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ABSTRACT

Large Language Models (LLMs) have proven their exceptional capabilities in per-
forming language-related tasks. However, their deployment poses significant chal-
lenges due to their considerable memory and storage requirements. In response
to this issue, weight-only quantization, particularly 3 and 4-bit weight-only quan-
tization, has emerged as one of the most viable solutions. As the number of bits
decreases, the quantization grid broadens, thus emphasizing the importance of up
and down rounding. While previous studies have demonstrated that fine-tuning
up and down rounding with the addition of perturbations can enhance accuracy
in some scenarios, our study is driven by the precise and limited boundary of
these perturbations, where only the threshold for altering the rounding value is of
significance. Consequently, we propose a concise and highly effective approach
for optimizing the weight rounding task. Our method, named SignRound, in-
volves lightweight block-wise tuning using signed gradient descent, enabling us
to achieve outstanding results within 400 steps. SignRound competes impres-
sively against recent methods without introducing additional inference overhead.
The code will be open-sourced.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional proficiency on language-related
tasks(OpenAI; Touvron et al., 2023a). Nevertheless, the deployment of LLMs presents notable
hurdles due to their extensive memory and storage needs. Moreover, the computational demands of
these models leads to the challenges for real-time applications. Consequently, it becomes imperative
to explore techniques like quantization to facilitate the efficient deployment of LLMs.

Quantization techniques can be broadly classified into two categories: quantization-aware training
(QAT) (Esser et al., 2019; Zhuang et al., 2021; Lee et al., 2021; Liu et al., 2023) and post-training
quantization (PTQ) (Nagel et al., 2019; Xiao et al., 2022; Frantar et al., 2022; Nagel et al., 2020).
QAT involves training the model with quantization in mind. During QAT, the model is trained using
simulated lower-precision representations, allowing it to learn and adapt to the effects of quanti-
zation. This approach often yields better accuracy compared to PTQ. However, QAT comes with
certain drawbacks, including increased training complexity, longer training times, and the need to
tune hyperparameters. Applying QAT to LLMs can be particularly costly, despite recent efforts
(Hu et al., 2021; Dettmers et al., 2023) to improve the efficiency of fine-tuning LLMs. In contrast,
PTQ directly quantizes the model without any simulated training or fine-tuning. While PTQ is a
concise approach, it is susceptible to significant accuracy drops. This highlights the need for further
advancements in PTQ methods to enhance their accuracy preservation capabilities.

Two types of tensors could be quantized: activations and weights. Weight-only quantization has
gained prominence in recent times as it offers a favorable tradeoff for LLMs. Quantizing activations
for LLMs can be challenging (Wei et al., 2022b; Xiao et al., 2023; Bondarenko et al., 2023), making
weight-only quantization a more practical choice. Additionally, the primary bottleneck in generating
new tokens for LLMs often lies in memory bandwidth (Kim et al., 2023), further emphasizing the
significance of weight-only quantization. In this work, we only focus on weight only quantization.

In order to quantize the weights, a rounding operation is necessary, with rounding-to-nearest (RTN)
being the predominant method. RTN quantizes each element independently by simply rounding it to
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the nearest integer. However, RTN fails to consider the relationships between weights and weights,
as well as weights and activations. The potential of an advanced rounding strategy to improve
accuracy has been initially demonstrated by Nagel et al. (Nagel et al., 2020). They addressed
the rounding task by formulating it as a quadratic unconstrained binary optimization problem and
approximated the task loss by employing a Taylor series expansion. However, relying exclusively
on the second-order term may not produce accurate results. This is because rounding can introduce
considerable weight modifications that may make other order terms significant and non-negligible.

We prefer the signed gradient descent method to effectively tackle the issue of sub-optimal rounding
solutions. This approach is inspired by the well-defined boundaries of the solution space, which are
confined to the range of [-0.5, 0.5], where only the threshold for altering the rounding value is of
significance. Firstly, the optimal value is not a single float but typically a large region, negating the
need for the gradient magnitude to converge to an exact point. Secondly, due to the limited bound-
ary, we can traverse this space within a constrained number of steps, while the gradient magnitude
may vary significantly, making it challenging to determine an appropriate step size within a limited
number of iterations. Thirdly, signed SGD is inherently intuitive, allowing for easy adjustment of
the step size (learning rate). For instance, we employed the same optimizer hyperparameters in all
of our experiments, which include 400 steps and a learning rate of 0.0025, with linear weight decay.
This ensures that 400*0.0025/2=0.5 covers the range of [-0.5, 0.5]. Figure 1 provides an overview
of our method, SignRound. It utilizes signed gradient descent to fine-tune the up and down rounding
through block-wise output reconstruction, resulting in enhanced flexibility and faster convergence.
Our contributions are primarily threefold:

• We introduce a succinct and potent method for optimizing the weight-rounding task. Our
approach utilizes a minimal amount of unlabeled data and executes quantization in a block-
wise fashion. Moreover, it is worth noting that our method does not introduce any addi-
tional overhead during inference, further enhancing its general practicality.

• Our findings demonstrate that a mere alteration of approximately 5% of the rounding values
can significantly enhance the performance of some quantization models.

• Our empirical results exhibit substantial performance enhancements over the established
baseline of RTN, and our method contends favorably against recent techniques.

2 RELATED WORK

Quantization Aware Training. QAT methods have gained widespread popularity in model com-
pression, as they enable the fine-tuning process, often leading to superior accuracy compared to the
PTQ method. In their work, (Esser et al., 2019) proposed a novel approach that estimates and scales
the task loss gradient at each weight and activation layer’s quantizer step size, allowing for joint
learning with other network parameters. (Zhuang et al., 2021) put forward a progressive quantiza-
tion scheme that involves quantizing activations after weights. Additionally, CPQ (Lee et al., 2021)
effectively identified the optimal quantization grids while naturally encouraging the underlying full-
precision weights to gather around those quantization grids cohesively during training. While QAT
methods are popular in relatively small-scale models, their application in LLMs is limited due to the
high computational cost associated with training or fine-tuning.

Post-training Quantization (PTQ). PTQ methods simplify the quantization process without the
needs of additional training. (Nagel et al., 2019) focused on minimizing quantization error through
weight equalization and bias correction techniques. (Liu et al., 2021) specifically addressed the
quantization of vision transformers, introducing a ranking loss to preserve the relative order of self-
attention results after quantization and exploring a mixed-precision quantization scheme. (Frantar
& Alistarh, 2022) leveraged Optimal Brain Surgeon (Hassibi et al., 1993) to tune weights during
model compression. Both Hawq (Yao et al., 2021) and HAQ (Wang et al., 2019) aimed to identify
important layers and maintain higher precision for them. Given its low resource requirement, PTQ
is particularly suitable for the quantization of Large Language Models (LLMs). We will next focus
on the quantization methods designed for LLMs, most of which fall under the category of PTQ.

Large Language Models Quantization. Significant advancements have been made in addressing
the pressing demand for quantizing large language models (LLMs). LLM.int8() (Dettmers et al.,
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2022) introduced a mixed precision approach to preserve essential channels in high precision. Zero-
QuantV2 (Yao et al., 2023) employed low-rank matrices to enhance model quality recovery. RPTQ
(Yuan et al., 2023) mitigated the impact of range differences between channel by rearranging the
channels and quantizing them in clusters. Other methods, such as SPIQ (Yvinec et al., 2023),
SmoothQuant (Xiao et al., 2022), Outlier Suppression+ (Wei et al., 2023), utilized handcrafted
equivalent transformations to mitigate quantization errors. While these approaches are effective,
their applicability is limited due to the performance overhead involved during inference, because
there is no chance to fuse the transformation scale to the model itself on certain model architectures.
LLM-QAT (Liu et al., 2023) employs QAT to enhance the performance of W4A8. In the context of
weight-only quantization, GPTQ (Frantar et al., 2022) optimized weights using the Optimal Brain
Surgeon (Hassibi et al., 1993) technique, achieving low-bit quantization on LLMs with minimal
computational overhead. AWQ (Lin et al., 2023) followed the equivalent transformation approach
with additional tuning in a constrained space, and has the similar limitations as SmoothQuant (Xiao
et al., 2022). SqueezeLLM (Kim et al., 2023) employed sensitivity-based non-uniform quantization
and dense-and-sparse decomposition to achieve lossless compression to ultra-low precision. While
recent advancements in LLM quantization have made significant progress, there is still room for
improvement in achieving minimal quantization loss without introducing inference overhead.

Rounding Methods. Adaptive Rounding (Nagel et al., 2020) has already showcased the potential
of an advanced rounding strategy to enhance accuracy (Li et al., 2021; Wei et al., 2022a). They
used the rounding task as a quadratic unconstrained binary optimization problem by approximating
the task loss through a Taylor series expansion. However, considering only the second-order term
may not yield accurate results. This is because the rounding value gets multiplied by a scaling co-
efficient during de-quantization, potentially introducing significant weight changes that make other
order terms non-negligible. FlexRound (Lee et al., 2023) introduces a more flexible approach to
rounding by incorporating element-wise division. This allows for simultaneous learning of a shared
quantization grid size and individual scales for each pre-trained weight. However, it’s not easily
scalable to apply to LLMs due to the needs of specialized hyperparameters for each specific model
and task. AQuant (Li et al., 2022) introduced a dynamic approach where the border becomes a func-
tion dependent on the activation value to reduce the quantization error of activation. We specifically
concentrate on the up and down rounding task for weight quantization in this work.

Signed Gradient Descent. Signed gradient descent is not commonly utilized and is typically ap-
plied in specific scenarios, such as reducing communication costs. This is because signed gradient
carries significantly less information compared to original gradient. Recent studies have shed light
on the advantages of sign-based methods over gradient descent in certain conditions. Safaryan et al.
(Safaryan & Richtárik, 2021) found that sign-based methods are preferable when the Hessian matrix
is concentrated on its diagonal and the maximal eigenvalue is much larger than the average eigen-
value. Li et al. (Li et al., 2023) investigated a variant of sign-based gradient descent that exhibits
faster convergence. Additionally, Safaryan et al. (Safaryan & Richtárik, 2021) proposed a stochastic
sign descent with momentum, which converges under the standard bounded variance assumption
with the optimal asymptotic rate. These findings contribute to a better understanding of the potential
benefits and applications of signed gradient descent methods.

3 METHODOLOGY

We provide an overview of quantization before diving into the details of our approach. To quantize
and de-quantize the weights, the following operation as shown in Eq.1 is used (disregarding zero
point for simplicity).

W̃ = s ∗ clip(
⌊
W

s

⌉
, n,m), n,m ∈ N (1)

where s is the quantization scale, which is a positive scalar value. However, it is important to mention
that our method can be easily extended to cases where s is a vector or tensor. And the rounding
operation ⌊·⌉ is typically performed using the RTN method. While RTN is a concise approach, it
quantizes each element independently, thereby losing the ability to model the correlation among
different weights or activations.
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Figure 1: An illustration of SignRound. Unlike the direct rounding in RTN, SignRound performs
signed gradient descent to fine-tune the up and down rounding through block-wise output recon-
struction. After lightweight forward and backward steps, WINT4 has been well optimized towards
the minimal loss, therefore ready for the final inference deployment. Note that Quant and Dequant
are two standard operations for quantization and dequantization respectively.

To introduce more flexibility into the rounding operation, a tensor V with the same shape of W is
introduced. Each element of V falls within the range of [−B,B], in which B is set to 0.5 in all of
experiments to ensure that the changes made only impact the rounding value.

W̃ = s ∗ clip(
⌊
W

s
+ V

⌉
, n,m), n,m ∈ N (2)

This adjustment allows for a more adaptable and context-aware quantization process. If we try to
reconstruct the output of layers, the loss could be formulated as

L = ||WX − W̃X||2F (3)

where X is the input of the layer and || · ||F denotes the Frobenius norm. Then the final optimization
task is described as the following

argmin
V

||WX − W̃X||2F (4)

3.1 SIGNROUND

Since V has a clear boundary, i.e. [−0.5, 0.5], and only the threshold for altering the rounding value
is of significance. These attributes provide three advantages for sign gradient descent as mentioned
at the end of Section Introduction 1 . Therefore, we favor it as the optimizer. in Figure 1 shows
an illustration of our method. More precisely, we follow the below optimization to approach the
sub-optimal solution of Eq. 4.

Vt+1 = Vt − lr ∗ sign( ∂L
∂V

)

s.t.|
∑
t

lr ∗ sign( ∂L
∂V

)| ≤ B
(5)

where t is the optimizing step, lr is the learning rate, | · | is the absolute operation and B is the
boundary we use, which is set to 0.5 in all our experiments.

Further, by employing straight-through estimator (STE) (Bengio et al., 2013), it can be easily demon-
strated that sign( ∂L∂V ) = sign( ∂L

∂W ) in Eq. 5 as following since elements of s are all positive.

∂L

∂W
= −2(WX − W̃X)XT (6)

∂L

∂V
= −2s(WX − W̃X)XT (7)
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Algorithm 1 SignRound
Input: Calibration DataD, learning rate lr, total steps T , Model M , block module mw with weights
w, zero initialized V , batch size bs
Output: best V

1: V ← 0, best V ← 0, best l← maximum
2: for i← 0 to T do
3: d← draw bs samples from D
4: x←M(d)m ▷ get the inputs of m
5: yf ← mw(x) ▷ get the output of original module
6: w̃ ← qdq(w, V ) ▷ quantize and dequantize w via Eq.2
7: yq ← mw̃(x) ▷ get the output of quantized module
8: loss← mse(yq, yf ) ▷ get the loss via Eq.3
9: if loss < best l then

10: best V ← V
11: best l← loss
12: end if
13: loss.backward()
14: update V via Eq. 8
15: end for

So our optimization could be simplified as

Vt+1 = Vt − lr ∗ sign( ∂L
∂W

)

s.t.|
∑
t

lr ∗ sign( ∂L
∂W

)| ≤ B
(8)

Moreover, as Eq 3 averages the loss of each element, which presumes that each one contributes
equally to the network, that basically is not true. To alleviate this issue, we optimize the rounding
task blockwise. To clarify, in our context, we use the term ’layer’ to refer to a linear/convolution
layer, while ’block’ denotes a transformer block that typically consists of several linear layers.

The pseudocode 1 above provides additional details about SignRound. Inspired by recent research
(Lin et al., 2023; Shao et al., 2023), we could also optimize weight min max tuning visa signed
gradient descent, as described in A, which we refer to as signroundv2 in our experiments.

4 EXPERIMENTS

In this section, we conduct a comprehensive evaluation of SignRound from various perspectives.
Firstly, we provide a brief overview of the LLM architectures and tasks that are included in our
evaluation. Secondly, we present a detailed comparison between our method and some other existing
approaches, highlighting the unique features and advantages of SignRound. Thirdly, we conduct
additional experiments to further demonstrate the validity of our choices, assess the sensitivity of
hyperparameters, and explore other relevant factors. Finally, the runtime is reported in Appendix F
for reference.

4.1 EXPERIMENTAL SETTINGS

Evaluation and Datasets. We make assessments on several language tasks to satisfy the task-
agnostic setting. Specifically, we report average accuracy results on four common sense reasoning
tasks including HellaSwag (Zellers et al., 2019), WinoGrande (Sakaguchi et al., 2021), PIQA (Bisk
et al., 2020) and LAMBADA (Paperno et al., 2016).Additionally, we benchmarked our models on
MMLU (Hendrycks et al., 2020), which encompasses 57 tasks spanning STEM, humanities, social
science, and more. Lm-eval-harness (Gao et al., 2021) is adopted to perform the evaluation for all
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these tasks. Furthermore, we complement our evaluation with perplexity (ppl) analysis on Wikitext2
(Merity et al., 2016) and C4 (Raffel et al., 2020), by following the source code 1 of GPTQ.

Quantization Configurations. In line with the approach taken in GPTQ (Frantar et al., 2022), we
specifically concentrate on weight-only quantization, targeting the linear layers within transformer
blocks. Other layers, such as the embedding layer and typically the last layer like lm-head, are
excluded from the quantization process. We initially intended to utilize the pile (Gao et al., 2020)
dataset for calibration, following AWQ (Lin et al., 2023) and SmoothQuant (Xiao et al., 2022).
However, due to its large size, we have opted to use the readily available pile-10k dataset 2, which
consists of the first 10k samples from pile, for both GPTQ and our method. We employ standard
uniform per-row asymmetric quantization on the min-max grid. Our evaluation primarily focuses on
W4, W4G128, and W3G128, where W4 indicates quantizing weights with 4 bits and G represents
finer-granularity grouping as described in (Park et al., 2022; Frantar et al., 2022).

Large Language Models. Our experimental evaluation encompasses a range of widely adopted
LLM architectures, such as LLaMAs (Touvron et al., 2023a), LLaMAs v2 (Touvron et al., 2023b),
BLOOMs (Scao et al., 2022), and OPTs (Zhang et al., 2022). We cover a wide range of LLM
parameters, ranging from millions to billions, to ensure comprehensive coverage and analysis.

SignRound Hyperparameters. We selected 512 samples randomly from pile-10k and truncated
each sample to a sequence length of 512. The tuning process involves adjusting each block for 400
steps using a learning rate of 2.5e-3, a batch size of 8, and employing a linear learning rate decay. We
set the value of B in Eq. 8 to 0.5. Besides, we adopted automatic mixed precision(AMP) to acceler-
ate the tuning. It’s worth noting that adjusting the sequence length to 2048 yielded improvements in
numerous scenarios. However, we did not adopt this as the default setting due to the associated run-
time overhead. For models ≥ 30B, we made configuration adjustments to strike a balance between
runtime and performance. Specifically, we reduced the sample count to 256, shorted the sequence
length to 256, and disabled AMP.

Table 1: Average % accuracy(↑) of HellaSwag, WinoGrand, PIQA and LAMBADA for LLaMA &
OPT. ”Oursv2” denotes incorporating minmax tuning detailed in Appendix A.As demonstrated in
Table 13, For models ≤ 13B, the runtime of ours matches that of GPTQ without actorder, while
oursv2 aligns with GPTQ-R that with actorder.

nbits methods LLaMA OPT
7b 13b 7bv2 13bv2 125m 1.3b 2.7b 6.7b 13b

16 FP16 68.80 71.14 69.02 71.20 45.09 57.66 61.04 64.92 65.49

W4

RTN 67.38 68.82 66.98 70.17 39.41 47.22 58.61 62.99 64.08
GPTQ 64.70 70.00 66.89 69.24 43.58 56.15 59.92 63.09 64.83

GPTQ-R 67.71 70.06 67.62 70.25 43.97 56.11 60.66 63.85 64.93
Ours 68.05 70.58 67.74 70.03 44.13 56.17 60.58 64.34 65.05

Ours-v2 68.31 70.87 68.16 71.18 45.26 57.20 60.20 64.70 65.37

W4G128

RTN 67.85 70.84 68.32 70.72 45.27 56.47 60.70 64.03 64.84
GPTQ 66.32 70.92 68.90 70.68 42.88 56.99 61.23 64.75 65.37

GPTQ-R 68.48 71.07 68.69 70.59 43.01 57.47 60.68 64.75 65.62
Ours 68.09 71.43 68.65 70.81 44.23 57.30 60.86 64.76 65.67

Ours-V2 68.68 71.12 68.60 71.12 44.70 57.76 60.87 65.12 65.42

W3G128

RTN 64.94 67.70 65.92 68.70 39.11 42.61 36.99 56.09 49.56
GPTQ 58.29 68.73 65.51 68.73 39.78 54.43 58.47 62.98 64.68

GPTQ-R 66.46 69.14 66.50 69.53 42.56 54.91 59.78 63.00 64.47
Ours 66.62 69.59 66.88 69.70 43.31 55.46 59.12 53.42 63.61

Ours-v2 66.78 70.13 67.25 70.45 44.19 55.78 60.33 64.62 64.46

1https://github.com/IST-DASLab/gptq
2https://huggingface.co/datasets/NeelNanda/pile-10k
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Table 2: Average % accuracy(↑) of HellaSwag, WinoGrand, PIQA and LAMBADA for BLOOM.
There is no act-order option in GPTQ for Bloom models.

W4 W4G128 W3G128
Size 560m 1b7 3b 7b1 560m 1b7 3b 7b1 560m 1b7 3b 7b1
FP16 45.50 52.31 55.48 60.22 45.50 52.31 55.48 60.22 45.50 52.31 55.48 60.22
RTN 43.10 49.97 53.16 57.73 44.28 52.08 54.86 59.31 40.83 47.98 52.51 57.59

GPTQ 43.95 50.91 54.65 58.27 44.79 52.08 55.68 59.59 42.74 48.81 53.41 58.12
Ours 45.00 51.47 54.63 59.52 45.40 51.85 55.40 59.83 44.08 50.52 53.64 58.69

Ours-v2 44.97 51.85 55.33 59.64 45.31 51.66 55.73 59.92 44.27 51.38 54.30 59.14

Table 3: C4 ppl ( ↓) at W4. There is no act-order option in GPTQ for Bloom models.

LLaMA OPT BLOOM
Size 7b 13b 7bv2 13bv2 1.3b 2.7b 6.7b 13b 560m 1b7 3b 7b1
FP16 7.34 6.80 7.26 6.73 16.07 14.34 12.71 12.06 26.59 19.49 17.48 15.20
RTN 8.12 7.23 8.16 7.14 27.49 18.83 14.37 13.32 29.87 21.25 18.76 16.05

GPTQ 8.64 7.13 7.90 6.87 17.04 15.06 13.39 12.29 28.15 20.71 18.18 15.67
GPTQ-R 7.82 7.10 7.83 7.06 16.84 14.95 13.05 12.27 - - - -

Ours 7.84 7.05 11.20 7.72 16.92 14.97 13.08 12.48 28.12 20.41 18.18 15.67
Ours-v2 7.67 6.95 9.89 6.91 16.63 14.70 12.92 12.32 27.69 20.14 17.95 15.53

4.2 COMPARING WITH OTHER METHODS

We conducted a comprehensive benchmarking of our results against RTN and GPTQ (Frantar et al.,
2022). We denote GPTQ with actorder as GPTQ-R. Also, it’s worth noting that bloom models do not
offer this option in GPTQ. When evaluating perplexity (ppl), we prioritize reporting the ppl on C4
dataset as our primary focus, taking into consideration the potential occurrence of NaN values when
assessing perplexity for Wikitext2 and ptb datasets, both for SignRound and GPTQ. Furthermore,
we conducted a limited and non-rigorous comparison between our approach and AWQ Lin et al.
(2023) in Appendix B.1.

We begin by presenting the average accuracy results for the HellaSwag, WinoGrand, PIQA, and
LAMBADA tasks across LLaMA, OPT, and BLOOM models with a size below 13B. These re-
sults are shown in Table 1 and 2.In summary, SignRound demonstrates superior performance over
RTN in 36 out of 39 scenarios, highlighting its effectiveness. Furthermore, when compared to
best(GPTQ,GPTQ-R), our approach surpasses it in 27 out of 39 scenarios. Additionally, when incor-
porating signroundv2, we outperform it in 34 out of 39 scenarios, further emphasizing the strengths
of our method. For detailed results of LLaMA7B, LLaMA13B, LLAMA7B-V2, and LLAMA13B-
V2, please refer to Appendix G. The results in Appendix G also highlight that changing the sequence
length to 2048 could bring noticeable improvement in many scenarios.

We then present the perplexity (ppl) results for C4 in Table 3, along with the detailed results for
Wikitext2 in Appendix B.2. In conclusion, we achieve better performance in 9 out of 12 models.
However, there are some outliers. With the observation that the c4 perplexity of GPTQ for LLaMAv2
is reasonable, while its ptb perplexity is NAN in Table 16, and Signround has the similar issue, we
hypothesize this is likely because that perplexity is highly sensitive to outliers. The equation is
represented similar to exp(−(sum(log p))/seqlen), where a low probability p for a single token
results in a high perplexity value. In certain cases where the results may not be optimal, we can still
fine-tune the hyperparameters to achieve better results, as demonstrated in the subsequent sections.

Next, we present a comprehensive breakdown of the accuracies achieved by MMLU for LLaMA-
7B and LLaMa-7B-V2 in Table 4. By analyzing the average accuracies, we observe that SingRound
outperforms RTN and GPTQ in 4 out of the 6 scenarios when the best model-wise setting is applied.

We also provide the results for models with a capacity of 30B or greater at W3G128 in Table 5 and
W4 in Appendix B.3. Additionally, we discovered that recovering the sequence length to 512 of
the calibration dataset yielded improvements in certain scenarios, and thus we include these results.
In summary, our approach achieves comparable performance to GPTQ for the given accuracy task.
However, we slightly lag behind GPTQ in terms of ppl tasks.

7



Under review as a conference paper at ICLR 2024

4.3 ABLATION STUDY OF OPTIMIZERS

We investigated the impact of various optimizers in Table 6 . Given the sensitivity of perplexity
as mentioned earlier, our primary focus was on average accuracies. We found that signed gradient
descent outperformed SGD and was comparable to ADAMW (Loshchilov & Hutter, 2017). Notably,
ADAMW was shown to be 20%-30% slower, as indicated in Table 13, and required significantly
more memory, which is crucial for large language models. Consequently, signed gradient descent
offers distinct advantages in this context. For some other ablation studies, please refer to Appendix
C.

4.4 THE ANALYSIS OF GRADIENTS AND THEIR EFFECTS ON ROUNDING

LLaMA-7B LLaMA-7B-V2

OPT-6.7B BLOOM-7B1

Figure 2: The impact of the rounding value introduced by the V in Eq. 2

Table 4: Accuracies(↑) of MMLU(5-shot) for LLaMA-7B & LLaMA-7B-V2. ”Ours-2048” indi-
cates that we have modified the sequence length of the calibration dataset from 512 to 2048.

LLaMA-7B LLaMA-7B-V2
Hums. STEM Social Other Avg. Hums. STEM Social Other Avg.

FP16 38.32 31.17 38.05 36.85 35.64 51.40 37.00 52.23 49.51 46.56

W4G-1

RTN 34.84 29.53 32.87 36.28 33.10 44.03 32.83 44.97 42.19 40.24
GPTQ 33.31 26.29 29.86 33.11 30.32 46.21 34.29 46.68 44.85 42.21
Ours 34.30 31.05 34.74 36.66 33.95 47.28 33.14 46.90 44.70 42.10

Ours2048 35.10 30.69 36.43 36.85 34.42 47.40 33.92 49.61 44.91 43.00

W4G128

RTN 36.30 31.67 37.40 37.99 35.48 49.54 36.50 50.95 47.87 45.31
GPTQ 37.77 29.64 36.38 37.45 34.83 50.30 36.51 50.91 47.69 45.43
Ours 36.06 30.86 35.99 36.21 34.44 51.39 37.87 52.56 49.69 46.95

Ours2048 35.66 30.05 36.16 37.57 34.46 50.12 36.70 51.44 48.20 45.69

W3G128

RTN 32.97 30.28 33.66 32.60 32.17 41.14 33.06 40.98 40.94 38.51
GPTQ 30.77 28.29 30.73 31.33 30.12 44.66 37.55 46.36 43.47 42.48
Ours 30.12 28.21 30.64 30.34 29.68 44.53 33.53 44.60 43.52 40.82

Ours2048 32.43 28.62 31.03 32.10 30.85 42.75 32.98 42.88 41.30 39.34
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Table 5: Average % accuracy(↑) of HellaSwag, WinoGrand, PIQA and LAMBADA and C4 ppl(↓)
for LLaMA & OPT with ≥ 30B at W3G128. ”Ours-seq512” indicates that we have modified the
sequence length of the calibration dataset from 256 to 512.

Accuracy PPL on C4
Type LLaMA OPT LLaMA OPT
Size 30b 65b 30b 66b 30b 65b 30b 66b
FP16 73.46 75.48 67.87 69.54 6.13 5.98 11.46 10.99
RTN 72.17 73.69 62.83 38.00 6.85 6.52 30.81 285.41

GPTQ 72.09 73.97 66.76 67.87 6.80 6.52 11.74 11.87
GPTQ-R 71.46 73.68 67.12 68.98 6.77 6.43 11.73 11.20

Ours-seq256 72.45 73.71 66.51 68.00 6.83 6.52 13.00 13.34
Ours-seq512 71.95 73.78 66.70 67.26 6.79 6.53 12.50 13.97

Oursv2-seq512 72.41 73.77 67.30 69.19 6.58 6.47 11.83 11.47

Table 6: Comparing different optimizers for around 7B models at W4G-1, the models LLaMA7b,
LLaMA7bv2, OPT6.7b, and BLOOM7b1 are denoted by 7b, 7bv2, 6.7b, and 7b1 respectively. The
accuracy is the % average accuracy(↑) of HellaSwag, WinoGrand, PIQA and LAMBADA . Perplex-
ity (PPL) (↓) is evaluated using the C4 dataset. ”wd” denotes weight decay. All other hyperparame-
ters remain the same.

lm-eval C4 PPL
Size 7b 7bv2 6.7b 7b1 7b 7bv2 6.7b 7b1

sgd-wd-0 66.73 67.23 63.10 57.88 8.09 8.19 14.07 16.02
adamw-wd-1e-2 67.99 67.66 64.78 59.36 7.83 11.27 13.03 15.67

adamw-wd-0 67.61 67.95 64.64 59.05 7.80 10.50 13.03 15.67
ours 68.05 67.74 64.34 59.52 7.84 11.20 13.08 15.67

In this analysis, we dive into the distribution of the magnitude of V in Eq. 2 and its impact on
rounding values across approximately 7 billion models at W4. The visual representations of these
distributions are provided in Appendix D. Our investigation reveals that the majority of V values
are concentrated within the range of [-0.3, 0.3]. Additionally, we observe an interesting pattern
in the distribution of V across different layers. The middle layers exhibit a more tightly clustered
distribution compared to the other layers. This observation aligns with the common understanding
that the head and tail layers tend to be more sensitive to compression, while the middle layers are
relatively more robust.

Figure 2 illustrates the impact of the rounding value introduced by the V in Eq. 2 for models around
7B at W4. The red line represents ”up rounding”, indicating that while RTN rounds the value to the
floor, SignRound changes it to the ceiling. Conversely, the green line represents ”down rounding”
indicating that while RTN rounds the value to the ceiling, SignRound changes it to the floor. It is
worth noting that SignRound modifies only a small percentage of weight rounding values for each
of the four models, namely 5.27%, 5.29%, 4.14%, and 4.10%.

We were also intrigued by the possible correlation between rounding and activation, we shown the
result in Appendix E.

5 CONCLUSIONS AND LIMITATIONS

In this paper, we present a highly effective and concise approach to optimize the weight rounding
task. Our method, SignRound, leverages lightweight block-wise tuning using signed gradient de-
scent, achieving remarkable results within a mere 400 steps. Extensive experiments demonstrate the
superior performance of our approach. As part of our future work, we plan to contribute our recipes
and implementations to the open source community. On the other hand, although our method is
generally effective, there are a few outliers in certain scenarios, where we plan to mitigate the issue
by fine-tuning the hyperparameters.
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A COMBINING WITH WEIGHT MINMAX TUNING

Drawing inspiration from recent works such as (Lin et al., 2023) and (Shao et al., 2023), and given
the simplicity of our method, we can seamlessly incorporate weight minmax tuning using sign gra-
dient descent. This integration allows us to observe significant improvements without introducing
significant runtime overhead. we extend E.q. 1 to the following

s =
max(W )−min(W )

2bit − 1
(9)
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W̃ = s ∗ clip(
⌊
W

s
+ zp

⌉
, n,m), n,m ∈ N (10)

in which zp is the zero point.

To enhance the effectiveness of the rounding quantization operation, we introduce two more train-
able parameters, namely α, β which are incorporated into the above equations like the following

s =
max(W ) ∗ α−min(W ) ∗ β

2bit − 1
(11)

and

W̃ = s ∗ clip(
⌊
W

s
+ zp+ V

⌉
, n,m), n,m ∈ N (12)

We enforce the values of α and β to be within the range (0, 1] and use the same learning rate of
0.0025. For large models ≥ 30b, we kept the same setting as small models, i.e., sample count 512,
sequence length 512 unless explicitly stated and enable AMP. All other settings remain unchanged.

B MORE RESULTS

B.1 COMPARISON WITH AWQ

We present the results in comparison to AWQ in Table 7, all of which have been tested using the
same calibration dataset pile-10k.

Table 7: Average % accuracy(↑) of HellaSwag, WinoGrand, PIQA and LAMBADA for LLaMA
with AWQ and Ours. ”Ours-v2” denotes incorporating minmax tuning detailed in Appendix A

LLaMA 7b 13b 7bv2 13bv2
FP16 68.8 71.14 69.02 71.2

W4
AWQ 67.51 70.53 68.06 70.39
Ours 68.05 70.58 67.74 70.03

Ours-v2 68.31 70.87 68.16 71.18

W4G128
AWQ 68.21 71.23 68.54 70.92
Ours 68.09 71.43 68.65 70.81

Ours-v2 68.68 71.12 68.60 71.12

W3G128
AWQ 66.35 70.37 66.52 69.63
Ours 66.62 69.59 66.88 69.70

Ours-v2 66.78 70.13 67.25 70.45

B.2 RESULTS OF WIKITEXT2 PPL AT W4

The perplexity results for Wikitext2 at W4 are shown in Table 8. In conclusion, our performance is
comparable to that of GPTQ. ”Oursv2” denotes incorporating minmax tuning detailed in Appendix
A

Table 8: Wikitext2 ppl ( ↓) at W4

LLaMA OPT BLOOM
Size 7b 13b 7bv2 13bv2 1.3b 2.7b 6.7b 13b 560m 1b7 3b 7b1
FP16 5.67 5.09 5.47 4.88 14.62 12.47 10.86 10.13 22.41 15.39 13.48 11.37
RTN 6.29 5.53 6.12 5.20 48.20 16.92 12.10 11.32 25.88 16.97 14.75 12.10

GPTQ 6.59 5.33 6.09 5.16 15.67 13.30 11.59 10.33 23.95 16.37 14.10 11.73
GPTQ-R 6.06 5.35 5.86 5.12 15.59 13.09 11.22 10.35 - - - -

Ours 6.12 5.32 298 9.15 15.65 13.05 11.18 10.66 23.80 16.22 14.13 11.80
Ours-v2 5.99 5.22 212 6.11 15.13 12.78 11.03 10.39 23.64 16.07 13.98 11.66
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B.3 OTHER RESULTS FOR LARGE MODELS

We present the results for models with a capacity of 30B or higher at W4 in Table 9 and PPL
on Wikitext2 in Table 10. Furthermore, we observed that adjusting the sequence length of the
calibration dataset led to improvements in specific scenarios, and we include these findings in our
analysis. Overall, our approach demonstrates comparable accuracy performance to GPTQ for the
given task. However, it is worth noting that we slightly fall behind GPTQ in terms of PPL tasks.

Table 9: Average % accuracy(↑) of HellaSwag, WinoGrand, PIQA and LAMBADA and C4 ppl(↓)
for LLaMA & OPT with size ≥ 30B at W4. ”Ours-seq512” indicates that we have modified the
sequence length of the calibration dataset from 256 to 512. ”Ours-v2” denotes incorporating minmax
tuning detailed in Appendix A. Since Oursv2 is slower than GPTQ for modles ≥ 30B, we list their
result separately.

Accuracy PPL on C4
Type LLaMA OPT LLaMA OPT
Size 30b 65b 30b 66b 30b 65b 30b 66b
FP16 73.46 75.48 67.87 69.54 6.13 5.98 11.45 10.99
RTN 72.33 73.91 65.94 37.12 6.54 6.46 13.56 305.73

GPTQ 72.85 74.45 67.55 68.23 6.42 6.23 11.59 11.24
GPTQ-R 72.94 74.42 67.41 68.84 6.42 6.19 11.58 11.09

Ours-seq256 72.69 74.03 66.74 68.80 6.47 6.31 11.84 11.42
Ours-seq512 72.86 73.91 67.40 69.22 6.47 6.34 11.77 11.45

Oursv2-seq512 72.63 73.73 67.47 69.25 6.36 6.47 11.60 11.13
Oursv2-seq2048 73.19 74.43 67.68 69.51 6.36 6.28 11.57 11.15

Table 10: Wikitext ppl(↓) for LLaMA & OPT with size ≥ 30B. ”Ours-seq512” indicates that we
have modified the sequence length of the calibration dataset from 256 to 512.”Oursv2” denotes
incorporating minmax tuning detailed in Appendix A

W4 W3G128
Type LLaMA OPT LLaMA OPT
Size 30b 65b 30b 66b 30b 65b 30b 66b
FP16 4.10 3.56 9.56 9.34 4.10 3.56 9.56 9.34
RTN 4.54 3.99 10.98 110.43 4.87 4.44 23.05 126.92

GPTQ 4.45 4.16 9.66 9.66 4.84 4.17 9.75 10.58
GPTQ-R 4.42 4.11 9.68 9.47 4.79 4.21 9.78 9.60

Ours-seq256 4.51 3.91 9.88 9.56 4.85 4.15 11.07 11.40
Ours-seq512 4.52 3.90 9.88 9.70 4.81 4.17 10.54 10.87

Ours-v2-seq512 4.35 3.77 9.68 9.42 4.64 4.07 9.95 9.71

C MORE ABLATION STUDIES

C.1 BLOCK-WISE VERSUS LAYER-WISE

We examined the effects of layer-wise and block-wise tuning. As explained in Section 3.1, the term
”layer” refers to a linear/convolution layer, while ”block” specifically denotes a transformer block
consisting of multiple linear layers. To simplify this evaluation, we set the sequence length to 256
and disable AMP. Based on the below results, block-wise tuning outperformed layer-wise tuning in
the majority of scenarios.

C.2 THE ANALYSIS OF HYPERPARAMETERS SENSITIVITY

We conducted a hyperparameters sensitivity analysis, the results of which are summarized in Table
12. In the ”steps100” configuration, we used 100 steps, and a learning rate of 1e-2. In the ”lr4e-3”
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Table 11: Comparing block-wise and layer-wise tuning for around 7B models, the models
LLaMA7b, LLaMA7bv2, OPT6.7b, and BLOOM7b1 are denoted by 7b, 7bv2, 6.7b, and 7b1 re-
spectively. The accuracy is the % average accuracy(↑) of HellaSwag, WinoGrand, PIQA and LAM-
BADA . Perplexity (PPL) (↓) is evaluated using the C4 dataset.

W4 W3G128
Size 7b 7bv2 6.7b 7b1 7b 7bv2 6.7b 7b1

layer-acc-seq256 67.50 67.78 63.46 58.72 65.96 66.09 61.60 58.24
block-acc-seq256 67.64 67.96 64.55 59.08 66.31 66.63 57.76 58.34

layer-c4-ppl-seq256 8.02 7.92 13.44 15.73 8.81 8.69 16.83 16.15
block-c4-ppl-seq256 7.81 8.19 13.10 15.71 8.34 10.84 25.44 16.05

configuration, we set the learning rate to 4e-3. We also changed the sequence length of the calibra-
tion dataset from 512 to 2048, denoted by ”seq2048”. Please note that all other hyperparameters
not mentioned in each configuration were kept the same as the default configurations, as detailed in
Section 4.1. Overall, our method exhibits robustness to hyperparameters in common sense reasoning
tasks, with the exception of the perplexity of LLaMA-7b-v2. However, we did discover that certain
hyperparameters, such as the sequence length of the calibration dataset, can significantly impact
performance in some scenarios, as demonstrated in Table 4 and 5.

Table 12: Hyperparameter sensitivity analysis, the models LLaMA7b, LLaMA7bv2, OPT6.7b, and
BLOOM7b1 are denoted by 7b, 7bv2, 6.7b, and 7b1 respectively. The accuracy is the % average
accuracy(↑) of HellaSwag, WinoGrand, PIQA and LAMBADA . Perplexity (PPL) (↓) is evaluated
using the C4 dataset.

Accuracy PPL on C4
Size 7b 7bv2 6.7b 7b1 7b 7bv2 6.7b 7b1

steps100 67.53 67.76 64.64 58.76 7.93 7.83 13.12 15.71
lr4e-3 68.01 67.57 64.57 59.47 7.81 10.29 13.09 15.66

seq2048 68.11 67.79 64.32 59.39 7.76 9.97 13.06 15.66
default 68.05 67.74 64.34 59.52 7.84 11.20 13.08 15.67

D VISUALIZATION OF V

We provide an analysis of the magnitude distribution of V in Eq. 2 for approximately 7B models at
W4 in Figure 3. The findings reveal that the majority of V values are concentrated within the range
of [-0.3, 0.3]. Notably, the middle layers demonstrate a narrower distribution in comparison to the
other layers. This observation suggests that the head or tail layers may be more susceptible to the
compression.

E CORRECTION BETWEEN SIGNROUND AND SALIENT ACTIVATION
CHANNELS

We were also intrigued by the possible correlation between rounding and activation, as previous re-
search has shown that keeping only 0.1%-1% of the channels corresponding to larger activation can
significantly improve the quantized performance in AWQ (Lin et al., 2023). Therefore, we investi-
gated whether the altered rounding values tend to fall more frequently in these salient channels. The
results of our analysis, presented in Figure 4, reveal an interesting finding. The ratio, representing
the percentage of altered rounding values falling within the top 1% salient activation channels out of
all altered rounding values, is typically around 1%. This suggests that there is no strong correlation
between rounding and activation. It is possible that rounding values of less significant channels need
to be changed to compensate for the quantization error introduced by these salient channels.
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LLaMA-7B LLaMA-7B-V2

OPT-6.7B BLOOM-7B1

Figure 3: The distribution of the magnitude of V in Eq. 2 for different models, namely LLaMA-7B,
LLaMA-7B-V2, OPT-6.7B, and BLOOM-7B1 at W4. Each color in the distribution represents a
specific layer index in the models, with blue indicating shallow layers closer to the data layer, and
red representing deeper layers.
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LLaMA-7B LLaMA-7B-V2

OPT-6.7B BLOOM-7B1

Figure 4: The correction between SignRound and salient activation channels

F RUNTIME

Table 13 provides a runtime comparison between GPTQ and our method. All measurements were
conducted on a single NVIDIA A100 card with 80GB of memory. Although our method demon-
strates slightly slower performance compared to GPTQ for models ≥ 30b, it remains well within
acceptable limits for real-world deployment.

Table 13: Runtime in seconds at W4 for small models. Oursv2 denotes incorprating minmax tuning
detailed in AppendixA. All the data of ours are tested with sequence length of 512. We haven’t
tested ours-addam for large models and there is no act-order option for bloom models.

Type LLaMA OPT BLOOM
7B 13B 30B 65B 6.7B 13B 30B 66B 3B 7B1

GPTQ 712 1240 3038 5635 841 1523 3014 6569 345 661
Ours-adam 937 1592 - - 794 1479 - - 431 837

Ours 730 1294 3902 6630 664 1184 3267 6385 362 695
GPTQ-R 929 1462 3062 5556 880 1513 3119 6374 - -
Oursv2 889 1605 4483 8183 825 1515 3882 7882 428 834

G DETAILED RESULTS OF SOME LLAMA MODELS

Detailed results of LLaMA7B, LLaMA13B, LLAMA7B-V2, and LLAMA13B-V2 can be found in
Table 14, Table 15, Table 16, and Table 17 respectively.

17



Under review as a conference paper at ICLR 2024

Table 14: Accuracies(↑) of HellaSwag, WinoGrand, PIQA, LAMBADA and PPL(↓) of WikiText,
PTB, C4 for LLaMA-7B, ”Ours-2048” indicates that we have modified the sequence length of the
calibration dataset from 512 to 2048.

Hella. Wino. PIQA Lamb. Avg. Wiki. PTB C4
FP16 56.42 66.85 78.35 73.57 68.80 5.68 10.12 7.34

W4G-1

RTN 54.96 67.25 77.31 70.00 67.38 6.29 11.25 8.12
GPTQ 52.25 63.85 74.59 68.12 64.70 6.59 12.02 8.64
Ours 55.28 66.14 77.64 73.14 68.05 6.12 10.88 7.84

Ours-2048 54.96 67.56 77.80 72.13 68.11 6.05 10.87 7.76

W4G128

RTN 55.86 65.75 77.58 72.25 67.86 5.96 10.54 7.70
GPTQ 54.09 64.09 77.26 69.86 66.33 6.29 11.11 8.02
Ours 55.92 66.30 78.07 72.07 68.09 5.86 10.49 7.56

Ours-2048 55.98 66.77 78.29 71.78 68.21 5.88 10.52 7.58

W3G128

RTN 53.17 63.14 75.73 67.71 64.94 7.01 12.83 9.18
GPTQ 47.10 59.91 72.58 53.58 58.29 8.28 16.84 10.45
Ours 53.98 66.06 76.61 69.82 66.62 6.93 11.67 8.30

Ours-2048 53.45 65.67 76.55 71.08 66.69 6.52 11.60 8.26

Table 15: Accuracies(↑) of HellaSwag, WinoGrand, PIQA, LAMBADA and PPL(↓) of WikiText,
PTB, C4 for LLaMA-13B, ”Ours-2048” indicates that we have modified the sequence length of the
calibration dataset from 512 to 2048.

Hella. Wino. PIQA Lamb. Avg. Wiki. PTB C4
FP16 59.13 70.32 78.94 76.17 71.14 5.09 9.08 6.80

W4G-1

RTN 57.96 68.19 78.18 70.95 68.82 5.53 9.78 7.23
GPTQ 57.96 70.24 77.97 73.84 70.00 5.33 9.48 7.13
Ours 58.02 69.61 78.94 75.74 70.58 5.32 9.37 7.05

Ours-2048 58.13 69.69 78.67 74.95 70.36 5.34 9.49 7.05

W4G128

RTN 58.43 70.32 79.33 75.32 70.85 5.26 9.29 6.94
GPTQ 58.79 70.56 79.33 75.00 70.92 5.21 9.28 6.92
Ours 58.62 71.35 79.76 75.98 71.43 5.19 9.18 6.90

Ours-2048 58.47 70.56 79.22 76.23 71.12 5.19 9.19 6.90

W3G128

RTN 56.39 67.56 77.20 69.63 67.70 5.88 10.58 7.86
GPTQ 56.58 67.96 78.07 72.31 68.73 5.64 9.95 7.54
Ours 57.04 69.14 77.86 74.33 69.59 5.53 9.81 7.39

Ours-2048 56.62 68.82 78.13 74.42 69.50 5.57 9.76 7.37

Table 16: Accuracies(↑) of HellaSwag, WinoGrand, PIQA, LAMBADA and PPL(↓) of WikiText,
PTB, C4 for LLaMA-7B-V2, ”Ours-2048” indicates that we have modified the sequence length of
the calibration dataset from 512 to 2048.

Hella. Wino. PIQA Lamb. Avg. Wiki. PTB C4
FP16 56.69 67.17 78.35 73.88 69.02 5.47 32.91 7.26

W4G-1

RTN 55.51 66.77 77.58 68.08 66.98 6.12 61.61 8.16
GPTQ 54.74 66.93 76.17 69.73 66.89 6.09 NAN 7.90
Ours 55.53 67.09 77.53 70.81 67.74 298.4 2677 11.20

Ours-2048 55.63 67.96 77.64 69.92 67.79 196.7 2622 9.97

W4G128

RTN 56.55 66.93 77.37 72.44 68.32 5.72 50.25 7.58
GPTQ 56.16 68.03 78.56 72.83 68.90 5.73 NAN 7.53
Ours 56.21 67.56 77.64 73.20 68.65 60.03 1786 8.16

Ours-2048 55.97 67.09 77.15 73.57 68.45 48.91 1872 8.05

W3G128

RTN 54.65 67.17 75.90 65.98 65.92 6.66 44.89 8.98
GPTQ 52.93 65.19 76.44 67.49 65.51 6.57 NAN 8.61
Ours 53.65 66.14 77.09 70.64 66.88 NAN 1159 9.88

Ours-2048 53.91 67.32 76.33 71.12 67.17 NAN 1739 10.11
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Table 17: Accuracies(↑) of HellaSwag, WinoGrand, PIQA, LAMBADA and PPL(↓) of WikiText,
PTB, C4 for LLaMA-13B-V2, ”Ours-2048” indicates that we have modified the sequence length of
the calibration dataset from 512 to 2048.

Hella. Wino. PIQA Lamb. Avg. Wiki. PTB C4
FP16 59.71 69.61 78.78 76.71 71.20 4.88 48.82 6.73

W4G-1

RTN 58.56 69.30 78.45 74.36 70.17 5.20 58.57 7.14
GPTQ 57.81 67.48 77.86 73.84 69.25 5.16 52.46 6.87
Ours 58.63 69.61 77.91 73.98 70.03 9.15 66.80 7.72

Ours-2048 58.87 68.67 78.07 75.90 70.38 6.51 60.35 7.28

W4G128

RTN 59.12 69.46 78.02 76.29 70.72 4.98 52.22 6.87
GPTQ 59.22 68.51 78.84 76.13 70.68 4.99 51.59 6.87
Ours 59.20 69.14 78.35 76.56 70.81 5.80 51.92 6.84

Ours-2048 59.25 70.48 78.29 76.81 71.21 5.00 51.78 6.84

W3G128

RTN 57.03 67.56 77.86 72.37 68.70 5.52 62.33 7.58
GPTQ 56.99 66.69 78.40 72.85 68.73 5.45 55.09 7.54
Ours 57.29 68.90 77.37 75.22 69.70 5.35 59.57 7.35

Ours-2048 57.20 70.88 78.13 75.35 70.39 10.38 66.22 7.92
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