
Under review as a conference paper at ICLR 2023

LEARNING TO LEARN WITH GENERATIVE MODELS OF
NEURAL NETWORK CHECKPOINTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We explore a data-driven approach for learning to optimize neural networks. We
construct a dataset of neural network checkpoints and train a generative model on
the parameters. In particular, our model is a conditional diffusion transformer that,
given an initial input parameter vector and a prompted loss, error, or return, predicts
the distribution over parameter updates that achieve the desired metric. At test
time, it can optimize neural networks with unseen parameters for downstream tasks
in just one update. We find that our approach successfully generates parameters
for a wide range of loss prompts. Moreover, it can sample multimodal parameter
solutions and has favorable scaling properties. We apply our method to different
neural network architectures and tasks in supervised and reinforcement learning.

1 INTRODUCTION

Gradient-based optimization is the fuel of modern deep learning. Techniques of this class, such
as SGD (Robbins & Monro, 1951) and Adam (Kingma & Ba, 2015), are easy to implement, scale
reasonably well and converge to surprisingly good solutions—even in high-dimensional, non-convex
neural network loss landscapes. Over the past decade, they have enabled impressive results in
computer vision (Krizhevsky et al., 2012; Girshick et al., 2014), natural language processing (Vaswani
et al., 2017; Radford et al., 2018) and audio generation (Van Den Oord et al., 2016).

While these manual optimization techniques have led to large advances, they suffer from an important
limitation: they are unable to improve from past experience. For example, SGD will not converge
any faster when used to optimize the same neural network architecture from the same initialization
the 100th time versus the first time. Learned optimizers capable of leveraging their past experiences
have the potential to overcome this limitation and may accelerate future progress in deep learning.

Of course, the concept of learning improved optimizers is not new and dates back to the 1980s, if not
earlier, following early work from Schmidhuber (1987) and Bengio et al. (1991). In recent years, sig-
nificant effort has been spent on designing algorithms that learn via nested meta-optimization, where
the inner loop optimizes the task-level objective and the outer loop learns the optimizer (Andrychow-
icz et al., 2016; Li & Malik, 2016; Finn et al., 2017). In some instances, these approaches outperform
manual optimizers. However, they are challenging to train in practice due to a reliance on unrolled
optimization and reinforcement learning.

Taking a modern deep learning perspective suggests a simple, scalable and data-driven approach to
this problem. Over the past decade, our community has trained a massive number of checkpoints.
These checkpoints contain a wealth of information: diverse parameter configurations and rich metrics
such as test losses, classification errors and RL returns that describe the quality of the checkpoint.
Instead of leveraging large-scale datasets of images or text, we propose learning from large-scale
datasets of checkpoints recorded over the course of many training runs.

To this end, we create a dataset of neural network checkpoints (Figure 1, left). Our dataset consists of
23 million checkpoints from over a hundred thousand training runs. We collect data from supervised
learning tasks (MNIST, CIFAR-10) as well as reinforcement learning tasks (Cartpole), and across
different neural network architectures (MLPs, CNNs). In addition to parameters, we record relevant
task-level metrics in each checkpoint, such as test losses and classification errors.

Please see our project website in supplementary materials for additional results and visualizations.

1

Under review as a conference paper at ICLR 2023

𝜃! Loss = 2.3

Loss = 1.6

()
𝜃"#

…

Loss = 0.18𝜃$

Error = 90%

Error = 63%

Error = 5%

)

)

(

(

Updated 𝜃

G.pt

Prompted Loss
(or Error)Starting 𝜃

Pre-training dataset of neural network checkpoints A generative model of checkpoints

Figure 1: Generative pre-training from checkpoints. Left: We build a dataset of neural network
checkpoints from many training runs. Each checkpoint includes the neural network’s parameters and
relevant metadata (test losses and test errors for supervised learning tasks, returns for RL tasks). Right:
G.pt, a generative model of checkpoints. G.pt takes a parameter vector and a loss/error/return
prompt as input and predicts the distribution over updated parameters that achieve the prompt.

Given this data, we explore generative pre-training directly in parameter space (Figure 1, right).
Specifically, we train transformer-based diffusion models of neural network parameters. Given an
initial input parameter vector and a target loss, error or return, these models are trained to predict the
distribution over updated parameter vectors for a single network architecture that achieve the target
metric. Our method is trained using standard generative modeling techniques instead of unrolled
optimization and reinforcement learning algorithms. We call our model G.pt1.

We show that our approach has a number of favorable properties. First, it is able to rapidly train
neural networks from unseen initializations with just one parameter update (Figure 3). Second, it
can generate parameters that achieve a wide range of prompted losses, errors and returns (Figure 5).
Third, it is able to generalize to out-of-distribution weight initialization algorithms (Figure 6). Fourth,
as a generative model, it is able to sample diverse solutions (Figure 8). Finally, it can optimize
non-differentiable objectives, such as RL returns or classification errors.

2 GENERATIVE PRE-TRAINING FROM NEURAL NETWORK CHECKPOINTS

We pre-train a generative model G.pt on neural network checkpoints. At test time, we use it to
generate parameters for neural networks that solve a downstream task.

2.1 A DATASET OF NEURAL NETWORK CHECKPOINTS

In order to train G.pt, we build a dataset of neural network checkpoints. Each checkpoint contains
neural network parameters and relevant task-level metrics like train losses, test errors or returns. We
use standard optimizers like Adam and SGD with momentum to generate the parameters, and we
randomly save a subset of checkpoints from each training run. Our methodology for generating each
individual training run is explained in detail in Algorithm 1. See Section 3 for additional details.

Augmenting datasets of neural networks. To offset the computational cost of collecting checkpoints,
we use data augmentation in neural network parameter space. Given a checkpoint (θ, ℓ), we construct
augmented tuples (T (θ), ℓ), where T (·) is the parameter-level augmentation. In order for these
augmented tuples to be valid, we need fT (θ)(x) = fθ(x) for all parameter vectors θ and all inputs to
the neural network x. One type of augmentation that meets this criteria is permutation augmentation.
Consider an MLP. If we apply some permutation to the outgoing weights (and biases) of the input
layer and to the incoming weights of the next layer, the output of the neural network will be
preserved (Roeder et al., 2021; Schürholt et al., 2021). Different permutations can be sampled for
each layer up to the output layer. This technique is generic and can be applied to MLPs and CNNs
alike. We apply the same permutation to both the input and target parameters during pre-training.

1G and .pt refer to generative models and checkpoint extensions, respectively.

2

Under review as a conference paper at ICLR 2023

Algorithm 1 Checkpoint Data Generation

1: Input: Dataset or simulator D, neural network f ,
loss function L, task metric, meta data store S.

2: Initialize: Learnable parameters θ for f
3: for t = 1, 2, ..., Niter do
4: # Sample a mini-batch of data
5: {inputs, labels}t ∼ D
6: # Compute the predictions
7: predictions← fθ(inputs)
8: # Compute the loss
9: loss← L(predictions, labels)

10: # Update the model’s parameters
11: θt+1 ← update(loss; θ)
12: # Compute the task metric
13: ℓt ← metric(predictions, labels)
14: # Save the checkpoint
15: S ← S ∪ {θt, ℓt}
16: end for

Algorithm 2 Pre-training from Checkpoints

1: Input: Number of training runs K, checkpoint
dataset runs {Sk}Kk=1, G.pt, diffusion process
length J , diffusion cumulative variance schedule ᾱ.

2: Initialize: Learnable parameters ϕ for G
3: for i = 1, 2, ..., Niter do
4: # Sample a mini-batch of data
5: {θt1 , θt2 , ℓt1 , ℓt2}i ∼ Sk

6: # Noise future parameters
7: j ∼ U({1, ..., J})
8: θ̃t2 ∼ N (

√
ᾱjθt2 , (1− ᾱj)I)

9: # Compute the predictions
10: θ̂t2 ← Gϕ(θ̃t2 , θt1 , ℓt2 , ℓt1 , j)
11: # Compute the loss
12: loss← ||θ̂t2 − θt2 ||22
13: # Update G.pt’s parameters
14: ϕi+1 ← update(loss;ϕ)
15: end for

2.2 GENERATIVE MODELS OF NEURAL NETWORK CHECKPOINTS

Using our dataset of checkpoints, we train a generative model G that learns to rapidly train other
neural networks. Specifically, G predicts the distribution of updated parameters pG(θ∗|θ, ℓ∗, ℓ), where
θ is the starting (potentially random) neural network parameters, ℓ is the starting loss/error/return and
ℓ∗ is a user’s prompted loss/error/return. Conditioning on ℓ∗ allows G.pt to learn from checkpoints
with good and bad performance alike. In this section, we describe an instantiation of our approach
based on diffusion and transformers.

2.2.1 PRE-TRAINING OBJECTIVE: DIFFUSION OF NEURAL NETWORK CHECKPOINTS

We use diffusion (Sohl-Dickstein et al., 2015) as our generative pre-training task. Diffusion is a
good generative modeling framework for neural network parameters since the number of forward
passes required to sample a novel parameter vector is set by the length of the diffusion process J
as opposed to the dimensionality of the data. This instantiation of G.pt samples parameters by
gradually denoising the future (updated) parameters θ∗.

Parameterization. Given an input corrupted with noise, diffusion models can be parameterized to
predict either the signal or the noise (Ho et al., 2020; Nichol & Dhariwal, 2021). Prior work in the
image domain has shown that noise prediction outperforms signal prediction. We find that signal
prediction works better in our setting empirically, and so we parameterize G to output parameters.
We use fixed variances as in Ho et al. (2020).

Training. Our model takes two parameter vectors as input: a starting θ and a noised future parameter
vector θ∗j , where j denotes the timestep in the diffusion forward noising process. We minimize the
simplified variational lower bound, which reduces to predicting the denoised future parameters:

L(G) = E
[
||θ∗ −G(θ∗j , θ, ℓ

∗, ℓ, j)||22
]

(1)

Algorithm 2 details our full training procedure. Note that we need tuples of data (θ∗, θ, ℓ∗, ℓ) to
compute L. We sample these tuples from our checkpoint dataset. First, we sample a training run
uniformly at random. Then, θ and θ∗ are sampled uniformly at random from the checkpoints saved
within the selected training run. We enforce that θ is always from an earlier training step than θ∗.
Note that θ and θ∗ can be arbitrarily distant, even the initial and final checkpoints from a run.

Sampling. After pre-training, we sample updated parameters θ∗ by querying G with an input
parameter vector θ, its loss/error/return ℓ and a prompted loss/error/return ℓ∗. Sampling begins by
feeding-in Gaussian noise as the θ∗ input and gradually denoising it. We use DDPM sampling.

3

Under review as a conference paper at ICLR 2023

Diffusion Transformer

Future Loss
(or Return)

Starting Loss
(or Return)

Diffusion
Timestep

Predicted Future 𝜃

Per-token
Encoding

Per-token
Decoding

…

Noise and Tokenize

…

Tokenize

Starting 𝜃Future 𝜃

Figure 2: The G.pt architecture. During training, we sample two checkpoints from the same
run—a “starting” network’s parameters and a “future” network’s parameters from later in the run—as
well as their losses/errors/returns. Each layer’s parameters are flattened and linearly encoded. The
future network’s parameters are noised via a diffusion forward process prior to encoding.

2.2.2 ARCHITECTURE

Our generative model is a transformer (Vaswani et al., 2017) that operates over parameter tokens
from both θ and θ∗ (Figure 2). It uses few domain-specific inductive biases beyond tokenization.

Parameter tokenizers. Before being processed by G.pt, the two input parameter vectors θ and θ∗j
each need to be decomposed into several tokens. In general, a task-level network fθ will contain
many unique layers, each with a potentially different number of parameters. We define the i-th token
as the flattened parameter vector of the i-th layer. Layers with multiple parameter groups (e.g., layers
with both a weight and a bias) are decomposed into separate tokens. Note that these tokens will
usually be of different dimensionality. We call this layer-by-layer tokenization.

Parameter tokenizers for big neural networks. For larger networks, we find that it is beneficial
to decompose a single layer’s parameters into multiple tokens. We do this with layer chunking. We
define a hyperparameter M , the maximum number of parameters a single token can have. Layers
containing more than M total parameters are flattened and chunked into multiple tokens, each with
at-most M parameters. For example, if M = 1000, a weight matrix with 10×768 parameters will be
decomposed into eight tokens, seven containing 1000 parameters and one containing 680 parameters.
We set M to be smaller than the hidden size of the Transformer to avoid lossy compression.

Metric tokenizers. We also feed the scalar input metrics ℓ and ℓ∗ (loss, error, return, etc.) and
diffusion timestep j as individual tokens to the transformer. We project each scalar to a vector
representation using a frequency-based encoding scheme (Mildenhall et al., 2020).

Per-token encoders. After tokenizing fθ’s layers and the input scalars, we project each token to the
hidden size of the transformer. We explored more complicated encoders, but find that a simple linear
layer works well. Each token’s encoder has a unique set of weights.

Transformer. The core of the G.pt architecture is a transformer which operates on the set of input
parameters and metrics, linearly-encoded into tokens. Our transformer is a version of GPT-2 (Radford
et al., 2019). We omit causal masking as our model is not autoregressive across tokens.

Per-token decoders. The final layer of G.pt is a decoder from the transformer’s output to the future
parameter vector. The i-th token is linearly decoded from the transformer’s hidden size back to the
original size of the i-th layer’s flattened parameter vector. Note that only the output tokens for the
noised future parameter vector θ∗j are decoded to predictions. Our decoders do not share weights.

Global residual connection. Finally, we find that it is beneficial to add a residual connection (He
et al., 2016) to the input θ at the very end of G.pt. This amounts to predicting the parameter update
θ∗ − θ instead of directly predicting θ∗ itself. This residual connection also allows us to initialize G
to perform the identity function by initializing the decoder weights to zero. Empirically, the global
residual connection in conjunction with the identity initialization significantly accelerates training.

4

Under review as a conference paper at ICLR 2023

AdamW
Momentum

SGD NAG RMSprop
Ours

Cartpole

0

100

200

300

400

500

Re
tu
rn

AdamW
Momentum

SGD NAG RMSprop
Ours

MNIST

0.0

0.5

1.0

1.5

2.0

Lo
ss

AdamW
Momentum

SGD NAG RMSprop
Ours

CIFAR−10

40

50

60

70

80

90

Er
ro
r

Figure 3: G.pt optimizes unseen network parameters in one step. We compare performance
after a single update from G.pt versus a single step of gradient-based optimizers. Error bars are
computed over five input parameter vectors, all of which are randomly-initialized.

0 2K 4K 6K 8K
Steps

0

100

200

300

400

500

Re
tu
rn

Cartpole
SGD
Adam
Ours

0 2K 4K 6K 8K 10K 12K
Steps

0.2

0.3

0.4

0.5

0.6

Lo
ss

MNIST
SGD
Adam
Ours

0 5K 10K 15K 20K
Steps

40

50

60

70

80

90

Er
ro
r

CIFAR−10
SGD
Adam
Ours

Figure 4: Optimization curves. We compare one step of G.pt optimization to training curves
produced by SGD and Adam. Error bars are computed over five initializations.

3 IMPLEMENTATION DETAILS

We consider both supervised and reinforcement learning tasks. In all cases, we generate a large
collection of training runs in order to pre-train a generative model.

Pre-training data for supervised learning. We create datasets of MNIST and CIFAR-10 network
checkpoints. For MNIST, the task-level model is a two-layer MLP with 10 hidden units; for CIFAR-
10, the model has two conv layers followed by global average pooling and a fully-connected layer.
Both models use ReLU activations. We train the MNIST models for 25 epochs and CIFAR-10
models for 50 epochs, each with half-period cosine annealing. We use SGD with momentum of 0.9, a
learning rate of 0.1 and a weight decay of 5e-4. We train approximately 10K MNIST models and 55K
CIFAR-10 models from different random initializations. We select 200 checkpoints to save each run:
the initial checkpoint (before training), the final checkpoint and intermediate checkpoints at random
iterations. In total, this results in 2M trained MNIST MLPs and 11M trained CIFAR-10 CNNs.

Pre-training data for reinforcement learning. For our reinforcement learning (RL) experiments,
we train policies for the Cartpole task using the IsaacGym simulator (Makoviychuk et al., 2021). Our
policy is a three-layer MLP with 32 hidden units and SeLU activations. We also train a separate critic
network with the same architecture as the policy; we only model the policy’s parameters in our G.pt
experiments. We train for 500 iterations using PPO (Schulman et al., 2017) and Adam (Kingma &
Ba, 2015) with β1 = 0.9 and β2 = 0.999. We train 50K models and record 200 checkpoints in each.
This results in a dataset of 10M trained policies.

Model pre-training. We train G.pt with AdamW (Loshchilov & Hutter, 2017). We maintain an
exponential moving average (EMA) of G.pt weights over the course of training. Our transformer
uses a hidden dimension between 1536 and 2048 depending on dataset and has 12 hidden layers with
12-16 heads for self-attention. We use learned positional embeddings across all tokens, initialized to
zero. We show full G.pt hyperparameters in Table 1 and dataset information in Table 2. We train
one G.pt model per-metric, dataset and architecture (e.g., an error-conditional MNIST MLP model).

Parameter normalization. We follow DALL·E 2’s (Ramesh et al., 2022) normalization scheme,
where the data is scaled such that the variance of the marginal distribution matches the variance of
ImageNet pixels scaled to [-1, 1], for which diffusion hyperparameters have been tuned. We find
that this normalization ensures the forward noising process destroys nearly all signal in θ∗J ; the KL
divergence against a standard normal is roughly 8× 10−6 bits/dim across our experiments.

5

Under review as a conference paper at ICLR 2023

0 100 200 300 400 500
Prompted Return

0

100

200

300

400

500

Ac
hi

ev
ed

 R
et

ur
n Cartpole

Generated
Identity
Data Best

0.0 0.5 1.0 1.5 2.0
Prompted Loss

0.0

0.5

1.0

1.5

2.0

Ac
hi

ev
ed

 L
os

s

MNIST
Generated
Identity
Data Best

40 50 60 70 80 90
Prompted Error

40

50

60

70

80

90

Ac
hi

ev
ed

 E
rro

r CIFAR−10
Generated
Identity
Data Best

Figure 5: Achieved returns, losses and errors across a range of input G.pt prompts. G.pt can
train unseen neural network parameters to a range of desired values in one update. Each blue curve
corresponds to a different randomly-initialized input parameter vector. We also show the best value
of each metric present in the training split of the checkpoint dataset.

4 EXPERIMENTS

We compare our method to hand-designed optimizers and study the properties of our approach. In all
experiments, we report optimization of G.pt on unseen neural network parameters.

4.1 COMPARISON TO HAND-DESIGNED OPTIMIZERS

Training in one step. Figure 3 demonstrates G.pt’s ability to train unseen neural network parameters
in one update. This property is unique compared to gradient-based optimizers like SGD and Adam
which usually require thousands, if not millions, of updates to achieve good performance. We
compare against several of these traditional optimizers with tuned learning rates and weight decays2.
Note that we did not systematically tune training hyperparameters for checkpoints in our dataset. For
each method, we measure performance after applying one update to randomly-initialized network
parameters and average results over five seeds. We prompt G.pt by setting ℓ∗ near the best
return/loss/error in our dataset (for some tasks, asking for a value slightly above or below the best
value in the dataset works better). G.pt outperforms gradient-based optimizers in this regime across
tasks (control, image classification), datasets (Cartpole, MNIST, CIFAR-10) and conditioning metrics
(return, test loss, test error). Additionally, G.pt successfully optimizes non-differentiable metrics
(CIFAR-10 test error) whereas baseline optimizers must use smoothed surrogates.

Training in multiple steps. We compare one step of G.pt to multiple steps of SGD and Adam in
Figure 4. SGD and Adam use tuned learning rates and weight decays. The baseline optimizers require
thousands of iterations to match the performance of one step of G.pt. With tuned hyperparameters
and a sufficiently large number of updates, gradient-based optimizers supersede one-step G.pt
optimization. Our model can also be used as an iterative optimizer with recursive prompting. In
this setting, we repeatedly feed G.pt’s predicted θ∗ back in as its input θ and ask for low loss/error
or high returns. Interestingly, we find that the best performance is usually realized with one-step
prompting (recursive prompting usually brings only minor improvements). However, we find that
recursive prompting leads to considerably better results when the input neural network comes from an
out-of-distribution initialization algorithm not present in our checkpoint dataset (see Figure 6 below).

4.2 PROMPTING FOR LOSSES, ERRORS AND RETURNS

By prompting for various desired losses, errors, or returns, G.pt can sample different parameter
updates that achieve a range of performance levels. In Figure 5, we show that G.pt successfully
learns to generate parameters corresponding to a large range of prompted values. We pass G.pt
randomly-initialized neural network parameters and ask it to optimize them in one step to a range
of losses/errors/returns. We show results for several different starting parameters. Across different
tasks and metrics, G.pt generates parameter updates that are well-correlated with the prompted
value. While our model is able to achieve a range of prompted values, we note that it currently shows
limited ability to extrapolate to values beyond the limits of the pre-training dataset.

2We perform a grid search over three learning rates (the PyTorch default and 10× above/below) and three
weight decay values (0, 5× 10−5, 5× 10−4) for each baseline optimizer.

6

Under review as a conference paper at ICLR 2023

0

20

40

60

80

100

Er
ro

r

In-Distribution Initialization Xavier Normal Xavier Uniform Orthogonal

0 1 2 3 4 5 6 7 8 9 10
Recursive Prompts

0

20

40

60

80

100

Er
ro

r

Kaiming Normal (Fan-In)

0 1 2 3 4 5 6 7 8 9 10
Recursive Prompts

Kaiming Normal (Fan-Out)

0 1 2 3 4 5 6 7 8 9 10
Recursive Prompts

Kaiming Uniform (Fan-In)

0 1 2 3 4 5 6 7 8 9 10
Recursive Prompts

Kaiming Uniform (Fan-Out)

Figure 6: G.pt generalizes to out-of-distribution parameter initializations. We query G.pt
with randomly-initialized weights sampled from a different distribution than those in our MNIST
checkpoint dataset. By recursively applying G.pt to its own output and prompting for low test error,
we rapidly optimize out-of-distribution random initializations.

4.3 GENERALIZATION TO OUT-OF-DISTRIBUTION INITIALIZATIONS

The networks in our checkpoint dataset are initialized with a single weight initialization scheme. For
MNIST, they are sampled θ ∼ U [− 1√

n
, 1√

n
], where n is the fan-in of a layer. In Figure 6, we evaluate

G.pt’s ability to generalize to randomly-initialized input parameter vectors θ, where the weights
are sampled from different distributions (Glorot & Bengio, 2010; Saxe et al., 2013; He et al., 2015)
not present in our dataset. While one step prompting performance is degraded, recursive prompting
significantly improves results. G.pt is able to rapidly optimize out-of-distribution weights in ten or
fewer parameter updates.

4.4 SCALING MODEL AND DATA SIZE

Performance metric. We use prompt alignment to measure scaling performance. We define it as
the R2 coefficient of determination between a set of input loss/error/return prompts and the actual
loss/error/return achieved by the parameters sampled from G.pt. We compute R2 values over 20
regularly-sampled prompts and average results over 128 neural networks. The optimal score is
+1, which indicates that G.pt perfectly listens to loss prompts. Randomly-initialized G.pt score
around −2.7. We use unseen, randomly-initialized input networks in order to gauge generalization
capabilities. Empirically, we find that prompt alignment is a more reliable quality metric than
diffusion mean-squared error on unseen parameter vectors (see Appendix C for additional details).

106 107 108 109

G.pt Size (Parameters)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Pr
om

pt
 A

lig
nm

en
t

104 105 106 107 108

Dataset Size (Checkpoints)

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Pr
om

pt
 A

lig
nm

en
t

Figure 7: Scaling studies.

Model scale. We analyze the impact of increasing the number
of G.pt parameters in Figure 7 (top). We train six models with
transformer hidden sizes in [64, 128, 256, 512, 1024, 2048]; the
smallest model is approximately 2M parameters while the largest
is 858M parameters. We evaluate the G.pt checkpoint that attains
the highest prompt alignment score over training. We find that
larger models generalize much more effectively than smaller mod-
els. Small models (<60M parameters) largely fail to generalize
to unseen parameter vectors. Even at roughly 109 parameters, we
find that G.pt has not saturated its model scaling curve.

Data scale. Next, we analyze the impact of increasing the num-
ber of training checkpoints in Figure 7 (bottom). We train our
largest 858M parameter model on [500, 5K, 10K, 25K, 55K] runs,
with each run containing 200 checkpoints. Performance improves
substantially as the number of training checkpoints is scaled from
100K to 5M. We do not observe significant improvement when
further increasing from 5M to 10M checkpoints. This may be a
result of G.pt requiring additional model scale to benefit from a
larger pre-training dataset.

7

Under review as a conference paper at ICLR 2023

Figure 8: G.pt learns a multimodal distribution over local error minima. We visualize the test
error landscape for an MNIST MLP via parameter space PCA directions (Li et al., 2018). The dots are
samples from G.pt when prompted for low test error; the two plots use different MLP initializations.
With fixed inputs, G.pt samples diverse solutions that cover distinct positive-curvature regions of
the error landscape. We show G.pt samples that reconstruct accurately from PCA encoding.

4.5 DIVERSITY OF GENERATED PARAMETERS

The mapping of loss values to neural network parameters is one-to-many. As a generative model,
G.pt is able to sample diverse parameter solutions given a loss prompt. By fixing all G.pt inputs
(including θ) and varying sampling noise, we can sample multimodal solutions that cover distinct
error minima (Figure 8). Visual inspection of generated first-layer weights suggests that sampling
noise controls subtle variations in individual filters as well as the specific ordering of filters.

Intuitively, conditioning on a starting θ should narrow the space of possible parameter solutions (in
other words, initialization should have some bearing on where optimization converge). Indeed, we
find that the most significant variation is obtained by re-sampling the starting θ. See Appendix A for
a more thorough discussion and additional visualizations.

4.6 DATASET DESIGN DECISIONS

Parameter augmentation aids generalization. In the absence of permutation augmentation, we
observe that G.pt can aggressively overfit the training set and fail to generalize to new networks (i.e.,
it exhibits poor prompt alignment when taking unseen networks as input). Figure 11 (Appendix C)
shows that training with parameter augmentation alleviates overfitting in our Cartpole G.pt model.

Training on intermediate checkpoints improves one step training. Given the redundancy in neural
network parameters over a single training run, it is worth asking if there is value in training G.pt on
200 intermediate checkpoints per-run. Instead, we could train G.pt exclusively on the initial and
final checkpoint from each run. We find that this setup degrades one step training capabilities by over
50%: average test loss when prompting with ℓ∗ = 0 worsens from 0.2 to 0.32. G.pt significantly
benefits from training on a large number of checkpoints, even those from the same run.

5 RELATED WORK

5.1 PRE-TRAINING FROM LARGE-SCALE DATA

Transformers for X. Transformers (Vaswani et al., 2017) were initially developed for language but
have been shown to be well-suited for a wide range of domains. They have achieved strong results in
vision (Dosovitskiy et al., 2020), language modeling (Radford et al., 2018; 2019; Brown et al., 2020),
coding (Chen et al., 2021b; Li et al., 2022), , reinforcement learning (Chen et al., 2021a; Janner
et al., 2021), image synthesis (Esser et al., 2020; Ramesh et al., 2021; Yu et al., 2022) and protein
folding (Jumper et al., 2021). Likewise, we show that transformers can be used for learning to learn
by generative pre-training from neural network parameters.

8

Under review as a conference paper at ICLR 2023

Diffusion. Diffusion models (Sohl-Dickstein et al., 2015) have recently been shown to be highly
effective for images (Ho et al., 2020; Nichol & Dhariwal, 2021; Dhariwal & Nichol, 2021; Ho et al.,
2021; Ramesh et al., 2022; Saharia et al., 2022; Song & Ermon, 2019). In this paper, we show that
diffusion models can be used for meta-learning by generating neural network parameters.

Pre-training. Large scale pre-training has led to significant advances in vision (Krizhevsky et al.,
2012; Girshick et al., 2014), natural language processing (Devlin et al., 2019; Radford et al., 2018;
2019; Brown et al., 2020) and audio understanding (Van Den Oord et al., 2016; Dhariwal et al., 2020).
We explore pre-training from datasets of neural networks instead of datasets of images and text.

Datasets of neural networks. Past works have constructed datasets of neural networks and used them
in various settings: analyzing population-level trends (Radosavovic et al., 2019; 2020), benchmarking
neural architecture search (Ying et al., 2019), training hypernetworks (Knyazev et al., 2021), predict-
ing model properties (Schürholt et al., 2021) and dataset distillation (Wang et al., 2018; Cazenavette
et al., 2022). We share the goal of using datasets of neural networks, but for the novel meta-learning
approach of pre-training a generative model from trained neural network checkpoints.

5.2 LEARNING TO LEARN

Learning optimizers. Past works have explored parameterizing optimization update rules with neural
networks in place of hand-designed rules like Adam. These rules can be parameterized implicitly
as neural networks that take gradients as input and output an improved parameter update. They are
typically trained with unrolled optimization (Hochreiter et al., 2001; Younger et al., 2001; Gregor
& LeCun, 2010; Andrychowicz et al., 2016; Ravi & Larochelle, 2017; Wichrowska et al., 2017; Lv
et al., 2017; Metz et al., 2019; 2022) or reinforcement learning (Li & Malik, 2016; 2017).

Hypernetworks. Rather than parameterizing update rules, neural networks can be used to directly
output or modify other neural networks’ parameters (Schmidhuber, 1992; 1993; Hinton & Plaut,
1987). For example, hypernetworks (Ha et al., 2017) train parameter regression networks end-to-
end with the task objective. Hypernetworks have subsequently been extended to support sampling
different parameter solutions (Krueger et al., 2017; Deutsch et al., 2019; Ratzlaff & Fuxin, 2019).

Model-agnostic meta-learning. MAML learns a parameter initialization that is rapidly adaptable to
new tasks (Finn et al., 2017). Subsequent work has built simple probabilistic models over learned
MAML initializations (Finn et al., 2018). These methods possess similar characteristics as learned
optimizers—they rely on unrolled optimization and require differentiable task-level objectives.

Learning hyperparameters. A large body of prior work has explored learning hyperparameters
of standard optimizers (Bergstra et al., 2011; Feurer & Hutter, 2019). For example, learning rates,
weight decays and weight initializations can all be learned via hypergradient descent (Maclaurin et al.,
2015; Baydin et al., 2017; Drucker & Le Cun, 1992), Bayesian optimization (Snoek et al., 2012) and
reinforcement learning (Daniel et al., 2016; Xu et al., 2017; 2019; Almeida et al., 2021).

Learning to learn as pre-training. In contrast to learned optimizers, hypernetworks and MAML,
G.pt pre-trains from vast amounts of trained neural network checkpoints. Our method does not
backpropagate through task-level losses and, as a result, does not require the task metric being
optimized for to be differentiable. This allow us to train with standard generative modeling techniques
instead of reinforcement learning or unrolled optimization which can be unstable (Metz et al., 2021).

6 DISCUSSION

Limitations. The current instantiation of our method has several limitations. First, the model
sometimes exhibits signs of underfitting the full loss/error landscape, such as with CIFAR-10. Second,
our current G.pt models struggle to extrapolate to losses and errors not present in the pre-training
data. Third, this paper only pre-trains from single-architecture and single-task data. Finally, this
paper considers relatively simple datasets of neural networks with static optimizer hyperparameters.

Conclusion. We propose generative pre-training from neural network checkpoints. We show that our
approach enables rapid optimization of neural networks across tasks (supervised and reinforcement
learning) and metrics (losses, errors, returns). Learning algorithms designed by humans have led to
large advancements across different areas of artificial intelligence. We hope that our work serves as a
step towards learning learning algorithms from data using modern deep learning techniques.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Diogo Almeida, Clemens Winter, Jie Tang, and Wojciech Zaremba. A generalizable approach to
learning optimizers. arXiv:2106.00958, 2021.

Marcin Andrychowicz, Misha Denil, Sergio Gómez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando de Freitas. Learning to learn by gradient descent by gradient
descent. In NeurIPS, 2016.

Atilim Gunes Baydin, Robert Cornish, David Martinez Rubio, Mark Schmidt, and Frank Wood.
Online learning rate adaptation with hypergradient descent. arXiv:1703.04782, 2017.

Yoshua Bengio, Samy Bengio, and Jocelyn Cloutier. Learning a synaptic learning rule. In IJCNN,
1991.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter
optimization. NeurIPS, 2011.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A. Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In CVPR, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In NeurIPS, 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv:2107.03374, 2021b.

Christian Daniel, Jonathan Taylor, and Sebastian Nowozin. Learning step size controllers for robust
neural network training. 2016.

Lior Deutsch, Erik Nijkamp, and Yu Yang. A generative model for sampling high-performance and
diverse weights for neural networks. arXiv preprint arXiv:1905.02898, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL-HCT, 2019.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. In NeurIPS,
2021.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, and Ilya Sutskever.
Jukebox: A generative model for music. arXiv:2005.00341, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image
is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2020.

Harris Drucker and Yann Le Cun. Improving generalization performance using double backpropaga-
tion. IEEE Transactions on Neural Networks, 1992.

Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image
synthesis, 2020.

Matthias Feurer and Frank Hutter. Hyperparameter optimization. In Automated machine learning.
2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, 2017.

10

Under review as a conference paper at ICLR 2023

Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In NeurIPS,
2018.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In CVPR, 2014.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In AISTATS, 2010.

Karol Gregor and Yann LeCun. Learning fast approximations of sparse coding. In ICML, 2010.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In ICLR, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In CVPR, 2016.

Geoffrey E. Hinton and David C. Plaut. Using fast weights to deblur old memories. In In Proceedings
of the 9th Annual Conference of the Cognitive Science Society, 1987.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. arXiv:2106.15282, 2021.

Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using gradient descent.
In ICANN, 2001.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In NeurIPS, 2021.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 2021.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Boris Knyazev, Michal Drozdzal, Graham W Taylor, and Adriana Romero-Soriano. Parameter
prediction for unseen deep architectures. In NeurIPS, 2021.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. In NeurIPS, 2012.

David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre Lacoste, and Aaron
Courville. Bayesian hypernetworks. arXiv:1710.04759, 2017.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. In NeurIPS, 2018.

Ke Li and Jitendra Malik. Learning to optimize. arXiv:1606.01885, 2016.

Ke Li and Jitendra Malik. Learning to optimize neural nets. arXiv:1703.00441, 2017.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. arXiv:2203.07814, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv:1711.05101, 2017.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning gradient descent: Better generalization and longer
horizons. In ICML, 2017.

11

Under review as a conference paper at ICLR 2023

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
through reversible learning. In ICML, 2015.

Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles Macklin,
David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, et al. Isaac gym: High performance
gpu-based physics simulation for robot learning. In NeurIPS, 2021.

Luke Metz, Niru Maheswaranathan, Jeremy Nixon, Daniel Freeman, and Jascha Sohl-Dickstein.
Understanding and correcting pathologies in the training of learned optimizers. In ICML, 2019.

Luke Metz, C Daniel Freeman, Samuel S Schoenholz, and Tal Kachman. Gradients are not all you
need. arXiv:2111.05803, 2021.

Luke Metz, C Daniel Freeman, James Harrison, Niru Maheswaranathan, and Jascha Sohl-
Dickstein. Practical tradeoffs between memory, compute, and performance in learned optimizers.
arXiv:2203.11860, 2022.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. In ECCV, 2020.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In ICML, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. 2019.

Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network design
spaces for visual recognition. In ICCV, 2019.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In CVPR, 2020.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In ICML, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv:2204.06125, 2022.

Neale Ratzlaff and Li Fuxin. Hypergan: A generative model for diverse, performant neural networks.
In ICML, 2019.

Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? 2018.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathematical
statistics, 1951.

Geoffrey Roeder, Luke Metz, and Durk Kingma. On linear identifiability of learned representations.
In ICML, 2021.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed
Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara Mahdavi, Rapha Gontijo Lopes, Tim
Salimans, Jonathan Ho, David J Fleet, and Mohammad Norouzi. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv:2205.11487, 2022.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks. arXiv:1312.6120, 2013.

Jurgen Schmidhuber. Evolutionary principles in self-referential learning. 1987.

12

Under review as a conference paper at ICLR 2023

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative to dynamic recurrent
networks. Neural Computation, 1992.

Jürgen Schmidhuber. A ‘self-referential’ weight matrix. In ICANN, 1993.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

Konstantin Schürholt, Dimche Kostadinov, and Damian Borth. Self-supervised representation learning
on neural network weights for model characteristic prediction. NeurIPS, 2021.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. NeurIPS, 2012.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In ICML, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models.
arXiv:2010.02502, 2020.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
In NeurIPS, 2019.

Aäron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew W Senior, and Koray Kavukcuoglu. Wavenet: A generative model for
raw audio. SSW, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
arXiv:1811.10959, 2018.

Olga Wichrowska, Niru Maheswaranathan, Matthew W. Hoffman, Sergio Gómez Colmenarejo, Misha
Denil, Nando de Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize.
In ICML, 2017.

Chang Xu, Tao Qin, Gang Wang, and Tie-Yan Liu. Reinforcement learning for learning rate control.
arXiv:1705.11159, 2017.

Zhen Xu, Andrew M Dai, Jonas Kemp, and Luke Metz. Learning an adaptive learning rate schedule.
arXiv:1909.09712, 2019.

Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and Frank Hutter. Nas-
bench-101: Towards reproducible neural architecture search. In ICML, 2019.

A Steven Younger, Sepp Hochreiter, and Peter R Conwell. Meta-learning with backpropagation. In
IJCNN, 2001.

Jiahui Yu, Yuanzhong Xu, Jing Yu Koh, Thang Luong, Gunjan Baid, Zirui Wang, Vijay Vasudevan,
Alexander Ku, Yinfei Yang, Burcu Karagol Ayan, et al. Scaling autoregressive models for content-
rich text-to-image generation. arXiv:2206.10789, 2022.

13

Under review as a conference paper at ICLR 2023

Generated Parameters Real Parameters
Figure 9: Visualizing synthetic parameters generated by G.pt versus real parameters. Each row
visualizes the first layer weights of a single MNIST MLP with 10 hidden neurons. The j-th column
shows the 28× 28 weights incoming to the j-th hidden neuron. Left: We show G.pt samples when
querying for low error. In each row, we feed a different unseen, randomly-initialized input network to
G.pt. Right: The “ground truth” parameters obtained by training the same randomly-initialized nets
with gradient-based optimization instead.

APPENDIX A: ANALYZING MULTIMODALITY

Random noise in the reverse diffusion process and random initialization of the initial network
parameters provide two different sources of multimodality in the output parameters for a given target
loss/error/return. In our main paper, and also in Supplement Figure 12, we see that G.pt is capable
of producing multimodal predictions given fixed inputs (the input parameters θ, its loss/error/return ℓ
and the desired loss/error/return ℓ∗). In this section, we show that more variation in G.pt is captured
by re-sampling input θ. This result suggest that G.pt is doing more than memorizing a single
network for every input loss/error/return.

Motivation. Let’s begin by considering the joint distribution over all inputs to G.pt:

p(θ∗, θ, ℓ∗, ℓ) = pG(θ
∗|θ, ℓ∗, ℓ) · p(θ|ℓ∗, ℓ) · p(ℓ∗|ℓ) · p(ℓ) (2)

= pG(θ
∗|θ, ℓ∗, ℓ) · p(θ|ℓ) · p(ℓ∗|ℓ) · p(ℓ). (3)

The above follows directly from the probability chain rule and the assumption that θ is conditionally-
independent of ℓ∗ given ℓ. Writing the joint distribution in this way makes it clear that there are at
least two ways we may obtain variation in our generative procedure with fixed inputs ℓ∗ and ℓ: we
can re-sample θ∗ ∼ pG or re-sample θ ∼ p(θ|ℓ). Sampling from the latter distribution is somewhat
complicated by the fact that, for general ℓ, we do not have a model of p(θ|ℓ)3. However, for the
common case where the input ℓ = ℓrandom corresponds to the performance of a random neural network
prior to training, we can draw reasonable samples from p(θ|ℓrandom) by instantiating new networks
with whatever initialization algorithm we are using—e.g., Kaiming (He et al., 2015) or Xavier (Glorot
& Bengio, 2010) initialization.

In short, given inputs ℓ∗ and ℓ, we can produce diverse G.pt samples in two ways. First, by re-
sampling the noise as part of the reverse diffusion process; second—if ℓ is the performance of a
random net—by re-sampling random initializations of the input θ.

Assessing variation. To disentangle the two sources of variation, we use DDIM sampling (Song
et al., 2020) in the reverse process with η = 0. This sampling scheme forces G.pt to produce a
deterministic mapping of noise to parameters. Hence, by varying input θ but holding reverse process
noise z constant, we can now assess how much variation in G.pt’s distribution over θ∗ is controlled
by θ. We evaluate the degree of variability induced by the two sources in our MNIST error model:

3In principle, we could train a second diffusion model to learn this distribution. We leave this to future work.

14

Under review as a conference paper at ICLR 2023

𝜃∗

Figure 10: Varying input θ yields significant variation in synthesized θ∗. We compute the per-
parameter variance of θ∗ as we re-sample the input θ vector and hold diffusion reverse process noise
fixed (blue). And, we compute the per-parameter variance as we re-sample reverse process noise and
hold the input θ fixed (yellow). The 750 parameters with highest θ-variance are visualized. Input θ
appear to affect G.pt’s predictions more strongly than reverse process noise.

1. Diffusion noise re-sampling: Eθ∼p(θ|ℓ)
[
Varz∼N (0,I)(θ

∗)
]

2. Input θ re-sampling: Ez∼N (0,I)

[
Varθ∼p(θ|ℓ)(θ

∗)
]

Where θ∗ ∼ pG(θ
∗|θ, ℓ∗, ℓ), and both the expectation and variance are taken elementwise per-

parameter. We fix the inputs ℓ∗ and ℓ. Both the expectations and variances are evaluated with 64
samples, requiring a total of 64 · 64 = 4096 samples. The results are in Figure 10—indeed, θ appears
to have a stronger effect on G.pt’s output than reverse process noise. This result suggests that G.pt
does not merely memorize a single solution for every corresponding target loss/error/return ℓ∗; its
predictions appear to strongly depend on the input θ.

APPENDIX B: ADDITIONAL RESULTS

Parameter visualizations. In Figure 9, we visualize G.pt’s predicted weights for MNIST MLPs
and compare them to real weights from our checkpoint dataset. Varying both input θ and DDPM
sampling noise yields visually noticeable variation in predicted θ∗.

Error surface visualizations. In Figure 12, we show nine additional visualizations of the MNIST
test error surface and where G.pt samples lie on it. Note that the results are uncurated. All of the
plots suggest that G.pt can sample multimodal solutions given fixed inputs θ, ℓ∗ and ℓ.

APPENDIX C: PRE-TRAINING CURVES AND HYPERPARAMETERS

� �	
 ��
 ��	
 �
�

��������������

 �

 �

�

�

��
��
��
��
���
��
��
� �	���

������
��������

� �	
 ��
 ��	
 �
�

��������������

��
�
������
��������

� 	
�
�� ��
� ����
��������������

������

�����

����
�

�����

������

�����

����
�

��
��
��
��
�

�	���
������
��������

� 	
�
�� ��
� ����
��������������

��
�
������
��������

Figure 11: G.pt training curves with and without parameter augmentation. Left: We show
G.pt’s loss over the course of training on different splits from our Cartpole checkpoint dataset.
Right: Prompt alignment scores over the course of training (+1 indicates perfect alignment).

Training curves. In Figure 11, we plot various G.pt evaluation metrics over the course of training.
Parameter augmentation increases training stability and yields significantly improved generalization
as measured by prompt alignment on unseen neural networks in the test set. Interestingly, we
sometimes observe that G.pt’s prompt alignment on the test set improves while its test loss worsens.
Similar trends have been found in autoregressive generative models; e.g., AlphaCode’s (Li et al.,
2022) solve rate for unseen coding problems improves even as its validation loss increases.

15

Under review as a conference paper at ICLR 2023

Figure 12: Uncurated error surface plots. All nine surface plots visualize the test error landscape
of an MNIST MLP. Different plots correspond to different random initializations of the MLP that are
input to G.pt. The dots are samples produced by G.pt when prompted for low error. We visualize
the surface by moving in the top-two PCA directions computed over 256 G.pt samples. We show
G.pt samples that reconstruct accurately from two-dimensional PCA encoding (less than 10−3

reconstruction distance in parameter space). The plots suggest that G.pt has learned a multimodal
distribution over parameters, even when given fixed inputs.

16

Under review as a conference paper at ICLR 2023

G.pt Hyperparameters Cartpole MNIST (Loss) MNIST (Error) CIFAR-10 (Loss) CIFAR-10 (Error)

Diffusion steps (J) 1000 1000 1000 1000 1000
Noise schedule linear linear linear linear linear
Transformer layers 12 12 12 12 12
Transformer dim 1536 1536 1536 2048 2048
Self-attention heads 12 16 16 16 16
Model parameters 347M 378M 378M 639M 639M
Layer tokenizer layer-by-layer layer chunk layer chunk layer chunk layer chunk
Max parameters per token (M) - 1000 1000 576 576
Scalar encoder: number of frequencies 128 128 128 128 128
Scalar encoder: max frequency (log2) 14 14 14 14 14
Data scale factor 2.06 4.185 4.185 1.646 1.646
AdamW β2 0.999 0.999 0.95 0.999 0.999
Base learning rate 2× 10−4 4× 10−4 4× 10−4 4× 10−4 4× 10−4

Learning rate warmup linear linear linear linear linear
Learning rate decay cosine cosine cosine cosine cosine
Weight decay 0.1 0.1 0.1 0.1 0.1
Batch size 8192 1024 512 550 550
Gradient clip - 0.75 0.75 0.1 0.1
EMA decay 0.9999 0.9999 0.9999 0.9999 0.9999
Training iterations to best performance 128K 110K 288K 425K 792K
Prompted ℓ∗ for one-step optimization 500.0 0 5.0 1.2 35.0

Table 1: G.pt Hyperparameters. When prompting G.pt with ℓ∗ for one-step optimization, we
choose a value close to the smallest loss/error or highest return present in our checkpoint dataset.

MNIST CIFAR-10 CARTPOLE

#RUNS 10728 56840 50026
#TRAIN RUNS 10228 54790 47976
#TEST RUNS 500 2050 2050
CHECKPOINTS/RUN 200 200 200
#CHECKPOINTS 2.1M 11.3M 10M
ARCHITECTURE MLP CNN MLP
#PARAMETERS 7960 5370 1250

Table 2: Checkpoint dataset statistics.

APPENDIX D: OVERFITTING TEST SET METRICS

1.2 1.4 1.6 1.8 2.0 2.2
Prompted Loss

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Ac
hi

ev
ed

 L
os

s

CIFAR-10
CIFAR-10.1
Data Best

Figure 13: G.pt pre-trained on CIFAR-10 test losses generalize to CIFAR-10.1. We examine
if G.pt overfits to CIFAR-10 test losses by evaluating its generated networks on CIFAR-10.1.
Prompting for smaller CIFAR-10 test losses yields networks that perform better on CIFAR-10.1.

In our supervised learning experiments, we condition G.pt on test set metrics, like losses and errors.
A reasonable concern is that conditioning on test losses might cause G.pt to overfit to the task’s
test set. To investigate this, we evaluate networks generated by our test loss-conditional CIFAR-10
model on the CIFAR-10.1 dataset (Recht et al., 2018). Results are in Figure 13. Asking for smaller
CIFAR-10 test loss yields a smaller CIFAR-10.1 loss, indicating G.pt is not overfitting. As with past
works that evaluate on CIFAR-10.1, our generated networks perform worse on 10.1 than 10. This is
explained by the observation that checkpoints in our dataset also have worse losses on 10.1 (the best
checkpoint in our dataset has a CIFAR-10 test loss of 1.07 versus a CIFAR-10.1 loss of 1.51).

17

Under review as a conference paper at ICLR 2023

APPENDIX E: MEMORIZATION VERSUS GENERALIZATION

��
��
��
�� ��	 ���
�" �!$���� ##

	

�	

�	

�	

�	

		

��
��
�
"�
���

�

������
	

�	
	 �	 �	 �	 �	
�" �!$����"" "

������
	

� 	��
�� ��� ���
��
�#!�"%�����%&#

�

�

��

��

��

	��

��
��
�!
#�
���

�
��#%"!��

��� ��
 	�� 	�

��
�#!�"%����!$$

�����

� �� �� ��
�#!�"%����##!#

�����

Figure 14: G.pt predictions on held-out (unseen) random initializations tend to lie closer to the
ground truth outcome of SGD/Adam than any parameter vector from our checkpoint dataset’s
training split. For each test run in our dataset, we feed the initial parameters and a metric prompt
to G.pt, and we sample a prediction. We count the percentage of runs for which the prediction is
closer to one of the 200 checkpoints in that same test run than all checkpoints in the training split
(Cartpole has 10M training split checkpoints, CIFAR-10 has 11.3M and MNIST has 2.1M). Each
plot corresponds to a different G.pt model, and we repeat the test for a wide range of prompts.

In this section, we investigate the extent to which G.pt memorizes solutions from the training set.
This is a challenging topic to address for any generative model, and there is no universally-accepted
methodology to measure it. For generative models of images, one popular methodology is to visualize
the nearest neighbors of generated images in the training set. Visualizing parameters is challenging
for deep networks beyond the first layer, so we instead provide a basic way to quantify memorization.

Experimental setup. Our approach is also based on nearest neighbors. We feed G.pt an unseen,
randomly-initialized parameter vector from a test run and sample a corresponding solution θ∗ from
our model. If G.pt is memorizing parameters from the training set, then the sampled θ∗ should be
closer to one of the millions of parameter vectors across all runs in the training split than the 200
“ground truth” parameter vectors in the same test run from which we took the randomly-initialized
input parameters. On the other hand, if θ∗ is closer to one of these 200 held-out checkpoints, it
suggests that it is accurately predicting the outcome of gradient-based optimization (i.e., there is
some level of meaningful generalization). For simplicity, we compute distances in Euclidean space.
We count the percentage of test runs for which G.pt generates a solution closer to any of the 200
checkpoints in the test run than all checkpoints in the training split of our dataset (Cartpole has 10M
training split checkpoints, CIFAR-10 has 11.3M and MNIST has 2.1M). We call this percentage the
nearest neighbor score. A score of 100% suggests G.pt is perfectly generalizing. We repeat this test
for a range of loss, error and return prompts.

Results. Figure 14 shows nearest neighbor scores for all five of our G.pt models. Our models
appear to accurately generalize under a large number of loss, error and return prompts. Our Cartpole
and CIFAR-10 models exhibit perfect scores (100%) for all input prompts. Interestingly, while our
MNIST models also have perfect scores for the majority of loss/error prompts, they have lower scores
for smaller prompts (decreasing to about 15-20%). A speculative explanation is that our MNIST
models were trained with about a fifth of the number of training runs compared to our Cartpole and
CIFAR-10 models; this could possibly degrade generalization capabilities. Overall, this test provides
some initial evidence that G.pt is generalizing and not just memorizing training set parameters.

18

	Introduction
	Generative Pre-training from Neural Network Checkpoints
	A Dataset of Neural Network Checkpoints
	Generative Models of Neural Network Checkpoints
	Pre-training Objective: Diffusion of Neural Network Checkpoints
	Architecture

	Implementation Details
	Experiments
	Comparison to Hand-Designed Optimizers
	Prompting for Losses, Errors and Returns
	Generalization to Out-of-Distribution Initializations
	Scaling Model and Data Size
	Diversity of Generated Parameters
	Dataset Design Decisions

	Related Work
	Pre-training from Large-Scale Data
	Learning to Learn

	Discussion

