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Multi-gene assays have been widely used to predict the recurrence risk for hormone receptor (HR)-positive breast 
cancer patients. However, these assays lack explanatory power regarding the underlying mechanisms of the 
recurrence risk. To address this limitation, we proposed a novel multi-layered knowledge graph neural network 
for the multi-gene assays. Our model elucidated the regulatory pathways of assay genes and utilized an attention-

based graph neural network to predict recurrence risk while interpreting transcriptional subpathways relevant to 
risk prediction. Evaluation on three multi-gene assays—Oncotype DX, Prosigna, and EndoPredict—using SCAN-B 
dataset demonstrated the efficacy of our method. Through interpretation of attention weights, we found that all 
three assays are mainly regulated by signaling pathways driving cancer proliferation especially RTK-ERK-ETS-

mediated cell proliferation for breast cancer recurrence. In addition, our analysis highlighted that the important 
regulatory subpathways remain consistent across different knowledgebases used for constructing the multi-level 
knowledge graph. Furthermore, through attention analysis, we demonstrated the biological significance and 
clinical relevance of these subpathways in predicting patient outcomes. The source code is available at http://

biohealth .snu .ac .kr /software /ExplainableMLKGNN.
1. Introduction

Breast cancer has been extensively studied at the molecular level, 
leading to the widespread use of multi-gene assays as prognostic and 
predictive biomarkers. In particular, several multi-gene assays, such 
as Oncotype DX, Prosigna (also known as PAM50) and EndoPredict, 
are widely used for early-stage, estrogen receptor (ER)-positive, node-

negative breast cancer patients. Oncotype DX [1] analyzed 250 genes 
through methods like literature mining and pathway analysis, identify-

ing 16 target genes associated with recurrence in breast cancer across 
three clinical studies. Prosigna [2] utilized hierarchical clustering anal-

ysis and statistical tests to identify 50 genes as biomarkers that were 
widely used for defining molecular subtypes of breast cancers (Luminal 

* Corresponding author at: Department of Computer Science and Engineering, South Korea.
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A, Luminal B, Her2-enriched, Basal). EndoPredict [3] used an outcome-

driven strategy to select eight genes strongly associated with 10-year 
outcomes, integrating clinical factors like tumor size and nodal status 
to calculate the recurrence score. Further information on these three 
multi-gene assays is available in the Supplementary Material.

While these multi-gene assays are now widely used for predicting 
breast cancer recurrence globally, a significant drawback remains in 
their limited explanatory power. These assays rely on outcome-driven 
approaches to predict the risk of recurrence. Also, since quantitative 
reverse transcription PCR (qRT-PCR) and microarray-based gene ex-

pression analysis have been the main measurement for the multi-gene 
assays, the number of selected genes is limited to a few genes for cost 
effectiveness and flexibility [4,5]. Although the assay genes are re-
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Fig. 1. Overview of the proposed model. (a) Given a gene expression profile vector, the graph neural network predicts the recurrence risk of a given patient by 
considering the regulatory landscape of assay genes hierarchically. On the multi-layered knowledge graph, our model utilizes two attention-based propagation 
concepts: intra-subpathway level and inter-subpathway level propagations. (b) The multi-layered knowledge graph consists of three layers: gene-level, subpathway-level, 
and assay gene-level. Information of gene-level is propagated to assay gene-level through the regulatory subpathways. To capture the complex transcriptional 
regulatory mechanisms of assay genes, we propose a subpathway cascade that identifies all the subpathways that start from cancer driver genes to assay genes while 
considering both the gene-level and subpathway-level interactions. Examples of the subpathways generated by the method are shown on the right panel.
lated to key mechanisms in cancer cells such as proliferation, apoptosis, 
ER/PR/HER2 action, invasion [6,7], these marker genes are not infor-

mative enough to explain underlying biological mechanisms.

The main question is why different assays, i.e., different gene sets, 
can predict recurrence or survival. Our research question is “Can we 
understand the underlying biological mechanisms of these assays for 
breast cancer recurrence?” If successful, we may be able to improve 
both the predictive and explanatory power of the assays. Enhancing the 
explanatory power of the assays, we used transcriptome profiles at the 
entire cell level to elucidate the underlying biological mechanisms. To 
use the whole genome level transcriptome data effectively, we need a 
strategy to address an issue that multiple biological mechanisms and 
signaling pathways are interdependent due to the multi-step nature of 
breast cancer recurrence [8–10].

In this study, we constructed a multi-layered knowledge graph with 
a novel approach, subpathway cascade, from curated biological pathway 
databases. Leveraging the multi-layered knowledge graph, we proposed 
an interpretable multi-layered graph neural network model featuring at-

tention mechanisms. This model aims to identify the significance of sub-

pathways and predict the risk of recurrence in breast cancer patients. 
By investigating the three well-known assays (Oncotype DX, Prosigna, 
EndoPredict) on the SCAN-B dataset [11], we identified shared un-

derlying biological mechanisms including RTK-ERK-ETS-mediated cell 
proliferation, thyroid hormone-mediated regulation of HIF1A, and JAK-

STAT-mediated inflammatory response. With a substantial increase of 
up to 11% in the c-index of recurrence risk prediction, our model effec-

tively captured essential biological subpathways associated with breast 
cancers, as demonstrated by robustness to different knowledgebases, 
survival analysis, and simulation studies. Our contributions are as fol-

lows:

• To improve explanatory power of multi-gene assays, we proposed 
an explainable deep learning model for multi-gene assays of breast 
cancer recurrence.

• Multi-layered knowledge graphs identified key transcriptional reg-

ulatory pathways for three assays: Oncotype DX, Prosigna, and 
EndoPredict.

• Attention-based graph neural networks improved both the perfor-

mance of recurrence prediction and the interpretability of regula-
1716

tory mechanisms at the individual patient level.
2. Materials and methods

In this section, we describe the process of constructing the multi-

layered knowledge graph by identifying regulatory subpathways of 
assay genes, and implementing the explainable graph neural network 
(Fig. 1).

2.1. Subpathway cascade via transcriptional regulation

To investigate the regulatory subpathways of assay genes (AGs) con-

sidering the multi-step nature of recurrence [10], we have developed 
a novel method named subpathway cascade. This approach constructs 
regulatory subpathways by initiating from cancer driver genes (CDGs) 
and progressing through the transcriptional regulation by transcription 
factors (TFs). CDGs are known to be play an important role in develop-

ment, progression, and even recurrence of cancer [12]. TFs can act as 
connectors between signaling pathways and other pathways containing 
target genes (TGs) [13].

2.1.1. Generation schema of the subpathway cascade

The subpathway cascade consists of three regulatory layers: (1) Nat-

ural, (2) Natural-cascade, (3) Transcriptional Regulatory-cascade. Case 
(1) represents a single subpathway while cases (2) and (3) assemble 
two distinct subpathways incorporating a single regulatory mechanism. 
In Natural-cascade, two subpathways share common genes. In Tran-

scriptional Regulatory-cascade, TF-TG relationship connects two subpath-

ways. Generating all regulatory subpathways from CDG to AG while 
considering these cascade cases is inefficient and computationally ex-

pensive due to redundant subpathways. To address this challenge, we 
performed a two-step generating process (Supplementary Figure S1): 
generating cascading backbones  in Step 1 and subpathway graphs 
 in Step 2.

Step 1: Generating cascading backbones  The cascading back-

bones  contain only essential information about subpathways in the 
form of two sequences (𝑏𝑔, 𝑏𝑝): 𝑏𝑔 is a sequence of hub genes consist-

ing of CDG, cascading mediator genes, and AG in the corresponding 
subpathway. 𝑏𝑝 is a sequence of regulations, such as KEGG pathway 

identifiers or TF-TG symbol 𝜏 between two adjacent hub genes. These 
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backbones (𝑏𝑔, 𝑏𝑝) for a pair of 𝑖-th CDG and 𝑗-th AG, denoted (𝑑𝑖, 𝑎𝑗 ), 
are defined as follows:

Case 1 (Natural): (𝑑𝑖, 𝑎𝑗 ) are connected in the same pathway 𝑝𝑥
𝑏𝑔 = (𝑑𝑖, 𝑎𝑗 ), 𝑏𝑝 = (𝑝𝑥), where 𝑑𝑖, 𝑎𝑗 ∈ 𝑝𝑥

Case 2 (Natural-cascade): two pathways (𝑝𝑥, 𝑝𝑦) share a gene 𝑒
𝑏𝑔 = (𝑑𝑖, 𝑒, 𝑎𝑗 ), 𝑏𝑝 = (𝑝𝑥, 𝑝𝑦), where 𝑑𝑖 ∈ 𝑝𝑥, 𝑎𝑗 ∈ 𝑝𝑦, 𝑒 ∈ 𝑝𝑥, 𝑒 ∈ 𝑝𝑦

Case 3 (Transcriptional Regulatory-cascade): TF-TG relationship 
𝜏 = (𝛼, 𝛽) cascades two pathways (𝑝𝑥, 𝑝𝑦)
𝑏𝑔 = (𝑑𝑖, 𝛼, 𝛽, 𝑎𝑗 ), 𝑏𝑝 = (𝑝𝑥, 𝜏, 𝑝𝑦), where 𝑑𝑖 ∈ 𝑝𝑥, 𝑎𝑗 ∈ 𝑝𝑦, 𝛼 ∈ 𝑝𝑥, 

𝛽 ∈ 𝑝𝑦
From the two sequences (𝑏𝑔, 𝑏𝑝), all the assay-specific cascading 

backbones  are defined below.

 =
⋃

(𝑑𝑖,𝑎𝑗 )∈(,)
𝑖𝑗

𝑖𝑗 = {(𝑏𝑔, 𝑏𝑝) ∶ cascading backbones of (𝑑𝑖, 𝑎𝑗 )}
(1)

where  denotes a set of CDGs and  denotes a set of assay genes.

Step 2: Assay-specific subpathway graphs  Given assay-specific 
cascading backbones , all regulatory subpathway graphs  are con-

structed as follows:

 =
⋃

𝑖𝑗∈

𝑖𝑗 where 𝑖𝑗 = {𝑠𝑏 ∶ 𝑏 = (𝑏𝑔, 𝑏𝑝) ∈𝑖𝑗} (2)

𝑠𝑏 =
⎧⎪⎨⎪⎩
𝑆𝑃 (𝑑𝑖, 𝑎𝑗 , 𝑝𝑥) 𝑏 is Case 1,

𝑆𝑃 (𝑑𝑖, 𝑒, 𝑝𝑥) ‖𝑆𝑃 (𝑒, 𝑎𝑗 , 𝑝𝑦) 𝑏 is Case 2,

𝑆𝑃 (𝑑𝑖, 𝛼, 𝑝𝑥) ‖ (𝛼, 𝛽) ‖𝑆𝑃 (𝛽, 𝑎𝑗 , 𝑝𝑦) 𝑏 is Case 3

(3)

where 𝑠𝑏 is a subpathway graph of the cascading backbone 𝑏. ‖ is a 
concatenation of subpathway sequences. 𝑆𝑃 (𝑣1, 𝑣2, 𝐺) is a subgraph of 
the shortest path nodes between (𝑣1, 𝑣2) in 𝐺.

2.1.2. Construction of the assay-specific multi-layered knowledge graph

To construct the regulatory landscape of assays, an assay-specific 
multi-layered knowledge graph 𝐾𝐺 is constructed from . The 
knowledge graph consists of three levels: gene, subpathway, and assay 
in a hierarchy. Based on the types of interacting entities, the graph can 
be divided into two parts: intra-level and inter-level knowledge graphs.

The gene-level graph 𝐾𝐺,1 represents the regulatory mechanism at 
the gene level. It is constructed from  as a set of nodes 𝑉𝑔 represent-

ing genes and edges 𝐸𝑔 representing regulatory interactions between 
genes belonging to the subpathways.

The gene-to-subpathway-level graph 𝐾𝐺,12 represents the inclu-

sion relationship between genes and subpathways. It is constructed as 
a set of nodes 𝑉𝑔 ∪ 𝑉𝑠 representing genes and subpathways and edges 
𝐸𝑔→𝑠 representing the inclusion of genes in subpathways. The edges are 
constructed through pathway knowledge database.

The subpathway-level graph 𝐾𝐺,2 represents the regulatory mech-

anism at the subpathway level. It is constructed as a set of nodes 𝑉𝑠
representing subpathways and edges 𝐸𝑠 representing regulatory inter-

actions, named cascades, between subpathways. The edges are con-

structed using results from subpathway cascades that are either natural 
cascades or transcriptional regulatory cascades.

The subpathway-to-assay-level graph 𝐾𝐺,23 represents the regula-

tory target relationship from subpathway to assay gene. It is constructed 
as a set of nodes 𝑉𝑠 ∪𝑉𝑎 representing subpathways and assay genes and 
edges 𝐸𝑠→𝑎 representing the regulatory target relationship from sub-

pathway to assay gene.

The assay gene-level graph 𝐾𝐺,3 represents the assay genes that 
are the endpoints of 𝐾𝐺 and are utilized as inputs for recurrence risk 
prediction.

The intra-subpathway-level knowledge graph is defined as a union 
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of 𝐾𝐺,1 and 𝐾𝐺,12 that include gene-level interactions and the 
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inclusion relationship between genes and subpathways. The inter-

subpathway-level knowledge graph is defined as a union of 𝐾𝐺,2, 
𝐾𝐺,23, and 𝐾𝐺,3 that include subpathway-level interactions and the 
regulatory target relationships from subpathways to assay genes.

2.2. Explainable hierarchical graph neural network for breast cancer 
recurrence assay

The multi-layered knowledge graph represents the hierarchical reg-

ulatory landscape of assay genes. With this hierarchical structure, an 
attention-based hierarchical graph neural network predicts the recurrence 
risk of patients by considering comprehensive regulatory mechanisms 
via intra- and inter-subpathway level attention mechanisms.

2.2.1. Hierarchical propagations to generate patient representations

Given a gene expression profile of a patient 𝐮 ∈ ℝ𝑛 where 𝑛 is the 
number of genes in the knowledge graph 𝐾𝐺, the attention-based 
graph neural network ℎ𝜃 generates a patient representation 𝐫𝜃 ∈ ℝ𝑑
through the two propagation schema: Intra- and Inter-subpathway level 
propagation.

Intra-subpathway level propagation: Formally, given the patient vector 
𝐮 with the gene-level graph 𝐾𝐺,1, we compute the subpathway repre-

sentation 𝐇𝑠 by using GNNs [14,15] and attention mechanisms [16] as 
follows:

𝐇𝑔 =GNN𝜃(𝐮,𝐾𝐺,1)

𝐇𝑠 =Att(𝐇𝑔,𝐾𝐺,12)
(4)

where 𝐇𝑔 is the representation of genes in 𝐾𝐺,1 and contains in-

formation of gene interactions via GNN with model parameters 𝜃. 
Att(𝐇, 𝐺) = 𝜔𝐺(𝑊 𝑇 tanh(𝑊 (1)𝐇 + 𝑏(1)) + 𝑏)𝐇𝑇 where 𝜔𝐺() is a soft-

max function that computes attention weights of genes belonging to a 
single subpathway. 𝑊 (1) ∈ ℝ𝑑ℎ×𝑑𝑒 and 𝑊 ∈ ℝ𝑑ℎ are the learnable pa-

rameters for calculating attention weights where 𝑑𝑒 is the embedding 
size of genes in 𝐇𝑔 and 𝑑ℎ is the latent embedding size for calculation 
of the attention scores. 𝑏(1) and 𝑏 are the biases.

Inter-subpathway level propagation: While the intra-subpathway level 
propagation aggregates the information of genes belonging to each 
subpathway, this does not account for information exchange due to cas-

cading between subpathways. To leverage the subpathway cascade, we 
performed an inter-subpathway level propagation as follows:

𝐇𝑠𝑐 =GNN𝜃(𝐇𝑠,𝐾𝐺,2)

𝐇 =Att(𝐇𝑠𝑐 ,𝐾𝐺,23)

𝐫 = CONCAT(𝐇)

(5)

where 𝐇𝑠𝑐 is the representation vector of subpathway cascade. 𝐇

is the representation vector of assay genes that is obtained from the 
attention mechanism via considering importance of the subpathways. 
CONCAT is a concatenate operation for embeddings of assay genes.

2.2.2. Recurrence risk prediction through survival predictor

Using the patient representation vector 𝐫𝜃 generated by ℎ𝜃 , we ap-

ply a downstream MLP survival predictor, denoted as 𝑔𝜙, to measure 
the patient’s risk of breast cancer recurrence in an end-to-end manner. 
Thus, the hierarchical graph neural network and the survival predictor 
are co-trained using the average negative log partial likelihood as the 
training objective 𝑙(𝜃, 𝜙) that is a common choice for survival prediction 
tasks.

𝑙(𝜃,𝜙) = − 1 ∑ [
𝑔 (𝑟 ) − log

∑
exp(𝑔 (𝑟 ))

]
(6)
𝑁𝐸 𝑖∶𝐸𝑖=1
𝜙 𝜃,𝑖

𝑗∈𝐑(𝑇𝑖)
𝜙 𝜃,𝑗
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where 𝑁𝐸 is the number of recurrences. 𝐸𝑖 is a recurrence indicator 
for 𝑖-th patient and 𝐑(𝑡) = {𝑗 ∶ 𝑇𝑗 ≥ 𝑡} is the set of patients who are at 
recurrence risk at time 𝑡.

2.3. Knowledge databases for transcriptional regulation

In order to generate and evaluate our hierarchical graph neural net-

work for predicting breast cancer recurrence risks, we utilized several 
databases. From the KEGG PATHWAY Database [17], we selected 
210 pathways, excluding disease or metabolic pathways, to identify 
potential subpathways relevant to recurrence development. TFLink is 
a database of transcription factor-target gene regulatory relationships 
that act as cascading mediators between different subpathways [18]. 
We collected 839 TFs and 11,797 TGs. COSMIC Cancer Census is a 
database of cancer driver genes that act as the initiating source of regu-

latory subpathways [12]. Among the cancer hallmark genes, 114 breast 
cancer related genes were finally selected as starting points to construct 
the multi-level knowledge graph.

2.4. Experiment settings

Breast cancer recurrence assays are designed to help determine a 
treatment strategy, such as treatment of additional chemotherapy for 
high-risk groups, by predicting the future 5-year or 10-year recurrence 
risk when only endocrine therapy is treated to patients. Therefore, 
we conducted recurrence risk prediction experiments using SCAN-B 
dataset (GSE60789) [11], which was further filtered to include early-

stage breast cancer samples with survival information and belonging to 
either the None or Endo (endocrine therapy) treatment groups. The fil-

tered experimental dataset of SCAN-B comprises 3,661 samples. Among 
them, 327 patients experienced recurrence. Within this group, 228 pa-

tients had recurrence within 5 years while 96 experienced recurrence 
between 5 and 10 years. Additionally, 788 patients were right-censored 
within 5 years without recurrence and 2,350 were right-censored be-

tween 5 and 10 years without experiencing recurrence.

In order to include cancer-related gene information, we constructed 
one-hot encoding vector for each gene from the 50 hallmark gene set 
of MSigDB [19,20]. Then, the input features were constructed by con-

catenating the expression value and one-hot encoding vector for each 
gene. The maximum training epochs were limited to 200. The perfor-

mance evaluation experiment was conducted as 10-fold cross validation 
with random split of train:validation:test=8:1:1 while holding the hy-

perparameter settings of the baseline and our model identically. Hyper-

parameter tuning was performed using Optuna [21], a python library 
for hyperparameter optimization, and detailed tuning parameters are 
provided in Table S3.

As baseline models for recurrence risk prediction, we utilized three 
ML-based methods, one deep-learning (DL) method, and two pathway-

based (PB) methods. The list of additional baseline models is outlined 
below.

ML Fast Survival SVM (FS_SVM) [22]: Efficient linear survival support 
vector machine.

ML GB_Tree [23,24]: Gradient-boosted Cox proportional hazard loss 
with regression trees as base learner.

ML Coxnet [25]: Cox’s proportional hazard’s model with elastic net 
penalty.

DL SALMON_E: A modified version of SALMON [26] utilizing only 
gene expression data.

PB ssGSEA [27]: A single sample gene set enrichment analysis.

PB SAS [28,29]: Subsystem activation score for measuring pathway 
activity using protein-protein interaction network.

Since our multi-level knowledge graph contains fewer than one thou-

sand genes, ML and DL models utilized the top 1,000 genes with large 
1718

variance as input features. PB models computed input features using 
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Table 1

C-index of breast cancer risk prediction on SCAN-B dataset with three multi-

gene assays. The best results are highlighted in bold.

Assay Assay Genes 
(Baseline)

Intra-Subpathway Inter-Subpathway

Oncotype DX 0.714 ± 0.044 0.606 ± 0.043 0.741 ± 0.057

Prosigna 0.691 ± 0.058 0.616 ± 0.026 0.764 ± 0.043

EndoPredict 0.708 ± 0.076 0.635 ± 0.058 0.742 ± 0.046

the same pathways for our multi-level knowledge graph construction 
and utilized the three ML models as predictors.

3. Results and discussion

3.1. Multi-layered knowledge graph identifies shared regulatory 
mechanisms of breast cancer recurrence

In this section, utilizing the subpathway cascade, the regulatory 
landscapes of assays are illustrated in Fig. 2 and Supplementary Fig-

ure S2 and S3 for Oncotype DX, EndoPredict, and Prosigna, respec-

tively. In Fig. 2, our subpathway cascade method revealed important 
biological mechanisms: cellular senescence, apoptosis, and focal adhe-

sion. This is consistent with established knowledge that disrupted sig-

naling pathways affect breast cancer processes. Notably, these diverse 
regulations were not captured without cascading cases (Supplementary 
Figure S4-6).

By investigating the regulatory landscape of the three assays, we 
identified shared underlying biological mechanisms such as RTK-ERK-

ETS-mediated cell proliferation, thyroid hormone-mediated regulation 
of HIF1A, and JAK-STAT-mediated inflammatory response, despite min-

imal gene overlap between assays. For example, Oncotype DX as a 
reference, we observed 38.10% gene overlap with Prosigna while the 
regulatory subpathways exhibited a large overlap of 98.75% (Supple-

mentary Table S1). The most common subpathways were signaling 
pathways (Supplementary Table S2), acting as important mechanisms 
in breast cancer recurrence [30,9].

3.2. Multi-layered knowledge graph helps recurrence risk prediction

We evaluated how well the multi-layered knowledge graph pre-

dicts breast cancer recurrence. We compared predictive outcomes from 
three assays: using MLP with assay gene profiles alone (Assay Genes), 
GNN with only intra-subpathway graph (Intra-Subpathway), and GNN 
with the multi-layered graph including inter-subpathway connections 
(Inter-Subpathway). Notably, as shown in Table 1, Inter-Subpathway 
significantly outperformed the baseline, with up to an 11% increase in 
c-index, highlighting the importance of inter-subpathway interactions 
in comprehending breast cancer recurrence mechanisms. In addition, 
Inter-Subpathway model shows good performance of 5-year recurrence 
prediction on all the three assays (Supplementary Figure S7). Inter-

estingly, the ‘Intra-Subpathway’ model exhibits the worst predictive 
performances across all assays. Without endpoints (i.e., assay genes) 
to summarize information from learned subpathways, this model faces 
challenges in integrating data from multiple subpathways, leading to 
overfitting.

To further explore the predictive performance of a multi-layered 
knowledge graph, we conducted an additional comparison involving 
three ML-based methods (FS_SVM, GB_Tree, and Coxnet), one deep-

learning (DL) method (SALMON_E), and two pathway-based (PB) meth-

ods (ssGSEA and SAS). As shown in Supplementary Table S4, our pro-

posed method leveraging the multi-layered knowledge graph demon-

strates better predictive performance compared to most ML, DL, and PB 
models. While DL models like SALMON_E and ssGSEA + Coxnet demon-

strate strong recurrence risk prediction among baseline models, they 

do not consider assay genes and suffer from limited interpretability. In 
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Fig. 2. The regulatory landscape of Oncotype DX via the subpathway cascade. Each combination of lines reaching the Assay Gene (AG) from the Cancer Driver Gene 
(CDG) represents a single regulatory subpathway. The thickness of the node is calculated based on the number of subpathways passing through the node representing 
the relative importance of the node to construct the entire landscape in its own column. The line color was determined according to the alphabetical order of each 

column.

contrast, our proposed method not only achieves the best prediction ac-

curacy but also offers biological explanation in terms of the regulatory 
mechanisms of assay genes.

3.3. Multi-layered knowledge graph is robust with respect to the different 
choices of knowledgebase and cancer driver gene sets

To demonstrate the robustness of our proposed approach with re-

spect to the knowledgebases, we collected pathways from Reactome 
[31] and WikiPathways [32]. To ensure a fair comparison, we ex-

cluded disease or metabolome-related pathways from both Reactome 
and WikiPathways employing the same filtering criteria utilized for the 
KEGG database.

Table 2 shows that Oncotype DX and EndoPredict maintain consis-

tent performance across different knowledgebases. Although Prosigna 
performs similarly with KEGG and WikiPathways, its performance 
1719

slightly decreased with Reactome. Nonetheless, the proposed approach 
Table 2

C-index of breast cancer risk prediction on SCAN-B dataset with different path-

way databases. The best results are highlighted in bold.

Assay KEGG WikiPathways Reactome

Oncotype DX 0.741 ± 0.057 0.743 ± 0.049 0.740 ± 0.040

Prosigna 0.764 ± 0.043 0.764 ± 0.038 0.756 ± 0.040

EndoPredict 0.742 ± 0.046 0.743 ± 0.047 0.742 ± 0.036

with Prosigna consistently demonstrated superior predictive perfor-

mance compared to other baseline models.

In addition, top-highlighted pathways captured by attention analysis 
highlight biological mechanisms consistently regardless of knowledge-

bases used for the analysis. Supplementary Figure S8 show the top 20 
subpathways for Oncotype DX from KEGG, WikiPathways, and Reac-

tome. In all cases of knowledgebases used for constructing the hierar-
chical graph model, the 20 subpathways included the Ras and Estrogen 
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Table 3

C-index of breast cancer risk prediction on SCAN-

B dataset with different cancer driver genes. The 
best results are highlighted in bold. CCHG: Cancer 
Census Hallmark Gene. BC-CCHG: Breast Cancer 
realted CCHG.

Assay BC-CCHG CCHG

Oncotype DX 0.741 ± 0.057 0.741 ± 0.042

Prosigna 0.764 ± 0.043 0.759 ± 0.047
EndoPredict 0.742 ± 0.046 0.736 ± 0.044

Table 4

C-index of breast cancer risk prediction on SCAN-B dataset with 
‘Merged Assays’. ‘Merged Assays’ is an union of the three multi-

gene assays. The best results are highlighted in bold.

C-index C-index

Oncotype DX 0.741 ± 0.057
Merged Assays 0.771 ± 0.045Prosigna 0.764 ± 0.043

EndoPredict 0.742 ± 0.046

signaling pathways were commonly identified as well as the PI3K-AKT 
and MAPK pathways. Similar trends were observed with Prosigna and 
EndoPredict as well (Supplementary Figure S9-S10). This implies that 
the proposed multi-level knowledge graph can robustly identify the 
regulatory mechanisms of assay genes, which could serve as a crucial 
foundation for exploring the biological mechanisms of breast cancer re-

currence.

We further conducted an experiment with a different set of cancer 
driver genes that is the starting point of our deep learning analysis. 
The proposed method utilized only breast cancer-related cancer census 
hallmark genes (BC-CCHG). Instead, we trained an additional model 
using the entire set of Cancer Census Hallmark Genes (CCHG) as cancer 
driver genes.

Table 3 demonstrates that predictive performances are either com-

parable or slightly worse. Concerning cancer driver genes, out of a total 
of 349 CCHG, 114 genes are associated with BC-CCHG. While aug-

menting the number of cancer driver genes might enhance connectivity 
with assay genes, it could also introduce unnecessary complexity as the 
multi-level knowledge graph expands. The use of CCHG resulted in an 
average increase of 8.2% in the number of nodes in the gene-level net-

work and 36.6% in the subpathway-level network. Thus, it seems that 
the model’s performance slightly decreases when utilizing CCHG.

Therefore, when constructing a multi-level knowledge graph, it is 
crucial to curate regulatory subpathways that can connect cancer driver 
genes and assay genes to build an efficient multi-level knowledge graph. 
One possible approach to address this is to utilize three multi-gene as-

says together (called as ‘Merged Assays’) when constructing the knowl-

edge graph. As shown in Table 4, the ‘Merged Assays’ achieved a c-index 
of 0.771, indicating a slight enhancement in recurrence risk prediction 
performance. The improved prediction performance when all genes in 
the three multi-gene assays is probably because the assay genes are bet-

ter linked to regulatory subpathways that play crucial roles in breast 
cancer recurrence such as the PI3K-AKT signaling, JAK-STAT signaling, 
or cytokine-cytokine receptor interaction [33–35].

3.4. Attention mechanism captures regulatory subpathways of breast 
cancer recurrence

To demonstrate the explainability of our model, we analyzed at-

tention weights and identified significant subpathways of three assays: 
Oncotype DX (Fig. 3), EndoPredict (Supplementary Figure S11), and 
Prosigna (Supplementary Figure S12).

Fig. 3(a) illustrates the top 20 regulatory subpathways of Onco-

type DX using a Sankey diagram, and their assay-level regulations are 
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summarized in 3(b). Among these top 20 subpathways, some exhibit 
Computational and Structural Biotechnology Journal 23 (2024) 1715–1724

notable attention weights (Fig. 3(c)), especially subpathways from Ras 
(hsa04014), estrogen (hsa04915), and PI3K-Akt (hsa04151) signaling 
pathways. These signaling pathways are known to play an important 
role in regulation of breast cancer cells [36,37,33]. To further inves-

tigate the biological relevance of the identified subpathways in terms 
of breast cancer recurrence, we analyzed the two highlighted sub-

pathways: hsa04014:RTK→ETS and hsa04915:RAS→ER+TF, which are 
commonly identified Oncotype DX, Prosigna, and EndoPredict.

Ras signaling subpathway (hsa04014:RTK→ETS): Starting with RTK

family, this subpathway propagates transcriptional signaling via the 
ETS1 transcription factor, finally regulating some Oncotype DX assay 
genes including CCNB1. Fig. 3(d) illustrates strong correlations between 
cancer driver genes MET and PDGFRA within the RTK family, and their 
association with ETS1 and CCNB1. Both MET and PDGFRA, which are 
strongly correlated with ETS1, have proliferative signaling hallmarks 
[12,38]. Interestingly, CCNB1, a proliferation activity marker in the 
Oncotype DX assay by its overexpression [39], is negatively correlated 
with ETS1, a well-known inhibitor of cell growth and proliferation in 
breast cancer cells [40].

Estrogen signaling subpathway (hsa04915:RAS→ER+TF): Starting from 
Ras family, cancer driver genes (HRAS, KRAS), this subpathway regu-

lates assay genes including BCL2, an indicative of increased estrogen 
signaling in Oncotype DX [41]. Specifically, BCL2 is regulated by tran-

scription factors including ESR1, another assay gene, and SP1. Similar 
with Ras signaling pathway, our correlation analysis shows that cancer 
driver genes, transcription factors and the assay gene are strongly cor-

related sequentially (Fig. 3(e)). With apoptotic behaviors of BCL2 and 
the Ras family [42,43], we conjecture that the subpathway regulates 
both estrogen receptor activity and cell apoptosis in breast cancer cells.

3.5. Attention mechanisms can be interpreted with predicted risk

We further examined the association between assay genes and recur-

rence risk using the assay gene-level layer of the multi-layered knowl-

edge graph. Utilizing the Layer Conductance method [44], we measured 
neuron attributions in the assay gene-level layer related to risk predic-

tion. High neuron attribution indicates that neuron activation positively 
impacts higher recurrence risk. Conversely, low or negative attribution 
suggests that neuron activation hinders risk prediction, resulting in pre-

dictions of lower recurrence risk.

Fig. 4(a) shows neuron attributions of assay genes in Oncotype DX, 
measured on test data. We divided the test data into High/Low groups 
based on median recurrence risk, and average of neuron attributions 
were summarized for each group. Among the 15 genes of Oncotype DX, 
neuronal attributions of 12 genes except for PGR, MYBL2, and CD68 
show marked differences between the High and Low groups. On the 
other hand, in Fig. 4(b), only 4 genes out of 15 genes show significant 
differences in the expression level fold change. This indicates that as-

say genes may not be determined only by using differentially expressed 
genes (DEGs) based on the fold change in gene expression. Thus, it is 
necessary to consider gene-gene interaction to determine assay genes 
for recurrence risk. Our model can be used to identify such genes for 
recurrence risk by looking at activation levels of the neuron for risk 
prediction. The neuron attribution is calculated by considering the ac-

tivation value of the neuron based on the activation values of other 
genes. Thus, the neuron attribution can consider gene interactions. For 
this reason, neuron attribution shows more clinical relevance than the 
simple fold change metric (Fig. 4 (c)-(d)). Therefore, the graph neural 
network utilizing the multi-layered knowledge graph better captured 
the impact of assay genes on recurrence risk.

To further analyze regulatory biological functions of assay genes, 
we selected BCL2 due to substantial differences in neuron attributions. 
We performed pathway enrichment analysis using genes in the top 10 

subpathways linked to BCL2 for each group, respectively (Fig. 4(e) 



Computational and Structural Biotechnology Journal 23 (2024) 1715–1724S. Lee, J. Park, Y. Piao et al.

Fig. 3. Subpathways obtained by attention mechanisms in Oncotype DX. (a) The Sankey diagram of top-20 subpathways. Various known cancer-related signaling 
pathways such as Ras, Estrogen, and PI3K-Akt were identified. (b) Assay gene-level regulation cases of the top-20 subpathways. 5 categories of Oncotype DX 
markers are provided together. (c) A bar plot representing the top-20 subpathways in order of average attentions. (d), (e) Two case studies of Ras and estrogen 
signaling subpathways, hsa04014:RTK→ETS and hsa04915:Ras→ER+TF, respectively. Cancer driver genes, transcription factors, and target assay genes were strongly 
correlated sequentially.
and (f)). The enriched pathways in the two groups differ significantly. 
In Fig. 4(e), pathways related to the development and progression of 
breast cancer cells (e.g., Ras and ErbB signaling) were enriched in 
the High group. On the other hand, in the Low group, more general-

disease related pathways were enriched (Fig. 4(f)). Also, in the Low 
group, breast cancer-related pathways identified in the High group are 
also rarely enriched. This result suggests that distinct regulatory sub-

pathways of BCL2 contributed to recurrence risk. Therefore, our model 
facilitates the interpretation of associations between assay genes and re-

currence risks by suggesting how assay genes are regulated by specific 
biological mechanisms.

3.6. Survival and simulation studies suggest the clinical potentials of top-3 
regulatory subpathways

We investigated the clinical impacts of top-3 regulatory sub-

pathways in Fig. 3(c): hsa04014(Ras):RTK→ETS, hsa04151(PI3K-

Akt):AKT→MYB, and hsa04915(Estrogen):Ras→ER+TF. First, we di-

vided test samples into high and low-risk groups based on the expres-
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sion levels of genes associated with these subpathways. In Fig. 5(a), 
the subpathways are up-regulated in the high-risk group. Interestingly, 
overexpression of CCNB1, MYBL2, and ESR1, promoting cell prolifera-

tion, can lead to higher recurrence risks [39,45]. To further examine the 
prognostic potential of the top-3 subpathways, we conducted survival 
analyses and a simulation study assuming a targeted therapy situation. 
Details of experimental setup are described in Supplementary Mate-

rial.

To evaluate the prognostic values of the top-3 subpathways, we per-

formed survival analyses. Since breast cancer recurrence assays are used 
to predict 5-year or 10-year recurrence risks, we limited the observation 
period up to 10 years and selected 342 test samples accordingly. We 
used Kaplan-Meier estimation and log rank test to compare the risks 
between two groups with three survival outcomes: Overall Survival, 
Recurrence-Free Intervals, Distant Recurrence-Free Intervals. As shown 
in Fig. 5(b), these top-3 subpathways were significantly related to all 
three survival outcomes. Corresponding results for Prosigna and Endo-

Predict are provided in Supplementary Figure S13.

To further investigate the clinical potential of the top-3 subpath-

ways, we conducted a simulation study to observe changes in predicted 

risks. As shown in Fig. 5(c), we replaced the gene expression values of 
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Fig. 4. Impact of assay genes in Oncotype DX for recurrence risk prediction. (a) Relation of neuron activation in assay gene-level with recurrence risk. Attribution 
of neuron is measured by Layer Conductance. High/Low group is divided by median risk values of test data. As the activation value of the neuron increases, the 
recurrence risk increases whereas negative neuron attribution means that as the activation value of the neuron increases, the recurrence risk decreases. (b) Log2 fold 
change (log2FC) of genes in Oncotype DX. The values are calculated as log2FC(High/Low) and averaged on the test data. The black dashed line denotes log2FC is 1. 
(c) Recurrence free survival outcomes of breast cancer patients with high or low expression levels of BCL2. The high/low groups are determined by the mean gene 
expression values of BCL2 in the test data. (d) Recurrence free survival outcomes of breast cancer patients with high or low neuron attribution levels of BLC2. The 
high/low groups are determined by the mean neuron attribution levels of BCL2 in the test data. (e-f) Pathway enrichment results of top 10 highlighted subpathways 
of BCL2 for (e) High and (f) Low group, respectively. Pathways associated with breast cancer are highlighted with red underlines.
top-3 subpathways in high-risk samples with the mean values of low-

risk group and measured the difference in predicted recurrence risks. 
Fig. 5(d) shows that up to 45.7% of high-risk samples turned into the 
low-risk group. Notably, the more subpathways were replaced, the more 
the rate of changes increased.

4. Conclusion

In this study, we presented a novel multi-layered knowledge graph 
neural network model that improves both the predictive and explana-

tory power of three widely used recurrence assays for breast cancer. 
Subpathway cascade identified potential subpathways that are likely 
to regulate the transcriptomic states of assay genes. Then, the multi-

layered knowledge graph was constructed to represent the regulatory 
landscape of assay genes. By leveraging the multi-layered knowledge 
graph, our hierarchical graph neural network not only improved risk 
prediction performance, but also provided explainability through intra-

and inter-subpathway attentions. Our key finding is that the three as-

says, despite using different sets of genes, share common underlying 
biological mechanisms, such as RTK-ERK-ETS-mediated cell prolifera-

tion. Our results would suggest that targeting these key subpathways 
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may have therapeutic potential.
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