hEh down to whEh, yielding a positive reduction
wh(nwh − 1)Eh for every h ∈ H , this mixed strategy therefore provably reduces the stochastic
gradient variance relative to pure loss reweighting, and so yields a more stable optimization procedure.
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A.3 MORE VISUAL RESULTS.

A.3.1 MORE QUALITATIVE COMPARISONS ON DIV2K4LEVEL.

We present additional qualitative results on DIV2K4Level in Fig. 10. Our method demonstrates the
ability to recover substantial clarity even from highly degraded low-resolution inputs.

A.3.2 QUALITATIVE COMPARISONS WITH DIFFUSION-BASED MODELS.

Recently, diffusion-based models have demonstrated considerable potential in real-world super-
resolution (Real-SR). These models typically employ or fine-tune large pre-trained diffusion models,
such as Stable Diffusion Rombach et al. (2022), to generate visually pleasing HR images. However,
However, the large number of parameters in these pre-trained models can often lead to outputs that
lack fidelity to the ground truth. We illustrate this phenomenon in Fig. 11: although diffusion-based
models may achieve high scores on non-reference metrics, indicative of perceptual quality, they are
prone to substantially altering the content of the LR input, resulting in significant deviations from the
ground truth.

A.4 OTHER IMPLEMENTATION DETAILS.

To establish task difficulty, single-task networks were trained by fine-tuning a pre-trained RealESRNet
model on each of the four degradation subspaces for 400K iterations. The entire training process
was divided into intervals, with checkpoints set every 5K iterations. At each checkpoint, multi-task
weights were calculated based on the PSNR distances between the single-task models (trained up
to that checkpoint) and the current shared model. Finally, the training data volume for each task
within an interval was dynamically allocated according to the normalized weights derived from the
quantified task imbalance. We train our models with 8 NVIDIA GeForce RTX 2080 Ti GPUs with a
total batch size of 48. We employ Adam optimizer.

A.5 THE USE OF LARGE LANGUAGE MODELS

In the preparation of this manuscript, we utilized Large Language Models as a writing assistant. The
primary use of the LLM was for proofreading, including grammatical corrections, and rephrasing
of sentences to improve clarity and readability. The core ideas, experimental design, results, and
conclusions presented in this paper are entirely our own.
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Figure 10: More Qualitative Comparisons on DIV2K4Level.
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Figure 11: Qualitative Comparisons with Diffusion-based Models.
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