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ABSTRACT

Euclidean graphs embedded in Rn with unordered vertices and straight-line edges
represent important real objects such as molecules whose atoms are connected by
chemical bonds. Many real objects preserve their properties under any rigid mo-
tion from the special Euclidean group SE(n). Embedded graphs were previously
distinguished under such rigid motion or geometric isomorphism in Rn. Experi-
mental noise motivates new Lipschitz continuous invariants so that perturbations
of all vertices up to ε change the invariants up to a constant multiple of ε in a
suitable metric, whose running time should polynomially depend on the number
of unordered vertices. We developed new complete invariants that are stable under
noise, form a natural hierarchy, and distinguish all chemically different graphs in
the QM9 database of 130K+ molecules within a few hours on a modest desktop.

1 MOTIVATIONS, PROBLEM STATEMENT, AND NEW CONTRIBUTIONS

Many rigid structures from star constellations to molecules are represented by geometric graphs in
a Euclidean space, see Bonchev (1991). More precisely, a Euclidean graph G ⊂ Rn is a finite set
of m unordered (unlabeled) vertices located at distinct points of Rn and connected by straight-line
edges. Forgetting all edges of G ⊂ Rn gives us the vertex set V (G) ⊂ Rn of m unordered points.

A Euclidean graph can be disconnected and can have vertices v of any degree that is the number of
edges whose endpoint is v. Loops and multiple edges (with the same endpoints) do not appear in
Euclidean graphs because all edges are straight line segments and can also intersect in theory.

Graphs can be considered under any equivalence relation that should satisfy the axioms: 1) reflexiv-
ity: G ∼ G, 2) symmetry: if G ∼ F then F ∼ G, 3) transitivity: if G ∼ F and F ∼ H then G ∼ H .
In chemistry, the simplest equivalence of molecules is the chemical composition, which is insuffi-
cient in practice, e.g. Fig. 1 (right) shows stereoisomers that have the same chemical compositions
and non-equivalent rigid shapes with different chemical properties, see Rieder et al. (2023).

Figure 1: Left: graphs Ti ⊂ R3, i = 1, 2, 3, 4, on the same vertices with solid edges are not
isomorphic to each other. Right: stereoisomers are isomorphic combinatorially, not geometrically.

For molecules, the strongest equivalence (distinguishing as many graphs as practically possible) is a
geometric isomorphism G ∼= F , i.e. an orientation-preserving transformation of Rn that bijectively
maps the vertices and edges: G → F . Geometric isomorphisms are also called rigid motions
(compositions of translations and rotations), which form the special Euclidean group SE(n).

Any geometrically isomorphic molecules have the same chemical properties. If a flexible molecule
changes its rigid shape, its functional properties can change, so it is important to distinguish rigid
shapes Wilson et al. (1991). The slightly weaker equivalence (not distinguishing mirror images) is
isometry, which is any distance-preserving transformation including reflections. Since all real data
(such as inter-point distances) are noisy, a more practically important answer is not binary (‘same or
different’) but should be continuously quantified by a distance metric between isometry classes.
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The ever-present atomic vibrations imply that rigid classes of molecules graphs on m unordered
atoms form a continuously infinite Graph Isometry Space GIS(R3;m). Indeed, experimental noise
and any iterative optimization can slightly perturb a molecular graph G to a near-duplicate F so
that the rigid classes of G,F are close to each other in GIS(R3;m). The SSS theorem from school
geometry implies that any triangular graphs are isometric if and only if they have the same triple of
sides (inter-point distances) a, b, c considered up to 6 permutations. Hence the space of triangular
graphs is the triangular cone {0 < a ≤ b ≤ c ≤ a + b} in R3, where the last triangle inequality
c ≤ a+ b guarantees that three distances a, b, c are realizable by a real triangle, see Fig. 2 (right).

Figure 2: Left: the space of all isometry classes of graphs, each class has many representatives.
Right: isometry classes of triangular graphs form the triangular cone {0 < a ≤ b ≤ c ≤ a + b}
parametrized by inter-point distances a, b, c with isosceles and degenerate triangles on the boundary.

To reliably distinguish any Euclidean graphs G ⊂ Rn similar to triangular graphs, we need an
invariant I defined as a numerical descriptor preserved by any rigid motion in Rn. Alternatively,
if I(G) ̸= I(F ), then G ̸∼= F , so any invariant has no false negatives that are pairs of different
representatives of rigidly equivalent graphs (denoted by G ∼= F ) having equal values of a (non-
invariant) descriptor. The number of vertices (or edges) of G is an integer-valued invariant that can
distinguish some graphs but is too weak to separate the tetrahedral graphs Ti in Fig. 1.

The strongest invariant I separating all non-equivalent graphs is called complete meaning that if
I(G) = I(F ) then G ∼= F . Alternatively, a complete invariant I has no false positives that are pairs
of non-equivalent graphs G ̸∼= F with I(G) = I(F ). Experimental noise in real data motivates
continuous invariants that controllably change under perturbations, as formalized below.
Problem 1.1 (complete invariant of Euclidean graphs with polynomial-time continuous metrics).
For Euclidean graphs on m unordered vertices in Rn, find an invariant I satisfying the conditions:

(a) completeness : any graphs G,F are related by rigid motion in Rn if and only if I(G) = I(F );

(b) Lipschitz continuity : there is a constant λ and a metric d on invariant values satisfying the
axioms 1) d(I, J) = 0 if and only if I = J , 2) d(I, J) = d(J, I), 3) d(I, J) + d(J,K) ≥ d(I,K),
such that if F is obtained by perturbing every vertex of G up to ε > 0, then d(I(G), I(F )) ≤ λε;

(c) invertibility : any graph G ⊂ Rn can be reconstructed (up to rigid motion in Rn) from I(G);

(d) computability : for a fixed dimension n, the invariant I , the metric d, and a reconstruction of
G ⊂ Rn from I(G) can be obtained in polynomial time of the number m of unordered vertices. ■

Condition 1.1(a) means that a complete invariant I is a DNA-style code that uniquely identifies any
graph under geometric isomorphism. To be useful for noisy inputs, a complete invariant should con-
tinuously change under perturbations in a suitable metric. The axioms in 1.1(b) are the foundations
of metric geometry Melter & Tomescu (1984) and accepted in physical chemistry Weinhold (1975).
If the triangle axiom fails with any additive error, the classical k-means and DBSCAN clustering
are open to adversarial attacks in Rass et al. (2024). If the first axiom is ignored, d ≡ 0 satisfies
all other axioms. The first axiom implies the completeness of I in 1.1(a) but the continuity is much
stronger. Indeed, for any complete invariant I , one can define the discrete metric d(I(G), I(F )) = 1
for G ̸∼= F , which unhelpfully treats all non-equivalent graphs (even near-duplicates) as equally dis-
tant. The new requirement of Lipschitz continuity in 1.1(b) is much stronger than the classical ε− δ
continuity because the constant λ is universal for all ε and unbounded graphs G ⊂ Rn.

Condition 1.1(c) requires I to be not only complete and continuous but also efficient to explicitly
reconstruct G, better than a real DNA that doesn’t explain how to grow a living organism. Com-
putability 1.1(d) prevents brute-force attempts, e.g. defining I(G) as the infinite set of images of G
under all rigid motions or taking m! distance matrices over all permutations of m unordered vertices.
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The main contribution is the new invariant Nested Centered Distribution, which satisfies the con-
ditions of Problem 1.1, including the new Lipschitz continuity, for all Euclidean graphs in any Rn.

2 PAST WORK ON INVARIANTS AND DISTANCES FOR CLOUDS AND GRAPHS

This section reviews the related work starting from earlier partial solutions of Problem 1.1.

Ordered clouds. If a Euclidean graph G ⊂ Rn consists of m isolated vertices without edges, the
vertex set V (G) can be called a point cloud C. If additionally, all points p1, . . . , pm of C are ordered
(not considered under the action of all m! permutations), a complete invariant of C under isometry
(compositions of translations, rotations, reflections) is the classical m × m matrix Li et al. (2023)
of pairwise distances |pi − pj | due to (Grinberg & Olver, 2019, Theorem 9) or, after shifting the
center of mass to the origin, the Gram matrix of scalar products piDotpj by (Dekster & Wilker,
1987, Theorem 1). This multidimensional scaling known at least since 1935 Schoenberg (1935) can
also provide an embedding C ⊂ Rk preserving all distances of C for a dimension k ≤ m. This
embedding C ⊂ Rk uses eigenvectors whose ambiguity up to signs gives an exponential time that
can be close to O(2m), not polynomial in the number m of ordered points as required in 1.1(d).

Unordered clouds. Computational geometry developed many algorithms for detecting geometric
isomorphism (or isometry, also called congruence) between point sets without edges Huttenlocher
et al. (1993); Chew & Kedem (1992); Chew et al. (1999); Goodrich et al. (1999). (Arvind & Rattan,
2016, Theorem 3) describing, for a finite set A ⊂ Qn of m points, nO(n)poly(mM) time algorithm
to compute a canonizing function f(A), which can be considered a complete isometry invariant of
A, where M upper bounds the binary encodings of the rational coordinates in the input. For point
clouds under rigid motion (also distinguishing mirror images), (Widdowson & Kurlin, 2023, Theo-
rem 4.7) described a metric computable in time O(n(mn−1/n!)3 logm). The latest methods Hordan
et al. (2024); Delle Rose et al. (2024); Amir et al. (2024); Maennel et al. (2024) also achieved the
completeness for point clouds but without a Lipschitz continuous metric as in 1.1(b). Energy poten-
tials written as infinite series of spherical harmonics, are often considered complete representations
of atomic environments, which holds in the limit but not for a finite sizePozdnyakov et al. (2020).

For a fixed set of m vertices in general position, one can choose any of m(m − 1)/2 edges and
produce 2m(m−1)/2 non-isometric graphs. Problem 1.1 for arbitrary graphs is computationally much
harder than for point clouds due to exponentially many different graphs on the same vertex set.

The graph isomorphism problem Grohe & Schweitzer (2020) for abstract (non-Euclidean) graphs
is another version of Problem 1.1 without continuous metrics. The latest advances Babai (2019);
Helfgott et al. (2017) achieved only quasipolynomial time, though a polynomial time was again
announced in Ohto (2024). While many partial cases were solved, e.g. for planar graphs (embedded
in R2 without intersecting edges), see Kiefer et al. (2019), the k-dimensional Weisfeiler-Leman
test Leman & Weisfeiler (1968) fails for 3-regular graphs of size O(k). The key limitation of WL
tests is their local nature when invariants are gradually expanded from a vertex or a k-tuple. Then
covering a graph on m vertices needs O(m) expansions leading to exponential sizes in m. (Dym &
Gortler, 2024, Section 3.9) discussed that a complete invariant (under all permutations of m vertices)
that has a polynomial time in the dimension n would also solve the graph isomorphism problem in
polynomial time. Condition 1.1(d) is easier for a fixed n such as the practical dimensions n = 2, 3.
The number m of vertices can be dozens or hundreds, e.g. for molecular graphs in R3, where vertices
are centers of atoms and edges are inter-atomic bonds that keep atoms together in a stable molecule.

Geometric Deep Learning in Bronstein et al. (2021) pioneered an axiomatic approach to geometric
classifications beyond Euclidean space Rn in Bronstein et al. (2017). Many neural networks were
proved to be universal Maron et al. (2019); Zhou (2020); Abbe & Sandon (2020) in the sense of ap-
proximating any continuous function on given data with sufficiently many layers. This universality
property has been strengthened in Problem 1.1 to the full completeness of an explicit invariant that
should be computable in polynomial time and invertible to an original graph up to rigid motion. The
key challenge was to compute an exact (not approximate) metric that is also Lipschitz continuous.

Equivariants Kondor & Trivedi (2018); Cohen et al. (2019); Fuchs et al. (2020); Deng et al. (2021)
are defined as descriptors E satisfying E(f(G)) = Tf (E(G)) for any rigid motion f of a graph
G in Rn, where Tf may not be the identity as required for invariants. Any linear combination
of points, e.g. the center of mass, is equivariant but cannot distinguish graphs under translation.
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Equivariants Gao et al. (2020); Qi & Luo (2020); Tu et al. (2022); Batzner et al. (2022) help predict
forces acting on atoms to move them to a more optimal configuration. These time-dependent graphs
Gt can be studied directly by invariant values I(Gt) without computing intermediate atomic forces.
Many neural networks optimize millions of parameters as in (Goyal et al., 2021, Table 4) to improve
accuracies Dong et al. (2018); Akhtar & Mian (2018); Laidlaw & Feizi (2019); Guo et al. (2019);
Colbrook et al. (2022) but require re-training on any new data. All known descriptors of molecular
graphs Duvenaud et al. (2015); Choo et al. (2023) have no proofs of all conditions 1.1(a,b,c,d).

Gromov-Wasserstein metrics Mémoli (2011) are defined for any metric-measure spaces Brécheteau
(2019) by minimizing over infinitely many correspondences between points, but cannot be approx-
imated with a factor less than 3 in polynomial time unless P=NP (Schmiedl, 2017, Corollary 3.8)
and polynomial algorithms for partial cases in Mémoli et al. (2021); Majhi et al. (2024). The related
problems of matching and finding distances between fixed Euclidean graphs (but not for their isom-
etry classes) were studied in Nikolentzos et al. (2017); Majhi & Wenk (2022); Buchin et al. (2023).
Computing a metric between rigid classes of clouds is only a small part of Problem 1.1. Indeed, to
efficiently navigate on Earth, in addition to distances between cities, we need a map of the whole
planet and hence an invertible continuous invariant I , which is an analog of geographic coordinates.

3 A HIERARCHY OF GRAPH INVARIANTS FROM FASTEST TO COMPLETE

Let |p − q| denote the Euclidean distance between any points p, q ∈ Rn. We always translate any

graph G ⊂ Rn so that the center of mass O(G) =
1

m

∑
p∈V (G)

p of the vertex set V (G) is at the origin

0 ∈ Rn. Then Problem 1.1 reduces to the SO(n)-invariance under orthogonal maps.

Definition 3.1 (signed distance d(p, q) and invariants SRV,SDV,PDD). Let G ⊂ Rn be any Eu-
clidean graph on m arbitrarily ordered vertices p1 . . . , pm. If any pi, pj ∈ V (G) are connected by
an edge of G, define the signed distance as d(p, q) = |p− q|, else set d(p, q) = −|p− q|.
(a) The Sorted Radial Vector SRV(G) has m distances |p| for all p ∈ V (G) in decreasing order.

(b) The Sorted Distance Vector SDV(G) has all m(m−1)
2 distances d(pi, pj) in decreasing order.

(c) Let D(G) be the m× (m− 1)-matrix where the i-th row consists of signed distances d(pi, pj),
j ∈ {1, . . . ,m} − {i} in increasing order. The Pointwise Distance Distribution PDD(G) is the
distribution of unordered rows D(G) with equal weights 1/m. ■

If any k > 1 rows of D(G) are equal, they can be collapsed in PDD(G) to a single row with the
weight k/m. The PDD was defined for finite clouds as a local distribution of distances in (Mémoli,
2011, Definition 5.5) and for periodic sets in Widdowson & Kurlin (2022) but not for graphs.

Table 1: Acronyms and references of the main objects, invariants, and metrics in the paper.

GIS Graph Isometry Space Fig. 2 PDD Pointwise Distance Distribution Def 3.1
SRV Sorted Radial Vector Def 3.1 CD Centered Distribution Def 3.5
SDV Sorted Distance Vector Def 3.1 NCD Nested Centered Distribution Def 3.5
CR Centered Representation Def 3.3 NBM Nested Bottleneck Metric Def 4.5

The PDD(G) includes every signed distance twice, once as d(p, q) in the row of a vertex p, and as
d(q, p) in the row of a vertex q. Hence SDV(G) can be obtained from PDD(G) by (1) combining
all distances into one vector, (2) sorting them in decreasing order, and (3) keeping only one copy of
every two repeated distances. Example 3.2 shows that PDD(G) is already stronger than SDV(G).

Example 3.2 (invariants SRV,SDV,PDD for tetrahedral graphs in Fig. 1). (a) Since the vertex
sets of Ti ⊂ R3 are regular tetrahedra with all pairwise distances 1, these graphs have identical
SRV(Ti) of 4 equal circumradii of the same vertex set V (Ti) independent of i = 1, . . . , 4.

The first graph T1 has two edges contributing +1 and four non-edges (dashed lines) contributing
−1 to the Sorted Distance Vector SDV(T1) = (+1,+1,−1,−1,−1,−1). The graph T2 also has
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two edges, so SDV(T2) = SDV(T1) doesn’t distinguish T1 ̸∼= T2 up to rigid motion. Similarly, the
graphs T3 ̸∼= T4 are not distinguished by SDV(T3) = (+1,+1,+1,−1,−1,−1) = SDV(T4).

(b) In T1, every vertex has exactly one edge and two non-edges (dashed lines), hence its signed
distances are +1,−1,−1. The matrix PDD(T1) = (100% | −1,−1,+1) consists of a single row,
where the weight 100% indicates that all vertices of T1 have the same row in PDD. The graph T2 has
one vertex (25%) with no edges, two vertices (50%) with one edge, and one vertex (25%) with two

edges, so PDD(T2) =

(
25% −1 −1 −1
50% −1 −1 +1
25% −1 +1 +1

)
̸= PDD(T1), so PDD distinguishes the rigidly

non-equivalent graphs T1 ̸∼= T2 with SDV(T1) = SDV(T2). The graph T3 has one vertex (25%)

with no edges and three vertices (75%) with two edges, so PDD(T3) =

(
25% −1 −1 −1
75% −1 +1 +1

)
.

The graph T4 has two vertices (50%) with one edge and two vertices (50%) with two edges. Then

PDD(T4) =

(
50% −1 −1 +1
50% −1 +1 +1

)
, so PDD distinguishes the graphs T3 ̸∼= T4. ■

For a graph G with m unordered vertices, PDD(G) has m − 1 columns. The reduced version
PDD(G; k) includes only the first k columns for 1 ≤ k < m − 1. Though PDDs have unordered
rows, they can be continuously compared by Earth Mover’s Distance Rubner et al. (2000).

Fig. S4 in Pozdnyakov et al. (2020) described infinitely many non-isometric pairs of clouds C,C ′ ⊂
R3 with PDD(C) = PDD(C ′). These counter-examples inspired the stronger invariants for graphs
below. Any n vectors p1, . . . , pn ∈ Rn can be written as columns in the n × n matrix whose
determinant has sign(p1, . . . , pn), which is ±1 or 0 (if p1, . . . , pn are linearly dependent).

Definition 3.3 (Centered Representation CR(G;A) of a graph with A ⊂ V (G)). Let G ⊂ Rn be
a graph on m unordered points with the center of mass O(G) = 0. For any 1 ≤ h ≤ n, fix a
base sequence A of ordered vertices p1, . . . , ph ∈ V (G). If h = n, let sign(A) be the sign of the
n × n determinant on the vectors p1, . . . , pn, else sign(A) = 0. Let D(A) be the matrix of signed
distances between the ordered points 0 = p0, p1, . . . , ph. The matrix R(G;A) has m−h unordered
columns, one for each vertex q ∈ V (G)−A, consisting of h+1 distances d(q, pi) for i = 0, . . . , h,
where p0 = 0. The Centered Representation CR(G;A) is the triple [sign(A), D(A), R(G;A)]. ■

Example 3.4 (CRs for 2-point bases in R2). Let G ⊂ R2 be the triangular cycle on p1 = (2, 0),
p2 = (−1, 1), p3 = (−1,−1), so O(G) = 0 and all signed distances are positive, see

Fig. 3 (top left). For A = (p1, p2), sign(A) = sign

∣∣∣∣ 2 −1
0 1

∣∣∣∣ = 1. The distance matrix

on 0, p1, p2 is D(p1, p2) =

 0 2
√
2

2 0
√
10√

2
√
10 0

. Then R(G; p1, p2) =

( |p3|
|p3 − p1|
|p3 − p2|

)
= √

2√
10
2

. Then CR(G; p1, p2) = [+1, D(p1, p2), R(G; p1, p2)]. Replacing p2 with p3, we find

sign(p1, p3) = sign

∣∣∣∣ 2 −1
0 −1

∣∣∣∣ = −1, D(p1, p3) =

 0 2
√
2

2 0
√
10√

2
√
10 0

, and R(G; p1, p3) =

( |p2|
|p2 − p1|
|p2 − p3|

)
=

 √
2√
10
2

. Then CR(G; p1, p3) = [−1, D(p1, p3), R(G; p1, p3)]. ■

Definition 3.5 (Nested Centered Distribution NCD(G;h) of order h). Let G ⊂ Rn be any Euclidean
graph on m unordered vertices and the center of mass at the origin 0 ∈ Rn. Fix an order 1 ≤ h ≤ n.
For any ordered vertices p1, . . . , ph−1 ∈ V (G), the Centered Distribution CDh−1(G; p1, . . . , ph−1)
is the unordered set of CR(G; p1, . . . , ph) for all ph ∈ V (G)−{p1, . . . , ph−1}. For any 1 < k < h
and p1, . . . , pk−1 ∈ V (G), CDk−1(G; p1, . . . , pk−1) is the unordered set of CDk(C; p1, . . . , pk) for
all pk ∈ V (G)−{p1, . . . , pk−1}. The Nested Centered Distribution NCD(G;h) is the unordered set
of CD1(G; p1) for all vertices p1 ∈ V (G). For the order h = n, define the mirror image NCD(G;n)
as NCD(G;n) after reversing sign(p1, . . . , pn) of n× n determinants in all CRs. ■
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Figure 3: Left: building the Nested Centered Distribution NCD from Definition 3.5 from Centered
Representations in Definition 3.3 with metrics in section 4. Right: hierarchy of graph invariants.

Example 3.6. (a) For h = 0, the Nested Centered Distribution NCD(G; 0) consists of radial dis-
tances |p| for all vertices p ∈ V (G) and, after sorting in decreasing order, becomes SRV(G).

(b) For h = 1, NCD(G; 1) is the unordered collection of CR(G; p) for all vertices p ∈ V (G). Here
each Centered Representation CR(G; p) is a triple [sign(p), D(p), R(G; p)], where sign(p) is the
usual sign of p ∈ R for dimension n = 1, otherwise sign(p) = 0. The matrix of signed distances
D(p) consists of one signed distance d(p, 0) between p and the origin 0 ∈ Rn (not considered as
a vertex of G), so D(p) = −|p|. The 2 × (m − 1) matrix R(G; p) has unordered columns, one
for each vertex q ∈ V (G) − {p}, consisting of the signed distance d(0, q) = −|q| from 0 to q, and
d(q, p) = ±|q − p|, where we take + if q, p are joined by an edge of G. So NCD(G; 1) contains
NCD(G; 0). All second rows of the matrices R(G; p) with equal weights and without signs form the
Pointwise Distance Distribution PDD(G) from Definition 3.1, see the hierarchy in Fig. 3 (right). ■

4 LIPSCHITZ CONTINUOUS METRICS ON THE NEW INVARIANTS OF GRAPHS

When a base sequence A = (p1, . . . , pn) ⊂ Rn degenerates to a lower dimensional subspace,
sign(A) of discontinuously changes. To guarantee the Lipschitz continuity, we multiply these signs
by the strength σ below, while the volume vol(A) of the simplex on A is not Lipschitz continuous.

Definition 4.1 (strength σ(A)). For any base sequence A of n ordered points p1, . . . , pn ∈ Rn, let

p(A) =
1

2

∑
1≤i<j≤n

|pi − pj | be a half-sum of all distances between the points of A. Let vol(A)

denote the volume of the n-dimensional simplex on A. The strength is σ(A) =
vol2(A)

p2n−1(A)
. ■

If n = 1, A = {p0, p1} ⊂ R, then vol(A) = |p1 − p0| = 2p(A), so σ(A) =
vol2(A)

p(A)
= 2|p1 − p0|.

If p0 = 0, then s(p1) = 2p1. For n = 2 and a triangle A with sides a, b, c, Heron’s formula gives

σ(A) =
(p− a)(p− b)(p− c)

p2
. Here p =

a+ b+ c

2
= p(A) is the half-perimeter of A.

Lemma 4.2 (Lipschitz continuity of σ, proved in (Widdowson & Kurlin, 2023, Thm 4.4)). Let B be
obtained from a sequence A ⊂ Rn of n points by perturbing every point within its ε-neighborhood.
Then |σ(A)− σ(B)| ≤ 2ελn for a constant λn, where λ1 = 2, λ2 = 2

√
3, λ3 ≈ 0.43. ■

For any k×k matrices M,N of real numbers, the metric L∞ is max
i,j=1,...,k

|Mij−Nij |. The bottleneck

distance between any clouds A,B of (the same number of) m unordered points in a metric space
with a metric d is W∞(A,B) = min

g:A→B
max
p∈A

d(g(p), p) minimized for all bijections g : A → B.

Definition 4.3 (max metric M∞ on CRs). Let Euclidean graphs G,F ⊂ Rn on m unordered
vertices have base sequences A,B of h ≤ n vertices. Consider the m − h columns of
R(G;A) as a cloud of m − h unordered points in Rh, also for R(F ;B). The max met-

ric M∞(CR(G;A),CR(F ;B)) is the maximum of
2

λn
| sign(A)σ(0 ∪ A) − sign(0 ∪ B)σ(B)|,

L∞(D(A), D(B)), and W∞(R(G;A), R(F ;B)), where all signs are zeros for h < n. ■
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To get a metric on Nested Centered Distributions, we will iteratively use the distance on bipartite
graphs whose edge weights are the max metrics M∞ above on Centered Representations.
Definition 4.4 (Bottleneck Matching Distance BMD(Γ)). Let Γ be a complete bipartite graph with
m white vertices and m black vertices so that every white vertex is connected to every black vertex
by a single edge e of a weight w(e) ≥ 0. A vertex matching of the graph Γ is a collection E of m
disjoint edges. The weight W (E) = max

e∈E
w(e) is the largest weight of an edge in E. The Bottleneck

Matching Distance BMD(Γ) = min
E

W (E) is the minimum weight of a vertex matching E of Γ. ■

Definition 4.5 (Nested Bottleneck Metric NBM on NCDs). Let G,F ⊂ Rn be any Euclidean
graphs on m unordered vertices. For any ordered vertices p1 . . . , ph−1 ∈ V (G) and q1 . . . , qh−1 ∈
V (F ), the complete bipartite graph Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1) has m− h+ 1 white ver-
tices and m − h + 1 black vertices representing CR(G; p1, . . . , ph) and CR(F ; q1, . . . , qh) for all
m− h+ 1 vertices ph ∈ V (G)− {p1, . . . , ph−1} and qh ∈ V (F )− {q1, . . . , qh−1}, respectively.

Set the weight w(e) of an edge e joining the vertices represented by CR(G; p1, . . . , ph),
CR(F ; q1, . . . , qh) as the max metric M∞ between these distributions, see Definition 4.3. Then
Definition 4.4 gives the bottleneck matching distance BMD(Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1)).

For any integer 1 ≤ i < h and ordered vertices p1 . . . , pi−1 ∈ V (G) and q1 . . . , qi−1 ∈ V (F ),
the complete bipartite graph Γ(G; p1, . . . , pi−1;F ; q1, . . . , qi−1) has m − i + 1 white vertices and
m− i+1 black vertices representing CDi(G; p1, . . . , pi) and CDi(F ; q1, . . . , qi) for all m− i+1
variable vertices pi ∈ V (G)− {p1, . . . , pi−1} and qi ∈ V (F )− {q1, . . . , qi−1}, respectively.

Set the weight w(e) of an edge e joining the vertices represented by CDi(G; p1, . . . , pi) and
CDi(F ; q1, . . . , qi) as the previously computed distance BMD(Γ(G; p1, . . . , pi;F ; q1, . . . , qi)) for
a smaller number i of fixed vertices. Then Definition 4.4 gives the bottleneck matching distance
BMD(Γ(G; p1, . . . , pi−1;F ; q1, . . . , qi−1)). For i = 1, the graph Γ(G,F ) has m + m vertices
representing CD1(G; p1), CD1(F ; q1) for all p1 ∈ V (G) and q1 ∈ V (F ). The Nested Bottleneck
Metric NBM(NCD(G;h),NCD(F ;h)) is the Bottleneck Matching Distance BMD(Γ(G,F )). ■

Example 4.6 (NBM for h = 0, 1). Let G ⊂ Rn be any Euclidean graph on m unordered vertices.

(a) For order h = 0, NCD(G; 0) after sorting in decreasing order coincides with SRV(G). Then
the Nested Bottleneck Metric NBM coincides with the metric L∞(SRV(G),SRV(F )).

(b) For order h = 1, the invariant NCD(G; 1) is the unordered distribution of CR(G; p) described in
Example 3.6(b). For another graph F on m unordered vertices, Definition 4.3 introduces the metric
M∞(CR(G; p),CR(F ; q)) as the maximum of three distances. If n > 1, all signs in Definition 3.3
are zeros. Because D(p) = −|p|, the metric M∞ equals the maximum of | |p| − |q| | and the
bottleneck distance W∞ between the fixed clouds of unordered points { (−|p′|, d(p′, p)) | p′ ∈
V (G)− {p} } and { (−|q′|, d(q′, q)) | q′ ∈ V (F )− {q} } in R2. The weighted graph Γ(G,F ) has
m+m vertices associated with p ∈ V (G) and q ∈ V (F ) with weights M∞(CR(G; p),CR(F ; q))
on corresponding edges. By Definition 4.5 the final metric NBM = BMD(Γ(G,F )) equals the
maximum weight M∞(CR(G; p),CR(F ;β(p))) minimized for a bijection β : V (G) → V (F ). ■

The metrics W∞,M∞,NBM compare objects of the same size. To compare graphs with different
numbers of vertices, M∞ in Definition 4.5 can be replaced with Earth Mover’s Distance EMD
Rubner et al. (2000), see Definition B.2, which satisfies all metric axioms. The axioms of all metrics
and main Theorem 4.7 below are proved in appendices B and C.
Theorem 4.7 (NCD solves Problem 1.1). (a) The Nested Centered Distribution NCD(G;h) in
Definition 3.5 is invariant under any rigid motion for all Euclidean graph G on m unordered vertices
and, for a fixed dimension n, can be computed in time O(n2mh+1) for any order h ≥ 1.

(b) NCD(G;n) is a complete invariant of graphs G ⊂ Rn under rigid motion from the group SE(n).

(c) Perturbing each vertex of a graph G ⊂ Rn within its ε-neighborhood changes NCD(G;h) up to
2ε in both metrics NBM,EMD for any h ≥ 1.

(d) For any graphs G,F ⊂ Rn on m unordered vertices, the metrics NBM and EMD between the
invariants NCD(G;h) and NCD(F ;h) can be computed in time O(m2h+1.5 logh+1 m). ■

Theorem 4.7(b) means that any graphs G,F ⊂ Rn are related by rigid motion if and only if
NCD(G;n) = NCD(F ;n). This equality is interpreted as a bijection NCD(G;n) → NCD(F ;n)
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matching all CDs, which is equivalent to NBM = 0 by the first metric axiom. Since every CR can
be stored in a vector form, the complete invariant NCD(G;n) can be considered vectorial.

Table 2 emphasizes that most graphs should be first compared (or represented for machine learning)
by simpler and faster invariants, so the complete NCD(G;n) is used only in rare cases but is still
necessary to make really important conclusions as we show later for all molecules in QM9.

Table 2: Hierarchy of invariants of G ⊂ R2 on m unordered vertices: from the fastest to complete.

invariant SRV(G) SDV(G) PDD(G) NCD(G; 1) NCD(G; 2)
time O(m logm) O(m2) O(m2 logm) O(m2) O(m3)
metric L∞ L∞ EMD NBM NBM
time O(m) O(m2) O(m3) O(m3.5 log2 m) O(m5.5 log3 m)

Example 4.8 (Proof of Theorem 4.7(b) for n = 1). For a graph G ⊂ R with the center of mass
O(G) = 0, a base sequence A from Definition 3.3 can be any vertex p ∈ G. Then sign(p) is the usual
sign of p ∈ R, D(p) is the signed distance −|p|, R(G; p) is the 2 × (m − 1) matrix whose column
for any vertex q ∈ V (G) − {p} consists of the distances d(q, 0) = −|q| and d(q, p) = ±|q − p|,
where the plus sign + indicates an edge between q, p, while the minus sign − means no edge.

So CR(G; p) = [sign(p),−|p|, R(G; p)]. Every R(G; p) uniquely determines p in the line R by
sign(p) and |p|, and the position of any other vertex q ∈ V (G) − {p} by its Euclidean distances
|q|, |q − p| to the origin and fixed vertex p. The position of any q ∈ R is uniquely determined by
sign(q) and |q|, which helps us unambiguously identify its Centered Representation CR(G; q) in the
unordered collection NCD(G; 1) of all these CRs. The signs of d(q, q′) in each R(G; q) determine
the presence or absence of an edge of G between any vertices q, q′ ∈ V (G). ■

5 EXPERIMENTS ON 130K+ MOLECULES, LIMITATIONS, AND SIGNIFICANCE

This section describes how the new invariants have enabled a complete classification of all molecular
graphs in the QM9 database of 130K+ (130,808) molecules given with atomic 3D coordinates.

For graphs G ⊂ Rn with edges, such a practical classification was previously impossible because
there was no complete and Lipschitz continuous invariant of Euclidean graphs even in R2. After
the SSS theorem since 300 BC, such an invariant solving Problem 1.1 was known only for cyclic
polygons inscribed into a circle of a fixed radius, see Theorem 1.8 on p.52 in Penner (2012). The
complete invariant SCD of point clouds Widdowson & Kurlin (2023) has no nested structure of the
new invariant NCD, which was needed to reconstruct all edges of G ⊂ Rn from NCD(G;n). All
experiments were done in 5 hours on Ryzen 9 3950X 3.5 GHz, 64 MB of L3 cache, RAM 82GB.

The hierarchy of invariants described in Fig. 3 and Table 2 justifies the computations starting from
the simple and fast invariants on all pairs to filter out distant graphs and then moving to progressively
stronger invariants for much smaller subsets of pairs of close molecules. We computed the pseudo-
metric L∞ (the maximum absolute difference of corresponding coordinates) on all 873,527,974
pairs of SRVs, then 8,735,279 L∞ on the stronger SDVs for the 1% closest pairs, then 87,352
EMDs on PDDs for the 1% closest pairs, 10K distances NBM on NCD(G; 1),NCD(G; 2)s for the
top closest pairs, and 64 NBMs on complete invariants NCD(G, 3) for molecular graphs G ⊂ R3.

Table 3: Closest chemically different molecules by distances in Å = 10−10m, see Fig. 4 (right).

invariant metric distance molecule A molecule B composition A composition B
L∞ SRV(G) 0.02057 131923 5365 H3 C4 N3 O2 H4 C5 N2 O1
L∞ SDV(G) 0.05505 123533 24547 H3 C4 N5 H3 C5 N3 O1
EMD PDD(G) 0.05145 123533 24521 H3 C4 N5 H3 C5 N3 O1
NBM NCD(G,3) 0.07054 123532 24513 H4 C5 N4 H4 C6 N2 O1
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Figure 4: Left: each dot is a comparison of closest molecular graphs G,F from QM9 by the
pseudo-metric x = EMD(PDD(G),PDD(G)) vs y = NBM(NCD(G; 1),NCD(F ; 1)). Middle:
zoomed-in comparisons for small distances. Top right: the smallest NBM ≈ 0.07Å on NCD(G; 3)
for chemically different molecules is for 123533 and 24521. Bottom right: near-duplicate (almost
flat) molecules 123532 and 24513 have the same composition and tiny EMD ≈ 2.37× 10−7Å (not
distinguishing mirror images) but 100× higher NBM ≈ 2.95× 10−5Å on complete NCD(G; 3).

Fig. 5 shows that many pairs of molecular graphs have the distances NBM between their three
invariants NCD(G;h) for h = 1, 2, 3, which justifies faster computations for smaller h, but the
complete invariant NCD(G; 3) still better differentiates graphs than the invariants for h = 1, 2.

Figure 5: Each dot is a comparison of molecular graphs from QM9 by the distances on the progres-
sively stronger invariants. Left: NCD(G; 1) vs NCD(G; 2). Right: NCD(G; 2) vs NCD(G; 3).

Main conclusion of all pairwise comparisons of molecular graphs from QM9 in a hierarchical way:
all chemically different molecules are rigidly different, see the smallest distance NBM ≈ 0.07Å on
complete invariants in Table 3. In other words, the map {molecules} → {graphs on atomic centers
(without chemical elements)} is injective on rigid classes. Hence this map can be theoretically
inverted on its image, so we can reconstruct all chemistry from sufficiently precise geometry.

The solution to Problem 1.1 settled the long-standing challenge of properly defining a molecular
structure. A traditional approach including the recent one in Lang et al. (2023) is to describe such a
structure as ‘a set of unlabeled configurations that are relatively similar to each other’. This ‘relative
similarity’ cannot depend on manual thresholds, which make any classification trivial as explained in
Anosova et al. (2024), but should be rigorously defined as a class under equivalence (say, rigid mo-
tion) satisfying all axioms including the transitivity, which guarantees well-defined disjoint classes.

Even more importantly, all molecules of m atoms have different and uniquely defined locations
in a common continuous Graph Rigid Space GRS(R3;m). The complete invariants NCD(G; 3)
provide exact geographic-style coordinates of any G in this space as for any (say) houses on our

9
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planet. The question of whether to put close neighbors like near-duplicates in Fig. 4(bottom right)
into one cluster of the “same” molecules is rather administrative (similar to putting close houses into
one village instead of different ones) for domain experts rather than purely scientific.

Studying molecules by fixing a composition is similar to drawing artificial boundaries between coun-
tries on Earth. Because some molecules of different compositions have close shapes as in Fig. 4(top
right), they should have similar properties. Now any properties of molecules should be possible
to predict only from complete invariants NCD(G; 3) even without chemistry in the same way as
any precise geographic location uniquely determines all physical properties of this place such as
the average annual temperature. Chemical compositions can be still helpful similar to the location’s
altitude, which easier predicts this temperature than theoretically sufficient geographic coordinates.

Fig. 6 (left) shows the simplest geographic-style map of QM9 as a finite sample within
29⋃

m=3
GRS(R3;m) projected to the invariants SRV1 ≥ SRV2. All molecules on the horizontal axis

y = SRV1−SRV2 = 0 have SRV1 = SRV2 (due to two equidistant atoms from the center of mass)
and can be projected (like any subset of QM9) to other coordinates as in Fig. 6 (right). Molecular
properties can be visualized on these geographic maps as ‘mountainous’ landscapes.

Figure 6: Left: every dot represents a molecular graph with the invariant coordinates x = SRV1,
y = SRV1 − SRV2, all in Angstroms, where 1Å = 10−10m ≈ the smallest interatomic distance.
Right: projection of QM9 to x = SRV1, y = SRV2 − SRV3. The color is by the number of atoms.

The limitation is the time O(m2h+1.5 logh+1 m) of the metric NBM, which is better than expo-
nential and practical for h = 1, 2, 3 up to 29 atoms in QM9. The hierarchy of NCD(G;h) allows
us to filter out distant graphs by faster distances starting with L∞ on NCD(G; 0) = SRV(G) in
O(m) time. Theorem 4.7 is harder than (Widdowson & Kurlin, 2023, Theorem 4.7) for point clouds
because exponentially many different graphs can have the same vertex set, see Fig. 1.

Any vertex p and edge of G can have an attribute and a weight respected by any isometry that
maps one graph to another. These vertex attributes and edge weights can be incorporated as extra
columns and rows in CRs from Definition 3.3, and then incorporated into NCD and NBM. We can
compare graphs of different numbers of vertices because EMD works for both PDD and NCD as
weighted distributions of any finite size. This comparison splits the vertices from V (G) into parts
(subvertices) that are optimally ‘transported’ to a splitting of another vertex set V (F ).

Already for m = 4 unordered points in R2, there was no parametrized map for a 5-dimensional space
of (isometry classes of) plane quadrilaterals. Indeed, 6 pairwise distances between 4 ordered points
in R2 uniquely determine such a 4-point cloud uniquely up to isometry due to (Dekster & Wilker,
1987, Theorem 1) but these 6 distances should satisfy a complicated polynomial equation saying
that the tetrahedron on 4 points has volume 0. Hence random inter-point distances are realizable by
a cloud of m > n+ 1 unordered points in Rn with probability 0 Duxbury et al. (2016).

Problem 1.1 provides a roadmap for the discriminative (and then generative) approach to any data
objects by replacing graphs and isometries with other data and equivalences. The supplementary
materials include the code and all proofs. We thank all reviewers for their valuable time and advice.
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A EXTRA EXPERIMENTS ON MOLECULAR GRAPHS

Past maps of QM9 in Fig. 7 based on eigenvalues are too dense without clear separation. Even if
we zoom in, these two or three incomplete invariants will not provide any extra separation. The
complete invariants NDP contain much more geometric information.

Figure 7: Left: each dot represents one QM9 molecule whose atomic cloud has two largest roots
l1 ≥ l2 of eigenvalues (moments of inertia Nemec (2022) or elongations in two principal directions)
in Angstroms (1Å = 10−10m ≈ smallest interatomic distance). The color represents the free energy
G characterizing molecular stability. Right: each dot represents one QM9 molecule whose atomic
cloud has coordinates x, y expressed via the roots l1 ≥ l2 ≥ l3 ≥ 0 of three eigenvalues.

Figure 8: Left: the heatmap of all molecular graphs from QM9 in the simplest continuous invari-
ants. Right: 18336 graphs with 19 atoms. The color indicates the number of molecules at every
pixel.

B METRICS ON GRAPHS AND THEIR CONTINUITY UNDER PERTURBATIONS

This appendix verifies the axioms and Lipschitz continuity for auxiliary metrics in section 4.

Lemma B.1 (metric axioms for the bottleneck matching distance BMD). Let S,Q be any unordered
distributions of the same number of objects with a base metric d. Define the complete bipartite
graph Γ(S,Q) whose every edge e joining objects RS ∈ S and RQ ∈ Q has the weight w(e) =
d(RS , RQ). Then the bottleneck matching distance BMD(Γ(S,Q)) from Definition 4.4 satisfies all
metric axioms on such unordered distributions.

Proof of Lemma B.1. The coincidence axiom means that NBM(S,Q) = 0 if and only if the
weighted distributions S,Q are equal in the sense that there is a bijection g : S → Q so that
d(g(R), R) = 0 for any R ∈ S.
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Indeed, if the weighted distributions S,Q can be matched by a bijection, we get a vertex matching E
of Γ(S,Q) whose all edges have weights w(e) = 0. Definition 4.4 implies that BMD(Γ(S,Q)) = 0
as required.

Conversely, if BMD(Γ(S,Q)) = 0, there is a vertex matching E in Γ(S,Q) with all w(e) = 0. This
matching E defines a required bijection S → Q. The symmetry BMD(Γ(S,Q)) = BMD(Γ(Q,S))
follows from Definition 4.4 and the symmetry of the base metric d.

To prove the triangle inequality

BMD(Γ(S,Q)) + BMD(Γ(Q,T )) ≥ BMD(Γ(S, T )),

let ESQ, EQT be optimal vertex matchings in the graphs Γ(S,Q),Γ(Q,T ), respectively, such that

BMD(Γ(S,Q)) = W (ESQ),BMD(Γ(Q,T )) = W (EQT ),

see Definition 4.4. The composition ESQ ◦ EQT is a vertex matching in Γ(S, T ), so W (ESQ ◦
EQT ) ≥ BMD(Γ(S, T )). It suffices to prove that

W (ESQ) +W (EQT ) ≥ W (ESQ ◦ EQT ).

Let eST be an edge with a largest weight from ESQ ◦ EQT , so W (ESQ ◦ EQT ) = w(eST ). The
edge eST can be considered the union of edges eSQ ∈ ESQ, eQT ∈ EQT .

By the triangle inequality for the base metric d,

w(eSQ) + w(eQT ) ≥ w(eST ) = W (ESQ ◦ EQT )

implies that
W (ESQ) +W (EQT ) ≥ W (ESQ ◦ EQT )

because both terms on the left-hand side are maximized for all edges (not only eSQ, eQT ) from
ESQ, EQT .

Definition B.2 below makes sense for any distributions {[R1, w1], . . . , [Rm, wm]}, where
R1, . . . , Rm are objects with a base metric d and weights w1, . . . , wm ∈ [0, 1]. Each Ri can be
CBR or CBD of any depth with a base metric M∞ or BMD from Definitions 4.3, 4.5.

Definition B.2 (EMD). Let S = {[Ri(S), wi(S)]}m(S)
i=1 and Q = {[Rj(Q), wj(Q)]}m(Q)

j=1 be
weighted distributions of objects Ri(S), Rj(Q), which live in a space with a metric d. A
flow from S to Q is an m(S) × m(Q) matrix whose element fij ∈ [0, 1] represents a partial
flow from Ri(S) to Rj(Q). The Earth Mover’s Distance is the minimum cost EMD(S,Q) =
m(S)∑
i=1

m(Q)∑
j=1

fijd(Ri(S), Rj(Q)) for variable ‘flows’ fij ∈ [0, 1] subject to the conditions
m(Q)∑
j=1

fij ≤

wi(S) for i = 1, . . . ,m(S),
m(S)∑
i=1

fij ≤ wj(Q) for j = 1, . . . ,m(Q), and
m(S)∑
i=1

m(Q)∑
j=1

fij = 1.

The first condition
m(Q)∑
j=1

fij ≤ wi(S) means that not more than the weight wi(S) of Ri(S) ‘flows’

into all Rj(Q) via ‘flows’ fij , j = 1, . . . ,m(Q). The second condition
m(S)∑
i=1

fij = wj(Q) means

that all ‘flows’ fij from Ri(S) for i = 1, . . . ,m(S) ‘flow’ into Rj(Q) up to the maximum weight

wj(Q). The last condition
m(S)∑
i=1

m(Q)∑
j=1

fij = 1 forces to ‘flow’ all rows Ri(S) to all rows Rj(Q).

The EMD satisfies all metric axioms, see the appendix in Rubner et al. (2000), needs O(m3 logm)
time for distributions of a maximum size m and is approximated in O(m) time, see Shirdhonkar &
Jacobs (2008); Sato et al. (2020).

Definition B.2 can be adapted for the EMD between NDDs by (1) replacing the bottleneck distance
W∞ in Definition 4.3 with EMD between clouds of equally weighted points, and (2) replacing
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BMD(Γ) for a bipartite graph Γ with EMD(Γ) between the unordered sets (of potentially different
sizes) of BDDs with weights on all white vertices and BDDs on all black vertices.

The Lipschitz continuity of NDD and EMD in Theorem 4.7(c) needs Lemmas B.3, B.4, C.8.

If a metric graph G lives in an ambient metric space X , a natural perturbation of G is a shift of every
vertex of G up to ε in the metric of X . Then the distance d(p, q) between any vertices p, q of G
changes by at most 2ε.

We will prove the continuity in more general settings by only assuming that d(p, q) changes by at
most 2ε for any p, q ∈ V (G) without requiring an ambient space X .

Lemma B.3 (Lipschitz continuity of BMD). Let Γ be a complete bipartite graph with a vertex
matching E such that any e ∈ E has a weight w(e) ≤ ε. Then BMD(Γ) ≤ ε.

Proof of Lemma B.3. By Definition 4.4, the given matching E has the weight W (E) =
max
e∈E

w(e) ≤ ε. Since BMD(Γ) = min
E

W (E) is minimized for all vertex matchings, we get

BMD(Γ) ≤ ε.

Lemma B.4 (Lipschitz continuity of EMD). In Definition B.2, let distributions S,Q have a bijection
Ri(S) ↔ Ri(Q) between equally weighted objects such that d(Ri(S), Ri(Q)) ≤ ε for all i =
1, . . . ,m, where m = m(S) = m(Q). Then EMD(S,Q) ≤ ε.

Proof of Lemma B.4. In Definition B.2, choose partial flows fij =
1

m
for i = j, otherwise fij = 0.

Then EMD(S,Q) ≤
m∑
i=1

m∑
j=1

fijd(Ri(S), Rj(Q)) =
m∑
i=1

1

m
d(Ri(S), Ri(Q)) ≤ 1

m

m∑
i=1

ε = ε.

C PROOFS FOR EUCLIDEAN GRAPHS FROM SECTION 3

This appendix rigorously proves all parts of Theorem 4.7.

The affine dimension 0 ≤ aff(A) ≤ n of a cloud A = {p1, . . . , pm} ⊂ Rn is the maximum
dimension of the vector space generated by all inter-point vectors pi − pj , i, j ∈ {1, . . . ,m}. Then
aff(A) is an isometry invariant and is independent of an order of points of A. Any cloud A of 2
distinct points has aff(A) = 1. Any cloud A of 3 points that are not in the same straight line has
aff(A) = 2.

Lemma C.1 provides a simple criterion for a matrix to be realizable by squared distances of a point
cloud in Rn.

Lemma C.1 (realization of distances). (a) A symmetric m × m matrix of sij ≥ 0 with sii = 0 is
realizable as a matrix of squared distances between points p0 = 0, p1, . . . , pm−1 ∈ Rn if and only

if the (m− 1)× (m− 1) matrix gij =
s0i + s0j − sij

2
has only non-negative eigenvalues.

(b) If the condition in (a) holds, aff(0, p1, . . . , pm−1) equals the number k ≤ m− 1 ≤ n of positive
eigenvalues. Also in this case, gij = pi·pj define the Gram matrix GM of the vectors p1, . . . , pm−1 ∈
Rn, which are uniquely determined in time O(m3) up to an orthogonal map in Rn.

Proof of Lemma C.1. (a) We extend Theorem 1 from Dekster & Wilker (1987) to the case m < n+
1 and justify the reconstruction of p1, . . . , pm−1 in time O(m3) uniquely in Rn up to an orthogonal
map from O(n).

The part only if ⇒. Let a symmetric matrix S consist of squared distances between points p0 =
0, p1, . . . , pm−1 ∈ Rn. For i, j = 1, . . . ,m− 1, the matrix with the elements

gij =
s0i + s0j − sij

2
=

p2i + p2j − |pi − pj |2

2
= pi · pj

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

is the Gram matrix, which can be written as GM = PTP , where the columns of the n × (m − 1)
matrix P are the vectors p1, . . . , pm−1 . For any vector v ∈ Rm−1, we have

0 ≤ |Pv|2 = (Pv)T (Pv) = vT (PTP )v = vTGMv.

Since the quadratic form vTGMv ≥ 0 for any v ∈ Rm−1, the matrix GM is positive semi-definite
meaning that GM has only non-negative eigenvalues, see Theorem 7.2.7 in Horn & Johnson (2012).

The part if ⇐. For any positive semi-definite matrix GM, there is an orthogonal matrix Q such that
QTGMQ = D is the diagonal matrix, whose m−1 diagonal elements are non-negative eigenvalues
of GM. The diagonal matrix

√
D consists of the square roots of eigenvalues of GM.

(b) The number of positive eigenvalues of GM equals the dimension k = aff({0, p1, . . . , pm−1})
of the subspace in Rn linearly spanned by p1, . . . , pm−1. We may assume that all k ≤ n positive
eigenvalues of GM correspond to the first k coordinates of Rn. Since QT = Q−1, the given matrix
GM = QDQT = (Q

√
D)(Q

√
D)T becomes the Gram matrix of the columns of Q

√
D. These

columns become the reconstructed vectors p1, . . . , pm−1 ∈ Rn.

If there is another diagonalization Q̃TGMQ̃ = D̃ for Q̃ ∈ O(n), then D̃ differs from D by a
permutation of eigenvalues, which is realized by an orthogonal map, so we set D̃ = D. Then
GM = Q̃DQ̃T = (Q̃

√
D)(Q̃

√
D)T is the Gram matrix of the columns of Q̃

√
D.

The new columns differ from the previously reconstructed vectors p1, . . . , pm−1 ∈ Rn by the or-
thogonal map QQ̃T . Hence the reconstruction is unique up to O(n)-transformations. Computing
eigenvectors p1, . . . , pm−1 requires a diagonalization of GM in time O(m3) (Press et al., 2007,
section 11.5).

Though Lemma C.1 gives a two-sided criterion for realizability of distances by points p1, . . . , pm ∈
Rn, the space of distance matrices is highly singular and cannot be easily sampled. Even m = 4
points in R2 have 6 distances that should satisfy a polynomial equation saying that the tetrahedron
with these 6 edge lengths has volume 0. So a randomly sampled matrix of potential distances for
m > n+ 1 is unlikely to be realizable by a cloud of m ordered points in Rn.

Chapter 3 in Liberti & Lavor (2017) discusses realizations of a complete graph given by a distance
matrix in Rn. Lemma C.2(a) and later results hold for all clouds including degenerate ones, e.g. for
3 points in a straight line.

Any points p1, . . . , pn−1 ∈ A have aff(p1, . . . , pn−1) ≤ n−2. For example, any two distinct points
in A ⊂ R3 generate a straight line. In R2, any point p1 ̸= O(A) forms a suitable {p1}. In R3, one
can choose any distinct points p1, p2 ∈ A so that the infinite straight line via p1, p2 avoids O(A).

If there are no such p1, p2, then A ⊂ R3 is contained in a straight line L, so aff(A) = 1. In this
degenerate case, the stronger condition aff(O(A)∪ {p1, . . . , pn−1}) = aff(A) will help reconstruct
A ⊂ L by using any point p1 ̸= O(A). The first step is to reconstruct any ordered sequence from its
distance matrix in Lemma C.2(a).

Lemma C.2(a) holds for all degenerate clouds, e.g. for three points are in a straight line.

Lemma C.2 (reconstruction of ordered points). (a) Any sequence of ordered points A =
(p1, . . . , pm) in Rn can be reconstructed (uniquely up to isometry) from the matrix of the Euclidean
distances |pi − pj | in time O(m3). If all distances are divided by R = max

i=1,...,m
|pi|, the reconstruc-

tion of A ⊂ Rn is unique up to isometry and uniform scaling.

(b) If m ≤ n, the uniqueness of reconstructions in part (a) holds if we replace isometry with rigid
motion. Hence any n− 1 ordered points p1, . . . , pn−1 can be uniquely reconstructed from all pair-
wise distances between 0, p1, . . . , pn−1 up to SO(n) rotation around the origin 0 ∈ Rn.

Proof of Lemma C.2. (a) By translation, we can put p1 at the origin 0 ∈ Rn. Let GM be the (m−

1)×(m−1) matrix gij =
p2i + p2j − |pi − pj |2

2
= pi·pj constructed from squared distances between
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p1 = 0, . . . , pm for i, j = 2, . . . ,m. By Lemma C.1(b) if GM has k ≤ n positive eigenvalues, then
p1 = 0, . . . , pm can be uniquely determined up to isometry in Rk ⊂ Rn in time O(m3). If all
distances are divided by the same radius R, the above construction guarantees uniqueness up to
isometry and uniform scaling.

(b) If m ≤ n, any mirror image of A ⊂ Rn after a suitable rigid motion in Rn can be assumed
to belong to an (n − 1)-dimensional hyperspace H ⊂ Rn, where they are matched by a mirror
reflection H → H with respect to an (n − 2)-dimensional subspace S ⊂ H . This reflection is
realized by the SO(n) rotation through 180◦ around S.

Lemma C.2(b) for m = n = 3 implies that any triangle is determined by its sides up to rigid
motion in R3. For example, the sides 3, 4, 5 define a right-angled triangle whose mirror images are
not related by rigid motion inside a plane H ⊂ R3, but are matched by composing a suitable rigid
motion in H and a 180◦ rotation of R3 around a line in H .

Lemma C.3 (time of determinant). Any n× n determinant can be computed in time O(n3).

Proof of Lemma C.3. Any n × n determinant can be computed by Gaussian elimination in time
O(n3), see Bunch & Hopcroft (1974). The more recent theoretical estimate is O(n2.373) by
Fisikopoulos & Penaranda (2016).

Proof of Theorem 4.7(a). Any rigid motion of Rn mapping a Euclidean graph G ⊂ Rn to another
graph F is a bijection preserving distances and signs of determinants, and hence induces a bijection
CBR(G; p1, . . . , pi) → CBR(F ; q1, . . . , qi) for all p1, . . . , pi ∈ V (G) and corresponding vertices
q1, . . . , qi ∈ V (F ) for any i = 1, . . . , h, which implies a bijection NCD(G;h) → NCD(F ;h). By
Definition 3.5, if G has m unordered vertices, the NCD(G) consists of m(m−1) . . . (m−h+1) =
O(mh) Centered Base Representations CBR(G;A) for all base sequences A ⊂ V (G) of h ordered
vertices.

Every CBR(G;A) consists of the three components sign(A),CD(A),CR(G;A). For h = n,
sign(A) is the n × n determinant computable in time O(n3) by Lemma C.3. The distance ma-
trix CD(A) needs O(h2) time. The (h + 1) × (m − h) matrix CR(G;A) has O(hm) distances,
each computable in time O(n). So CBR(G;A) can be computed in time O(n2m) for n ≤ m.
Multiplying this time by the number O(mh) of base sequences gives the final time O(n2mh+1) for
NCD(G).

The proof of Theorem 4.7(b) will use the fact that any point in Rn is uniquely determined by n+ 1
distances to n+ 1 ordered points that affinely span Rn, and also Lemma C.4.

Lemma C.4 (equal CBRs). Let a Euclidean graph G ⊂ Rn have the vertex set V (G) with the
center of mass at p0 = 0 ∈ Rn. Let n − 1 ordered vertices p1, . . . , pn−1 linearly span an (n −
1)-dimensional subspace S ⊂ Rn. Let G(p1, . . . , pn−1) be the subgraph of G on the vertex set
V (G) and all edges of G at p1, . . . , pn−1. For any other vertex p, let CBR′(G; p1, . . . , pn−1, p)
be obtained from the Centered Base Representation BR(G; p1, . . . , pn−1, p) by removing signs of
distances from all vertices q ∈ V (G) − {p1, . . . , pn−1, p} to p. If BR′(G; p1, . . . , pn−1, p) =
BR′(G; p1, . . . , pn−1, p

′) for some vertices p, p′ ∈ V (G) − {p1, . . . , pn−1}, the mirror reflection
with respect to S maps G(p1, . . . , pn−1) to itself and p to p′.

Proof of Lemma C.4. Under the reflection fS of Rn with respect to the subspace S ⊂ Rn, the
vertices p, p′ should be swapped because they have equal (signed) distances to the ordered points
p0, . . . , pn−1 ∈ S. The equality of given CBR′s means that V ′ = V (G) − {p1, . . . , pn−1, p, p

′}
bijectively maps to itself via q 7→ q′ so that any matched q, q′ have the same distances to the n + 1
ordered points p0, . . . , pn−1, p as to p0, . . . , pn−1, p

′, respectively. Any point in Rn is determined
by its distances to the n affinely independent points p0, . . . , pn−1 up to the mirror reflection fS .
Since fS fixes p0, . . . , pn−1, the reflection fS should swap q, q′ in such pairs and all their edges, so
we conclude that fS(G(p1, . . . , pn−1)) = G(p1, . . . , pn−1) and fS(p) = p′.

Proof of Theorem 4.7(b). The completeness is proved by reconstructing any Euclidean graph G ⊂
Rn from NCD(G;n) uniquely up to rigid motion.
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We prove that any Euclidean graph G ⊂ Rn can be reconstructed from its Nested Distance Distri-
bution NCD(G;n) by induction on the dimension n.

The inductive base n = 1 is Example 4.8. Assume that any graph G on m unordered vertices can
be reconstructed in Rk in time O(k3m) for any k < n. Below we prove the inductive step for the
dimension n > 1. Start from any CBR(G;A) = [sign(A),CD(A),CR(G;A)] from Definition 3.5,
where A is a sequence of some n ordered (not yet geometrically fixed) vertices p0, . . . , pn ∈ V (G).
The first point p0 is fixed at the origin 0 ∈ Rn as usual by translation.

Lemma C.1(b) for the matrix CD(A) gives the number k ≤ n of positive eigenvalues of the Gram
matrix of the n vectors p1, . . . , pn in time O(n3). If aff(A) = k < n, we use the nested structure
of NCD(G;n) to take another CBR(G; p1, . . . , pk, q, . . . , pn) for a new vertex q ∈ V (G) − A.
Check if aff(p1, . . . , pk, q) = k + 1 again by Lemma C.1(b) using the matrix D(p1, . . . , pk, q). If
the affine dimension has not increased, we take another CBR with the same points p1, . . . , pk and a
new (k + 1)-st point from V (G)− {A ∪ q} and so on.

This search through Centered Base Representations involving the remaining vertices of G requires a
maximum of m−n−1 steps with O(n3) time for every computation of the affine dimension. Hence
in time O(n3m), we can find a Centered Base Representation CBR(G;A) whose base sequence A
affinely generates the subspace of dimension k = aff(V (G)) in Rn. If k < n, the proof follows
from the inductive hypothesis for the smaller dimension k.

If aff(V (G)) = n, use the same notations for the fixed vertices 0 = p0, . . . , pn that linearly generate
Rn. Lemma C.2(a) for m = n + 1 and the distance matrix D(A) allow us to reconstruct n + 1
ordered points 0 = p0, . . . , pn up to isometry in Rn in time O(n3). By Definition 3.5 every column
of CR(G;A) contains Euclidean distances from the vertices 0 = p0, . . . , pn ∈ Rn, which affinely
generate Rn, to another vertex q ∈ V (G)−A.

These n + 1 distances uniquely determine the position of q in Rn whose coordinates can be
found as follows. Each scalar product q · pi can be computed as |q| · |pi| cos∠(q, 0, pi) =
|q|2 + |pi|2 − |q − pi|2

2
for i = 1, . . . , n. On another hand, q · pi is a linear combination of un-

known coordinates of q with coefficients equal to the coordinates of pi. One can find all coordinates
of q in time O(n3) by solving the system of linear equations, where the n × n determinant on the
linear basis p1, . . . , pn is not zero. The total time is O(n3m).

Since all vertices q ∈ V (G) − A are geometrically unique, they can be (arbitrarily) ordered, say
pn+1, . . . , pm, following p0, . . . , pn. The signs of distances in the matrix CR(G;A) also tell us
about (present or absent) edges from p0, . . . , pn to all other vertices q ∈ V (G)−A.

The nested structure of NCD(G;n) allows us to consider m − n unordered Base Representations
CBR(G; p1, . . . , pn−1, pj) for all vertices pj with j = n, . . . ,m. Every vertex pj ∈ V (G) is
uniquely determined in Rn by the column of its signed distances to p0, . . . , pn in the (n+1)× (m−
n− 1) matrix R(G; p0, . . . , pn) for j = n+ 1, . . . ,m.

By Lemma C.4, this distance list of pj (without edges between pj , pk for j, k > n) suffices to
identify one or maximum two Base Representations among all m − n unordered CBRs with the
fixed n points p0, . . . , pn−1 and variable n-th vertices. If there is a choice of two CBRs, we can
take any of them for pj . Indeed, choosing another vertex pk, which should be mirror symmetric to
pj , will produce a mirror image of the reconstructed subgraph G(p1, . . . , pn, pj) by Lemma C.4.

The matrix CR(G; p1, . . . , pn−1, pj) from the found CBRs contains signs that determine the
(present or absent) edges from pj to all other vertices pk for k = n+ 1, . . . ,m.

To guarantee the uniqueness of G ⊂ Rn under rigid motion and not only under isometry, we addi-
tionally use sign(p1, . . . , pn) from CBR to fix an orientation of the simplex on p0, . . . , pn.

The strength σ(A) depends only on the distance matrix D(A), we write σ(A) for brevity. When the
simplex on A degenerates, the strength σ(A) vanishes and is Lipschitz continuous by Lemma 4.2,
while the volume of the simplex on B is not Lipschitz continuous as shown below.
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In R2, consider the triangle with two vertices fixed at (±l, 0) and one moving vertex (0, tε) for
t ∈ [−1, 1]. The signed area of the triangle changes from −lε (unbounded because l can be large
for any fixed small ε) to 0 (when t = 0 and the triangle degenerates), then to lε (when t = 1). The
area changes by 2lε while only one vertex moves by 2ε, so the ratio of the area change over a point
perturbation can be as large as a half-distance between given points.

Lemma C.5 (time of strength). For any base sequence A of n ordered points p1, . . . , pn ∈ Rn, the
strength σ(A) can be computed in time O(n3).

Proof of Lemma C.5. The half-perimeter p(A) is computable via all pairwise distances in time
O(n2). The squared volume vol2(A) can be expressed by the Cayley-Menger (n + 2) × (n + 2)
determinant from Sippl & Scheraga (1986) in inter-point distances, which can be computed in time
O(n3) by Lemma C.3.

Lemma C.6 (axioms and time of M∞ on CBRs). Let G,F ⊂ Rn be Euclidean graphs with m
unordered vertices and base sequences A ⊂ V (G) and B ⊂ V (F ) of h ≤ n ordered vertices.
The metric M∞(CBR(G;A),CBR(F ;B)) from Definition 4.3 satisfies all metric axioms and is
computable in time O(m1.5 logh+1 m) assuming that n3 ≤ O(m1.5 logh+1 m).

Proof of Lemma C.6. The metric axioms for M∞ follow from the same axioms for the metrics L∞
and W∞ because the maximum of metrics is still a metric, see metric transforms in section 4.1

of Deza & Deza (2009). The first metric
2

λn
| sign(A)σ(A) − sign(B)σ(B)| can be computed

in time O(n3) by Lemma C.5. The metric L∞(CD(A),CD(B)) requires O(h2) time. The bot-
tleneck distance W∞(CR(G;A)),CR(F ;B)) between (h + 1) × (m − h) matrices CR(G;A),
CR(F ;B) with unordered columns (considered as clouds of m − h unordered points in Rh) needs
time O(m1.5 logh+1 m) by Theorem 6.5 in Efrat et al. (2001).

Lemma C.7 (metric axioms for NBM on NCDs). The Nested Bottleneck Metric NBM from Defi-
nition 4.5 satisfies all metric axioms on Nested Distance Distributions.

Proof of Lemma C.7. Induction on the depth i = n, . . . , 1. The inductive base i = n follows from
the metric axioms in Lemma C.6 for M∞ in Definition 4.3.

The inductive step from a depth i (between 1, n) to the smaller value i− 1 follows from Lemma B.1
and the metric axioms in the inductive hypothesis for the depth i.

Lemma C.8 (Lipschitz continuity of M∞). Let A be a base sequence of 1 ≤ h ≤ n ordered vertices
in a Euclidean graph G ⊂ Rn. Let B,F be obtained from A,G, respectively, by perturbing every
vertex of G within its ε-neighborhood in Rn. Then CBR(G;A) changes in M∞ from Definition 4.3
by at most 2ε, so M∞(CBR(G;A),CBR(F ;B)) ≤ 2ε.

Proof of Lemma C.8. Order all vertices of the graphs G,F so that every vertex pi ∈ V (G) has the
same index as its perturbation qi ∈ V (F ). The bijection pi ↔ qi induces the bijections between the
corresponding elements of the matrices CD(A) ↔ CD(B) and CR(G;A) ↔ CR(F ;B), which

all differ by at most 2ε. Lemma 4.2 implies that
2

λn
| sign(A)σ(A)− sign(B)σ(B)| ≤ 2ε Since all

three components of the max metric M∞ in Definition 4.3 have the upper bound 2ε, conclude that
M∞ ≤ 2ε.

Definition B.2 can be adapted for the EMD between NCDs by (1) replacing the bottleneck distance
W∞ in Definition 4.3 with EMD between clouds of equally weighted points, and (2) replacing
BMD(Γ) for a bipartite graph Γ with EMD(Γ) between the unordered sets (of potentially different
sizes) of CBDs with weights on all white vertices and CBDs on all black vertices.

Proof of Theorem 4.7(c). We first prove the Lipschitz continuity of the metric NBM on NCDs.
Order all vertices of the graphs G,F so that every pi ∈ V (G) has the same index as its ε-perturbation
qi ∈ V (F ). In Definition 4.5, for any base sequence A of p1, . . . , ph ∈ V (G), there is a base
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sequence B of vertices q1, . . . , qh ∈ V (F ), which are ε-perturbations of p1, . . . , ph, respectively,
such that M∞(CBR(G;A),CBR(F ;B)) ≤ 2ε by Lemma C.8.

These distances M∞ are weights of edges in the index-preserving vertex matching E of the complete
bipartite graph Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1) for any p1, . . . , ph−1 and their ε-perturbations
q1, . . . , qh−1. Then BMD(Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1)) ≤ 2ε by Lemma B.3. Since this
conclusion holds for all (choices of) p1, . . . , ph−1 ∈ V (G), we iteratively apply this argument for
the bipartite graphs Γ(G; p1, . . . , pi−1;F ; q1, . . . , qi−1) for 1 ≤ i < n and finally conclude that
NBM(NCD(G;h),NCD(F ;h)) ≤ 2ε. The proof that EMD(NCD(G;h),NCD(F ;h)) ≤ 2ε is
similar by using Lemma B.4 instead of B.3.

Proof of Theorem 4.7(d). In Definition 4.5, for any fixed 1 ≤ i ≤ h and or-
dered vertices p1 . . . , pi−1 ∈ V (G) and q1 . . . , qi−1 ∈ V (F ), the bipartite graph
Γ(G; p1, . . . , pi−1;F ; q1, . . . , qi−1) has V = 2(m− i+ 1) = O(m) vertices, E = (m− i+ 1)2 =
O(m2) edges.

For i = h, the weight w(e) of each edge e equals M∞, which needs time O(m1.5 logh+1 m)
by Lemma C.6. For all O(m2) edges of Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1), the time is
O(m3.5 logh+1 m). The bottleneck matching distance BMD for such a graph is computed
by Hopcroft & Karp (1973) in time O(E

√
V ) = O(m2.5), which is dominated by the time

O(m3.5 logh+1 m) preparing the weighted graph.

For all O(m2(h−1)) choices of ordered vertices p1, . . . , ph−1 ∈ V (G) and q1, . . . , qh−1 ∈ V (F ),
the Bottleneck Matching Distance for all graphs Γ(G; p1, . . . , ph−1;F ; q1, . . . , qh−1) are found in
time

O(m2(h−1))O(m3.5 logh+1 m) = O(m2h+1.5 logh+1 m).

For every next iteration i = h − 2, . . . , 1, the parameter i goes down by 1 every time. We can
compute all distances BMD(Γ(G; p1, . . . , pi−1;F ; q1, . . . , qi−1) in time

O(m2(i−1))O(m3.5 logh+1 m) = O(m2i+1.5 logh+1 m).

The sum of all these times for i = 1, . . . , h− 1 is still O(m2h+1.5 logh+1 m) from the first step.

All CBDs in Definition 3.5 have sizes at most m, which is the maximum number of points in the
given clouds. The EMD between weighted distributions of a maximum size m can be computed
in near-cubic time O(m3 logm), see Fredman & Tarjan (1987); Goldberg & Tarjan (1987). Since
this complexity is dominated by the time O(m3.5 logh+1 m) for computing O(m2) weights M∞,
each in time O(m1.5 logh+1 m) by Lemma C.6, the total time for the EMD is the same as for the
NBM.

Thank you for reading all the proofs!
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