COMPLETE AND LIPSCHITZ CONTINUOUS INVARIANTS OF GRAPHS UNDER GEOMETRIC ISOMORPHISM IN \mathbb{R}^{n}

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

042

043 044 Paper under double-blind review

ABSTRACT

Euclidean graphs embedded in \mathbb{R}^n with unordered vertices and straight-line edges represent important real objects such as molecules whose atoms are connected by chemical bonds. Many real objects preserve their properties under any rigid motion from the special Euclidean group SE(n). Embedded graphs were previously distinguished under such rigid motion or geometric isomorphism in \mathbb{R}^n . Experimental noise motivates new Lipschitz continuous invariants so that perturbations of all vertices up to ε change the invariants up to a constant multiple of ε in a suitable metric, whose running time should polynomially depend on the number of unordered vertices. We developed new complete invariants that are stable under noise, form a natural hierarchy, and distinguish all chemically different graphs in the QM9 database of 130K+ molecules within a few hours on a modest desktop.

1 MOTIVATIONS, PROBLEM STATEMENT, AND NEW CONTRIBUTIONS

Many rigid structures from star constellations to molecules are represented by geometric graphs in a Euclidean space, see Bonchev (1991). More precisely, a *Euclidean graph* $G \subset \mathbb{R}^n$ is a finite set of *m* unordered (unlabeled) vertices located at distinct points of \mathbb{R}^n and connected by straight-line edges. Forgetting all edges of $G \subset \mathbb{R}^n$ gives us the *vertex set* $V(G) \subset \mathbb{R}^n$ of *m* unordered points.

A Euclidean graph can be disconnected and can have vertices v of any *degree* that is the number of edges whose endpoint is v. Loops and multiple edges (with the same endpoints) do not appear in Euclidean graphs because all edges are straight line segments and can also intersect in theory.

Graphs can be considered under any *equivalence* relation that should satisfy the axioms: 1) reflexivity: $G \sim G$, 2) symmetry: if $G \sim F$ then $F \sim G$, 3) transitivity: if $G \sim F$ and $F \sim H$ then $G \sim H$. In chemistry, the simplest equivalence of molecules is the chemical composition, which is insufficient in practice, e.g. Fig. 1 (right) shows *stereoisomers* that have the same chemical compositions and non-equivalent rigid shapes with different chemical properties, see Rieder et al. (2023).

Figure 1: Left: graphs $T_i \subset \mathbb{R}^3$, i = 1, 2, 3, 4, on the same vertices with solid edges are not isomorphic to each other. **Right**: stereoisomers are isomorphic combinatorially, not geometrically.

For molecules, the strongest equivalence (distinguishing as many graphs as practically possible) is a *geometric isomorphism* $G \cong F$, i.e. an orientation-preserving transformation of \mathbb{R}^n that bijectively maps the vertices and edges: $G \to F$. Geometric isomorphisms are also called *rigid motions* (compositions of translations and rotations), which form the special Euclidean group SE(n).

Any geometrically isomorphic molecules have the same chemical properties. If a flexible molecule changes its rigid shape, its functional properties can change, so it is important to distinguish rigid shapes Wilson et al. (1991). The slightly weaker equivalence (not distinguishing mirror images) is *isometry*, which is any distance-preserving transformation including reflections. Since all real data (such as inter-point distances) are noisy, a more practically important answer is not binary ('same or different') but should be continuously quantified by a distance metric between isometry classes.

The ever-present atomic vibrations imply that rigid classes of molecules graphs on m unordered atoms form a continuously infinite *Graph Isometry Space* GIS(\mathbb{R}^3 ; m). Indeed, experimental noise and any iterative optimization can slightly perturb a molecular graph G to a near-duplicate F so that the rigid classes of G, F are close to each other in GIS(\mathbb{R}^3 ; m). The SSS theorem from school geometry implies that any triangular graphs are isometric if and only if they have the same triple of sides (inter-point distances) a, b, c considered up to 6 permutations. Hence the space of triangular graphs is the triangular cone $\{0 < a \le b \le c \le a + b\}$ in \mathbb{R}^3 , where the last triangle inequality $c \le a + b$ guarantees that three distances a, b, c are realizable by a real triangle, see Fig. 2 (right).

Figure 2: Left: the space of all isometry classes of graphs, each class has many representatives. **Right**: isometry classes of triangular graphs form the triangular cone $\{0 < a \le b \le c \le a + b\}$ parametrized by inter-point distances a, b, c with isosceles and degenerate triangles on the boundary.

071 072 073

054

061 062 063

064

065

066

067

068

069

To reliably distinguish any Euclidean graphs $G \subset \mathbb{R}^n$ similar to triangular graphs, we need an *invariant I* defined as a numerical descriptor preserved by any rigid motion in \mathbb{R}^n . Alternatively, if $I(G) \neq I(F)$, then $G \ncong F$, so any invariant has *no false negatives* that are pairs of different representatives of *rigidly equivalent graphs* (denoted by $G \cong F$) having equal values of a (noninvariant) descriptor. The number of vertices (or edges) of G is an integer-valued invariant that can distinguish some graphs but is too weak to separate the tetrahedral graphs T_i in Fig. 1.

The strongest invariant I separating all non-equivalent graphs is called *complete* meaning that if I(G) = I(F) then $G \cong F$. Alternatively, a complete invariant I has *no false positives* that are pairs of non-equivalent graphs $G \ncong F$ with I(G) = I(F). Experimental noise in real data motivates continuous invariants that controllably change under perturbations, as formalized below.

Problem 1.1 (complete invariant of Euclidean graphs with polynomial-time continuous metrics). *For Euclidean graphs on m unordered vertices in* \mathbb{R}^n , *find an invariant I satisfying the conditions:*

(a) completeness : any graphs G, F are related by rigid motion in \mathbb{R}^n if and only if I(G) = I(F);

(b) Lipschitz continuity : there is a constant λ and a metric d on invariant values satisfying the axioms 1) d(I, J) = 0 if and only if I = J, 2) d(I, J) = d(J, I), 3) $d(I, J) + d(J, K) \ge d(I, K)$, such that if F is obtained by perturbing every vertex of G up to $\varepsilon > 0$, then $d(I(G), I(F)) \le \lambda \varepsilon$;

(c) invertibility : any graph $G \subset \mathbb{R}^n$ can be reconstructed (up to rigid motion in \mathbb{R}^n) from I(G);

(d) computability : for a fixed dimension n, the invariant I, the metric d, and a reconstruction of $G \subset \mathbb{R}^n$ from I(G) can be obtained in polynomial time of the number m of unordered vertices.

094 Condition 1.1(a) means that a complete invariant I is a DNA-style code that uniquely identifies any graph under geometric isomorphism. To be useful for noisy inputs, a complete invariant should con-096 tinuously change under perturbations in a suitable metric. The axioms in 1.1(b) are the foundations of metric geometry Melter & Tomescu (1984) and accepted in physical chemistry Weinhold (1975). 097 If the triangle axiom fails with any additive error, the classical k-means and DBSCAN clustering 098 are open to adversarial attacks in Rass et al. (2024). If the first axiom is ignored, $d \equiv 0$ satisfies all other axioms. The first axiom implies the completeness of I in 1.1(a) but the continuity is much 100 stronger. Indeed, for any complete invariant I, one can define the discrete metric d(I(G), I(F)) = 1101 for $G \cong F$, which unhelpfully treats all non-equivalent graphs (even near-duplicates) as equally dis-102 tant. The new requirement of Lipschitz continuity in 1.1(b) is much stronger than the classical $\varepsilon - \delta$ 103 continuity because the constant λ is universal for all ε and unbounded graphs $G \subset \mathbb{R}^n$. 104

Condition 1.1(c) requires I to be not only complete and continuous but also efficient to explicitly reconstruct G, better than a real DNA that doesn't explain how to grow a living organism. Computability 1.1(d) prevents brute-force attempts, e.g. defining I(G) as the infinite set of images of Gunder all rigid motions or taking m! distance matrices over all permutations of m unordered vertices. The main contribution is the new invariant Nested Centered Distribution, which satisfies the conditions of Problem 1.1, including the new Lipschitz continuity, for all Euclidean graphs in any \mathbb{R}^n .

110 111 112

113

114

2 PAST WORK ON INVARIANTS AND DISTANCES FOR CLOUDS AND GRAPHS

This section reviews the related work starting from earlier partial solutions of Problem 1.1.

Ordered clouds. If a Euclidean graph $G \subset \mathbb{R}^n$ consists of m isolated vertices without edges, the 115 vertex set V(G) can be called a *point cloud* C. If additionally, all points p_1, \ldots, p_m of C are ordered 116 (not considered under the action of all m! permutations), a complete invariant of C under isometry 117 (compositions of translations, rotations, reflections) is the classical $m \times m$ matrix Li et al. (2023) 118 of pairwise distances $|p_i - p_j|$ due to (Grinberg & Olver, 2019, Theorem 9) or, after shifting the 119 center of mass to the origin, the Gram matrix of scalar products $p_i Dot p_j$ by (Dekster & Wilker, 120 1987, Theorem 1). This multidimensional scaling known at least since 1935 Schoenberg (1935) can 121 also provide an embedding $C \subset \mathbb{R}^k$ preserving all distances of C for a dimension $k \leq m$. This 122 embedding $C \subset \mathbb{R}^k$ uses eigenvectors whose ambiguity up to signs gives an exponential time that 123 can be close to $O(2^m)$, not polynomial in the number m of ordered points as required in 1.1(d).

124 Unordered clouds. Computational geometry developed many algorithms for detecting geometric 125 isomorphism (or isometry, also called congruence) between point sets without edges Huttenlocher 126 et al. (1993); Chew & Kedem (1992); Chew et al. (1999); Goodrich et al. (1999). (Arvind & Rattan, 127 2016, Theorem 3) describing, for a finite set $A \subset \mathbb{Q}^n$ of m points, $n^O(n)poly(mM)$ time algorithm 128 to compute a canonizing function f(A), which can be considered a complete isometry invariant of 129 A, where M upper bounds the binary encodings of the rational coordinates in the input. For point 130 clouds under rigid motion (also distinguishing mirror images), (Widdowson & Kurlin, 2023, Theorem 4.7) described a metric computable in time $O(n(m^{n-1}/n!)^3 \log m)$. The latest methods Hordan 131 et al. (2024); Delle Rose et al. (2024); Amir et al. (2024); Maennel et al. (2024) also achieved the 132 completeness for point clouds but without a Lipschitz continuous metric as in 1.1(b). Energy poten-133 tials written as infinite series of spherical harmonics, are often considered complete representations 134 of atomic environments, which holds in the limit but not for a finite sizePozdnyakov et al. (2020). 135

For a fixed set of m vertices in general position, one can choose any of m(m-1)/2 edges and produce $2^{m(m-1)/2}$ non-isometric graphs. Problem 1.1 for arbitrary graphs is computationally much harder than for point clouds due to exponentially many different graphs on the same vertex set.

139 The graph isomorphism problem Grohe & Schweitzer (2020) for abstract (non-Euclidean) graphs 140 is another version of Problem 1.1 without continuous metrics. The latest advances Babai (2019); 141 Helfgott et al. (2017) achieved only quasipolynomial time, though a polynomial time was again 142 announced in Ohto (2024). While many partial cases were solved, e.g. for planar graphs (embedded 143 in \mathbb{R}^2 without intersecting edges), see Kiefer et al. (2019), the k-dimensional Weisfeiler-Leman 144 test Leman & Weisfeiler (1968) fails for 3-regular graphs of size O(k). The key limitation of WL tests is their local nature when invariants are gradually expanded from a vertex or a k-tuple. Then 145 covering a graph on m vertices needs O(m) expansions leading to exponential sizes in m. (Dym & 146 Gortler, 2024, Section 3.9) discussed that a complete invariant (under all permutations of *m* vertices) 147 that has a polynomial time in the dimension n would also solve the graph isomorphism problem in 148 polynomial time. Condition 1.1(d) is easier for a fixed n such as the practical dimensions n = 2, 3. 149 The number m of vertices can be dozens or hundreds, e.g. for molecular graphs in \mathbb{R}^3 , where vertices 150 are centers of atoms and edges are inter-atomic bonds that keep atoms together in a stable molecule. 151

Geometric Deep Learning in Bronstein et al. (2021) pioneered an axiomatic approach to geometric classifications beyond Euclidean space \mathbb{R}^n in Bronstein et al. (2017). Many neural networks were proved to be universal Maron et al. (2019); Zhou (2020); Abbe & Sandon (2020) in the sense of approximating any continuous function on given data with sufficiently many layers. This universality property has been strengthened in Problem 1.1 to the full completeness of an explicit invariant that should be computable in polynomial time and invertible to an original graph up to rigid motion. The key challenge was to compute an exact (not approximate) metric that is also Lipschitz continuous.

Equivariants Kondor & Trivedi (2018); Cohen et al. (2019); Fuchs et al. (2020); Deng et al. (2021) are defined as descriptors E satisfying $E(f(G)) = T_f(E(G))$ for any rigid motion f of a graph G in \mathbb{R}^n , where T_f may not be the identity as required for invariants. Any linear combination of points, e.g. the center of mass, is equivariant but cannot distinguish graphs under translation. 162 Equivariants Gao et al. (2020); Qi & Luo (2020); Tu et al. (2022); Batzner et al. (2022) help predict 163 forces acting on atoms to move them to a more optimal configuration. These time-dependent graphs 164 G_t can be studied directly by invariant values $I(G_t)$ without computing intermediate atomic forces. 165 Many neural networks optimize millions of parameters as in (Goyal et al., 2021, Table 4) to improve 166 accuracies Dong et al. (2018); Akhtar & Mian (2018); Laidlaw & Feizi (2019); Guo et al. (2019); Colbrook et al. (2022) but require re-training on any new data. All known descriptors of molecular 167 graphs Duvenaud et al. (2015); Choo et al. (2023) have no proofs of all conditions 1.1(a,b,c,d). 168

169 Gromov-Wasserstein metrics Mémoli (2011) are defined for any metric-measure spaces Brécheteau 170 (2019) by minimizing over infinitely many correspondences between points, but cannot be approx-171 imated with a factor less than 3 in polynomial time unless P=NP (Schmiedl, 2017, Corollary 3.8) 172 and polynomial algorithms for partial cases in Mémoli et al. (2021); Majhi et al. (2024). The related problems of matching and finding distances between fixed Euclidean graphs (but not for their isom-173 etry classes) were studied in Nikolentzos et al. (2017); Majhi & Wenk (2022); Buchin et al. (2023). 174 Computing a metric between rigid classes of clouds is only a small part of Problem 1.1. Indeed, to 175 efficiently navigate on Earth, in addition to distances between cities, we need a map of the whole 176 planet and hence an invertible continuous invariant I, which is an analog of geographic coordinates. 177

- 178
- 179 180

3 A HIERARCHY OF GRAPH INVARIANTS FROM FASTEST TO COMPLETE

181 Let |p-q| denote the Euclidean distance between any points $p,q \in \mathbb{R}^n$. We always translate any graph $G \subset \mathbb{R}^n$ so that the *center of mass* $O(G) = \frac{1}{m} \sum_{p \in V(G)} p$ of the *vertex set* V(G) is at the origin 182 183 184

 $0 \in \mathbb{R}^n$. Then Problem 1.1 reduces to the SO(n)-invariance under orthogonal maps.

185 **Definition 3.1** (signed distance d(p,q) and invariants SRV, SDV, PDD). Let $G \subset \mathbb{R}^n$ be any Eu-186 clidean graph on m arbitrarily ordered vertices $p_1 \dots, p_m$. If any $p_i, p_j \in V(G)$ are connected by 187 an edge of G, define the signed distance as d(p,q) = |p-q|, else set d(p,q) = -|p-q|. 188

(a) The Sorted Radial Vector SRV(G) has m distances |p| for all $p \in V(G)$ in decreasing order. 189

190 (b) The Sorted Distance Vector SDV(G) has all $\frac{m(m-1)}{2}$ distances $d(p_i, p_j)$ in decreasing order. 191

(c) Let D(G) be the $m \times (m-1)$ -matrix where the *i*-th row consists of signed distances $d(p_i, p_j)$, 192 $i \in \{1, \ldots, m\} - \{i\}$ in increasing order. The Pointwise Distance Distribution PDD(G) is the 193 distribution of unordered rows D(G) with equal weights 1/m. 194

195 If any k > 1 rows of D(G) are equal, they can be collapsed in PDD(G) to a single row with the 196 weight k/m. The PDD was defined for finite clouds as a local distribution of distances in (Mémoli, 197 2011, Definition 5.5) and for periodic sets in Widdowson & Kurlin (2022) but not for graphs. 198

Table 1: Acronyms and references of the main objects, invariants, and metrics in the paper.

202 G	IS	Graph Isometry Space	Fig. 2	PDD	Pointwise Distance Distribution	Def 3.1
203 SI	RV	Sorted Radial Vector	Def 3 1	CD		Def 3.5
204 Sl	DV	Sorted Distance Vector	Def 3.1	NCD	Nested Centered Distribution	Def 3.5
205 C	R	Centered Representation	Def 3.3	NBM	Nested Bottleneck Metric	Def 4.5

206

199

200 201

207 The PDD(G) includes every signed distance twice, once as d(p,q) in the row of a vertex p, and as 208 d(q, p) in the row of a vertex q. Hence SDV(G) can be obtained from PDD(G) by (1) combining 209 all distances into one vector, (2) sorting them in decreasing order, and (3) keeping only one copy of 210 every two repeated distances. Example 3.2 shows that PDD(G) is already stronger than SDV(G).

211 Example 3.2 (invariants SRV, SDV, PDD for tetrahedral graphs in Fig. 1). (a) Since the vertex 212 sets of $T_i \subset \mathbb{R}^3$ are regular tetrahedra with all pairwise distances 1, these graphs have identical 213 $SRV(T_i)$ of 4 equal circumradii of the same vertex set $V(T_i)$ independent of $i = 1, \ldots, 4$. 214

The first graph T_1 has two edges contributing +1 and four non-edges (dashed lines) contributing 215 -1 to the Sorted Distance Vector $SDV(T_1) = (+1, +1, -1, -1, -1, -1)$. The graph T_2 also has 216

two edges, so $SDV(T_2) = SDV(T_1)$ doesn't distinguish $T_1 \not\cong T_2$ up to rigid motion. Similarly, the 217 graphs $T_3 \not\cong T_4$ are not distinguished by $SDV(T_3) = (+1, +1, +1, -1, -1, -1) = SDV(T_4)$. 218 (b) In T_1 , every vertex has exactly one edge and two non-edges (dashed lines), hence its signed 219 *distances are* +1, -1, -1. *The matrix* PDD $(T_1) = (100\% \mid -1, -1, +1)$ *consists of a single row,* 220 where the weight 100% indicates that all vertices of T_1 have the same row in PDD. The graph T_2 has 221 one vertex (25%) with no edges, two vertices (50%) with one edge, and one vertex (25%) with two 222 edges, so $PDD(T_2) = \begin{pmatrix} 25\% & | & -1 & -1 & -1 \\ 50\% & | & -1 & -1 & +1 \\ 25\% & | & -1 & +1 & +1 \end{pmatrix} \neq PDD(T_1)$, so PDD distinguishes the rigidly non-equivalent graphs $T_1 \not\cong T_2$ with $SDV(T_1) = SDV(T_2)$. The graph T_3 has one vertex (25%) 223 224 225 226 with no edges and three vertices (75%) with two edges, so $PDD(T_3) = \begin{pmatrix} 25\% & | -1 & -1 & -1 \\ 75\% & | -1 & +1 & +1 \end{pmatrix}$. The graph T_4 has two vertices (50%) with one edge and two vertices (50%) with two edges. Then 227 228 229 $PDD(T_4) = \begin{pmatrix} 50\% & -1 & -1 & +1 \\ 50\% & -1 & +1 & +1 \end{pmatrix}$, so PDD distinguishes the graphs $T_3 \not\cong T_4$. 230 231 232 For a graph G with m unordered vertices, PDD(G) has m-1 columns. The reduced version 233 PDD(G; k) includes only the first k columns for $1 \le k \le m-1$. Though PDDs have unordered rows, they can be continuously compared by Earth Mover's Distance Rubner et al. (2000). 234 235 Fig. S4 in Pozdnyakov et al. (2020) described infinitely many non-isometric pairs of clouds $C, C' \subset$ 236 \mathbb{R}^3 with PDD(C) = PDD(C'). These counter-examples inspired the stronger invariants for graphs 237 below. Any n vectors $p_1,\ldots,p_n\in\mathbb{R}^n$ can be written as columns in the n imes n matrix whose 238 determinant has sign (p_1, \ldots, p_n) , which is ± 1 or 0 (if p_1, \ldots, p_n are linearly dependent). 239 **Definition 3.3** (Centered Representation CR(G; A) of a graph with $A \subset V(G)$). Let $G \subset \mathbb{R}^n$ be 240 a graph on m unordered points with the center of mass O(G) = 0. For any $1 \le h \le n$, fix a 241 base sequence A of ordered vertices $p_1, \ldots, p_h \in V(G)$. If h = n, let sign(A) be the sign of the 242 $n \times n$ determinant on the vectors p_1, \ldots, p_n , else sign(A) = 0. Let D(A) be the matrix of signed 243 distances between the ordered points $0 = p_0, p_1, \ldots, p_h$. The matrix R(G; A) has m - h unordered 244 columns, one for each vertex $q \in V(G) - A$, consisting of h + 1 distances $d(q, p_i)$ for $i = 0, \ldots, h$, where $p_0 = 0$. The Centered Representation CR(G; A) is the triple [sign(A), D(A), R(G; A)]. 245 246 **Example 3.4** (CRs for 2-point bases in \mathbb{R}^2). Let $G \subset \mathbb{R}^2$ be the triangular cycle on $p_1 = (2, 0)$, $p_2 = (-1, 1)$, $p_3 = (-1, -1)$, so O(G) = 0 and all signed distances are positive, see 247 248 Fig. 3 (top left). For $A = (p_1, p_2)$, $sign(A) = sign \begin{vmatrix} 2 & -1 \\ 0 & 1 \end{vmatrix} = 1$. The distance matrix 249 250 on $0, p_1, p_2$ is $D(p_1, p_2) = \begin{pmatrix} 0 & 2 & \sqrt{2} \\ 2 & 0 & \sqrt{10} \\ \sqrt{2} & \sqrt{10} & 0 \end{pmatrix}$. Then $R(G; p_1, p_2) = \begin{pmatrix} |p_3| \\ |p_3 - p_1| \\ |p_3 - p_2| \end{pmatrix} =$ 251 252 253 $\begin{pmatrix} \sqrt{2} \\ \sqrt{10} \\ 2 \end{pmatrix}$. Then $CR(G; p_1, p_2) = [+1, D(p_1, p_2), R(G; p_1, p_2)]$. Replacing p_2 with p_3 , we find 254 255 256 $\operatorname{sign}(p_1, p_3) = \operatorname{sign} \left| \begin{array}{cc} 2 & -1 \\ 0 & -1 \end{array} \right| = -1, \ D(p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ 2 & 0 & \sqrt{10} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ 2 & 0 & \sqrt{10} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ 2 & 0 & \sqrt{10} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ 2 & 0 & \sqrt{10} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ 2 & 0 & \sqrt{10} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{10} & 0 \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{array} \right), \ and \ R(G; p_1, p_3) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{array} \right), \ and \ R(G; p_1, p_2) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{array} \right), \ and \ R(G; p_1, p_2) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{array} \right), \ and \ R(G; p_1, p_2) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{array} \right), \ and \ R(G; p_1, p_2) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{array} \right), \ and \ R(G; p_1, p_2) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{array} \right), \ and \ R(G; p_1, p_2) = \left(\begin{array}{cc} 0 & 2 & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{array} \right), \ and \ R(G; p_1, p_2) = \left(\begin{array}{cc} 0 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} \end{array} \right), \ and \ R(G; p_1, p_2) = \left(\begin{array}{cc} 0 & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \end{array} \right), \ and \ R(G; p_1, p_2) = \left(\begin{array}{cc} 0 & \sqrt{2} & \sqrt{2} & \sqrt{2} \\ \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} & \sqrt{2} \end{array} \right), \ and \$ 257 258 259 $\begin{pmatrix} |p_2| \\ |p_2 - p_1| \\ |p_2 - p_3| \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ \sqrt{10} \\ 2 \end{pmatrix}. Then CR(G; p_1, p_3) = [-1, D(p_1, p_3), R(G; p_1, p_3)].$ 260 261 262 263 **Definition 3.5** (Nested Centered Distribution NCD(G; h) of order h). Let $G \subset \mathbb{R}^n$ be any Euclidean 264 graph on m unordered vertices and the center of mass at the origin $0 \in \mathbb{R}^n$. Fix an order $1 \le h \le n$. 265 For any ordered vertices $p_1, \ldots, p_{h-1} \in V(G)$, the Centered Distribution $CD_{h-1}(G; p_1, \ldots, p_{h-1})$ is the unordered set of $CR(G; p_1, \ldots, p_h)$ for all $p_h \in V(G) - \{p_1, \ldots, p_{h-1}\}$. For any 1 < k < h266 and $p_1, \ldots, p_{k-1} \in V(G)$, $CD_{k-1}(G; p_1, \ldots, p_{k-1})$ is the unordered set of $CD_k(C; p_1, \ldots, p_k)$ for 267

all $p_k \in V(G) - \{p_1, \dots, p_{k-1}\}$. The Nested Centered Distribution NCD(G; h) is the unordered set 268 of $CD_1(G; p_1)$ for all vertices $p_1 \in V(G)$. For the order h = n, define the mirror image $\overline{NCD}(G; n)$ 269 as NCD(G; n) after reversing $sign(p_1, \ldots, p_n)$ of $n \times n$ determinants in all CRs.

278

279

280 281

283

284

285

286

287

288

289

290

291

292

293

295 296

297

298

299

300

301 302

Figure 3: Left: building the Nested Centered Distribution NCD from Definition 3.5 from Centered Representations in Definition 3.3 with metrics in section 4. **Right**: hierarchy of graph invariants.

Example 3.6. (a) For h = 0, the Nested Centered Distribution NCD(G; 0) consists of radial distances |p| for all vertices $p \in V(G)$ and, after sorting in decreasing order, becomes SRV(G).

(b) For h = 1, NCD(G; 1) is the unordered collection of CR(G; p) for all vertices $p \in V(G)$. Here each Centered Representation CR(G; p) is a triple [sign(p), D(p), R(G; p)], where sign(p) is the usual sign of $p \in \mathbb{R}$ for dimension n = 1, otherwise sign(p) = 0. The matrix of signed distances D(p) consists of one signed distance d(p, 0) between p and the origin $0 \in \mathbb{R}^n$ (not considered as a vertex of G), so D(p) = -|p|. The $2 \times (m - 1)$ matrix R(G; p) has unordered columns, one for each vertex $q \in V(G) - \{p\}$, consisting of the signed distance d(0,q) = -|q| from 0 to q, and $d(q,p) = \pm |q - p|$, where we take + if q, p are joined by an edge of G. So NCD(G; 1) contains NCD(G; 0). All second rows of the matrices R(G; p) with equal weights and without signs form the Pointwise Distance Distribution PDD(G) from Definition 3.1, see the hierarchy in Fig. 3 (right).

4 LIPSCHITZ CONTINUOUS METRICS ON THE NEW INVARIANTS OF GRAPHS

When a base sequence $A = (p_1, \ldots, p_n) \subset \mathbb{R}^n$ degenerates to a lower dimensional subspace, sign(A) of discontinuously changes. To guarantee the Lipschitz continuity, we multiply these signs by the strength σ below, while the volume vol(A) of the simplex on A is not Lipschitz continuous.

Definition 4.1 (strength $\sigma(A)$). For any base sequence A of n ordered points $p_1, \ldots, p_n \in \mathbb{R}^n$, let $p(A) = \frac{1}{2} \sum_{1 \le i < j \le n} |p_i - p_j|$ be a half-sum of all distances between the points of A. Let vol(A)

denote the volume of the *n*-dimensional simplex on A. The strength is $\sigma(A) = \frac{\operatorname{vol}^2(A)}{p^{2n-1}(A)}$.

305 306 307 If $n = 1, A = \{p_0, p_1\} \subset \mathbb{R}$, then $\operatorname{vol}(A) = |p_1 - p_0| = 2p(A)$, so $\sigma(A) = \frac{\operatorname{vol}^2(A)}{p(A)} = 2|p_1 - p_0|$.

If $p_0 = 0$, then $s(p_1) = 2p_1$. For n = 2 and a triangle A with sides a, b, c, Heron's formula gives $\sigma(A) = \frac{(p-a)(p-b)(p-c)}{p^2}$. Here $p = \frac{a+b+c}{2} = p(A)$ is the half-perimeter of A.

Lemma 4.2 (Lipschitz continuity of σ , proved in (Widdowson & Kurlin, 2023, Thm 4.4)). Let *B* be obtained from a sequence $A \subset \mathbb{R}^n$ of *n* points by perturbing every point within its ε -neighborhood. Then $|\sigma(A) - \sigma(B)| \le 2\varepsilon\lambda_n$ for a constant λ_n , where $\lambda_1 = 2$, $\lambda_2 = 2\sqrt{3}$, $\lambda_3 \approx 0.43$.

For any $k \times k$ matrices M, N of real numbers, the metric L_{∞} is $\max_{i,j=1,\dots,k} |M_{ij} - N_{ij}|$. The bottleneck distance between any clouds A, B of (the same number of) m unordered points in a metric space with a metric d is $W_{\infty}(A, B) = \min_{g:A \to B} \max_{p \in A} d(g(p), p)$ minimized for all bijections $g: A \to B$.

Definition 4.3 (max metric M_{∞} on CRs). Let Euclidean graphs $G, F \subset \mathbb{R}^n$ on m unordered vertices have base sequences A, B of $h \leq n$ vertices. Consider the m - h columns of R(G; A) as a cloud of m - h unordered points in \mathbb{R}^h , also for R(F; B). The max metric $M_{\infty}(\operatorname{CR}(G; A), \operatorname{CR}(F; B))$ is the maximum of $\frac{2}{\lambda_n} |\operatorname{sign}(A)\sigma(0 \cup A) - \operatorname{sign}(0 \cup B)\sigma(B)|$, $L_{\infty}(D(A), D(B))$, and $W_{\infty}(R(G; A), R(F; B))$, where all signs are zeros for h < n. To get a metric on Nested Centered Distributions, we will iteratively use the distance on bipartite graphs whose edge weights are the max metrics M_{∞} above on Centered Representations.

Definition 4.4 (Bottleneck Matching Distance BMD(Γ)). Let Γ be a complete bipartite graph with 327 m white vertices and m black vertices so that every white vertex is connected to every black vertex 328 by a single edge e of a weight $w(e) \ge 0$. A vertex matching of the graph Γ is a collection E of m disjoint edges. The weight $W(E) = \max w(e)$ is the largest weight of an edge in E. The Bottleneck $e \in E$ 330 Matching Distance $BMD(\Gamma) = \min W(E)$ is the minimum weight of a vertex matching E of Γ . 331 332 **Definition 4.5** (Nested Bottleneck Metric NBM on NCDs). Let $G, F \subset \mathbb{R}^n$ be any Euclidean graphs on m unordered vertices. For any ordered vertices $p_1 \ldots, p_{h-1} \in V(G)$ and $q_1 \ldots, q_{h-1} \in V(G)$ 333 V(F), the complete bipartite graph $\Gamma(G; p_1, \ldots, p_{h-1}; F; q_1, \ldots, q_{h-1})$ has m - h + 1 white ver-334 tices and m - h + 1 black vertices representing $CR(G; p_1, \ldots, p_h)$ and $CR(F; q_1, \ldots, q_h)$ for all 335 m - h + 1 vertices $p_h \in V(G) - \{p_1, ..., p_{h-1}\}$ and $q_h \in V(F) - \{q_1, ..., q_{h-1}\}$, respectively. 336 Set the weight w(e) of an edge e joining the vertices represented by $CR(G; p_1, \ldots, p_h)$, 337 338 $CR(F;q_1,\ldots,q_h)$ as the max metric M_{∞} between these distributions, see Definition 4.3. Then Definition 4.4 gives the bottleneck matching distance $BMD(\Gamma(G; p_1, \ldots, p_{h-1}; F; q_1, \ldots, q_{h-1}))$. 339 340 For any integer $1 \leq i < h$ and ordered vertices $p_1 \dots, p_{i-1} \in V(G)$ and $q_1 \dots, q_{i-1} \in V(F)$, 341 the complete bipartite graph $\Gamma(G; p_1, \ldots, p_{i-1}; F; q_1, \ldots, q_{i-1})$ has m - i + 1 white vertices and 342 m-i+1 black vertices representing $CD_i(G; p_1, \ldots, p_i)$ and $CD_i(F; q_1, \ldots, q_i)$ for all m-i+1343 *variable vertices* $p_i \in V(G) - \{p_1, ..., p_{i-1}\}$ *and* $q_i \in V(F) - \{q_1, ..., q_{i-1}\}$ *, respectively.* 344 Set the weight w(e) of an edge e joining the vertices represented by $CD_i(G; p_1, \ldots, p_i)$ and 345 $CD_i(F; q_1, \ldots, q_i)$ as the previously computed distance $BMD(\Gamma(G; p_1, \ldots, p_i; F; q_1, \ldots, q_i))$ for 346 a smaller number i of fixed vertices. Then Definition 4.4 gives the bottleneck matching distance 347 BMD($\Gamma(G; p_1, \ldots, p_{i-1}; F; q_1, \ldots, q_{i-1})$). For i = 1, the graph $\Gamma(G, F)$ has m + m vertices representing $CD_1(G; p_1)$, $CD_1(F; q_1)$ for all $p_1 \in V(G)$ and $q_1 \in V(F)$. The Nested Bottleneck 348 Metric NBM(NCD(G; h), NCD(F; h)) is the Bottleneck Matching Distance BMD($\Gamma(G, F)$). 349 350 **Example 4.6** (NBM for h = 0, 1). Let $G \subset \mathbb{R}^n$ be any Euclidean graph on m unordered vertices. 351 352 (a) For order h = 0, NCD(G; 0) after sorting in decreasing order coincides with SRV(G). Then 353 the Nested Bottleneck Metric NBM coincides with the metric $L_{\infty}(SRV(G), SRV(F))$. 354 (b) For order h = 1, the invariant NCD(G; 1) is the unordered distribution of CR(G; p) described in 355 Example 3.6(b). For another graph F on m unordered vertices, Definition 4.3 introduces the metric 356 $M_{\infty}(\operatorname{CR}(G;p),\operatorname{CR}(F;q))$ as the maximum of three distances. If n > 1, all signs in Definition 3.3 357 are zeros. Because D(p) = -|p|, the metric M_{∞} equals the maximum of ||p| - |q|| and the bottleneck distance W_{∞} between the fixed clouds of unordered points $\{(-|p'|, d(p', p)) \mid p' \in V(G) - \{p\}\}$ and $\{(-|q'|, d(q', q)) \mid q' \in V(F) - \{q\}\}$ in \mathbb{R}^2 . The weighted graph $\Gamma(G, F)$ has 358 359 m + m vertices associated with $p \in V(G)$ and $q \in V(F)$ with weights $M_{\infty}(\operatorname{CR}(G; p), \operatorname{CR}(F; q))$ 360 on corresponding edges. By Definition 4.5 the final metric NBM = BMD($\Gamma(G, F)$) equals the 361 maximum weight $M_{\infty}(\operatorname{CR}(G;p),\operatorname{CR}(F;\beta(p)))$ minimized for a bijection $\beta: V(G) \to V(F)$. 362 363 The metrics W_{∞}, M_{∞} , NBM compare objects of the same size. To compare graphs with different 364 numbers of vertices, M_{∞} in Definition 4.5 can be replaced with Earth Mover's Distance EMD 365 Rubner et al. (2000), see Definition B.2, which satisfies all metric axioms. The axioms of all metrics 366 and main Theorem 4.7 below are proved in appendices B and C. 367 **Theorem 4.7** (NCD solves Problem 1.1). (a) The Nested Centered Distribution NCD(G; h) in 368 Definition 3.5 is invariant under any rigid motion for all Euclidean graph G on m unordered vertices and, for a fixed dimension n, can be computed in time $O(n^2m^{h+1})$ for any order $h \ge 1$. 369 370 (b) NCD(G; n) is a complete invariant of graphs $G \subset \mathbb{R}^n$ under rigid motion from the group SE(n). 371 (c) Perturbing each vertex of a graph $G \subset \mathbb{R}^n$ within its ε -neighborhood changes NCD(G; h) up to 372 2ε in both metrics NBM, EMD for any $h \ge 1$. 373 374 (d) For any graphs $G, F \subset \mathbb{R}^n$ on m unordered vertices, the metrics NBM and EMD between the 375 invariants NCD(G; h) and NCD(F; h) can be computed in time $O(m^{2h+1.5} \log^{h+1} m)$.

Theorem 4.7(b) means that any graphs $G, F \subset \mathbb{R}^n$ are related by rigid motion *if and only if* NCD(G; n) = NCD(F; n). This equality is interpreted as a bijection NCD $(G; n) \to NCD(F; n)$ matching all CDs, which is equivalent to NBM = 0 by the first metric axiom. Since every CR can be stored in a vector form, the complete invariant NCD(G; n) can be considered vectorial.

Table 2 emphasizes that most graphs should be first compared (or represented for machine learning) by simpler and faster invariants, so the complete NCD(G; n) is used only in rare cases but is still necessary to make really important conclusions as we show later for all molecules in QM9.

Table 2: Hierarchy of invariants of $G \subset \mathbb{R}^2$ on m unordered vertices: from the fastest to complete.

invariant	SRV(G)	$\mathrm{SDV}(G)$	PDD(G)	NCD(G; 1)	NCD(G; 2)
time	$O(m\log m)$	$O(m^2)$	$O(m^2 \log m)$	$O(m^2)$	$O(m^3)$
metric	L_{∞}	L_{∞}	EMD	NBM	NBM
time	O(m)	$O(m^2)$	$O(m^3)$	$O(m^{3.5}\log^2 m)$	$O(m^{5.5}\log^3 m)$

390 391 392

393

394

395

396

397

398

399

400

401

381

382

383 384

Example 4.8 (Proof of Theorem 4.7(b) for n = 1). For a graph $G \subset \mathbb{R}$ with the center of mass O(G) = 0, a base sequence A from Definition 3.3 can be any vertex $p \in G$. Then $\operatorname{sign}(p)$ is the usual sign of $p \in \mathbb{R}$, D(p) is the signed distance -|p|, R(G;p) is the $2 \times (m-1)$ matrix whose column for any vertex $q \in V(G) - \{p\}$ consists of the distances d(q, 0) = -|q| and $d(q, p) = \pm |q - p|$, where the plus sign + indicates an edge between q, p, while the minus sign – means no edge.

So $\operatorname{CR}(G; p) = [\operatorname{sign}(p), -|p|, R(G; p)]$. Every R(G; p) uniquely determines p in the line \mathbb{R} by $\operatorname{sign}(p)$ and |p|, and the position of any other vertex $q \in V(G) - \{p\}$ by its Euclidean distances |q|, |q - p| to the origin and fixed vertex p. The position of any $q \in \mathbb{R}$ is uniquely determined by $\operatorname{sign}(q)$ and |q|, which helps us unambiguously identify its Centered Representation $\operatorname{CR}(G; q)$ in the unordered collection $\operatorname{NCD}(G; 1)$ of all these CRs. The signs of d(q, q') in each R(G; q) determine the presence or absence of an edge of G between any vertices $q, q' \in V(G)$.

402 403 404

5 EXPERIMENTS ON 130K+ MOLECULES, LIMITATIONS, AND SIGNIFICANCE

405 406

This section describes how the new invariants have enabled a complete classification of all molecular graphs in the QM9 database of 130K+ (130,808) molecules given with atomic 3D coordinates.

For graphs $G \subset \mathbb{R}^n$ with edges, such a practical classification was previously impossible because there was no complete and Lipschitz continuous invariant of Euclidean graphs even in \mathbb{R}^2 . After the SSS theorem since 300 BC, such an invariant solving Problem 1.1 was known only for cyclic polygons inscribed into a circle of a fixed radius, see Theorem 1.8 on p.52 in Penner (2012). The complete invariant SCD of point clouds Widdowson & Kurlin (2023) has no nested structure of the new invariant NCD, which was needed to reconstruct all edges of $G \subset \mathbb{R}^n$ from NCD(G; n). All experiments were done in 5 hours on Ryzen 9 3950X 3.5 GHz, 64 MB of L3 cache, RAM 82GB.

The hierarchy of invariants described in Fig. 3 and Table 2 justifies the computations starting from the simple and fast invariants on all pairs to filter out distant graphs and then moving to progressively stronger invariants for much smaller subsets of pairs of close molecules. We computed the pseudometric L_{∞} (the maximum absolute difference of corresponding coordinates) on all 873,527,974 pairs of SRVs, then 8,735,279 L_{∞} on the stronger SDVs for the 1% closest pairs, then 87,352 EMDs on PDDs for the 1% closest pairs, 10K distances NBM on NCD(G; 1), NCD(G; 2)s for the top closest pairs, and 64 NBMs on complete invariants NCD(G, 3) for molecular graphs $G \subset \mathbb{R}^3$.

423

424 425

Table 3: Closest chemically different molecules by distances in Å = 10^{-10} m, see Fig. 4 (right).

426							
407	invariant	metric	distance	molecule A	molecule B	composition A	composition B
427	L_{∞}	$\mathrm{SRV}(G)$	0.02057	131923	5365	H3 Ĉ4 N3 O2	H4 C5 N2 O1
428	L_{∞}^{∞}	SDV(G)	0.05505	123533	24547	H3 C4 N5	H3 C5 N3 O1
429	EMD	PDD(G)	0.05145	123533	24521	H3 C4 N5	H3 C5 N3 O1
430	NBM	NCD(G.3)	0.07054	123532	24513	H4 C5 N4	H4 C6 N2 O1
/131							

Figure 4: Left: each dot is a comparison of closest molecular graphs G, F from QM9 by the pseudo-metric x = EMD(PDD(G), PDD(G)) vs y = NBM(NCD(G; 1), NCD(F; 1)). Middle: zoomed-in comparisons for small distances. Top right: the smallest NBM ≈ 0.07 Å on NCD(G; 3) for chemically different molecules is for 123533 and 24521. Bottom right: near-duplicate (almost flat) molecules 123532 and 24513 have the same composition and tiny EMD $\approx 2.37 \times 10^{-7}$ Å (not distinguishing mirror images) but $100 \times$ higher NBM $\approx 2.95 \times 10^{-5}$ Å on complete NCD(G; 3).

Fig. 5 shows that many pairs of molecular graphs have the distances NBM between their three invariants NCD(G; h) for h = 1, 2, 3, which justifies faster computations for smaller h, but the complete invariant NCD(G; 3) still better differentiates graphs than the invariants for h = 1, 2.

Figure 5: Each dot is a comparison of molecular graphs from QM9 by the distances on the progressively stronger invariants. Left: NCD(G; 1) vs NCD(G; 2). Right: NCD(G; 2) vs NCD(G; 3).

473 Main conclusion of all pairwise comparisons of molecular graphs from QM9 in a hierarchical way: 474 all chemically different molecules are rigidly different, see the smallest distance NBM ≈ 0.07 Å on 475 complete invariants in Table 3. In other words, the map {molecules} \rightarrow {graphs on atomic centers 476 (without chemical elements)} is injective on rigid classes. Hence this map can be theoretically 477 inverted on its image, so we can reconstruct all chemistry from sufficiently precise geometry.

The solution to Problem 1.1 settled the long-standing challenge of properly defining a *molecular structure*. A traditional approach including the recent one in Lang et al. (2023) is to describe such a
structure as 'a set of unlabeled configurations that are relatively similar to each other'. This 'relative
similarity' cannot depend on manual thresholds, which make any classification trivial as explained in
Anosova et al. (2024), but should be rigorously defined as a class under equivalence (say, rigid motion) satisfying all axioms including the transitivity, which guarantees well-defined disjoint classes.

Even more importantly, all molecules of m atoms have different and uniquely defined locations in a common continuous *Graph Rigid Space* GRS(\mathbb{R}^3 ; m). The complete invariants NCD(G; 3) provide exact geographic-style coordinates of any G in this space as for any (say) houses on our

472

446

496

497

498

499

500

501

502

517

518

519 520

planet. The question of whether to put close neighbors like near-duplicates in Fig. 4(bottom right)
 into one cluster of the "same" molecules is rather administrative (similar to putting close houses into
 one village instead of different ones) for domain experts rather than purely scientific.

Studying molecules by fixing a composition is similar to drawing artificial boundaries between countries on Earth. Because some molecules of different compositions have close shapes as in Fig. 4(top right), they should have similar properties. Now any properties of molecules should be possible to predict only from complete invariants NCD(G; 3) even without chemistry in the same way as any precise geographic location uniquely determines all physical properties of this place such as the average annual temperature. Chemical compositions can be still helpful similar to the location's altitude, which easier predicts this temperature than theoretically sufficient geographic coordinates.

Fig. 6 (left) shows the simplest geographic-style map of QM9 as a finite sample within $\bigcup_{m=3}^{29} \text{GRS}(\mathbb{R}^3; m)$ projected to the invariants $\text{SRV}_1 \ge \text{SRV}_2$. All molecules on the horizontal axis $y = \text{SRV}_1 - \text{SRV}_2 = 0$ have $\text{SRV}_1 = \text{SRV}_2$ (due to two equidistant atoms from the center of mass) and can be projected (like any subset of QM9) to other coordinates as in Fig. 6 (right). Molecular properties can be visualized on these geographic maps as 'mountainous' landscapes.

Figure 6: Left: every dot represents a molecular graph with the invariant coordinates $x = \text{SRV}_1$, $y = \text{SRV}_1 - \text{SRV}_2$, all in Angstroms, where $1\text{\AA} = 10^{-10}m \approx$ the smallest interatomic distance. Right: projection of QM9 to $x = \text{SRV}_1$, $y = \text{SRV}_2 - \text{SRV}_3$. The color is by the number of atoms.

The limitation is the time $O(m^{2h+1.5} \log^{h+1} m)$ of the metric NBM, which is better than exponential and practical for h = 1, 2, 3 up to 29 atoms in QM9. The hierarchy of NCD(G; h) allows us to filter out distant graphs by faster distances starting with L_{∞} on NCD(G; 0) = SRV(G) in O(m) time. Theorem 4.7 is harder than (Widdowson & Kurlin, 2023, Theorem 4.7) for point clouds because exponentially many different graphs can have the same vertex set, see Fig. 1.

Any vertex p and edge of G can have an *attribute* and a *weight* respected by any isometry that maps one graph to another. These vertex attributes and edge weights can be incorporated as extra columns and rows in CRs from Definition 3.3, and then incorporated into NCD and NBM. We can compare graphs of different numbers of vertices because EMD works for both PDD and NCD as weighted distributions of any finite size. This comparison splits the vertices from V(G) into parts (subvertices) that are optimally 'transported' to a splitting of another vertex set V(F).

Already for m = 4 unordered points in \mathbb{R}^2 , there was no parametrized map for a 5-dimensional space of (isometry classes of) plane quadrilaterals. Indeed, 6 pairwise distances between 4 ordered points in \mathbb{R}^2 uniquely determine such a 4-point cloud uniquely up to isometry due to (Dekster & Wilker, 1987, Theorem 1) but these 6 distances should satisfy a complicated polynomial equation saying that the tetrahedron on 4 points has volume 0. Hence random inter-point distances are realizable by a cloud of m > n + 1 unordered points in \mathbb{R}^n with probability 0 Duxbury et al. (2016).

Problem 1.1 provides a roadmap for the discriminative (and then generative) approach to any data
objects by replacing graphs and isometries with other data and equivalences. The supplementary materials include the code and all proofs. We thank all reviewers for their valuable time and advice.

540 REFERENCES

554

555 556

558

559

563

565

574

- Emmanuel Abbe and Colin Sandon. On the universality of deep learning. Advances in Neural Information Processing Systems, 33:20061–20072, 2020.
- Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer vision: A survey. *IEEE Access*, 6:14410–14430, 2018.
- Tal Amir, Steven Gortler, Ilai Avni, Ravina Ravina, and Nadav Dym. Neural injective functions
 for multisets, measures and graphs via a finite witness theorem. *Advances in Neural Information Processing Systems*, 36, 2024.
- Olga Anosova, Vitaliy Kurlin, and Marjorie Senechal. The importance of definitions in crystallography. *IUCrJ (the International Union of Crystallography Journal)*, 11, 2024. doi: 10.1107/S2052252524004056.
 - Vikraman Arvind and Gaurav Rattan. The parameterized complexity of geometric graph isomorphism. *Algorithmica*, 75:258–276, 2016.
 - László Babai. Canonical form for graphs in quasipolynomial time: preliminary report. In *Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing*, pp. 1237–1246, 2019.
- Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P Mailoa, Mordechai Korn bluth, Nicola Molinari, Tess E Smidt, and Boris Kozinsky. E(3)-equivariant graph neural networks
 for data-efficient and accurate interatomic potentials. *Nature communications*, 13(1):2453, 2022.
 - Danail Bonchev. *Chemical graph theory: introduction and fundamentals*, volume 1. CRC Press, 1991.
- Claire Brécheteau. A statistical test of isomorphism between metric-measure spaces using the
 distance-to-a-measure signature. *Electronic J Statistics*, 13:795–849, 2019.
- Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep learning: going beyond Euclidean data. *IEEE Signal Processing Magazine*, 34(4):18–42, 2017.
- 572 Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
 573 grids, groups, graphs, geodesics, and gauges. *arXiv:2104.13478*, 2021.
- Maike Buchin, Erin Chambers, Pan Fang, Brittany Terese Fasy, Ellen Gasparovic, Elizabeth Munch, and Carola Wenk. Distances between immersed graphs: Metric properties. *La Matematica*, pp. 1–26, 2023.
- James R Bunch and John E Hopcroft. Triangular factorization and inversion by fast matrix multipli *Cation. Mathematics of Computation*, 28(125):231–236, 1974.
- Paul Chew and Klara Kedem. Improvements on geometric pattern matching problems. In *Scandinavian Workshop on Algorithm Theory*, pp. 318–325, 1992.
- Paul Chew, Dorit Dor, Alon Efrat, and Klara Kedem. Geometric pattern matching in d-dimensional space. *Discrete & Computational Geometry*, 21(2):257–274, 1999.
- Hou Yee Choo, JunJie Wee, Cong Shen, and Kelin Xia. Fingerprint-enhanced graph attention network (fingat) model for antibiotic discovery. *Journal of Chemical Information and Modeling*, 2023.
- Taco S Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on homogeneous spaces. *Advances in neural information processing systems*, 32, 2019.
- Matthew J Colbrook, Vegard Antun, and Anders C Hansen. The difficulty of computing stable and
 accurate neural networks: On the barriers of deep learning and Smale's 18th problem. *Proc. National Academy of Sciences*, 119(12):e2107151119, 2022.

608

614

615

619

- 594 Boris V Dekster and John B Wilker. Edge lengths guaranteed to form a simplex. Archiv der Mathematik, 49(4):351-366, 1987. 596
- Valentino Delle Rose, Alexander Kozachinskiy, Cristóbal Rojas, Mircea Petrache, and Pablo Bar-597 celó. Three iterations of (d-1)-wl test distinguish non isometric clouds of d-dimensional points. 598 Advances in Neural Information Processing Systems, 36, 2024.
- 600 Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J 601 Guibas. Vector neurons: A general framework for so(3)-equivariant networks. In Proceedings of 602 the International Conference on Computer Vision, pp. 12200–12209, 2021.
- 603 Elena Deza and Michel Marie Deza. *Encyclopedia of distances*. Springer, 2009. 604
- 605 Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo Li. Boost-606 ing adversarial attacks with momentum. In Computer vision and pattern recognition, pp. 9185-607 9193, 2018.
- David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán 609 Aspuru-Guzik, and Ryan P Adams. Convolutional networks on graphs for learning molecular 610 fingerprints. Advances in neural information processing systems, 28, 2015. 611
- 612 Phillip M Duxbury, L Granlund, SR Gujarathi, Pavol Juhas, and Simon JL Billinge. The unassigned 613 distance geometry problem. Discrete Applied Mathematics, 204:117-132, 2016.
- Nadav Dym and Steven J Gortler. Low-dimensional invariant embeddings for universal geometric learning. Foundations of Computational Mathematics, pp. 1–41, 2024. 616
- 617 Alon Efrat, Alon Itai, and Matthew J Katz. Geometry helps in bottleneck matching and related 618 problems. *Algorithmica*, 31(1):1–28, 2001.
- Vissarion Fisikopoulos and Luis Penaranda. Faster geometric algorithms via dynamic determinant 620 computation. Computational Geometry, 54:1–16, 2016. 621
- 622 Michael L Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network 623 optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.
- Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. Se(3)-transformers: 3d roto-625 translation equivariant attention networks. Advances in neural information processing systems, 626 33:1970-1981, 2020. 627
- 628 Xiang Gao, Wei Hu, and Guo-Jun Qi. Graphter: Unsupervised learning of graph transformation 629 equivariant representations via auto-encoding node-wise transformations. In Proceedings of Computer Vision and Pattern Recognition, pp. 7163–7172, 2020. 630
- 631 Andrew Goldberg and Robert Tarjan. Solving minimum-cost flow problems by successive approxi-632 mation. In Proceedings of STOC, pp. 7–18, 1987. 633
- 634 Michael T Goodrich, Joseph SB Mitchell, and Mark W Orletsky. Approximate geometric pattern matching under rigid motions. Transactions on Pattern Analysis and Machine Intelligence, 21(4): 635 371-379, 1999. 636
- 637 Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and Jia Deng. Revisiting point cloud shape 638 classification with a simple and effective baseline. In International Conference on Machine Learn-639 ing, pp. 3809–3820, 2021. 640
- Darij Grinberg and Peter J Olver. The n body matrix and its determinant. SIAM Journal on Applied 641 Algebra and Geometry, 3(1):67–86, 2019. 642
- 643 Martin Grohe and Pascal Schweitzer. The graph isomorphism problem. Communications of the 644 ACM, 63(11):128-134, 2020. 645
- Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Weinberger. Simple 646 black-box adversarial attacks. In International Conference on Machine Learning, pp. 2484–2493, 647 2019.

648 Harald Andrés Helfgott, Jitendra Bajpai, and Daniele Dona. Graph isomorphisms in quasi-649 polynomial time. arXiv:1710.04574, 2017. 650 John E Hopcroft and Richard M Karp. An n⁵/2 algorithm for maximum matchings in bipartite 651 graphs. SIAM Journal on Computing, 2(4):225-231, 1973. 652 653 Snir Hordan, Tal Amir, Steven J Gortler, and Nadav Dym. Complete neural networks for euclidean 654 graphs. In AAAI Conference on Artificial Intelligence, volume 38 (11), pp. 12482–12490, 2024. 655 Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge University Press, 2012. 656 657 Daniel P Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. Comparing images using 658 the Hausdorff distance. Transactions on pattern analysis and machine intelligence, 15(9):850– 659 863, 1993. 660 Sandra Kiefer, Ilia Ponomarenko, and Pascal Schweitzer. The weisfeiler-leman dimension of planar 661 graphs is at most 3. Journal of the ACM, 66(6):1-31, 2019. 662 663 Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural networks to the action of compact groups. In International Conference on Machine Learning, pp. 665 2747-2755, 2018. 666 Cassidy Laidlaw and Soheil Feizi. Functional adversarial attacks. Adv. Neural Information Proc. 667 Systems, 32, 2019. 668 669 Lucas Lang, Henrique M Cezar, Ludwik Adamowicz, and Thomas B Pedersen. Quantum definition 670 of molecular structure. Journal of the American Chemical Society, 2023. 671 AA Leman and Boris Weisfeiler. A reduction of a graph to a canonical form and an algebra arising 672 during this reduction. Nauchno-Technicheskaya Informatsiya, 2(9):12-16, 1968. 673 674 Zian Li, Xiyuan Wang, Yinan Huang, and Muhan Zhang. Is distance matrix enough for geometric 675 deep learning? arXiv:2302.05743, 2023. 676 Leo Liberti and Carlile Lavor. Euclidean distance geometry. Springer, 2017. 677 678 Hartmut Maennel, Oliver T Unke, and Klaus-Robert Müller. Complete and efficient covari-679 ants for 3d point configurations with application to learning molecular quantum properties. arXiv:2409.02730, 2024. 680 Sushovan Majhi and Carola Wenk. Distance measures for geometric graphs. arXiv:2209.12869, 682 2022.683 684 Sushovan Majhi, Jeffrey Vitter, and Carola Wenk. Approximating gromov-hausdorff distance in euclidean space. Computational Geometry, 116:102034, 2024. 685 686 Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph 687 networks. Advances in neural information processing systems, 32, 2019. 688 689 Robert A Melter and Ioan Tomescu. Metric bases in digital geometry. *Computer vision, graphics*, 690 and image Processing, 25(1):113–121, 1984. 691 Facundo Mémoli. Gromov-Wasserstein distances and the metric approach to object matching. 692 Foundations of computational mathematics, 11:417–487, 2011. 693 Facundo Mémoli, Zane Smith, and Zhengchao Wan. The Gromov-Hausdorff distance between 694 ultrametric spaces: its structure and computation. arXiv:2110.03136, 2021. 696 Lydia Nemec. Principal component analysis (pca): А physically intu-697 mathematical introduction. https://towardsdatascience.com/ itive principal-component-analysis-pca-8133b02f11bd, 2022. 699 Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. Matching node embed-700 dings for graph similarity. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

702 703 704	Yasunori Ohto. Solving graph isomorphism problem in polynomial time. FOCS (submitted), https://www.researchgate.net/publication/380149842_Solving_graph_isomorphism_problem_in_polynomial_time, 2024.
705 706	R Penner. Decorated Teichmüller theory, volume 1. European Mathematical Society, 2012.
707 708 709 710	Sergey N Pozdnyakov, Michael J Willatt, Albert P Bartók, Christoph Ortner, Gábor Csányi, and Michele Ceriotti. Incompleteness of atomic structure representations. <i>Phys. Rev. Lett.</i> , 125: 166001, 2020. URL arXiv:2001.11696.
711 712	William H Press, Saul A Teukolsky, William T Vetterling, and Brian P Flannery. <i>Numerical recipes: the art of scientific computing</i> . Cambridge University Press, 2007.
713 714 715 716	Guo-Jun Qi and Jiebo Luo. Small data challenges in big data era: A survey of recent progress on unsupervised and semi-supervised methods. <i>Transactions on Pattern Analysis and Machine Intelligence</i> , 44(4):2168–2187, 2020.
717 718 719	Stefan Rass, Sandra König, Shahzad Ahmad, and Maksim Goman. Metricizing the euclidean space towards desired distance relations in point clouds. <i>IEEE Transactions on Information Forensics and Security</i> , 2024.
720 721 722	Salomé R Rieder, Marina P Oliveira, Sereina Riniker, and Philippe H Hünenberger. Development of an open-source software for isomer enumeration. <i>Journal of Cheminformatics</i> , 15(1):10, 2023.
723 724	Y. Rubner, C. Tomasi, and L. Guibas. The Earth Mover's Distance as a metric for image retrieval. <i>International Journal of Computer Vision</i> , 40(2):99–121, 2000.
725 726 727	Ryoma Sato, Marco Cuturi, Makoto Yamada, and Hisashi Kashima. Fast and robust comparison of probability measures in heterogeneous spaces. <i>arXiv:2002.01615</i> , 2020.
728 729 730	Felix Schmiedl. Computational aspects of the Gromov-Hausdorff distance and its application in non-rigid shape matching. <i>Discrete Comp. Geometry</i> , 57:854–880, 2017.
731 732 733	Isaac Schoenberg. Remarks to Maurice Frechet's article "Sur la definition axiomatique d'une classe d'espace distances vectoriellement applicable sur l'espace de Hilbert. <i>Annals of Mathematics</i> , pp. 724–732, 1935.
734 735 736	S Shirdhonkar and D Jacobs. Approximate earth mover's distance in linear time. In <i>Conference on Computer Vision and Pattern Recognition</i> , pp. 1–8, 2008.
737 738	Manfred J Sippl and Harold A Scheraga. Cayley-menger coordinates. <i>Proceedings of the National Academy of Sciences</i> , 83(8):2283–2287, 1986.
739 740 741	Enmei Tu, Zihao Wang, Jie Yang, and Nikola Kasabov. Deep semi-supervised learning via dynamic anchor graph embedding in latent space. <i>Neural Networks</i> , 146:350–360, 2022.
742 743	Frank Weinhold. Metric geometry of equilibrium thermodynamics. <i>The Journal of Chemical Physics</i> , 63(6):2479–2483, 1975.
744 745 746	Daniel Widdowson and Vitaliy Kurlin. Resolving the data ambiguity for periodic crystals. <i>Advances in Neural Information Processing Systems</i> , 35:24625–24638, 2022.
747 748 749	Daniel Widdowson and Vitaliy Kurlin. Recognizing rigid patterns of unlabeled point clouds by complete and continuous isometry invariants with no false negatives and no false positives. In <i>Proceedings of CVPR</i> , pp. 1275–1284, 2023.
750 751 752 753	Stephen R Wilson, Weili Cui, Jules W Moskowitz, and Kevin E Schmidt. Applications of simulated annealing to the conformational analysis of flexible molecules. <i>Journal of computational chemistry</i> , 12(3):342–349, 1991.
754 755	Ding-Xuan Zhou. Universality of deep convolutional neural networks. <i>Applied and computational harmonic analysis</i> , 48(2):787–794, 2020.

A EXTRA EXPERIMENTS ON MOLECULAR GRAPHS

Past maps of QM9 in Fig. 7 based on eigenvalues are too dense without clear separation. Even if we zoom in, these two or three incomplete invariants will not provide any extra separation. The complete invariants NDP contain much more geometric information.

Figure 7: Left: each dot represents one QM9 molecule whose atomic cloud has two largest roots $l_1 \ge l_2$ of eigenvalues (moments of inertia Nemec (2022) or elongations in two principal directions) in Angstroms ($1\mathring{A} = 10^{-10}m \approx$ smallest interatomic distance). The color represents the free energy G characterizing molecular stability. **Right**: each dot represents one QM9 molecule whose atomic cloud has coordinates x, y expressed via the roots $l_1 \ge l_2 \ge l_3 \ge 0$ of three eigenvalues.

Figure 8: Left: the heatmap of all molecular graphs from QM9 in the simplest continuous invariants. **Right**: 18336 graphs with 19 atoms. The color indicates the number of molecules at every pixel.

797 798 799

800

796

756

757 758

759

760

775

776

777

778

779

B METRICS ON GRAPHS AND THEIR CONTINUITY UNDER PERTURBATIONS

801 This appendix verifies the axioms and Lipschitz continuity for auxiliary metrics in section 4.

Lemma B.1 (metric axioms for the bottleneck matching distance BMD). Let S, Q be any unordered distributions of the same number of objects with a base metric d. Define the complete bipartite graph $\Gamma(S,Q)$ whose every edge e joining objects $R_S \in S$ and $R_Q \in Q$ has the weight w(e) = $d(R_S, R_Q)$. Then the bottleneck matching distance BMD($\Gamma(S,Q)$) from Definition 4.4 satisfies all metric axioms on such unordered distributions.

807

Proof of Lemma B.1. The coincidence axiom means that NBM(S,Q) = 0 if and only if the weighted distributions S, Q are equal in the sense that there is a bijection $g : S \to Q$ so that d(g(R), R) = 0 for any $R \in S$.

Indeed, if the weighted distributions S, Q can be matched by a bijection, we get a vertex matching E of $\Gamma(S,Q)$ whose all edges have weights w(e) = 0. Definition 4.4 implies that $BMD(\Gamma(S,Q)) = 0$ as required.

Conversely, if $BMD(\Gamma(S,Q)) = 0$, there is a vertex matching E in $\Gamma(S,Q)$ with all w(e) = 0. This matching E defines a required bijection $S \to Q$. The symmetry $BMD(\Gamma(S,Q)) = BMD(\Gamma(Q,S))$ follows from Definition 4.4 and the symmetry of the base metric d.

To prove the triangle inequality

 $BMD(\Gamma(S,Q)) + BMD(\Gamma(Q,T)) > BMD(\Gamma(S,T)),$

let E_{SQ}, E_{QT} be optimal vertex matchings in the graphs $\Gamma(S, Q), \Gamma(Q, T)$, respectively, such that

$$BMD(\Gamma(S,Q)) = W(E_{SQ}), BMD(\Gamma(Q,T)) = W(E_{QT}),$$

see Definition 4.4. The composition $E_{SQ} \circ E_{QT}$ is a vertex matching in $\Gamma(S,T)$, so $W(E_{SQ} \circ$ $E_{QT} \geq BMD(\Gamma(S,T))$. It suffices to prove that

$$W(E_{SQ}) + W(E_{QT}) \ge W(E_{SQ} \circ E_{QT}).$$

Let e_{ST} be an edge with a largest weight from $E_{SQ} \circ E_{QT}$, so $W(E_{SQ} \circ E_{QT}) = w(e_{ST})$. The edge e_{ST} can be considered the union of edges $e_{SQ} \in E_{SQ}, e_{QT} \in E_{QT}$.

By the triangle inequality for the base metric d,

$$w(e_{SQ}) + w(e_{QT}) \ge w(e_{ST}) = W(E_{SQ} \circ E_{QT})$$

implies that

$$W(E_{SQ}) + W(E_{QT}) \ge W(E_{SQ} \circ E_{QT})$$

because both terms on the left-hand side are maximized for all edges (not only e_{SQ}, e_{QT}) from $E_{SQ}, E_{QT}.$

Definition B.2 below makes sense for any distributions $\{[R_1, w_1], \ldots, [R_m, w_m]\}$, where R_1, \ldots, R_m are objects with a base metric d and weights $w_1, \ldots, w_m \in [0, 1]$. Each R_i can be CBR or CBD of any depth with a base metric M_{∞} or BMD from Definitions 4.3, 4.5.

Definition B.2 (EMD). Let $S = \{ [R_i(S), w_i(S)] \}_{i=1}^{m(S)}$ and $Q = \{ [R_j(Q), w_j(Q)] \}_{j=1}^{m(Q)}$ be weighted distributions of objects $R_i(S), R_j(Q)$, which live in a space with a metric d. A flow from S to Q is an $m(S) \times m(Q)$ matrix whose element $f_{ij} \in [0,1]$ represents a partial flow from $R_i(S)$ to $R_j(Q)$. The Earth Mover's Distance is the minimum cost EMD(S,Q) = $\sum_{i=1}^{m(S)}\sum_{j=1}^{m(Q)}f_{ij}d(R_i(S),R_j(Q)) \text{ for variable 'flows' } f_{ij} \in [0,1] \text{ subject to the conditions } \sum_{j=1}^{m(Q)}f_{ij} \leq \sum_{j=1}^{m(Q)}f_{ij}d(R_i(S),R_j(Q)) \text{ for variable 'flows' } f_{ij} \in [0,1] \text{ subject to the conditions } \sum_{j=1}^{m(Q)}f_{ij}d(R_i(S),R_j(Q)) \text{ for variable 'flows' } f_{ij} \in [0,1] \text{ subject to the conditions } \sum_{j=1}^{m(Q)}f_{ij}d(R_i(S),R_j(Q)) \text{ for variable 'flows' } f_{ij} \in [0,1] \text{ subject to the conditions } \sum_{j=1}^{m(Q)}f_{ij}d(R_i(S),R_j(Q)) \text{ for variable 'flows' } f_{ij}d(R_i(S),R_j(Q)) \text{ for variable$ $w_i(S)$ for i = 1, ..., m(S), $\sum_{i=1}^{m(S)} f_{ij} \le w_j(Q)$ for j = 1, ..., m(Q), and $\sum_{i=1}^{m(S)} \sum_{i=1}^{m(Q)} f_{ij} = 1$.

The first condition $\sum_{i=1}^{m(Q)} f_{ij} \leq w_i(S)$ means that not more than the weight $w_i(S)$ of $R_i(S)$ 'flows'

into all $R_j(Q)$ via 'flows' f_{ij} , j = 1, ..., m(Q). The second condition $\sum_{i=1}^{m(S)} f_{ij} = w_j(Q)$ means that all 'flows' f_{ij} from $R_i(S)$ for i = 1, ..., m(S) 'flow' into $R_j(Q)$ up to the maximum weight $w_j(Q)$. The last condition $\sum_{i=1}^{m(S)} \sum_{j=1}^{m(Q)} f_{ij} = 1$ forces to 'flow' all rows $R_i(S)$ to all rows $R_j(Q)$.

The EMD satisfies all metric axioms, see the appendix in Rubner et al. (2000), needs $O(m^3 \log m)$ time for distributions of a maximum size m and is approximated in O(m) time, see Shirdhonkar & Jacobs (2008); Sato et al. (2020).

Definition B.2 can be adapted for the EMD between NDDs by (1) replacing the bottleneck distance W_{∞} in Definition 4.3 with EMD between clouds of equally weighted points, and (2) replacing ⁸⁶⁴ BMD(Γ) for a bipartite graph Γ with EMD(Γ) between the unordered sets (of potentially different sizes) of BDDs with weights on all white vertices and BDDs on all black vertices.

The Lipschitz continuity of NDD and EMD in Theorem 4.7(c) needs Lemmas B.3, B.4, C.8.

If a metric graph G lives in an ambient metric space X, a natural perturbation of G is a shift of every vertex of G up to ε in the metric of X. Then the distance d(p,q) between any vertices p,q of G changes by at most 2ε .

We will prove the continuity in more general settings by only assuming that d(p,q) changes by at most 2ε for any $p, q \in V(G)$ without requiring an ambient space X.

Lemma B.3 (Lipschitz continuity of BMD). Let Γ be a complete bipartite graph with a vertex matching E such that any $e \in E$ has a weight $w(e) \leq \varepsilon$. Then $BMD(\Gamma) \leq \varepsilon$.

Proof of Lemma B.3. By Definition 4.4, the given matching E has the weight $W(E) = \max_{e \in E} w(e) \le \varepsilon$. Since $BMD(\Gamma) = \min_{E} W(E)$ is minimized for all vertex matchings, we get $BMD(\Gamma) < \varepsilon$.

Lemma B.4 (Lipschitz continuity of EMD). In Definition B.2, let distributions S, Q have a bijection $R_i(S) \leftrightarrow R_i(Q)$ between equally weighted objects such that $d(R_i(S), R_i(Q)) \leq \varepsilon$ for all $i = 1, \ldots, m$, where m = m(S) = m(Q). Then $\text{EMD}(S, Q) \leq \varepsilon$.

Proof of Lemma B.4. In Definition B.2, choose partial flows $f_{ij} = \frac{1}{m}$ for i = j, otherwise $f_{ij} = 0$. Then $\text{EMD}(S, Q) \leq \sum_{i=1}^{m} \sum_{j=1}^{m} f_{ij} d(R_i(S), R_j(Q)) = \sum_{i=1}^{m} \frac{1}{m} d(R_i(S), R_i(Q)) \leq \frac{1}{m} \sum_{i=1}^{m} \varepsilon = \varepsilon$. \Box

C PROOFS FOR EUCLIDEAN GRAPHS FROM SECTION 3

This appendix rigorously proves all parts of Theorem 4.7.

The affine dimension $0 \le \operatorname{aff}(A) \le n$ of a cloud $A = \{p_1, \ldots, p_m\} \subset \mathbb{R}^n$ is the maximum dimension of the vector space generated by all inter-point vectors $p_i - p_j$, $i, j \in \{1, \ldots, m\}$. Then aff(A) is an isometry invariant and is independent of an order of points of A. Any cloud A of 2 distinct points has aff(A) = 1. Any cloud A of 3 points that are not in the same straight line has aff(A) = 2.

Lemma C.1 provides a simple criterion for a matrix to be realizable by squared distances of a point cloud in \mathbb{R}^n .

902 903 904 905 Lemma C.1 (realization of distances). (a) A symmetric $m \times m$ matrix of $s_{ij} \ge 0$ with $s_{ii} = 0$ is realizable as a matrix of squared distances between points $p_0 = 0, p_1, \dots, p_{m-1} \in \mathbb{R}^n$ if and only 905 if the $(m-1) \times (m-1)$ matrix $g_{ij} = \frac{s_{0i} + s_{0j} - s_{ij}}{2}$ has only non-negative eigenvalues.

(b) If the condition in (a) holds, $\operatorname{aff}(0, p_1, \ldots, p_{m-1})$ equals the number $k \leq m-1 \leq n$ of positive eigenvalues. Also in this case, $g_{ij} = p_i \cdot p_j$ define the Gram matrix GM of the vectors $p_1, \ldots, p_{m-1} \in \mathbb{R}^n$, which are uniquely determined in time $O(m^3)$ up to an orthogonal map in \mathbb{R}^n .

911 **Proof of Lemma C.1.** (a) We extend Theorem 1 from Dekster & Wilker (1987) to the case m < n + 1 and justify the reconstruction of p_1, \ldots, p_{m-1} in time $O(m^3)$ uniquely in \mathbb{R}^n up to an orthogonal map from O(n).

The part only if \Rightarrow . Let a symmetric matrix S consist of squared distances between points $p_0 = 0, p_1, \ldots, p_{m-1} \in \mathbb{R}^n$. For $i, j = 1, \ldots, m-1$, the matrix with the elements

917

906

907

908

909 910

874

877

878

879 880

882

883

884 885

886 887

888

889 890 891

7
$$g_{ij} = \frac{s_{0i} + s_{0j} - s_{ij}}{2} = \frac{p_i^2 + p_j^2 - |p_i - p_j|^2}{2} = p_i \cdot p_j$$

is the Gram matrix, which can be written as $GM = P^T P$, where the columns of the $n \times (m-1)$ matrix P are the vectors p_1, \ldots, p_{m-1} . For any vector $v \in \mathbb{R}^{m-1}$, we have

$$0 \le |Pv|^2 = (Pv)^T (Pv) = v^T (P^T P)v = v^T GMv.$$

Since the quadratic form $v^T GM v \ge 0$ for any $v \in \mathbb{R}^{m-1}$, the matrix GM is positive semi-definite meaning that GM has only non-negative eigenvalues, see Theorem 7.2.7 in Horn & Johnson (2012).

921

925

926

927

928

934

948

959

965

969

The part $if \leftarrow$. For any positive semi-definite matrix GM, there is an orthogonal matrix Q such that $Q^T GMQ = D$ is the diagonal matrix, whose m - 1 diagonal elements are non-negative eigenvalues of GM. The diagonal matrix \sqrt{D} consists of the square roots of eigenvalues of GM.

(b) The number of positive eigenvalues of GM equals the dimension $k = \operatorname{aff}(\{0, p_1, \dots, p_{m-1}\})$ of the subspace in \mathbb{R}^n linearly spanned by p_1, \dots, p_{m-1} . We may assume that all $k \leq n$ positive eigenvalues of GM correspond to the first k coordinates of \mathbb{R}^n . Since $Q^T = Q^{-1}$, the given matrix GM = $QDQ^T = (Q\sqrt{D})(Q\sqrt{D})^T$ becomes the Gram matrix of the columns of $Q\sqrt{D}$. These columns become the reconstructed vectors $p_1, \dots, p_{m-1} \in \mathbb{R}^n$.

If there is another diagonalization $\tilde{Q}^T GM\tilde{Q} = \tilde{D}$ for $\tilde{Q} \in O(n)$, then \tilde{D} differs from D by a permutation of eigenvalues, which is realized by an orthogonal map, so we set $\tilde{D} = D$. Then $GM = \tilde{Q}D\tilde{Q}^T = (\tilde{Q}\sqrt{D})(\tilde{Q}\sqrt{D})^T$ is the Gram matrix of the columns of $\tilde{Q}\sqrt{D}$.

The new columns differ from the previously reconstructed vectors $p_1, \ldots, p_{m-1} \in \mathbb{R}^n$ by the orthogonal map $Q\tilde{Q}^T$. Hence the reconstruction is unique up to O(n)-transformations. Computing eigenvectors p_1, \ldots, p_{m-1} requires a diagonalization of GM in time $O(m^3)$ (Press et al., 2007, section 11.5).

Though Lemma C.1 gives a two-sided criterion for realizability of distances by points $p_1, \ldots, p_m \in \mathbb{R}^n$, the space of distance matrices is highly singular and cannot be easily sampled. Even m = 4 points in \mathbb{R}^2 have 6 distances that should satisfy a polynomial equation saying that the tetrahedron with these 6 edge lengths has volume 0. So a randomly sampled matrix of potential distances for m > n + 1 is unlikely to be realizable by a cloud of m ordered points in \mathbb{R}^n .

Chapter 3 in Liberti & Lavor (2017) discusses realizations of a complete graph given by a distance matrix in \mathbb{R}^n . Lemma C.2(a) and later results hold for all clouds including degenerate ones, e.g. for points in a straight line.

Any points $p_1, \ldots, p_{n-1} \in A$ have $\operatorname{aff}(p_1, \ldots, p_{n-1}) \leq n-2$. For example, any two distinct points in $A \subset \mathbb{R}^3$ generate a straight line. In \mathbb{R}^2 , any point $p_1 \neq O(A)$ forms a suitable $\{p_1\}$. In \mathbb{R}^3 , one can choose any distinct points $p_1, p_2 \in A$ so that the infinite straight line via p_1, p_2 avoids O(A).

If there are no such p_1, p_2 , then $A \subset \mathbb{R}^3$ is contained in a straight line L, so aff(A) = 1. In this degenerate case, the stronger condition aff $(O(A) \cup \{p_1, \dots, p_{n-1}\}) = aff(A)$ will help reconstruct $A \subset L$ by using any point $p_1 \neq O(A)$. The first step is to reconstruct any ordered sequence from its distance matrix in Lemma C.2(a).

Lemma C.2(a) holds for all degenerate clouds, e.g. for three points are in a straight line.

12. Lemma C.2 (reconstruction of ordered points). (a) Any sequence of ordered points $A = (p_1, \ldots, p_m)$ in \mathbb{R}^n can be reconstructed (uniquely up to isometry) from the matrix of the Euclidean distances $|p_i - p_j|$ in time $O(m^3)$. If all distances are divided by $R = \max_{i=1,\ldots,m} |p_i|$, the reconstruction of $A \subset \mathbb{R}^n$ is unique up to isometry and uniform scaling.

966 (b) If $m \le n$, the uniqueness of reconstructions in part (a) holds if we replace isometry with rigid 967 motion. Hence any n-1 ordered points p_1, \ldots, p_{n-1} can be uniquely reconstructed from all pair-968 wise distances between $0, p_1, \ldots, p_{n-1}$ up to SO(n) rotation around the origin $0 \in \mathbb{R}^n$.

970 **Proof of Lemma** C.2. (a) By translation, we can put p_1 at the origin $0 \in \mathbb{R}^n$. Let GM be the $(m - 1) \times (m-1)$ matrix $g_{ij} = \frac{p_i^2 + p_j^2 - |p_i - p_j|^2}{2} = p_i \cdot p_j$ constructed from squared distances between

972 $p_1 = 0, \ldots, p_m$ for $i, j = 2, \ldots, m$. By Lemma C.1(b) if GM has $k \le n$ positive eigenvalues, then 973 $p_1 = 0, \ldots, p_m$ can be uniquely determined up to isometry in $\mathbb{R}^k \subset \mathbb{R}^n$ in time $O(m^3)$. If all 974 distances are divided by the same radius R, the above construction guarantees uniqueness up to 975 isometry and uniform scaling.

(b) If $m \le n$, any mirror image of $A \subset \mathbb{R}^n$ after a suitable rigid motion in \mathbb{R}^n can be assumed to belong to an (n-1)-dimensional hyperspace $H \subset \mathbb{R}^n$, where they are matched by a mirror reflection $H \to H$ with respect to an (n-2)-dimensional subspace $S \subset H$. This reflection is realized by the SO(n) rotation through 180° around S.

Lemma C.2(b) for m = n = 3 implies that any triangle is determined by its sides up to rigid motion in \mathbb{R}^3 . For example, the sides 3, 4, 5 define a right-angled triangle whose mirror images are not related by rigid motion inside a plane $H \subset \mathbb{R}^3$, but are matched by composing a suitable rigid motion in H and a 180° rotation of \mathbb{R}^3 around a line in H.

Lemma C.3 (time of determinant). Any $n \times n$ determinant can be computed in time $O(n^3)$.

Proof of Lemma C.3. Any $n \times n$ determinant can be computed by Gaussian elimination in time $O(n^3)$, see Bunch & Hopcroft (1974). The more recent theoretical estimate is $O(n^{2.373})$ by Fisikopoulos & Penaranda (2016).

991

987

976

Proof of Theorem 4.7(*a*). Any rigid motion of \mathbb{R}^n mapping a Euclidean graph $G \subset \mathbb{R}^n$ to another graph *F* is a bijection preserving distances and signs of determinants, and hence induces a bijection CBR $(G; p_1, \ldots, p_i) \to CBR(F; q_1, \ldots, q_i)$ for all $p_1, \ldots, p_i \in V(G)$ and corresponding vertices $q_1, \ldots, q_i \in V(F)$ for any $i = 1, \ldots, h$, which implies a bijection $NCD(G; h) \to NCD(F; h)$. By Definition 3.5, if *G* has *m* unordered vertices, the NCD(G) consists of $m(m-1) \ldots (m-h+1) = O(m^h)$ Centered Base Representations CBR(G; A) for all base sequences $A \subset V(G)$ of *h* ordered vertices.

999Every CBR(G; A) consists of the three components sign(A), CD(A), CR(G; A). For h = n,1000sign(A) is the $n \times n$ determinant computable in time $O(n^3)$ by Lemma C.3. The distance ma-1001trix CD(A) needs $O(h^2)$ time. The $(h + 1) \times (m - h)$ matrix CR(G; A) has O(hm) distances,1002each computable in time O(n). So CBR(G; A) can be computed in time $O(n^2m)$ for $n \leq m$.1003Multiplying this time by the number $O(m^h)$ of base sequences gives the final time $O(n^2m^{h+1})$ for1004NCD(G).

The proof of Theorem 4.7(b) will use the fact that any point in \mathbb{R}^n is uniquely determined by n + 1 distances to n + 1 ordered points that affinely span \mathbb{R}^n , and also Lemma C.4.

Lemma C.4 (equal CBRs). Let a Euclidean graph $G \subset \mathbb{R}^n$ have the vertex set V(G) with the center of mass at $p_0 = 0 \in \mathbb{R}^n$. Let n - 1 ordered vertices p_1, \ldots, p_{n-1} linearly span an (n - 1)-dimensional subspace $S \subset \mathbb{R}^n$. Let $G(p_1, \ldots, p_{n-1})$ be the subgraph of G on the vertex set V(G) and all edges of G at p_1, \ldots, p_{n-1} . For any other vertex p, let $CBR'(G; p_1, \ldots, p_{n-1}, p)$ be obtained from the Centered Base Representation $BR(G; p_1, \ldots, p_{n-1}, p)$ by removing signs of distances from all vertices $q \in V(G) - \{p_1, \ldots, p_{n-1}, p\}$ to p. If $BR'(G; p_1, \ldots, p_{n-1}, p) =$ $BR'(G; p_1, \ldots, p_{n-1}, p')$ for some vertices $p, p' \in V(G) - \{p_1, \ldots, p_{n-1}\}$, the mirror reflection with respect to S maps $G(p_1, \ldots, p_{n-1})$ to itself and p to p'.

1015

1016 **Proof of Lemma** C.4. Under the reflection f_S of \mathbb{R}^n with respect to the subspace $S \subset \mathbb{R}^n$, the 1017 vertices p, p' should be swapped because they have equal (signed) distances to the ordered points 1018 $p_0, \ldots, p_{n-1} \in S$. The equality of given CBR's means that $V' = V(G) - \{p_1, \ldots, p_{n-1}, p, p'\}$ bijectively maps to itself via $q \mapsto q'$ so that any matched q, q' have the same distances to the n + 11019 ordered points p_0, \ldots, p_{n-1}, p as to p_0, \ldots, p_{n-1}, p' , respectively. Any point in \mathbb{R}^n is determined 1020 by its distances to the n affinely independent points p_0, \ldots, p_{n-1} up to the mirror reflection f_S . 1021 Since f_S fixes p_0, \ldots, p_{n-1} , the reflection f_S should swap q, q' in such pairs and all their edges, so 1022 we conclude that $f_S(G(p_1, ..., p_{n-1})) = G(p_1, ..., p_{n-1})$ and $f_S(p) = p'$. \square 1023

Proof of Theorem 4.7(b). The completeness is proved by reconstructing any Euclidean graph $G \subset \mathbb{R}^n$ from NCD(G; n) uniquely up to rigid motion.

We prove that any Euclidean graph $G \subset \mathbb{R}^n$ can be reconstructed from its Nested Distance Distribution NCD(G; n) by induction on the dimension n.

The inductive base n = 1 is Example 4.8. Assume that any graph G on m unordered vertices can be reconstructed in \mathbb{R}^k in time $O(k^3m)$ for any k < n. Below we prove the inductive step for the dimension n > 1. Start from any $\operatorname{CBR}(G; A) = [\operatorname{sign}(A), \operatorname{CD}(A), \operatorname{CR}(G; A)]$ from Definition 3.5, where A is a sequence of some n ordered (not yet geometrically fixed) vertices $p_0, \ldots, p_n \in V(G)$. The first point p_0 is fixed at the origin $0 \in \mathbb{R}^n$ as usual by translation.

Lemma C.1(b) for the matrix CD(A) gives the number $k \le n$ of positive eigenvalues of the Gram matrix of the *n* vectors p_1, \ldots, p_n in time $O(n^3)$. If aff(A) = k < n, we use the nested structure of NCD(G; n) to take another $CBR(G; p_1, \ldots, p_k, q, \ldots, p_n)$ for a new vertex $q \in V(G) - A$. Check if $aff(p_1, \ldots, p_k, q) = k + 1$ again by Lemma C.1(b) using the matrix $D(p_1, \ldots, p_k, q)$. If the affine dimension has not increased, we take another CBR with the same points p_1, \ldots, p_k and a new (k + 1)-st point from $V(G) - \{A \cup q\}$ and so on.

This search through Centered Base Representations involving the remaining vertices of G requires a maximum of m-n-1 steps with $O(n^3)$ time for every computation of the affine dimension. Hence in time $O(n^3m)$, we can find a Centered Base Representation CBR(G; A) whose base sequence Aaffinely generates the subspace of dimension k = aff(V(G)) in \mathbb{R}^n . If k < n, the proof follows from the inductive hypothesis for the smaller dimension k.

1046 If $\operatorname{aff}(V(G)) = n$, use the same notations for the fixed vertices $0 = p_0, \ldots, p_n$ that linearly generate 1047 \mathbb{R}^n . Lemma C.2(a) for m = n + 1 and the distance matrix D(A) allow us to reconstruct n + 11048 ordered points $0 = p_0, \ldots, p_n$ up to isometry in \mathbb{R}^n in time $O(n^3)$. By Definition 3.5 every column 1049 of $\operatorname{CR}(G; A)$ contains Euclidean distances from the vertices $0 = p_0, \ldots, p_n \in \mathbb{R}^n$, which affinely 1050 generate \mathbb{R}^n , to another vertex $q \in V(G) - A$.

These n + 1 distances uniquely determine the position of q in \mathbb{R}^n whose coordinates can be found as follows. Each scalar product $q \cdot p_i$ can be computed as $|q| \cdot |p_i| \cos \angle (q, 0, p_i) =$ $\frac{|q|^2 + |p_i|^2 - |q - p_i|^2}{2}$ for i = 1, ..., n. On another hand, $q \cdot p_i$ is a linear combination of unknown coordinates of q with coefficients equal to the coordinates of p_i . One can find all coordinates of q in time $O(n^3)$ by solving the system of linear equations, where the $n \times n$ determinant on the

1057 linear basis p_1, \ldots, p_n is not zero. The total time is $O(n^3m)$.

Since all vertices $q \in V(G) - A$ are geometrically unique, they can be (arbitrarily) ordered, say p_{n+1}, \ldots, p_m , following p_0, \ldots, p_n . The signs of distances in the matrix CR(G; A) also tell us about (present or absent) edges from p_0, \ldots, p_n to all other vertices $q \in V(G) - A$.

The nested structure of NCD(G; n) allows us to consider m - n unordered Base Representations CBR($G; p_1, \ldots, p_{n-1}, p_j$) for all vertices p_j with $j = n, \ldots, m$. Every vertex $p_j \in V(G)$ is uniquely determined in \mathbb{R}^n by the column of its signed distances to p_0, \ldots, p_n in the $(n+1) \times (m - n-1)$ matrix $R(G; p_0, \ldots, p_n)$ for $j = n + 1, \ldots, m$.

By Lemma C.4, this distance list of p_j (without edges between p_j, p_k for j, k > n) suffices to identify one or maximum two Base Representations among all m - n unordered CBRs with the fixed n points p_0, \ldots, p_{n-1} and variable n-th vertices. If there is a choice of two CBRs, we can take any of them for p_j . Indeed, choosing another vertex p_k , which should be mirror symmetric to p_j , will produce a mirror image of the reconstructed subgraph $G(p_1, \ldots, p_n, p_j)$ by Lemma C.4.

¹⁰⁷² The matrix $CR(G; p_1, \ldots, p_{n-1}, p_j)$ from the found CBRs contains signs that determine the (present or absent) edges from p_j to all other vertices p_k for $k = n + 1, \ldots, m$.

To guarantee the uniqueness of $G \subset \mathbb{R}^n$ under rigid motion and not only under isometry, we additionally use sign (p_1, \ldots, p_n) from CBR to fix an orientation of the simplex on p_0, \ldots, p_n .

1077

1040

1058

1066

1078 The strength $\sigma(A)$ depends only on the distance matrix D(A), we write $\sigma(A)$ for brevity. When the 1079 simplex on A degenerates, the strength $\sigma(A)$ vanishes and is Lipschitz continuous by Lemma 4.2, while the volume of the simplex on B is not Lipschitz continuous as shown below. 1080 In \mathbb{R}^2 , consider the triangle with two vertices fixed at $(\pm l, 0)$ and one moving vertex $(0, t\varepsilon)$ for 1081 $t \in [-1, 1]$. The signed area of the triangle changes from $-l\varepsilon$ (unbounded because l can be large 1082 for any fixed small ε) to 0 (when t = 0 and the triangle degenerates), then to $l\varepsilon$ (when t = 1). The area changes by $2l\varepsilon$ while only one vertex moves by 2ε , so the ratio of the area change over a point 1084 perturbation can be as large as a half-distance between given points.

Lemma C.5 (time of strength). For any base sequence A of n ordered points $p_1, \ldots, p_n \in \mathbb{R}^n$, the strength $\sigma(A)$ can be computed in time $O(n^3)$.

Proof of Lemma C.5. The half-perimeter p(A) is computable via all pairwise distances in time $O(n^2)$. The squared volume $vol^2(A)$ can be expressed by the Cayley-Menger $(n + 2) \times (n + 2)$ determinant from Sippl & Scheraga (1986) in inter-point distances, which can be computed in time $O(n^3)$ by Lemma C.3.

Lemma C.6 (axioms and time of M_{∞} on CBRs). Let $G, F \subset \mathbb{R}^n$ be Euclidean graphs with munordered vertices and base sequences $A \subset V(G)$ and $B \subset V(F)$ of $h \leq n$ ordered vertices. The metric $M_{\infty}(\text{CBR}(G; A), \text{CBR}(F; B))$ from Definition 4.3 satisfies all metric axioms and is computable in time $O(m^{1.5} \log^{h+1} m)$ assuming that $n^3 \leq O(m^{1.5} \log^{h+1} m)$.

Proof of Lemma C.6. The metric axioms for M_{∞} follow from the same axioms for the metrics L_{∞} and W_{∞} because the maximum of metrics is still a metric, see metric transforms in section 4.1 of Deza & Deza (2009). The first metric $\frac{2}{\lambda_n} |\operatorname{sign}(A)\sigma(A) - \operatorname{sign}(B)\sigma(B)|$ can be computed in time $O(n^3)$ by Lemma C.5. The metric $L_{\infty}(\operatorname{CD}(A), \operatorname{CD}(B))$ requires $O(h^2)$ time. The bottleneck distance $W_{\infty}(\operatorname{CR}(G; A)), \operatorname{CR}(F; B))$ between $(h + 1) \times (m - h)$ matrices $\operatorname{CR}(G; A)$, $\operatorname{CR}(F; B)$ with unordered columns (considered as clouds of m - h unordered points in \mathbb{R}^h) needs time $O(m^{1.5} \log^{h+1} m)$ by Theorem 6.5 in Efrat et al. (2001).

1105 1106

Lemma C.7 (metric axioms for NBM on NCDs). *The Nested Bottleneck Metric* NBM *from Definition 4.5 satisfies all metric axioms on Nested Distance Distributions.*

Proof of Lemma C.7. Induction on the depth i = n, ..., 1. The inductive base i = n follows from the metric axioms in Lemma C.6 for M_{∞} in Definition 4.3.

The inductive step from a depth i (between 1, n) to the smaller value i - 1 follows from Lemma B.1 and the metric axioms in the inductive hypothesis for the depth i.

1114 1115 1116 1117 1118 **Lemma C.8** (Lipschitz continuity of M_{∞}). Let A be a base sequence of $1 \le h \le n$ ordered vertices in a Euclidean graph $G \subset \mathbb{R}^n$. Let B, F be obtained from A, G, respectively, by perturbing every vertex of G within its ε -neighborhood in \mathbb{R}^n . Then CBR(G; A) changes in M_{∞} from Definition 4.3 by at most 2ε , so $M_{\infty}(\text{CBR}(G; A), \text{CBR}(F; B)) \le 2\varepsilon$.

1119 **Proof of Lemma** C.8. Order all vertices of the graphs G, F so that every vertex $p_i \in V(G)$ has the 1120 same index as its perturbation $q_i \in V(F)$. The bijection $p_i \leftrightarrow q_i$ induces the bijections between the 1121 corresponding elements of the matrices $CD(A) \leftrightarrow CD(B)$ and $CR(G; A) \leftrightarrow CR(F; B)$, which 1122 all differ by at most 2ε . Lemma 4.2 implies that $\frac{2}{\lambda_n} |\operatorname{sign}(A)\sigma(A) - \operatorname{sign}(B)\sigma(B)| \le 2\varepsilon$ Since all 1124 three components of the max metric M_{∞} in Definition 4.3 have the upper bound 2ε , conclude that 1125 $M_{\infty} \le 2\varepsilon$.

1127 Definition B.2 can be adapted for the EMD between NCDs by (1) replacing the bottleneck distance 1128 W_{∞} in Definition 4.3 with EMD between clouds of equally weighted points, and (2) replacing 1129 BMD(Γ) for a bipartite graph Γ with EMD(Γ) between the unordered sets (of potentially different 1130 sizes) of CBDs with weights on all white vertices and CBDs on all black vertices.

1131

1126

Proof of Theorem 4.7(c). We first prove the Lipschitz continuity of the metric NBM on NCDs. Order all vertices of the graphs G, F so that every $p_i \in V(G)$ has the same index as its ε -perturbation $q_i \in V(F)$. In Definition 4.5, for any base sequence A of $p_1, \ldots, p_h \in V(G)$, there is a base sequence B of vertices $q_1, \ldots, q_h \in V(F)$, which are ε -perturbations of p_1, \ldots, p_h , respectively, such that $M_{\infty}(\text{CBR}(G; A), \text{CBR}(F; B)) \leq 2\varepsilon$ by Lemma C.8.

1137 These distances M_{∞} are weights of edges in the index-preserving vertex matching E of the complete 1138 bipartite graph $\Gamma(G; p_1, \ldots, p_{h-1}; F; q_1, \ldots, q_{h-1})$ for any p_1, \ldots, p_{h-1} and their ε -perturbations 1139 q_1, \ldots, q_{h-1} . Then BMD($\Gamma(G; p_1, \ldots, p_{h-1}; F; q_1, \ldots, q_{h-1})$) $\leq 2\varepsilon$ by Lemma B.3. Since this 1140 conclusion holds for all (choices of) $p_1, \ldots, p_{h-1} \in V(G)$, we iteratively apply this argument for 1141 the bipartite graphs $\Gamma(G; p_1, \ldots, p_{i-1}; F; q_1, \ldots, q_{i-1})$ for $1 \leq i < n$ and finally conclude that 1142 NBM(NCD(G; h), NCD(F; h)) $\leq 2\varepsilon$. The proof that EMD(NCD(G; h), NCD(F; h)) $\leq 2\varepsilon$ is 1142 similar by using Lemma B.4 instead of B.3.

1143 1144

Proof of Theorem 4.7(d). In Definition 4.5, for any fixed $1 \le i \le h$ and ordered vertices $p_1 \ldots, p_{i-1} \in V(G)$ and $q_1 \ldots, q_{i-1} \in V(F)$, the bipartite graph $\Gamma(G; p_1, \ldots, p_{i-1}; F; q_1, \ldots, q_{i-1})$ has V = 2(m - i + 1) = O(m) vertices, $E = (m - i + 1)^2 = O(m^2)$ edges.

1148

1158

1161 1162

1164

For i = h, the weight w(e) of each edge e equals M_{∞} , which needs time $O(m^{1.5} \log^{h+1} m)$ by Lemma C.6. For all $O(m^2)$ edges of $\Gamma(G; p_1, \ldots, p_{h-1}; F; q_1, \ldots, q_{h-1})$, the time is $O(m^{3.5} \log^{h+1} m)$. The bottleneck matching distance BMD for such a graph is computed by Hopcroft & Karp (1973) in time $O(E\sqrt{V}) = O(m^{2.5})$, which is dominated by the time $O(m^{3.5} \log^{h+1} m)$ preparing the weighted graph.

For all $O(m^{2(h-1)})$ choices of ordered vertices $p_1, \ldots, p_{h-1} \in V(G)$ and $q_1, \ldots, q_{h-1} \in V(F)$, the Bottleneck Matching Distance for all graphs $\Gamma(G; p_1, \ldots, p_{h-1}; F; q_1, \ldots, q_{h-1})$ are found in time

$$O(m^{2(h-1)})O(m^{3.5}\log^{h+1}m) = O(m^{2h+1.5}\log^{h+1}m).$$

For every next iteration i = h - 2, ..., 1, the parameter i goes down by 1 every time. We can compute all distances BMD($\Gamma(G; p_1, ..., p_{i-1}; F; q_1, ..., q_{i-1})$ in time

$$O(m^{2(i-1)})O(m^{3.5}\log^{h+1}m) = O(m^{2i+1.5}\log^{h+1}m)$$

1163 The sum of all these times for i = 1, ..., h - 1 is still $O(m^{2h+1.5} \log^{h+1} m)$ from the first step.

All CBDs in Definition 3.5 have sizes at most m, which is the maximum number of points in the given clouds. The EMD between weighted distributions of a maximum size m can be computed in near-cubic time $O(m^3 \log m)$, see Fredman & Tarjan (1987); Goldberg & Tarjan (1987). Since this complexity is dominated by the time $O(m^{3.5} \log^{h+1} m)$ for computing $O(m^2)$ weights M_{∞} , each in time $O(m^{1.5} \log^{h+1} m)$ by Lemma C.6, the total time for the EMD is the same as for the NBM.

1171 1172 Thank you for reading all the proofs!

1173 1174

1175

1176 1177

1178

1179

1180 1181

1182

1183

1184

1185

1186