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Abstract
Sampling from complicated probability
distributions—such as multimodal poste-
riors arising in Bayesian inference and
high-dimensional distributions in statistical
mechanics—is a challenging problem. Pi-
geons.jl is a Julia package that implements
Parallel Tempering, a technique that leverages
parallelism to improve the effectiveness of
Markov chain Monte Carlo algorithms. Pi-
geons.jl provides a simple user interface to
perform such computations single-threaded,
multi-threaded, and/or distributed over thou-
sands of MPI-communicating machines. In this
paper, we discuss a feature of Pigeons.jl that
we call strong parallelism invariance (SPI): a
guarantee that the output for a given seed is
identical irrespective of the number of threads
and processes. This feature is crucial for sci-
entific reproducibility and software validation.
We describe the key features of Pigeons.jl that
enable a distributed and randomized algorithm
satisfying SPI. Finally, we briefly discuss some
recent developments in Pigeons.jl.

1. Introduction
In many scientific application domains, the ability to ob-
tain samples from a probability distribution is of central
interest. For instance, sampling methods have been used to
discover magnetic polarization in the black hole of galaxy
M87 (Akiyama et al., 2021) and to image the Sagittarius
A* black hole (Akiyama et al., 2022). They have also been
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Figure 1: Speedup relative to single-thread execution for Pi-
geons.jl in the distributed (MPI) setting. Error bars denote ap-
proximate 95% confidence intervals. The blue dotted line repre-
sents a hypothetical speedup equal to the number of processes.
The red dashed line indicates a speedup of one for reference.

used to model the evolution of single-cell cancer genomes
(Salehi et al., 2021), infer plasma dynamics inside nuclear
fusion reactors (Gota et al., 2021), and to identify gerry-
mandering in Georgia’s 2021 congressional districting plan
(Zhao et al., 2022). Similarly, evaluating high-dimensional
integrals or sums over complicated combinatorial spaces
are related tasks that can also be solved with sampling via
Markov chain Monte Carlo (MCMC) methods. However,
such calculations can often be bottlenecks in the scientific
process, with simulations that can last days or even weeks
to finish.

Pigeons.jl1 enables users to sample efficiently from chal-
lenging probability distributions. To achieve this, Pi-
geons.jl provides a multi-threaded and distributed im-
plementation of non-reversible parallel tempering (PT;
Syed et al., 2021a;b; Surjanovic et al., 2022; 2024), a
state-of-the-art MCMC algorithm. Crucially, Pigeons.jl
follows the tuning guidelines described in Syed et al.
(2021a) to provide a hyperparameter-free implementation.
Pigeons.jl’s simple user interface facilitates running PT
single-threaded, multi-threaded, and/or distributed over

1Documentation available at https://pigeons.run/dev/. Public
repository: https://github.com/Julia-Tempering/Pigeons.jl.
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Figure 2: A bimodal distribution. Blue lines display output from
1,000 iterations of a random walk Metropolis–Hastings sampler.

MPI-communicating machines. We have stress-tested Pi-
geons successfully with up to 1,000 processes running con-
currently on a compute cluster (Sockeye) at the Univer-
sity of British Columbia. Importantly, Pigeons comes with
guarantees on strong parallelism invariance (SPI), wherein
the output for a given seed is identical irrespective of the
number of threads or processes. Such a level of repro-
ducibility is rare in distributed software but of great use
for the purposes of debugging in the context of sampling
algorithms, which produce stochastic output. Specifically,
Pigeons.jl is designed to be suitable and yield reproducible
output for:

1. one machine running on one thread;
2. one machine running on several threads;
3. several machines running, each using one thread, and
4. several machines running, each using several threads.

2. Parallel tempering in a nutshell
Consider the problem of sampling from a probability den-
sity (or mass) function π(x), henceforth called the target.
Solving this task is often challenging, as the distribution π
can exhibit features which traditional MCMC methods—
from random walk Metropolis–Hastings to Hamiltonian
Monte Carlo—struggle to describe accurately. For exam-
ple, in bimodal distributions such as the one illustrated in
Fig. 2, traditional methods might remain stuck in one of the
two modes for an extremely long period of time.

To resolve this issue, PT constructs a sequence of N
distributions, π1, π2, . . . , πN , where πN is usually equal
to the target π. The distributions are chosen so that it
is easy to obtain samples from π1—called the reference
distribution—with the sampling difficulty increasing as one
approaches πN . An example of such a sequence of distri-
butions, referred to as an annealing path, is shown in Fig. 3.

PT operates by first obtaining samples from each distribu-
tion on the path in parallel; this is called an exploration
phase. Then, in the communication phase, PT proposes
swapping the samples between adjacent distributions. This

Figure 3: Heatmaps of six distributions lying on an annealing
path, starting from a unimodal reference (top-left), and ending
at the target distribution from Fig. 2.

step is crucial: successive swaps along the path amount to
transporting samples from the reference to the target. This
allows for the discovery of new regions of the space of the
target distribution such as the top-right mode in Fig. 2.

3. Overview of Pigeons.jl
Pigeons.jl exploits the fact that the exploration phase in PT
is embarrassingly parallel to provide a multithreaded and
distributed Julia implementation of the algorithm.

In many problems, e.g. in Bayesian statistics, the target π
is typically known only up to a normalizing constant,

π(x) =
γ(x)

Z
, Z =

∫
γ(x) dx, (1)

where γ can be evaluated pointwise but Z is typically un-
known. Pigeons.jl takes as input the function γ.

The output of Pigeons.jl can be used for two main tasks:

1. Approximating integrals of the form
∫
f(x)π(x) dx.

For example, the choice f(x) = x computes the mean
and f(x) = I[x ∈ A] computes the probability of A
under π, where I[·] denotes the indicator function.

2. Approximating the value of the normalization constant
Z. For example, in Bayesian statistics, this corresponds
to the marginal likelihood, which can be used for model
selection.

The Pigeons package particularly shines compared to tra-
ditional sampling approaches in the following scenarios:

• When the target density π is challenging due to a
complex structure (e.g., high-dimensional, multi-modal,
etc.).

• When the user needs not only
∫
f(x)π(x) dx but also

the normalizing constant Z. Many existing tools focus
on the former and struggle or fail to do the latter.
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• When the target distribution π is defined over a non-
standard space, e.g. a combinatorial object such as a
phylogenetic tree.

There are two fundamental concepts in the implementation
that we will use in the following sections. For a distribution
πi in the path, we call its index the i-th chain. During exe-
cution, we assign replicas to work on the distributions asso-
ciated to the chains. The map between chains and replicas
is one-to-one, and thus can be seen as a permutation of the
set {1, . . . , N}. Replicas are the fundamental unit of par-
allelization in PT: they may be distributed across threads,
processes, and machines.

In Appendix A we provide examples of how to use Pi-
geons.jl. For more details on the implementation, see Sur-
janovic et al. (2025).

4. Strong parallelism invariance
In this section we describe potential violations of strong
parallelism invariance (SPI)—which we define as a guar-
antee that the output for a given seed is identical irrespec-
tive of the number of threads and processes—that can occur
in a distributed setting. We also explain how we avoid these
issues by using special distributed reduction schemes and
splittable random number generators. Insights provided in
this section can be applied to general distributed software
beyond Julia.

We have identified two factors that can cause violations of
our previously-defined SPI that standard Julia libraries do
not automatically take care of:

1. Non-associativity of floating point operations: When
several workers perform distributed reduction of floating
point values, the output of this reduction will be slightly
different depending on the order taken during reduction.
When these reductions are then fed into further random
operations, this implies that two randomized algorithms
with the same seed but using a different number of work-
ers will eventually arbitrarily diverge.

2. Global, thread-local, and task-local random number
generators: These are the dominant approaches to par-
allel random number generators in current languages,
and an appropriate understanding of these RNGs is nec-
essary. In particular, in Julia it is important to under-
stand the behaviour of the @threads macro.

Our focus in the remainder of this section is to describe
how our implementation solves the two above issues.

4.1. Distributed reduction and floating point
non-associativity

The execution of PT in Pigeons.jl is divided into rounds,
which are sequences of scans—an exploration phase fol-
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Figure 4: Adding eight floating point numbers {1x, 2x, . . . , 8x}
across eight machines. Additions in each row of the tree can be
performed in parallel. The final result is stored in the root node of
the tree and can be represented by the expression ((1x + 2x) +
(3x + 4x)) + ((5x + 6x) + (7x + 8x)), indicating the order of
operations.
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Figure 5: One possible way of adding eight floating point num-
bers {1x, 2x, . . . , 8x} across two machines. The final result is
stored in the root node of the tree and can be represented by the
expression (((1x+2x)+3x)+4x)+ (((5x+6x)+7x)+8x).
Note that the order of operations in this expression is different
from the one presented in Fig. 4.

lowed by a communication phase—of exponentially in-
creasing length. At the end of each round, replicas need to
exchange information. This can be related to the output of
the program—e.g., the value of the normalization constant
Z—as well as statistics needed to adapt the sampler so that
the next round runs more efficiently. Almost all of these
cases involve summing floating-point numbers that are lo-
cated on different threads, processes, or compute nodes (in
the following we use the generic term machine).

To illustrate why distributed reduction with floating point
values can violate strong parallelism invariance if not prop-
erly implemented, we consider the following toy exam-
ple. Suppose we have 8 machines storing the floating point
numbers {1x, 2x, . . . , 8x}, as illustrated in Fig. 4, where
we use x = 10e1 ≈ 27.1828 in the following examples.
In this case, if our reduction procedure is to sum the float-
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Figure 6: Addition of eight floating point numbers across eight (left) and two (right) machines with a guarantee on SPI. Each machine
is represented by a different colour. In both cases, the final result can be represented by the same expression ((1x+2x)+ (3x+4x))+
((5x+ 6x) + (7x+ 8x)).

ing point numbers, we know that our final answer should
be approximately 36x. However, depending on the exact
order in which floating point addition is carried out, the an-
swers might not all be the same and exactly equal to 36x.
For instance, in Fig. 4 we see that the order of operations
for eight machines would be given by

((1x+ 2x) + (3x+ 4x)) + ((5x+ 6x) + (7x+ 8x))

≈ 978.5814582452562.

In contrast, with two machines, one possible order of oper-
ations might be

(((1x+ 2x) + 3x) + 4x) + (((5x+ 6x) + 7x) + 8x)

≈ 978.5814582452563.

Fig. 5 shows a possible reduction tree for two machines.

To avoid the issue of non-associativity of floating point
arithmetic, we ensure that the order in which operations
are performed is exactly the same, irrespective of the num-
ber of processes/machines and threads. This is achieved
by making sure that every value to be added—if addition
is our reduction operation—is a leaf node in a reduction
tree that is invariant to the number of machines available
to perform the computation. For instance, if N values are
to be reduced, then the reduction tree would have N leaf
nodes. If M machines are available, these machines are
then assigned in such a way that the order of operations is
as if there were N machines available. To do so, it may
be necessary for a machine to “communicate with itself”,
imitating the behaviour that would be present if there were
N machines available. Fig. 6 illustrates the reduction pro-
cedure for eight and two machines.

4.2. Splittable random streams

Another building block towards achieving SPI is a split-
table random stream (L’Ecuyer, 1988; Burton & Page,
1992). Julia uses task-local random number generators, a
notion that is related to (but does not necessarily imply)

strong parallelism invariance. A task is a unit of work on a
machine. A task-local RNG would then mean that a sepa-
rate RNG is used for each unit of work, hopefully implying
strong parallelism invariance if the number of tasks is as-
sumed to be constant. Unfortunately, this is not the case
when a separate task is created for each thread of execu-
tion in Julia. We note that the @threads macro in Julia
creates nthreads() tasks and thus nthreads() pseudo-
random number generators. This can break strong paral-
lelism invariance as the output may depend on the number
of threads.

To motivate splittable random streams, consider the follow-
ing toy example that violates our notion of SPI:� �
using Random
import Base . Threads . @threads

println (" Num . of threads : $( Threads . nthreads ()) ")

const n_iters = 10000
result = zeros ( n_iters )
Random . seed !(1)
@threads for i in 1: n_iters

result [i] = rand ()
end
println (" Result : $( last ( result )) ")� �
With eight threads, this outputs:� �
Num . of threads : 8
Result : 0 .2 5679999169092793� �
Julia guarantees that if we rerun this code, as long as we
are using eight threads, we will always get the same result,
irrespective of the multi-threading scheduling decisions
implied by the @threads-loop. Internally, Julia works
with task-local RNGs and the @threads macro spawns
nthreads() number of task-local RNGs. For this reason,
with a different number of threads, the result is different:� �
Num . of threads : 1
Result : 0 .8 785201210435906� �
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In this simple example above, the difference in output is
perhaps not too concerning, but for our parallel tempering
use case, the distributed version of the algorithm is signifi-
cantly more complex and difficult to debug compared to the
single-threaded one. We therefore take task-local random
number generation one step further and achieve SPI, which
guarantees that the output is not only reproducible with re-
spect to repetitions for a fixed number of threads, but also
for different numbers of threads or processes.

A first step to achieve this is to associate one random num-
ber generator to each replica. To do so, we use our Split-
tableRandoms.jl package, which is a Julia implementation
of Java SplittableRandoms. Our package offers an imple-
mentation of SplitMix64 (Steele et al., 2014), which allows
us to turn one seed into an arbitrary collection of pseudo-
independent RNGs. A quick example of how to use the
SplittableRandoms.jl library is given below. By splitting a
master RNG using the split() function, we can achieve
SPI even with the use of the @threads macro.� �
using Random
using SplittableRandoms : SplittableRandom , split
import Base . Threads . @threads

println (" Num . of threads : $( Threads . nthreads ()) ")

const n_iters = 10000
const master_rng = SplittableRandom (1)
result = zeros ( n_iters )
rngs = [ split ( master_rng ) for _ in 1: n_iters ]
Random . seed !(1)
@threads for i in 1: n_iters

result [i] = rand ( rngs [i])
end
println (" Result : $( last ( result )) ")� �
With one and eight threads, the code above outputs� �
Num . of threads : 1
Result : 0 .4 394633333251359

Num . of threads : 8
Result : 0 .4 394633333251359� �
5. Recent developments
We discuss briefly some important additions to Pigeons.jl
since its first release (v0.1.0).

autoMALA Since version v0.2.0, Pigeons.jl’s default ex-
plorer for most models in continuous space has been au-
toMALA (Biron-Lattes et al., 2024), a novel MCMC sam-
pler based on the Metropolis-adjusted Langevin algorithm
(MALA). autoMALA continually adapts its step size at
each iteration based on the local geometry of the target dis-
tribution. Such automatic adjustments are highly desirable
in the exploration phase, since otherwise we would need to
find optimal step sizes for each distribution in the annealing
path—a prohibitively costly process.

Support for BUGS models The latest version of Pi-
geons.jl at the time of writing (v0.4.9) added support for
sampling from programs written in BUGS (Lunn et al.,
2000; 2009; 2013), by leveraging the Julia implementation
of the language in JuliaBUGS.jl2.

Tempered Particle Gibbs for Turing-complete PPLs
Particle Gibbs (PG, Andrieu et al., 2010) is an MCMC al-
gorithm that has been shown (Wood et al., 2014) to be a
natural sampler for arbitrary programs written in Turing-
complete probabilistic programming languages (PPLs).
For example, the Julia package Turing.jl (Ge et al., 2018)
provides a PG sampler that can handle any program writ-
ten in DynamicPPL (Tarek et al., 2020), its underlying PPL.
However, this generality comes at the expense of poor per-
formance in moderately complex models. The reason is
that PG is, essentially, a smart way for selecting samples
from the prior that are close to the posterior. When these
distributions are very different, PG can be inefficient.

With Pigeons.jl we can partially alleviate this issue by us-
ing PG as an explorer in PT. Indeed, PG should be efficient
for exploring distributions closer to the prior. Such samples
can then be transported towards the posterior chain via the
PT process. In order to construct the annealing sequence
of distributions for an arbitrary PPL program, it suffices
to inject an inverse temperature parameter β ∈ [0, 1] in the
call to compute the log density of every observe statement
(see Gordon et al., 2014, for an explanation of this syntax)
in the program. Leveraging multiple dispatch in Julia, we
have successfully applied this technique to DynamicPPL
programs in our package TPGExplorers.jl3.

6. Conclusion
Pigeons.jl is a Julia package that enables users with
no experience in distributed computing to efficiently ap-
proximate posterior distributions and solve challenging
Lebesgue integration problems over a distributed comput-
ing environment. The core algorithm behind Pigeons.jl is
distributed, non-reversible parallel tempering (Syed et al.,
2021a; Surjanovic et al., 2022). Pigeons.jl can be used in
a multi-threaded context, as well as distributed over up to
thousands of MPI-communicating machines. Further, Pi-
geons.jl is designed so that for a given seed, the output is
identical regardless of the number of threads or processes
used.
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A. Examples
In this section we present a set of minimal examples that demonstrate how to use Pigeons.jl for sampling. We also direct
readers to our growing list of examples at InferHub (https://julia-tempering.github.io/InferHub/), which hosts a collection of
posterior distributions with an emphasis on difficult (non-log-concave) problems.

We begin by installing the latest official release of Pigeons.jl:� �
using Pkg ; Pkg . add (" Pigeons ")� �
A.1. Targets

To use Pigeons.jl, we must specify a target distribution, given by γ in Eq. (1). Numerous possible types of target distri-
butions are supported, including custom probability densities (specified up to a normalizing constant) written in Julia. We
also allow to interface with models written in common probabilistic programming languages, including:

• Turing.jl (Ge et al., 2018) models (TuringLogPotential)
• Stan (Carpenter et al., 2017) models (StanLogPotential)
• Comrade.jl4 models for black hole imaging (ComradeLogPotential)
• Non-Julian models with foreign-language Markov chain Monte Carlo (MCMC) code (e.g. Blang (Bouchard-Côté et al.,

2022) code for phylogenetic inference over combinatorial spaces)

Additional targets are currently being accommodated and will be introduced to Pigeons.jl in the near future.

In what follows, we demonstrate how to use Pigeons with a Julia Turing model applied to a non-identifiable “coinflip” data
set. The Bayesian model can be formulated as

p1, p2
i.i.d.∼ U(0, 1), (2)

y | p1, p2 ∼ Binomial(n, p1p2).

The random variable y is the number of heads observed on n coin flips where the probability of heads is p1p2. This model
is non-identifiable, meaning that it is not possible to distinguish the effects of the two different parameters p1 and p2.
As a consequence, the target distribution exhibits a complicated structure, as displayed in Fig. 7. The density of interest
corresponding to this model is

π(p1, p2) = γ(p1, p2)/Z,

where

γ(p1, p2) =

(
n

y

)
(p1p2)

y(1− p1p2)
n−yI[p1, p2 ∈ [0, 1]] (3)

Z =

∫ 1

0

∫ 1

0

γ(p1, p2) dp1 dp2. (4)

The distribution π is also known as the posterior distribution in Bayesian statistics.

Suppose that we perform n = 100, 000 coin tosses and observe y = 50, 000 heads. We would like to obtain samples from
our posterior, π, having collected this data. We begin by installing Turing� �
Pkg . add (" Turing ")� �
and then defining our Turing model and storing it in the variable model:� �
using Turing
@model function coinflip (n, y)

p1 ~ Uniform (0 .0 , 1 .0 )

4https://github.com/ptiede/Comrade.jl

8

https://julia-tempering.github.io/InferHub/
https://github.com/ptiede/Comrade.jl


Reproducible sampling from intractable distributions with Pigeons.jl

0.71 − 0.15
+ 0.18

p1
0.6 0.8 1.0

p2

0.6

0.8

1.0

p2
0.5 0.6 0.7 0.8 0.9

0.70 − 0.15
+ 0.19

Figure 7: Posterior distribution for the model given by Eq. (2) with n = 100, 000 coin flips and y = 50, 000 observed heads, estimated
using 217 samples from Pigeons.jl. We present the pairwise plot for p1 and p2, as well as the estimated densities of the marginal of
the posterior for each of the two parameters. Note that because the model is non-identifiable, as we collect more data the posterior
distribution concentrates around the curve p1p2 = 0.5, instead of a single point, assuming that the true probability of observing heads is
0.5.

p2 ~ Uniform (0 .0 , 1 .0 )
y ~ Binomial (n, p1 * p2 )
return y

end
model = coinflip ( 100000 , 50000 )� �
From here, it is straightforward to sample from the density given by Eq. (3) up to a normalizing constant. We use non-
reversible parallel tempering (Syed et al., 2021a;b; Surjanovic et al., 2022; 2024) (PT), Pigeons.jl’s state-of-the-art sam-
pling algorithm, to sample from the target distribution. PT comes with several tuning parameters and Syed et al. (2021a)
describe how to select these parameters effectively, which Pigeons.jl implements under the hood. We also specify that
we would like to store the obtained samples in memory to be able to produce trace-plots, as well as some basic online
summary statistics of the target distribution and useful diagnostic output by specifying record = [traces, online,
round_trip, Pigeons.timing_extrema, Pigeons.allocation_extrema]. It is also possible to leave the record
argument empty and reasonable defaults will be selected for the user. The code below runs Pigeons.jl on one machine
with one thread. We use the default values for most settings, however we explain later how one can obtain improved
performance by setting arguments more carefully (see Appendix A.4).� �
using Pigeons
pt = pigeons (

target = TuringLogPotential ( model ),
record = [

traces , online , round_trip ,
Pigeons . timing_extrema ,
Pigeons . allocation_extrema ])� �

Note that to convert the Turing model into an appropriate Pigeons.jl target for sampling, we pass the model as an argument
to TuringLogPotential(). Once we have stored the PT output in the variable pt we can access the results, as described
in the following section. The standard output after running the above code chunk is displayed in Fig. 8 and explained in
the next section. For purposes of comparison, we also run a traditional (single-chain Markov chain Monte Carlo) method.
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� �
# scans restarts Λ time (s) allc (B) log (Z1 /Z0 ) min (α) mean (α)

2 0 1 .0 4 0 .3 83 3 .4 8 e+0 7 -4 .2 4 e+0 3 0 0 .8 85
4 0 4 .0 6 0 .0 0287 1 .7 9 e+0 6 - 16 .3 4 .6 3 e-0 6 0 .5 49
8 0 3 .4 9 0 .0 0622 3 .5 5 e+0 6 - 12 .1 0 .2 15 0 .6 12

16 0 2 .6 8 0 .0 161 7 .4 6 e+0 6 - 10 .2 0 .5 18 0 .7 03
32 0 4 .2 9 0 .0 353 1 .3 7 e+0 7 - 11 .8 0 .2 22 0 .5 24
64 3 3 .1 7 0 .0 699 2 .8 6 e+0 7 - 11 .5 0 .5 29 0 .6 48

128 8 3 .5 6 0 .1 39 5 .5 3 e+0 7 - 11 .5 0 .5 23 0 .6 05
256 12 3 .3 8 0 .2 41 1 .1 e+0 8 - 11 .6 0 .5 26 0 .6 25
512 37 3 .4 8 0 .4 73 2 .2 2 e+0 8 - 12 0 .5 27 0 .6 14

1 .0 2 e+0 3 77 3 .5 5 0 .8 95 4 .4 6 e+0 8 - 11 .8 0 .5 71 0 .6 05� �
Figure 8: Standard output provided by Pigeons.jl. Rows indicate tuning rounds of the PT algorithm with an exponentially increasing
number of PT iterations (#scans). Columns indicate various useful diagnostics, such as the amount of memory allocations per round
(in bytes), time (in seconds), and estimates of the log of the normalization constants. The output is described in greater detail in
Appendix A.2.6 and has been modified to exclude columns that are not described in the paper.

A.1.1. OTHER TARGETS

As mentioned previously, it is also possible to specify targets with custom probability densities, as well as Stan and
Turing models. Additionally, suppose we have some code implementing vanilla MCMC, written in an arbitrary “foreign”
language such as C++, Python, R, Java, etc. Surprisingly, it is very simple to bridge such code with Pigeons.jl. See
https://pigeons.run/stable/input-overview/.

A.2. Outputs

Pigeons.jl provides many useful types of output, such as: plots of samples from the distribution, estimates of normalization
constants, summary statistics of the target distribution, and various other diagnostics. We describe several examples of
possible output below.

A.2.1. STANDARD OUTPUT

An example of the standard output provided by Pigeons.jl is displayed in Fig. 8. Each row of the table in the output
indicates a new tuning round in parallel tempering, with the #scans column indicating the number of scans/samples in that
tuning round. During these tuning rounds, Pigeons.jl searches for optimal values of certain PT tuning parameters. Other
outputs include:

• restarts: a higher number is better. Informally, PT propagates samples from an easy-to-sample distribution (the
reference) to the more difficult target distribution. A tempered restart happens when a sample from the reference
successfully percolates to the target. (See the subsequent sections for a more detailed description of parallel tempering.)
When the reference supports i.i.d. sampling, tempered restarts can enable large jumps in the state space.

• Λ: the global communication barrier, as described in Syed et al. (2021a), which measures the inherent difficulty of
the sampling problem. A rule of thumb to configure the number of PT chains is also given by Syed et al. (2021a),
where they suggest that stable performance should be achieved when the number of chains is set to roughly 2Λ. See
Appendix A.2.6 for more information.

• time and allc: the time (in seconds) and number of allocations (in bytes) used in each round.
• log(Z1/Z0): an estimate of the logarithm of the ratio of normalization constants between the target and the reference.

In many cases, Z0 = 1.
• min(α) and mean(α): minimum and average swap acceptance rates during the communication phase across the PT

chains.

A.2.2. PLOTS

It is straightforward to obtain plots of samples from the target distribution, such as trace-plots, pairwise plots, and density
plots of the marginals.
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Figure 9: Trace-plots for the first parameter, p1, in the non-identifiable coinflip Turing model. Left: Samples from Pigeons.jl using
PT with 10 chains. Note that the trace-plot indicates fast mixing/exploration across the state space. Right: Single-chain Markov chain
Monte Carlo. Note that the trace-plot explores the state space much more slowly when we do not use PT.

To obtain posterior densities and trace-plots, we first make sure that we have the third-party MCMCChains.jl5, Stat-
sPlots.jl6, and PlotlyJS.jl7 packages installed via� �
Pkg . add (" MCMCChains ", " StatsPlots ", " PlotlyJS ")� �
With the pt output object from before for our non-identifiable coinflip model, we can run the following:� �
using MCMCChains , StatsPlots , PlotlyJS
plotlyjs ()
samples = Chains (

sample_array ( pt ), variable_names ( pt ))
my_plot = StatsPlots . plot ( samples )
display ( my_plot )� �
The output of the above code chunk is an interactive plot that can be zoomed in or out and exported as an HTML webpage.
A modified static version of the output for the first parameter, p1, is displayed in the top panel of Fig. 9, along with a
comparison to the output from a single-chain algorithm in the bottom panel of the same figure.

To obtain pair plots, we add the PairPlots.jl8 and CairoMakie.jl9 packages:� �
Pkg . add (" PairPlots ", " CairoMakie ")� �
and then run� �
using PairPlots , CairoMakie
my_plot = PairPlots . pairplot ( samples )
display ( my_plot )� �
The output of the above code chunk with an increased number of samples is displayed in Fig. 7. 10

5https://github.com/TuringLang/MCMCChains.jl
6https://github.com/JuliaPlots/StatsPlots.jl
7https://github.com/JuliaPlots/PlotlyJS.jl
8https://github.com/sefffal/PairPlots.jl
9https://github.com/JuliaPlots/CairoMakie.jl
10The code chunk above requires Julia 1.9.
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A.2.3. ESTIMATE OF NORMALIZATION CONSTANT

The (typically unknown) constant Z in Eq. (1) is referred to as the normalization constant. In many applications, it is
useful to approximate this constant. For example, in Bayesian statistics, this corresponds to the marginal likelihood and
can be used for model selection.

As a side-product of PT, we automatically obtain an approximation to the natural logarithm of the normalization constant.
This is done automatically using the stepping stone estimator (Xie et al., 2011). The estimate can be accessed using� �
stepping_stone ( pt )� �
In the case of the normalization constant given by Eq. (4) for n = 100, 000 and y = 50, 000, we can exactly obtain its
value as log(Z) ≈ −11.8794. Note that this is very close to the output provided in Fig. 8.

A.2.4. ONLINE STATISTICS

Pigeons has facilities to support cases requiring large memory. For instance, we allow for the computation of online
statistics, as well as off-memory sample storage. Having specified the use of the online recorder in our call to pigeons(),
we can output some basic summary statistics of the marginals of our target distribution. For instance, it is straightforward
to estimate the mean and variance of each of the marginals of the target with� �
using Statistics
mean ( pt ); var ( pt )� �
Other constant-memory statistic accumulators are made available in the OnlineStats.jl (Day & Zhou, 2020) package. To
add additional constant-memory statistic accumulators, we can register them via Pigeons.register_online_type(),
as described in our online documentation11. For instance, we can also compute constant-memory estimates of extrema of
our distribution.

A.2.5. OFF-MEMORY PROCESSING

When either the dimensionality of the model or the number of samples is large, the obtained samples may not fit in memory.
In some cases it may be necessary to store samples to disk if our statistics of interest cannot be calculated online and with
constant-memory (see Appendix A.2.4). We show here how to save samples to disk when Pigeons.jl is run on a single
machine. A similar interface can be used over MPI.

First, we make sure that we set checkpoint = true, which saves a snapshot at the end of each round in the directory
results/all/<unique directory> and is symlinked to results/latest. Second, we make sure that we use the
disk recorder by setting record = [disk], along with possibly any other desired recorders. Accessing the samples from
disk can then be achieved in a simple way using the Pigeons.jl function process_sample().

A.2.6. PT DIAGNOSTICS

We describe how to produce some key parallel tempering diagnostics from Syed et al. (2021a).

The global communication barrier, denoted Λ in Pigeons.jl output, can be used to approximately inform the appropriate
number of chains. Based on Syed et al. (2021a), stable PT performance should be achieved when the number of chains
is set to roughly 2Λ. This can be achieved by modifying the n_chains argument in the call to pigeons(). The global
communication barrier is shown at each round and can also be accessed with� �
Pigeons . global_barrier ( pt )� �
The number of restarts per round can be accessed with� �
n_tempered_restarts ( pt )� �
11https://pigeons.run/dev/
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These quantities are also displayed in Fig. 8. Many other useful PT diagnostic statistics and plots can be obtained, as
described in our full documentation.

A.3. Parallel and distributed PT

One of the main benefits of Pigeons.jl is that it allows users to easily parallelize and/or distribute their PT sampling efforts.
We explain how to run MPI locally on one machine and also how to use MPI when a cluster is available.

A.3.1. RUNNING MPI LOCALLY

To run MPI locally on one machine using four MPI processes and one thread per process, use� �
pigeons (

target = TuringLogPotential ( model ),
on = ChildProcess (

n_local_mpi_processes = 4,
n_threads = 1))� �

A.3.2. RUNNING MPI ON A CLUSTER

Often, MPI is available via a cluster scheduling system. To run MPI over several machines:

1. In the cluster login node, follow the Pigeons.jl installation instructions in our online documentation.
2. Start Julia in the login node, and perform a one-time setup by calling Pigeons.setup_mpi().
3. In the Julia REPL running in the login node, run:12� �
pigeons (

target = TuringLogPotential ( model ),
n_chains = 1 _000 ,
on = MPI ( n_mpi_processes = 1 _000 ,

n_threads = 1))� �
The code above will start a distributed PT algorithm with 1,000 chains on 1,000 MPI processes each using one thread.
Note that for the above code chunks involving ChildProcess() and MPI() to work, it may be necessary to specify
dependencies in their function calls. See https://pigeons.run/stable/mpi/ for details.

A.4. Additional options

In the preceding example we only specified the target distribution and let Pigeons.jl decide on default values for most other
settings of the inference engine. There are various settings we can change, including: the random seed (seed), the number
of PT chains (n_chains), the number of PT tuning rounds/samples (n_rounds), and a variational reference distribution
family (variational), among other settings. For instance, we can run� �
pigeons (

target = TuringLogPotential ( model ),
n_rounds = 10 ,
n_chains = 10 ,
variational = GaussianReference (),
seed = 2

)� �
which runs PT with the same Turing model target as before and explicitly states that we should use 10 PT tuning rounds
with 10 chains (described below). In the above code chunk we also specify that we would like to use a Gaussian variational
reference distribution. That is, the reference distribution is chosen from a multivariate Gaussian family that lies as close
as possible to the target distribution in order to improve the efficiency of PT. We refer readers to Surjanovic et al. (2022)
for more details. When only continuous parameters are of interest, we encourage users to consider using variational
= GaussianReference() and setting n_chains_variational = 10, for example, as the number of restarts may sub-
stantially increase with these settings.

12In version 0.4.0 of Pigeons, the function MPI has been renamed MPIProcesses to avoid a clash with the library MPI.jl.
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